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GENERAL ABSTRACT 

 
Aridlands of northern Venezuela are important from an ornithological perspective 

because of the occurrence of habitat specialist birds that depend exclusively on desert 

scrubs for their survival and are almost all endemic to this single zoogeographic region. 

Currently, long-term survival of habitat specialists is threatened by ongoing changes in 

vegetation structure and composition but the effects of such changes on bird assemblages 

are unknown. Limited baseline information on bird assemblages that inhabit aridlands in 

the Neotropics precludes the implementation of appropriate conservation plans. The goal 

of this study was to characterize bird assemblages found in six arid zones in northern 

Venezuela at both ecological and genetic levels, and to generate information relevant for 

conservation planning in these regions. The study involved assessments of patterns of 

avian species richness, abundance, community composition and genetic diversity, as well 

as specific bird-habitat associations.  

Through systematic surveys, 96 bird species were recorded throughout the study 

areas. Even though the six areas support a homogeneous habitat type, species richness, 

composition, and abundance varied among them. The most abundant birds in all six areas 

were mainly widespread generalist species, and only one of the habitat specialists had 

high densities in all areas. Species richness was not a good indicator of an area’s 

conservation value, because the protection of the area with highest number of species 

does not guarantee the effective conservation of all habitat specialist birds. Conservation 

initiatives for arid zone birds should not only consider species richness and 

representativeness, but also other factors such as abundance patterns and 

complementarity between eastern and western areas. 
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Vegetation analyses indicated differences in mean values of both floristic and 

structural vegetation variables among the six study areas but, overall, the six areas had 

relatively similar vegetation. Vegetation variables explained more variation in 

distributions of habitat specialists and generalists when groups were considered 

separately than when they were combined in a single analysis. Habitat specialists, 

however, differed in their responses to vegetation variables, which may be related to 

differences in foraging strategies. Even though habitat specialists did not respond 

strongly to vegetation variables, results of this study suggest that some structural 

attributes are important for the survival of this particular group of species. Thus, 

conservation programs devoted to protect these birds should focus on the maintenance of 

the structural integrity of the habitat.  

Molecular techniques were used to investigate patterns of genetic diversity in 

three codistributed specialist birds (Yellow-shouldered Parrot, Buffy Hummingbird, and 

Vermilion Cardinal). Multiple analyses indicated geographic structure in the three 

species, but the extent of geographic structure varied among them as a result of different 

levels of population isolation during historical times and recent demographic expansions 

into some of the study areas. The assessment of genetic diversity and geographic 

structure of these three restricted birds showed incongruent patterns, which evidence 

different evolutionary histories. Conservation efforts should focus not only on the 

preservation of genetic diversity in each species but also on the maintenance of the 

diverse set of processes that generated such patterns.  
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CHAPTER I 

 
 

DIVERSITY PATTERNS OF BIRD ASSEMBLAGES IN ARID ZONES OF  
 

NORTHERN VENEZUELA 
 

 
INTRODUCTION 
 

The study of bird assemblages has contributed significantly to the field of community 

ecology, but not all bird communities have been equally well studied. In general, bird 

assemblages of arid regions or deserts have been neglected at least in part because of 

their lower species richness (see Wiens 1991) compared with wooded areas and forests. 

Additionally, of the few studies done on the structure and dynamics of these bird 

communities in the Americas, most have been conducted in temperate deserts (Dixon 

1959, Raitt and Maze 1968, Tomoff 1974, Szaro and Jackle 1985). 

In the Neotropics arid scrublands harboring distinctive avian communities are located 

in six main regions: 1) the lowlands and slopes of the Greater Antilles; 2) the Pacific arid 

slope of Central America, which extends from northwestern Mexico to northwestern 

Costa Rica; 3) the northern Yucatán peninsula; 4) the Caribbean lowlands of Colombia 

and Venezuela; 4) the Pacific coast of South America; and 6) the lowlands of central and 

southern South America, which include the Brazilian Caatinga, the Chaco of  Paraguay 

and northern Argentina, the Monte of western Argentina, and Patagonia (Stotz et al. 

1996). Despite the very few studies that have been conducted in the Neotropics, general 

descriptions of these communities characterize them as having a low overall diversity, 

but differing considerably in their regional species composition (Stotz et al. 1996). It has 

been suggested that no single arid formation in the Neotropics contains even a third of the 
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total arid-region species pool; most adjacent pairs of regions share fewer than 10% of 

their species, whereas adjacent humid-forest regions can share as many as 85% of their 

species (Stotz et al. 1996). Further, level of endemism is high, comparable to or higher 

than that of humid forests, and increases with the level of dependence on the habitat 

(Stotz et al. 1996, Brawn et al. 1998). These characteristics illustrate the distinctiveness 

of the species pools found in arid regions, and the need to study these areas and formulate 

regional conservation strategies to conserve this avifauna as a whole.  

Our current knowledge about bird community structure in Neotropical arid regions is 

based on limited studies at two single localities in northern Venezuela (Bosque 1984, 

Poulin et al. 1992, 1993, 1994), one locality in Mexico (Arizmendi and Espinoza de los 

Monteros 1996), and two areas in Argentina, the Chaco (López de Casenave et al. 1998, 

López de Casenave 2001, Codesido and Bilenca 2004, Derlindati and Caziani 2005) and 

the Monte desert (Marone 1992, Blendinger 2005). These studies concur with the general 

description that bird communities in arid regions have low species richness and they also 

suggested that species composition is constant over time and dominated by year-round 

resident species (Poulin 1993, Arizmendi and Espinoza de los Monteros 1996, Codesido 

and Bilenca 2004, Blendinger 2005). However, the main focus of most of these studies 

has been the seasonal variation in bird abundances related to breeding and feeding guilds 

(Bosque 1984, Marone 1992, Poulin et al. 1992, 1993, 1994; Codesido and Bilenca 2004, 

Blendinger 2005) or the variation of bird communities in relation to vegetation 

differences associated with habitat gradients (Bosque 1984, López de Casenave et al. 

1998). Here I present a different approach to the previous studies conducted in 

Neotropical arid zones by analyzing spatial variation of diversity attributes (richness, 
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composition, and abundance) of bird communities inhabiting Venezuelan arid zones to 

generate information for conservation planning in these areas. This is particularly 

relevant because most Neotropical arid regions are currently subject to habitat 

modification (Janzen 1988, Stotz et al. 1996, Fajardo et al. 2005).  

Venezuelan arid zones constitute an especially well-suited region for the study of 

avian assemblages for several reasons: 1) they belong to the “peri-Caribbean arid belt”, 

one of the six Neotropical arid regions; 2) this habitat is currently represented in the 

country by isolated remnants (Fig. 1) of a much broader expanse that was covered by 

xerophytic vegetation during past glacial times (Nassar et al. 2002); 3) these arid lands 

are considered an Endemic Bird Area (EBA) (sensu Stattersfield et al. 1998) because of 

the occurrence of  restricted-range and habitat specialist birds; and 4) arid scrublands are 

represented only marginally in the Venezuelan system of protected areas (less than 5% of 

this habitat is protected even on paper) (Stattersfield et al. 1998), and conservation efforts 

to preserve those and their avifaunas are scarce. Currently, the long-term survival of 

habitat-specialist birds is threatened by ongoing changes in vegetation structure and 

composition (Stattersfield et al. 1998, pers. observ.).  

In this study, I quantified avian diversity in six arid zones located in northern 

Venezuela, which vary in size and degree of isolation. First, I conducted surveys to 

characterize the six areas in terms of species richness and composition, because 

comparisons of these variables are widely used in conservation to assess the status of 

different areas and to identify potential reserves (e.g., Conroy and Noon 1996, Kerr 1997, 

Su et al. 2004, Steinitz et al. 2005).  Second, I used distance-sampling (Buckland et al. 

2001) to determine density of bird species in the six sampling areas. Finally, I assessed 
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the relative importance of each area from a conservation perspective based on total 

species richness as well as the presence and abundance of habitat specialists.  

 

METHODS 

Study Sites. Field work was conducted in arid zones in northern Venezuela, characterized 

by the presence of thorn scrubs that are dominated by species belonging to Cactaceae, 

Mimosaceae, and Capparidaceae (Sarmiento 1972). Mean annual temperature is 28°C 

and annual rainfall ranges between 300 and 700 mm, with the presence of a long and 

severe dry season and two brief rainy peaks in July-August and December (Sarmiento 

1976).   

Study sites encompassed six arid zones in northern Venezuela (Fig. 1) that differ in 

extent and geological origin:  

- Paraguaná Peninsula (PP) is located in northwestern Venezuela and stretches over 2,500 

km2. It was an island during the Pliocene that was joined to the mainland approximately 

10,000 years ago when the isthmus of Médanos de Coro was formed (Ochsenius 1983, 

Feo-Codecido [1968] in Bosque 1984).  

- Falcón (FL) and Lara (LL) lowlands represent the most extensive arid zone in 

Venezuela with an approximate area of 16,000 km2. The valleys of the Lara and Falcón 

depression in western Venezuela include areas with intermediate or transitional relief 

between the two great mountain systems of Venezuela, the Andes and the Coastal 

Mountain Range. 

- Clarines-Píritu (CP) extends for about 4,500 km2 in north-eastern Venezuela, and covers 

the Unare depression, between the central and eastern portions of the Coastal Mountain 
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Range.  

- Araya Peninsula (AP) occupies 900 km2 in north-eastern Venezuela, and comprises the 

lowlands to the north of the eastern Coastal Mountain Range.  

- Macanao Peninsula (MP), about 300 km2, constitutes the westernmost portion of 

Margarita Island. Geologically, Margarita is an island that was connected to the Araya 

Peninsula from the end of the Eocene until the Miocene, when the sea level rose and 

separated the island from mainland (Jam and Méndez Arocha 1962). 

Bird Surveys. Bird counts were conducted from September 2004 to August 2005 using 

point-transect distance sampling (Buckland et al. 2001).  In each site, three 50-ha plots 

(500 m x 1000 m), located at least 3 km apart, were established in thorn-scrub vegetation. 

Within each plot, 10 point counts were selected. I randomly established the first point, 

and then the other nine points were systematically located keeping a separation of at least 

250 m between consecutive points (Fig. 2), and a distance of 100 m from vegetation 

borders and roads. Bird surveys were conducted from 6:00 am to 10:00 am during three 

consecutive days (one day in each plot) every two months in each study site. The 

sequence in which point counts in each plot were visited was alternated among sampling 

periods to compensate for effects of hourly variation in bird activity.  

After the arrival at a point, a minute was allowed for birds to resume normal behavior 

and then, during 10 min, the identity and number of individuals of all species seen or 

heard were recorded. Distance from the point to each bird detected was measured using a 

laser range-finder, as suggested by Buckland (2006). Simultaneous records (either visual 

or auditory) were noted to reduce the possibility of counting the same individual more 

than once. Species not included in the surveys were those observed flying over the point 
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counts but that do not use thorn scrub vegetation, such as vultures (Cathartidae), herons 

and egrets (Ardeidae), and swallows (Hirundinidae), as well as nocturnal species, such as 

owls (Strigidae) and nightjars (Caprimulgidae). 

Analyses of Diversity Patterns. Species richness, community composition and species 

abundance were examined and compared among the six study sites and over time. 

Species Richness. As the number of individuals differed among the six sites, I estimated 

rarefaction curves using a Monte Carlo simulation procedure run with EcoSim Version 

7.0 (Gotelli and Entsminger 2001) to compare species richness on the basis of the same 

number of individuals. Simulations were run 1,000 times and statistical significance was 

based on the simulated 95% confidence intervals generated by EcoSim. The variation of 

the total rarefied species richness among the six arid zones over the whole period was 

analyzed using a repeated-measures ANOVA, with time (six sampling periods) and study 

sites (six arid zones) as the explanatory variables and rarefied species richness as the 

response variable. Three plots (each combining data from 10 points) per study site were 

used as replicates for this analysis. This analysis was conducted using SPSS, Ver. 15.0 

(SPSS 2006). 

As not all species might be detected during surveys, I also estimated the total 

species richness for each of the six study areas. I computed the Chao 1 estimator (Chao 

1984) using EstimateS v5 (Colwell 1997).  Chao 1 estimates species richness by taking 

into account species that are not recorded by the researcher but whose presence can be 

inferred from the pattern of observed species occurrences in a set of samples, particularly 

by the number of rare species recorded (Chao 1984).  
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Community Composition. An initial approximation of differences in community 

composition among the six sites was assessed using pairwise comparisons of the 

observed number of species shared by any two of the sites and by calculation of a Bray-

Curtis Similarity Index for each pair of arid zones. Both values were calculated using 

EstimateS (Colwell 1997).  

Variation in community composition among study sites was subsequently tested for 

significance with an analysis of similarity (ANOSIM, Clarke and Warwick 2001), 

included in the software PRIMER v5.2.9 (Clarke and Gorley 2001). ANOSIM is a non-

parametric analysis, which tests if differences among samples within pre-defined groups 

(points within study sites) are less than expected when compared to differences among 

samples across the six study sites. Non-metric Multidimensional Scaling (NMS, Clarke 

and Warwick 2001) was also conducted in PRIMER to graphically represent the results 

of ANOSIM.  

Finally, an Indicator Species Analysis (Dufrêne and Legendre 1997) was 

conducted in PC-ORD (McCune and Mefford 1999) to identify which species were 

significantly associated with one or more study sites. This analysis provides indicator 

values (ranging from 0 to 100) for all the species and uses a Monte Carlo test to evaluate 

the statistical significance of the maximum indicator value of each species. A species was 

considered as indicator of a given site if its indicator value was ≥ 25%, following Dufrêne 

and Legendre (1997), and it was significant in the Monte Carlo test (P < 0.05). 

Species Abundance. Detection functions for species with at least 80 observations were 

modeled using Distance 5.0 (Thomas et al. 2005). Detection probabilities for each species 

were assumed to be the same among sites and across sampling periods. Thus, I developed 
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individual detection functions for each species by pooling all observations in all the study 

sites. I also assumed that detection probabilities were similar among related or similar 

species (in terms of size, plumage coloration, and behavior). Thus, when the number of 

observations for a species was < 80 and a similar species was also detected during 

surveys, data for both species were pooled and a common detection function was 

modeled. Based upon recommendations by Buckland et al. (2001), observations far from 

the point, representing 5% of the total, were excluded from the analyses. In the case of 

some species recorded aurally, when the probability of detection at close distances was 

uncertain, left truncation at 20 m was applied to the data set following recommendations 

of Buckland et al. (2001). The detection function chosen for a given species was the 

model with the smallest Akaike’s Information Criterion (AIC) from a set of six possible 

models that included the combination of three key functions (Half Normal, Hazard-Rate, 

and Uniform) and three series expansion terms (Cosine, Simple Polynomials, and 

Hermite Polynomials), as suggested by Buckland et al. (2001). Based on the estimated 

detection functions, Distance 5.0 was also used to estimate species densities 

independently for each of the sites using post-stratification. All results are presented as 

means ± SE and accompanied by 95% confidence intervals calculated assuming a log-

normal distribution for the estimated density.  

 

RESULTS 

Species Richness.  A total of 21,228 individuals representing 96 bird species and 26 

families (Appendix I) was recorded across all study sites. Ten species were recorded only 

once (Geranospiza caerulescens, Buteo brachyurus, Herpethoteres cachinnans, 
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Anthracothorax nigricollis, Chlorostilbon gibsoni, Picumnus squamulatus, Machetornis 

rixosus, Setophaga ruticilla, Parula pitiayumi, Carduelis psaltria); 19 species had 2 to 5 

records for the entire sampling period.  

The number of species recorded at each site ranged from 37 at MP to 82 at CP 

(Table 1). The asymptote in the accumulation curves (Fig. 3) indicated that bird sampling 

was thorough. Species richness based on 2,170 individuals (fewest number of individuals 

recorded at any site in PP) was also significantly greater in CP (Table 1). Estimated 

species richness for the six areas is shown in Table 1. All estimations per study area are 

greater than the observed species richness, indicating that some new species could still be 

recorded both at local and regional levels.  

Mean species richness varied temporally across sites, with an important effect of 

time of year (rm ANOVA, F5,60 = 21.60, P < 0.001) and of site (rmANOVA, F5,12 = 

16.75, P < 0.001). A significant interaction effect (time x site; rmANOVA, F25,60 = 2.86, 

P = 0.001) indicated differences in patterns of temporal variation among sites (Fig. 4). 

Pairwise comparisons showed that two different patterns can be distinguished. CP and LL 

had more species than the other four sites and a similar temporal variation pattern (Tukey 

HSD Post Hoc test, P = 0.681), which differed from the pattern seen in the other four 

sites (Tukey HSD Post Hoc test, P < 0.001 in all cases). The other four sites (FL, PP, AP, 

and MP) did not differ in the number of species over time (Tukey HSD Post Hoc test, P 

> 0.05 in all cases).  

Community Composition. Four main groups of birds were recognized from the species-

pool in the study sites. Thirty-five species (36%) were widely-distributed ones that 

occupy a broad range of environments across the Neotropics; 38 (40%) were widely-
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distributed species that occupy open areas and dry habitats across the Neotropics; 16 

(17%) were species restricted to northern and central Venezuela and Colombia that 

occupy desert scrubs, dry and deciduous forests; and 6 (6%) were arid-scrub specialists of 

relatively limited distribution in northern Venezuela and Colombia. One species (1%), 

Tiaris bicolor, does not nicely fit in any of these four groups, because it is an arid-scrub 

specialist but it has a wide distribution that includes coastal Colombia and Venezuela, as 

well as most of the Caribbean islands. For analytical purposes, Tiaris bicolor was 

included in the last group of the arid-scrub specialists. There were no significant 

differences in the proportion of the four groups present in each site (Fig. 5; G = 7.74, df 

= 15, 0.95 > P > 0.90). FL was the site where the proportion of arid-scrub specialists was 

highest (14%), and it was also the only site where all seven arid-scrub specialists 

(Amazona barbadensis, Leucippus fallax, Synallaxis candei, Inezia tenuirostris, 

Todirostrum viridanum, Cardinalis phoeniceus, and Tiaris bicolor) were present. 

Migrants constituted a relatively small group of species within the arid-scrub bird 

communities. Eight long-distance migrants, representing 8% of the total species-pool, 

were recorded during surveys. Based on Hayes’ (1995) classification of Neotropical 

migrants, 3 were Nearctic migrants (Coccyzus americanus, Dendroica striata, and 

Setophaga ruticilla), 3 were Austral migrants (Coccyzus melacoryphus, Elaenia 

parvirostris, and Tyrannus savana), and 2 were intratropical migrants (Chrysolampis 

mosquitus and Sporophila bouvronides). An important difference between Nearctic 

migrants and the other two migrant types is that species in the first group are transients in 

Venezuelan arid zones whereas species of the other two groups remain for 5-6 months 

per year, when numbers of some of them, such as Tyrannus savana, can be exceptionally 
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high (see Species Abundance). Two other species, Patagioenas corensis and Zenaida 

auriculata, occurred seasonally throughout the study sites. These latter species move 

locally between the coastal arid zones and the Venezuelan llanos. 

From the 96 species recorded during surveys, 28 (29%) were recorded in only one 

site (Appendix I). CP was the site with the greatest number of unique species (21), which 

represented 26% of the observed species richness for that site and 22% of the overall 

number of species. As a result, although CP shared the largest absolute number of species 

(45) with two other sites, FL and LL (Table 2A), it had the lowest pairwise similarity 

values (Table 2B). Pairwise comparisons indicated that two of the eastern sites (AP and 

MP) were the most similar, based on the number of shared species (Table 2B).  

The six study sites differed in overall community composition based on species 

presence/absence. This was the case both when the three plots per site were used as 

replicates (ANOSIM Global R = 0.81, P = 0.001; number of permuted statistics [out of 

5000] ≥ R was 0) and when the 30 point-counts per site were treated as replicates 

(ANOSIM Global R = 0.68, P = 0.001; number of permuted statistics [out of 5000] ≥ R 

was 0). Pairwise comparisons, based only on point counts as replicates, showed 

significant differences in species composition for all the site pairs (range R: 0.52 [AP vs 

MP] – 0.96 [LL vs MP], P < 0.001 for all cases; number of permuted statistics [out of 

5000] ≥ R was 0 for all cases).  

The NMS indicated that species composition in each of the sites was distinctive 

and consistent when plots were used as replicates within each site (Fig. 6A). When using 

point counts as replicates, however, the pattern was less clearcut (Fig. 6B). At the plot 

scale, FL and LL showed higher similarity in species composition, but at the point-count 
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scale, similarities among MP, PP, and AP were evident. CP uniqueness in species 

composition was evident at both scales of analysis but the difference was slightly less 

when point counts were used as replicates.  

The indicator species analysis determined that 26 species were significantly 

associated (P < 0.05) with one or more of the study sites (Table 3). Eleven species were 

good indicators of CP, and two more (Thraupis glaucocolpa and Volatinia jacarina) were 

perfect indicators. Three species (Forpus passerinus, Campylorhynchus griseus, and 

Euphonia trinitatis) were good indicators of LL. Only two of the arid-scrub specialists 

were significantly associated with a specific site. Inezia tenuirostris was an equally good 

indicator of LL and FL, and Cardinalis phoeniceus was a good indicator of MP.  

Species Abundance. Densities were estimated for 21 species based on visual 

observations (Table 4), and for 24 species based on auditory detections (Table 5); 

detection functions are shown in Appendixes II and III, respectively. Enough data were 

collected for 12 species to allow density estimations based on both visual and on auditory 

detections. Although the absolute density values differed between the two estimations, 

the pattern of relative abundance among the six study sites was maintained in all cases. 

The most abundant birds in all six sites were mainly widely-distributed species, such as 

Columbina passerina, Polioptila plumbea, and Mimus gilvus (Table 4). Only one of the 

restricted-range arid-scrub specialists, Leucippus fallax, had high densities throughout all 

the study sites (Table 4), and one, Inezia tenuirostris, was very abundant in two of the 

three study sites which are considered part of its distributional range. Densities of two 

other arid-scrub specialists, Amazona barbadensis and Cardinalis phoeniceus, differed 
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considerably among sites as a consequence of anthropogenic factors, such as habitat 

modification and illegal poaching.  

Limitations in the number of detections precluded the estimation of species 

density per sampling period per site. This type of estimation would be important in the 

case of migrants, because density estimations reported in Table 4 are based on the whole 

sampling period even though the presence of such species was strongly seasonal in some 

of the sites. This was true for three species: Zenaida auriculata, Patagioenas corensis, 

and Tyrannus savana. The first two species migrate locally in Venezuela, and even 

though individuals were found year-round, a significant part of the population spent the 

dry season (November-April) in the llanos and moved north to the arid zones during the 

llanos’ wet season (May-October). In some of the study sites, such as Lara lowlands, the 

mean number of individuals of Zenaida auriculata recorded per point-count increased 

considerably from May to August (Fig. 7A). The abundance of Tyrannus savana, an 

Austral migrant, in terms of the mean number of individuals recorded per point count, 

was augmented in the three eastern study sites (Clarines-Píritu, Araya Peninsula, and 

Macanao Peninsula) from May to August, and this increase was more dramatic in 

Clarines-Píritu (Fig. 7B). 

 

DISCUSSION 

Although the six study sites support a homogeneous habitat type (unpub. data), important 

differences in bird species richness, community composition, and species abundance 

were evident.  
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Species Richness. Differences in species richness among study sites may reflect the 

effects of area, geological history, historical colonization patterns, and degree of 

isolation. Although the influence of all these factors is difficult to tease apart, my data 

suggest that area and degree of isolation might play an important role in shaping bird 

assemblages in Venezuelan arid zones. Larger sites that are surrounded by other habitat 

types, such as CP, FL, and LL, harbored more species, whereas the smallest and most 

isolated sites, such as PP and MP, had fewer species.   

Compared to other Neotropical habitats, species richness in the Venezuelan arid 

zones is low, as had been noted previously in general descriptions of arid-zone bird 

communities (Wiens 1991, Stotz at al. 1996). The species pool found in the present study 

(96 species) is, however, larger than the species richness reported (63 species) for the 

lowland arid scrubs of northern South America (Stotz at al. 1996). CP included several 

species that were solely recorded at that site. Many of these were not included by Stotz et 

al. (1996), and this may explain the above-mentioned differences. Similar numbers of 

species to the ones found in this study were reported in previous evaluations of avian 

diversity in two Venezuelan arid zones. For the Paraguaná Peninsula, I detected 39 

species and both Barnes and Phelps (1940), in a one-month collecting trip, and Bosque 

(1984), during a two-year study, reported 37 species (vultures and nocturnal species such 

as owls and nightjars were excluded for comparison purposes). Poulin et al. (1993) 

reported 39 species captured in mist-nets during a one-year period in a single locality on 

the Araya Peninsula. These authors did not include raptors, doves, pigeons, and psittacids 

in their list.  When these groups are excluded from my own data, species richness in AP 
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is reduced from 47 to 36 species, a similar number to that reported by Poulin et al. 

(1993).  

When compared at a regional level, the low species richness found in Venezuelan 

arid zones seems to be similar to patterns reported for other arid and semiarid areas in the 

Neotropics. Studies in the Argentinean Chaco using point-counts or point-counts 

combined with mist-nets recorded 96 (including vultures, nocturnal species, and 

swallows) and 74-91 species, respectively (López de Casenave et al. 1998, Codesido and 

Bilenca 2004, Derlindati and Caziani 2005). Another study in the Argentinean Monte 

desert found 60 species < 90 g body mass (Blendinger 2005). Although interesting, these 

comparisons are not enough to propose a general pattern of species richness in 

Neotropical arid regions because those are still based on too few studies, conducted using 

different methodologies, in a small number of localities, in only two Neotropical 

countries.  

Community Composition. Although poor in species, bird assemblages in Venezuelan arid 

zones have a unique composition. Most of the species (69%) present were birds primarily 

associated with other habitats that also occurred in arid zones, as previously described for 

desert scrub habitats in California (Wiens 1991). The remaining species, however, 

represent a well-delimited group, with 24% being geographically restricted to northern 

Venezuela and Colombia, and 7% of the total number of species being restricted to arid 

scrubs. Previous general descriptions of bird assemblages underestimated the number of 

habitat-restricted and habitat endemics for the arid scrubs of northern South America 

(Stotz et al. 1996), and even failed to recognize Amazona barbadensis, Inezia 

tenuirostris, and Todirostrum viridanum as indicator species of this Neotropical habitat.  
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Twenty four species (25% of the total species pool) found in arid zones of 

northern Venezuela have been reported in the Argentinean Chaco (data taken from 

Codesido and Bilenca 2004) and the percentage increases to 40% when the comparison is 

done at the genus level. This similarity, however, is low if compared with similarities in 

species composition in other habitats, such as tropical rainforests (see Stotz et al. 1996, 

Blake 2007), highlighting the distinctiveness of bird communities in Neotropical arid 

zones in terms of species composition.   

Migrant species constituted a minor component of the community, and the 

presence of different migrants in the arid zones varied. Bosque and Lentino (1987) 

reported that Nearctic migrants used the desert scrub of the western coast of Venezuela 

mainly during the fall migration and that these species stayed there briefly (≈ 1-2 months) 

in their passage towards other habitats inland. All three Nearctic migrants recorded in this 

study showed the same pattern described above; they were recorded only during the fall 

migration (October-November) and in only one sampling period in each site. Conversely, 

intratropical and Austral migrants arrived in large numbers, mainly to the three study 

sites in eastern Venezuela, and stayed there for the whole Austral winter (May-June to 

October).  

Differences in species composition among study sites can be partially explained, 

as in the case of species richness, by degree of isolation or area, as well as by the 

proximity of other habitat types. The species composition of the two more isolated sites, 

PP and MP, are subsets of the species pools of the nearby sites FL and AP, respectively. 

Most of the species that colonized PP probably arrived from FL when the island joined 

the mainland during the Holocene (Ochsenius 1983). Similarly, a major group of 
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colonizers to MP came from AP and moved to Margarita Island when the sea level 

decreased during the Eocene and Miocene (Jam and Méndez Arocha 1962). Bird 

community composition in a given habitat is influenced by species composition and 

density in adjacent habitats (Shurcliff 1980, Szaro and Jackle 1985). CP’s proximity to 

other habitat types (i.e., forest edges, dry forests) may have favored the colonization by 

species typical of other habitats that are not usually present in arid scrubs. This explains 

why CP has a high number of species that are not found in any other arid zone in northern 

Venezuela. Additional evidence of the peculiarity of CP in species composition was 

provided by the indicator species analysis, which showed that CP was the area with the 

highest number of indicator species (11). When considering the identity of these species, 

however, 7 (Tapera naevia, Camptostoma obsoletum, Myiozetetes similis, Tyrannus 

melancholicus, Troglodytes aedon, Sicalis flaveola, and Volatinia jacarina) of the 11 

were classified as species indicators of disturbed habitats by Stotz et al. (1996), and are 

common residents of open areas. 

Changes in species composition seem to have occurred over time in some of the 

sites, at least partially as a consequence of human activities. Amazona barbadensis, for 

example, has been extirpated from LL since the mid 1980’s (Hilty 2003) due to illegal 

poaching. This same factor is responsible for the lack or very low number of records of 

Amazona barbadensis in PP, Icterus icterus in CP and AP, and Aratinga pertinax in AP; 

local extinctions for these species are not yet confirmed. Some other changes in species 

composition, however, seem to be the result of natural processes. In PP, the only site 

where studies on bird diversity have been conducted at three different time periods, some 

colonization and extinction events are evident. Barnes and Phelps (1940) reported two 
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species, Campylorhynchus griseus and Volatinia jacarina, which were not recorded 

either by Bosque (1984) or by this study. Conversely, one species that was common 

during this study, Quiscalus lugubris, was not recorded in either of the two previous 

studies. This is an interesting case, because it is a noisy species frequently found nearby 

human settlements, and it appears unlikely that it would have been undetected if present. 

In fact, this species seems to be expanding its range, and it was detected in PP in the early 

1990’s (C. Bosque pers. com.) and has reached Aruba (Netherland Antilles) very recently 

(J. Wells pers. com).  

Species Abundance. The most abundant species tended to be the ones with wide 

distributions in the Neotropics. The same pattern has been reported by avian studies both 

in other habitats within the Neotropics and in the temperate zones (see Gaston 1996, 

Thiollay 2002). This relationship, however, may be influenced by several factors. First, 

as this was a multispecies survey, the variety of behaviors exhibited by different species 

makes it difficult to detect all the species with the same accuracy, and the high 

detectability of the common species might have masked the presence of rare species 

(Buckland 2006). Second, the abundance of some restricted species is reduced 

considerably because of illegal trapping in some of the study sites. This factor was 

already known to be the main cause of decline for Amazona barbadensis (Rodríguez and 

Rojas-Suárez 1995, Sanz and Rodríguez-Ferraro 2006) but based on this study it also is 

evident that, trapping has affected the abundance of Icterus icterus and Cardinalis 

phoeniceus.  These two species were common in sites where poaching does not occur but 

their densities were low in sites where poaching is common, such as CP and AP (pers. 

observ.). Finally, in the case of Amazona barbadensis, as well as in all other psittacids, 
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the point-count method is not the most appropriate survey method for these birds because 

it tends to underestimate abundance in open areas (Casagrande and Beissinger 1997). 

Differences in density estimates based on visual and auditory detections were 

significant, and have been reported before for other bird species (Jiménez et al. 2003). In 

the present study, such differences might be caused by the violation of one of the 

fundamental assumptions of distance sampling when using auditory detections. Distance 

sampling assumes that all the species located at the center of the point count (0 m) will be 

detected with a probability of 1 (Buckland et al. 2001). Generally, all the individuals 

located at the point-count or very close to it (≈ 20-25 m) were usually either observed or 

confirmed visually, producing a low number of detections at small distances from the 

center of the point, and as a consequence, causing an underestimation of the density.   

Conservation Implications. Current land practices in Venezuelan arid zones pose a 

severe threat to the long-term survival of the habitat specialist birds restricted to these 

areas. Information compiled in this study can contribute to conservation priority schemes 

that target the identification of conservation areas within Venezuelan arid zones. Species 

richness and the presence of rare species are the most frequently used criteria for the 

selection of conservation areas. For the Venezuelan arid zones, species richness was not a 

good indicator of a site’s conservation value, because the protection of the most species 

rich site (CP) will not guarantee the effective conservation of the restricted-range habitat 

specialist birds. This is not an uncommon result as studies across different taxa, such as 

birds, butterflies, mammals, and plants (see Prendergast et al 1993, Reyers et al. 2000), 

have shown that approaches to prioritize conservation areas that use species richness as 

the criterion were not effective in representing rare and endemic species (Catry et al. 
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2000), because spatial patterns of richness and endemism do not necessarily correspond 

(Reid 1998, Fleishman et al. 2006).  

Community composition is also relevant for the selection of conservation areas, 

specifically when areas being compared differ in the degree of disturbance or human 

alteration (Nichols et al. 1998). As this type of difference does exist among Venezuelan 

arid zones, community composition should be incorporated in any initiative to protect the 

restricted-range birds. Data on community composition are particularly important to 

ensure that a conservation area contains as many species of this characteristic avifauna as 

possible. One of the study areas (FL) is representative of all Venezuelan arid zones, 

because it harbors the seven habitat specialist birds. Thus, its protection will allow the 

protection of the maximum number of the target species in a single site.   

Relative abundance of target species is also an important parameter that must be 

considered when zones with similar species assemblages are considered for the selection 

of a conservation area. When economic resources for conservation are limited, as is the 

case of all the Neotropical countries, areas where target species are common or abundant 

should be valued more, to ensure viable populations in the long-term. Densities of two 

habitat specialists, Amazona barbadensis and Cardinalis phoeniceus, varied among the 

study sites as a consequence of illegal poaching and trade. Because of the high incidence 

of poaching in all the Venezuelan areas where the species is present, Amazona 

barbadensis is considered Endangered and Vulnerable at the national (Rodríguez and 

Rojas-Suárez 1995) and global (BirdLife International 2000) levels, respectively. The 

two largest populations of the species in Venezuela are located in two of the study sites 

(FL, MP), but the protection of one or both of these areas will not benefit this species 
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unless this measure is accompanied by efforts to control poaching. Conversely, the lack 

of up to date information on the effect of poaching on the abundance of Cardinalis 

phoeniceus precludes any evaluation of its conservation status. The information presented 

here indicates that populations of this species are reduced in three (LL, CP, AP) of the six 

Venezuelan arid zones sampled because of the cage-bird trade. Therefore, the long-term 

survival of this species will depend on the protection of at least one of the sites (FL, PP, 

MP) where the species is still abundant and it is not threatened by illegal poaching.  

Mid- and long-term diversity studies of avian communities in the Neotropics are 

scarce, especially for species-poor habitats, such as the arid zones and deserts. Studies 

describing basic diversity patterns are in great need in the Neotropics because they 

provide baseline information that is relevant for both in-depth ecological studies on 

ecosystem dynamics and for conservation planning.   
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TABLE 1. Total number of observations, observed and estimated species richness for each of the study sites. Study sites are the 

following: PP = Paraguaná peninsula, FL = Falcón lowlands, LL = Lara lowlands, CP = Clarines-Píritu, AP = Araya peninsula, MP = 

Macanao peninsula. 

 
 PP FL LL CP AP MP 

Total count periods  6 6 6 6 6 6 

Observed number of individuals 2,170 3,371 4,656 4,877 2,596 3,558 

Individuals per count period 362 562 776 813 433 593 

Observed species richness 39 51 50 82 47 37 

Rarefied species richness (95% CI) 

(based on 2,170 individuals) 
39.0 

(39.0 – 39.0) 

48.6 

(46.0 – 51.0) 

47.1 

(44.0 – 50.0) 

73.7 

(69.0 – 78.0) 

45.8 

(44.0 – 47.0) 

34.3 

(32.0 – 37.0) 

Estimated mean species richness (95% CI) 

Chao 1 estimator 
40.5          

(39.2 – 50.9) 

51.3        

(51.0 – 55.4) 

50.3          

(50.0 – 54.8) 

89.5          

(83.8 – 113.7)

48.9          

(47.3 – 58.5) 

42.0          

(37.9 – 63.2) 
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TABLE 2. (A) Observed number of shared species among sampling areas computed using EstimateS.  (B) Similarity index (Bray-

Curtis) based on number of shared species computed using EstimateS. Study sites are the following: PP = Paraguaná peninsula, FL = 

Falcón lowlands, LL = Lara lowlands, CP = Clarines-Píritu, AP = Araya peninsula, MP = Macanao peninsula. 

Area PP FL LL CP AP MP 

PP 39      

FL 34 51     

LL 32 39 50    

CP 34 45 45 82   

AP 31 35 32 43 47  

MP 29 31 27 35 34 37 

 

Area PP FL LL CP AP MP 

PP 1      

FL 0.558 1     

LL 0.473 0.657 1    

CP 0.386 0.397 0.447 1   

AP 0.667 0.534 0.467 0.513 1  

MP 0.577 0.563 0.514 0.532 0.692 1 

 

(A) 

(B) 
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TABLE 3. Indicator values (% of perfect indication) for species in the study sites and results of Monte-Carlo tests (based on 1,000 

permutations) of significance of observed maximum indicator values. Only species with indicator values significant at least at P < 

0.05 are included. 

Indicator values based on study sites Species 

PP FL LL CP AP MP 

P 

Zenaida auriculata 5 23 47 7 7 11 0.022 

Scardafella squammata 8 11 25 19 16 21 0.008 

Leptotila verreauxi 28 1 36 18 6 8 0.043 

Forpus passerinus 0 8 63 29 0 0 0.021 

Tapera naevia 0 0 1 73 15 0 0.020 

Chlorostilbon mellisugus 11 4 0 15 2 55 0.026 

Formicivora intermedia 12 1 1 22 23 40 0.045 

Camptostoma obsoletum 0 19 10 62 2 0 0.023 

Elaenia parvirostris 0 5 0 77 3 0 0.017 

Inezia tenuirostris 0 57 43 0 0 0 0.043 

Euscarthmus meloryphus 0 10 0 71 0 0 0.036 

Hemitriccus margaritaceiventer 0 2 0 81 2 2 0.032 
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TABLE 3. Continued 

Indicator values based on sampling areas Species 

PP FL LL CP AP MP 

P 

Myiozetetes similis 0 0 22 67 0 0 0.044 

Tyrannus melancholichus 1 3 4 73 6 1 0.010 

Tyrannus savana 0 0 0 73 9 18 0.012 

Hylophilus flavipes 0 0 0 95 1 1 0.009 

Campylorhynchus griseus 0 0 73 17 1 0 0.007 

Troglodytes aedon 0 0 19 81 0 0 0.012 

Coereba flaveola 19 0 3 20 39 18 0.039 

Thraupis glaucocolpa 0 0 0 100 0 0 0.012 

Euphonia trinitatis 0 2 66 26 4 0 0.018 

Cardinalis phoeniceus 22 12 7 4 1 52 0.008 

Volatinia jacarina 0 0 0 100 0 0 0.012 

Sicalis flaveola 0 0 5 86 0 0 0.027 

Icterus icterus 23 33 14 0 0 29 0.009 

Icterus nigrogularis 14 10 45 16 3 11 0.013 
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TABLE 4. Mean densities ± SE (ind/ha) and 95% confidence intervals of arid zone birds based on visual records in the six study sites:  

PP = Paraguaná peninsula, FL = Falcón lowlands, LL = Lara lowlands, CP = Clarines-Píritu, AP = Araya peninsula, MP = Macanao 

peninsula.  

STUDY SITE Species 

PP FL LL CP AP MP 
Patagioenas corensis 0.38 ± 0.10 

(0.23 – 0.64) 
0.64 ± 0.11 

(0.46 – 0.88) 
0.54 ± 0.09 

(0.38 – 0.76) 
0.77 ± 0.13 

(0.56 – 1.06) 
0.60 ± 0.11 

(0.42 – 0.87) 
0.66 ± 0.12 

(0.46 – 0.96) 
Zenaida auriculata 1.77 ± 0.29 

(1.29 – 2.44) 
3.76 ± 0.55 

(2.82 – 5.00) 
10.47 ± 1.58 

(7.77 – 14.00) 
2.04 ± 0.35 

(1.47 – 2.85) 
2.64 ± 0.41 

(1.96 – 3.58) 
1.89 ± 0.35 

(1.32 – 2.73) 
Scardafella squammata 0.37 ± 0.15 

(0.17 – 0.78) 
0.84 ± 0.21 

(0.51 – 1.34) 
3.30 ± 0.50 

(2.45 – 4.43) 
2.51 ± 0.45 

(1.58 – 3.56) 
2.15 ± 0.36 

(1.55 – 2.98) 
2.61 ± 0.45 

(1.86 – 3.66) 
Columbina passerina 3.65 ± 0.55 

(2.72 – 4.89) 
1.82 ± 0.34 

(1.27 – 2.62) 
5.94 ± 0.88 

(4.44 – 7.95) 
1.56 ± 0.31 

(1.06 – 2.30) 
3.86 ± 0.65 

(2.78 – 5.36) 
7.92 ± 1.04 

(6.13 – 10.25) 
Aratinga pertinax 0.00 3.56 ± 0.65 

(2.49 – 5.09) 
4.19 ± 0.55 

(3.24 – 5.43) 
1.36 ± 0.32 

(0.78 – 2.06) 
0.00 2.67 ± 0.42 

(1.96 – 3.64) 
Aratinga acuticaudata 0.00 0.30 ± 0.14 

(0.12 – 0.72) 
0.00 0.32 ± 0.26 

(0.07 – 1.49) 
0.00 0.00 

Forpus passerinus Out of range 0.41 ± 0.15 
(0.20 – 0.82) 

4.23 ± 0.69 
(3.08 – 5.81) 

1.83 ± 0.46 
(1.13 – 2.98) 

0.00 Out of range 

Amazona barbadensis 0.00 0.05 ± 0.02 
(0.03 – 0.11) 

0.00 0.04 ± 0.02 
(0.02 – 0.10) 

0.10 ± 0.09 
(0.02 – 0.58) 

0.10 ± 0.04 
(0.05 – 0.19) 

Leucippus fallax 6.73 ± 0.89 
(5.19 – 8.71) 

3.15 ± 0.60 
(2.17 – 4.56) 

4.88 ± 0.84 
(3.49– 6.82) 

8.89 ± 1.15 
(6.90 – 11.46) 

9.22 ± 1.14 
(7.23 – 11.75) 

11.06 ± 1.28 
(8.82 – 13.88) 

Melanerpes rubricapillus 0.33 ± 0.10 
(0.19 – 0.59) 

1.10 ± 0.20 
(0.78 – 1.57) 

1.06 ± 0.19 
(0.75 – 1.50) 

0.69 ± 0.13 
(0.47 – 1.00) 

0.94 ± 0.17 
(0.66 – 1.35) 

0.16 ± 0.06 
(0.08 – 0.31) 
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TABLE 4. Continued 
STUDY SITE Species 

PP FL LL CP AP MP 
Xiphorhynchus picus 0.92 ± 0.26 

(0.52 – 1.60) 
0.58 ± 0.19 

(0.32 – 1.07) 
0.75 ± 0.23 

(0.42 – 1.34) 
0.71 ± 0.23 

(0.38 – 1.31) 
0.58 ± 0.19 

(0.31 – 1.11) 
0.21 ± 0.10 

(0.08 – 0.51) 
Sublegatus arenarum 1.86 ± 0.33 

(1.32 – 2.63) 
1.24 ± 0.26 

(0.82 – 1.87) 
1.97 ± 0.35 

(1.40 – 2.78) 
1.47 ± 0.30 

(0.99 – 2.17) 
1.92 ± 0.35 

(1.34 – 2.75) 
1.47 ± 0.30 

(0.99 – 2.17) 
Myiarchus tyrannulus 0.33 ± 0.10 

(0.18 – 0.59) 
0.28 ± 0.09 

(0.16 – 0.51) 
0.54 ± 0.13 

(0.33 – 0.87) 
0.52 ± 0.13 

(0.32 – 0.83) 
0.61 ± 0.14 

(0.39 – 0.96) 
0.75 ± 0.17 

(0.48 – 1.18) 
Tyrannus savana 0.00 0.24 ± 0.17 

(0.07 – 0.85) 
0.00 11.58 ± 2.89 

(7.14 – 18.77) 
6.97 ± 2.33 

(3.67 – 13.23) 
4.73 ± 1.37 

(2.70 – 8.28) 
Polioptila plumbea 8.23 ± 0.98 

(6.52 – 10.39) 
6.44 ± 0.84 

(4.99 – 8.31) 
4.65 ± 0.68 

(3.50 – 6.18) 
2.52 ± 0.49 

(1.72 – 3.70) 
5.11 ± 0.73 

(3.87 – 6.76) 
3.65 ± 0.60 

(2.65 – 5.03) 
Mimus gilvus 2.81 ± 0.25 

(2.36 – 3.35) 
2.80 ± 0.25 

(2.35 – 3.33) 
2.25 ± 0.22 

(1.86 – 2.73) 
1.86 ± 0.21 

(1.48 – 2.32) 
3.76 ± 0.30 

(3.21 – 4.40) 
4.46 ± 0.32 

(3.87 – 5.16) 
Coereba flaveola 3.74 ± 0.54 

(2.82 – 4.95) 
0.14 ± 0.09 

(0.04 – 0.49) 
0.14 ± 0.14 

(0.03 – 0.72) 
3.39 ± 0.53 

(2.50 – 4.60) 
5.81 ± 0.74 

(4.53 – 7.46) 
2.35 ± 0.39 

(1.69 – 3.27) 
Cardinalis phoeniceus 1.45 ± 0.26 

(1.02 – 2.05) 
0.57 ± 0.14 

(0.36 – 0.91) 
0.35 ± 0.11 

(0.19 – 0.64) 
0.10 ± 0.05 

(0.04 – 0.26) 
0.22 ± 0.08 

(0.11 – 0.46) 
4.09 ± 0.54 

(3.17 – 5.29) 
Tiaris bicolor 2.28 ± 0.40 

(1.62 – 3.21) 
0.12 ± 0.09 

(0.04 – 0.43) 
3.08 ± 0.49 

(2.26 – 4.21) 
5.86 ± 0.72 

(4.60 – 7.46) 
5.43 ± 0.72 

(4.19 – 7.03) 
5.86 ± 0.77 

(4.53 – 7.57) 
Icterus icterus 0.43 ± 0.11 

(0.26 – 0.69) 
0.66 ± 0.15 

(0.42 – 1.04) 
0.43 ± 0.12 

(0.25 – 0.72) 
0.02 ± 0.02 

(0.003 – 0.08) 
0.00 0.53 ± 0.13 

(0.33 – 0.84) 
Icterus nigrogularis 0.36 ± 0.13 

(0.18 – 0.70) 
0.21 ± 0.08 

(0.10 – 0.45) 
0.95 ± 0.25 

(0.57 – 1.58) 
0.41 ± 0.14 

(0.21 – 0.77) 
0.05 ± 0.04 

(0.01 – 0.17) 
0.21 ± 0.08 

(0.10 – 0.45) 
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TABLE 5. Mean densities ± SE (ind/ha) and 95% confidence intervals of arid zone birds based on auditory records in the six study 

sites:  PP = Paraguaná peninsula, FL = Falcón lowlands, LL = Lara lowlands, CP = Clarines-Píritu, AP = Araya peninsula, MP = 

Macanao peninsula.  

STUDY SITE Species 
PP FL LL CP AP MP 

Colinus cristatus 0.22 ± 0.08 
(0.12 – 0.40) 

0.09 ± 0.03 
(0.04 – 0.18) 

0.31 ± 0.09 
(0.18 – 0.54) 

0.19 ± 0.06 
(0.10 – 0.36) 

0.12 ± 0.04 
(0.06 – 0.15) 

0.18 ± 0.06 
(0.10 – 0.33) 

Leptotila verreauxi 2.45 ± 0.45 
(1.71 – 3.50) 

0.35 ± 0.12 
(0.18 – 0.69) 

2.72 ± 0.49 
(1.92 – 3.86) 

1.55 ± 0.33 
(1.03 – 2.35) 

0.54 ± 0.19 
(0.28 – 1.05) 

0.66 ± 0.19 
(0.38 – 1.14) 

Scardafella squammata 0.54 ± 0.09 
(0.39 – 0.76) 

0.69 ± 0.12 
(0.49 – 0.97) 

1.41 ± 0.22 
(1.04 – 1.92) 

1.07 ± 0.18 
(0.78 – 1.48) 

0.92 ± 0.15 
(0.67 – 1.28) 

1.16 ± 0.18 
(0.85 – 1.58) 

Columbina passerina 0.84 ± 0.18 
(0.56 – 1.27) 

0.25 ± 0.08 
(0.14 – 0.45) 

0.36 ± 0.12 
(0.19 – 0.68) 

0.17 ± 0.07 
(0.08 – 0.36) 

0.25 ± 0.08 
(0.04– 0.13 

0.21 ± 0.07 
(0.11 – 0.41) 

Leucippus fallax 0.29 ± 0.09 
(0.15 – 0.55) 

0.54 ± 0.16 
(0.31 – 0.95) 

0.22 ± 0.08 
(0.11 – 0.46) 

0.79 ± 0.20 
(0.49 – 1.29) 

0.69 ± 0.17 
(0.43 – 1.12) 

0.48 ± 0.14 
(0.27 – 0.83) 

Hypnellus rufucollis 0.10 ± 0.02 
(0.07 – 0.16) 

0.03 ± 0.01 
(0.01 – 0.07) 

0.07 ± 0.02 
(0.05 – 0.12) 

0.04 ± 0.01 
(0.01 – 0.07) 

0.13 ± 0.03 
(0.09 – 0.20) 

0.10 ± 0.02 
(0.06 – 0.15) 

Melanerpes rubricapillus 0.72 ± 0.09 
(0.57 – 0.92) 

1.22 ± 0.12 
(1.01 – 1.48) 

0.76 ± 0.09 
(0.60 – 0.96) 

0.36 ± 0.07 
(0.25 – 0.52) 

0.92 ± 0.10 
(0.74 – 1.14) 

0.32 ± 0.06 
(0.23 – 0.46) 

Synallaxis albescens 0.49 ± 0.06 
(0.38 – 0.63) 

0.29 ± 0.05 
(0.21 – 0.39) 

0.35 ± 0.05 
(0.27 – 0.47) 

0.14 ± 0.03 
(0.09 – 0.22) 

0.33 ± 0.05 
(0.25 – 0.45) 

0.05 ± 0.02 
(0.03 – 0.11) 

Synallaxis candei 0.08 ± 0.03 
(0.04 – 0.17) 

0.27 ± 0.04 
(0.19 – 0.37) 

0.27 ± 0.07 
(0.16 – 0.45) Out of range Out of range Out of range 

Xiphorhynchus picus 0.43 ± 0.05 
(0.34 – 0.54) 

0.34 ± 0.04 
(0.26 – 0.43) 

0.26 ± 0.04 
(0.20 – 0.35) 

0.43 ± 0.05 
(0.34 – 0.54) 

0.30 ± 0.04 
(0.23 – 0.40) 

0.19 ± 0.03 
(0.14 – 0.26) 
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TABLE 5. Continued 
STUDY SITE Species 

PP FL LL CP AP MP 
Sakesphorus canadensis 0.47 ± 0.11 

(0.30 – 0.74) 
0.19 ± 0.07 

(0.10 – 0.37) 
0.44 ± 0.11 

(0.27 – 0.70) 
0.06 ± 0.03 

(0.20 – 0.17) 0.00 0.00 

Formicivora intermedia 0.14 ± 0.04 
(0.08 – 0.25) 

0.02 ± 0.01 
(0.01 – 0.08) 

0.03 ± 0.02 
(0.01 – 0.09) 

0.36 ± 0.07 
(0.24 – 0.54) 

0.40 ± 0.08 
(0.27 – 0.58) 

0.64 ± 0.11 
(0.46 – 0.88) 

Inezia tenuirostris 
0.00 

3.70 ± 0.39 
(3.02 – 4.54) 

2.53 ± 0.29 
(2.01 – 3.17) Out of range Out of range Out of range 

Myiarchus tyrannulus 0.13 ± 0.04 
(0.07 – 0.25) 

0.26 ± 0.06 
(0.16 – 0.40) 

0.12 ± 0.04 
(0.07 – 0.23) 

0.19 ± 0.05 
(0.12 – 0.32) 

0.35 ± 0.07 
(0.24 – 0.52) 

0.40 ± 0.07 
(0.27 – 0.56) 

Pitangus sulphuratus 0.01 ± 0.006 
(0.001 – 0.03) 

0.02 ± 0.01 
(0.01 – 0.06) 

0.30 ± 0.05 
(0.22 – 0.41) 

0.34 ± 0.05 
(0.25 – 0.45) 

0.01 ± 0.01 
(0.001 – 0.03) 0.00 

Campylorhynchus griseus 
0.00 0.00 

0.98 ± 0.12 
(0.78 – 1.24) 

0.35 ± 0.06 
(0.25 – 0.49) 

0.04 ± 0.02 
(0.01 – 0.09) Out of range 

Polioptila plumbea 1.11 ± 0.13 
(0.88 – 1.39) 

1.99 ± 0.18 
(1.67– 2.37) 

0.95 ± 0.13 
(0.72 – 1.25) 

0.86 ± 0.11 
(0.66 – 1.10) 

1.67 ± 0.15 
(1.39 – 1.99) 

1.20 ± 0.13 
(0.97 – 1.49) 

Mimus gilvus 1.60 ± 0.20 
(1.25 – 2.03) 

1.41 ± 0.18 
(1.09 – 1.82) 

0.66 ± 0.10 
(0.49 – 0.90) 

0.58 ± 0.09 
(0.42 – 0.81) 

1.32 + 0.17 
(1.02 – 1.71) 

0.93 ± 0.14 
(0.70 – 1.24) 

Coereba flaveola 0.29 ± 0.08 
(0.17 – 0.49) 0.00 

0.17 ± 0.06 
(0.08 – 0.33) 

0.44 ± 0.09 
(0.28 – 0.67) 

0.95 ± 0.15 
(0.70 – 1.31) 

0.52 ± 0.11 
(0.35 – 0.77) 

Saltator coerulescens 0.46 ± 0.12 
(0.28 – 0.77) 

0.20 ± 0.07 
(0.11 – 0.38) 

0.52 ± 0.13 
(0.32 – 0.85) 

0.85 ± 0.18 
(0.57 – 1.28) 

0.07 ± 0.04 
(0.03 – 0.19) Out of range 

Saltator orenocensis 
Out of range 

0.16 ± 0.04 
(0.10 – 0.26) 

0.32 ± 0.06 
(0.22 – 0.46) 

0.20 ± 0.04 
(0.13 – 0.31) Out of range Out of range 

Cardinalis phoeniceus 0.28 ± 0.05 
(0.20 – 0.39) 

0.20 ± 0.04 
(0.14 – 0.29) 

0.12 ± 0.03 
(0.07 – 0.18) 

0.09 ± 0.02 
(0.05 – 0.13) 

0.07 ± 0.02 
(0.03 – 0.11) 

0.50 ± 0.06 
(0.39 – 0.64) 



      

 

Adriana Rodríguez-Ferraro, 2008, Ph. D. Dissertation, p. 37

 
TABLE 5. Continued 

STUDY AREA Species 
PP FL LL CP AP MP 

Tiaris bicolor 0.30 ± 0.10 
(0.17 – 0.56) 

0.05 ± 0.04 
(0.01 – 0.18) 

0.20 ± 0.08 
(0.10 – 0.42) 

0.51 ± 0.14 
(0.29 – 0.88) 

0.51 ± 0.13 
(0.31 – 0.83) 

0.43 ± 0.12 
(0.25 – 0.75) 

Icterus icterus 0.28 ± 0.03 
(0.32 – 0.33) 

0.38 ± 0.03 
(0.32 – 0.44) 

0.14 ± 0.02 
(0.11 – 0.19) 

0.01 ± 0.01 
(0.01 – 0.02) 0.00 

0.34 ± 0.03 
(0.29 – 0.40) 

 



      

 

Adriana Rodríguez-Ferraro, 2008, Ph. D. Dissertation, p. 38

FIGURE 1. Location of arid zones (shaded) in northern Venezuela. Study sites include the following: PP = Paraguaná peninsula, FL = 

Falcón lowlands, LL = Lara lowlands, CP = Clarines-Píritu, AP = Araya peninsula, MP = Macanao peninsula. 
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FIGURE 2. Schematic representation of the sampling plots and distribution of point counts. 
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FIGURE 3. Species accumulation curves for the six study sites: PP = Paraguaná peninsula, FL = Falcón lowlands, LL = Lara 

lowlands, CP = Clarines-Píritu, AP = Araya peninsula, MP = Macanao peninsula.  
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FIGURE 4. Temporal variation in the mean (± SE) number of species observed in each of the study sites: PP = Paraguaná peninsula, 

FL = Falcón lowlands, LL = Lara lowlands, CP = Clarines-Píritu, AP = Araya peninsula, MP = Macanao peninsula. 
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FIGURE 5. Proportion of different groups of species in each of the study sites. WD-G: widely-distributed that occupy a broad range of 

environments across the Neotropics;  WD-DOH:  widely-distributed that occupy open areas and dry habitats across the Neotropics; R-

DOH: species restricted to northern and central Venezuela and Colombia that occupy open areas and dry habitats; and R-DSS: arid-

scrub specialists of relatively limited distribution in northern Venezuela and Colombia. Study sites are the following: PP = Paraguaná 

peninsula, FL = Falcón lowlands, LL = Lara lowlands, CP = Clarines-Píritu, AP = Araya peninsula, MP = Macanao peninsula. 
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FIGURE 6. NMS configuration of species composition among study sites. (A) Each symbol represents a sampling plot and includes 

data from 10 point counts. (B) Each symbol represents a point count. Species showing high correlations with the two axes are 

indicated. Study sites are the following: PP = Paraguaná peninsula (filled triangles), FL = Falcón lowlands (open triangles), LL = Lara 

lowlands (filled squares), CP = Clarines-Píritu (open circles), AP = Araya peninsu circles), MP = Macanao peninsula (open squares). 
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FIGURE 7.  Temporal variation in the mean number of individuals per point-count for (A) Zenaida auriculata in Lara lowlands and 

(B) Tyrannus savana in Clarines-Píritu. 
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APPENDIX I. Number of individuals per species recorded during surveys in each of the six study sites during the whole study period. 

Study sites are the following: PP = Paraguaná peninsula, FL = Falcón lowlands, LL = Lara lowlands, CP = Clarines-Píritu, AP = 

Araya peninsula, MP = Macanao peninsula. 

STUDY SITE FAMILY COMMON NAME SPECIES 

PP FL LL CP AP MP 

Accipitridae Pearl Kite Gampsonyx swainsonii 0 0 0 0 2 1 

 Crane Hawk Geranospiza caerulescens 0 0 0 1 0 0 

 Harris’s Hawk Parabuteo unicinctus 4 7 5 1 10 10 

 Roadside Hawk Buteo magnirostris 0 0 0 4 0 0 

 White-tailed Hawk Buteo albicaudatus 2 3 0 0 0 0 

 Short-tailed hawk Buteo brachyurus 0 0 0 1 0 0 

Falconidae Northern Crested-Caracara Caracara cheriway 5 15 10 16 9 18 

 Yellow-headed Caracara Milvago chimachima 0 0 0 5 0 0 

 Laughing Falcon Herpetotheres cachinnans 0 0 0 0 1 0 

 American Kestrel Falco sparverius 0 8 3 1 7 3 

Cracidae Rufous-vented Chachalaca Ortalis ruficauda 0 0 0 5 0 0 

Odontophoridae Crested Bobwhite Colinus cristatus 32 13 61 48 20 25 

Columbidae Bare-eyed Pigeon Patagioenas corensis 43 86 73 139 98 111 

 Eared Dove Zenaida auriculata 118 511 1071 149 155 254 

 Scaled Dove Scardafella squammata 118 165 393 297 254 322 
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APPENDIX I. Continued 
STUDY SITE FAMILY COMMON NAME SPECIES 

PP FL LL CP AP MP 

Columbidae Common Ground-Dove Columbina passerina 136 61 191 42 116 226 

 Ruddy Ground-Dove Columbina talpacoti 0 0 0 2 0 0 

 White-tipped Dove Leptotila verreauxi 80 9 103 51 18 24 

Psittacidae Blue-crowned Parakeet Aratinga acuticaudata 0 87 0 78 0 0 

 Brown-throated Parakeet Aratinga pertinax 2 694 538 204 0 349 

 Green-rumped Parrotlet Forpus passerinus 0 29 231 104 0 0 

 Orange-winged Parrot Amazona amazonica 0 0 0 28 0 0 

 Yellow-shouldered Parrot Amazona barbadensis 0 25 0 42 86 77 

Cuculidae Dwarf Cuckoo Coccyzus pumilus 0 0 2 0 0 0 

 Yellow-billed Cuckoo Coccyzus americanus 3 0 0 0 2 0 

 Dark-billed Cuckoo Coccyzus melacoryphus 0 0 0 2 2 1 

 Squirrel Cuckoo Piaya cayana 0 0 0 1 1 0 

 Groove-billed Ani Crotophaga sulcirostris 23 1 48 34 0 0 

 Striped Cuckoo Tapera naevia 0 0 1 19 6 0 

Trochilidae Black-throated Mango Anthracothorax nigricollis 0 1 0 0 0 0 

 Ruby-topaz Hummingbird Chrysolampis mosquitus 0 0 0 13 2 6 

 Blue-tailed Emerald Chlorostilbon mellisugus 6 3 0 12 3 29 

 Red-billed Emerald Chlorostilbon gibsoni 1 0 0 0 0 0 
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APPENDIX I. Continued  
STUDY SITE FAMILY COMMON NAME SPECIES 

PP FL LL CP AP MP 

Trochilidae Buffy Hummingbird Leucippus fallax 81 48 57 118 115 139 

Galbulidae Pale-headed Jacamar Brachygalba goeringi 0 0 2 0 0 0 

 Rufous-tailed Jacamar Galbula ruficauda 0 0 0 17 3 0 

Bucconidae Russet-throated Puffbird Hypnelus ruficollis 30 8 19 8 35 27 

Picidae Scaled Piculet Picumnus squamulatus 0 0 0 1 0 0 

 Spot-breasted Woodpecker Chrysoptilus punctigula 0 0 0 4 0 0 

 Red-crowned Woodpecker Melanerpes rubricapillus 87 183 141 72 141 42 

Furnariidae Pale-breasted Spinetail Synallaxis albescens 87 46 56 29 58 8 

 White-whiskered Spinetail Synallaxis candei 12 37 44 0 0 0 

 Plain Thornbird Phacellodomus inornatus 0 0 0 30 0 0 

Dendrocolaptidae Olivaceous Woodcreeper Sittasomus griseicapillus 0 0 0 3 0 0 

 Straight-billed Woodcreeper Xiphorhynchus picus 107 77 68 95 68 42 

Thamnophilidae Black-crested Antshrike Sakesphorus canadensis 43 15 30 5 0 0 

 Barred Antshrike Thamnophilus doliatus 0 0 0 5 0 0 

 Northern White-fringed Antwren Formicivora intermedia 25 2 4 44 46 82 

Tyrannidae Southern Beardless Tyrannulet Camptostoma obsoletum 0 4 3 13 1 0 

 Mouse-colored Tyrannulet Phaeomyias murina 0 0 8 1 0 0 

 Small-billed Elaenia Elaenia parvirostris 0 2 0 10 1 0 
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APPENDIX I. Continued 
STUDY SITE FAMILY COMMON NAME SPECIES 

PP FL LL CP AP MP 

Tyrannidae Northern Scrub-Flycatcher Sublegatus arenarum 44 34 47 34 57 37 

 Pale-tipped Inezia Inezia tenuirostris 0 134 102 0 0 0 

 Tawny-crowned Pygmy-Tyrant Euscarthmus meloryphus 0 2 0 5 0 0 

 Pearly-vented Tody-Tyrant Hemitriccus margaritaceiventer 0 2 0 26 2 2 

 Common Tody-Flycatcher Todirostrom cinereum 0 0 0 4 0 0 

 Maracaibo Tody-Flycatcher Todirostrum viridanum 0 9 0 0 0 0 

 Vermilion Flycatcher Pyrocephalus rubinus 0 4 2 7 0 0 

 Pied Water-Tyrant Fluvicola pica 0 1 0 1 0 0 

 Brown-crested Flycatcher Myiarchus tyrannulus 28 33 37 40 57 65 

 Great Kiskadee Pitangus sulphuratus 1 4 75 84 1 0 

 Social Flycatcher Myiozetetes similis 0 0 3 6 0 0 

 Cattle Tyrant Machetornis rixosus 0 0 0 1 0 0 

 Tropical Kingbird Tyrannus melancholicus 2 2 3 33 4 1 

 Gray Kingbird Tyrannus dominicensis 4 0 0 2 0 1 

 Fork-tailed Flycatcher Tyrannus savana 0 5 0 1819 219 437 

Vireonidae Red-eyed Vireo Vireo olivaceus 1 0 0 5 2 0 

 Scrub Greenlet Hylophilus flavipes 0 0 0 39 1 1 

Troglodytidae Bicolored Wren Campylorhynchus griseus 0 0 212 75 5 0 
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APPENDIX I. Continued 
STUDY SITE FAMILY COMMON NAME SPECIES 

PP FL LL CP AP MP 

Troglodytidae Stripe-backed Wren Campylorhynchus nuchalis 0 0 13 2 0 0 

 House Wren Troglodytes aedon 0 0 6 25 0 0 

Polioptilidae Tropical Gnatcatcher Polioptila plumbea 237 253 149 103 200 149 

Mimidae Tropical Mockingbird Mimus gilvus 347 339 251 195 386 414 

Parulidae Blackpoll Warbler Dendroica striata 3 0 0 0 2 1 

 American Redstart Setophaga ruticilla 0 2 0 0 0 0 

 Tropical Parula Parula pitiayumi 0 0 0 1 0 0 

Thraupidae Bananaquit Coereba flaveola 70 2 10 71 141 65 

 White-lined Tanager Tachyphonus rufus 0 0 0 25 0 0 

 Glaucous Tanager Thraupis glaucocolpa 0 0 0 32 0 0 

 Trinidad Euphonia Euphonia trinitatis 0 2 46 18 4 0 

Cardinalidae Grayish Saltator Saltator coerulescens 36 13 40 63 5 0 

 Orinocan Saltator Saltator orenocensis 0 44 88 50 0 0 

 Red-capped Cardinal Paroaria gularis 0 0 0 5 0 0 

 Vermilion Cardinal Cardinalis phoeniceus 113 63 34 20 22 269 

Emberizidae Blue-black Grassquit Volatinia jacarina 0 0 0 9 0 0 

 Black-faced Grassquit Tiaris bicolor 58 5 69 130 135 138 

 Lesson’s Seedeater Sporophila bouvronides 0 0 0 2 0 0 
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APPENDIX I. Continued 
STUDY SITE FAMILY COMMON NAME SPECIES 

PP FL LL CP AP MP 

Emberizidae Ruddy-breasted Seedeater Sporophila minuta 0 0 0 3 0 0 

 Saffron Finch Sicalis flaveola 0 0 3 18 0 0 

 Gray Pileated-Finch Coryphospingus pileatus 28 2 6 36 7 0 

Icteridae Venezuelan Troupial Icterus icterus 130 183 79 4 0 163 

 Yellow Oriole Icterus nigrogularis 22 15 69 25 7 17 

 Carib Grackle Quiscalus lugubris 1 78 85 92 80 2 

 Shiny Cowbird Molothrus bonariensis 0 0 64 7 0 0 

 Oriole Blackbird Gymnomystax mexicanus 0 0 0 6 0 0 

Fringillidae Lesser Goldfinch Carduelis psaltria 0 0 1 0 0 0 
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APPENDIX II. Sampling effort and model selection of detection functions based on visual records of arid zone birds detected in the 

six study sites (n = total number of observations used to generate the model, m = number of estimated parameters in detection 

function, AIC = Akaike’s Information Criterion). 

Species n Model Selected (Key function + 
adjustment term) 

m AIC 

Patagioenas corensis 281 Uniform + Simple Polynomials 5 2910.07

Zenaida auriculata 751 Uniform + Cosines 3 7100.74

Scardafella squammata 257 Uniform + Cosines 3 2206.22

Columbina passerina 475 Uniform + Cosines 3 3979.53

Aratinga pertinax 407 Uniform + Cosines 3 4244.75

Aratinga acuticaudata 72 Uniform + Simple Polynomials 3 794.29

Forpus passerinus 127 Uniform + Cosines 3 1158.74

Amazona barbadensis 76 Uniform + Cosines 3 879.92

Leucippus fallax 405 Uniform + Cosines 5 3919.88

Melanerpes rubricapillus 218 Uniform + Simple Polynomials 5 2010.07

Xiphorhynchus picus 90 Half Normal + Hermite Polynomials 4 835.55

Sublegatus arenarum 176 Uniform + Cosines 3 1349.95

Myiarchus tyrannulus 129 Hazard Rate + Cosines 2 1100.70
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APPENDIX II. Continued    

Species n Model Selected (Key function + 
adjustment term) 

m AIC 

Tyrannus savana 199 Uniform + Simple Polynomials 4 1932.79

Polioptila plumbea 461 Half Normal + Hermite Polynomials 4 3545.86

Mimus gilvus 1122 Half Normal + Cosines 2 4793.58

Coereba flaveola 225 Uniform + Simple Polynomials 4 1676.29

Cardinalis phoeniceus 272 Uniform + Cosines 4 2372.05

Tiaris bicolor 367 Uniform + Cosines 3 2915.97

Icterus icterus 121 Uniform + Simple Polynomials 5 1106.82

Icterus nigrogularis 92 Half Normal + Cosines 3 343.65
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APPENDIX III. Sampling effort and model selection of detection functions based on auditory records of arid zone birds detected in 

the six study sites (n = total number of observations used to generate the model, m = number of estimated parameters in detection 

function, AIC = Akaike’s Information Criterion, * = model included left truncation of data at 20 m of the point count). 

Species n Model Selected (Key function + 
adjustment term) 

m AIC 

Colinus cristatus 155 Hazard Rate + Cosines* 3 1312.32

Leptotila verreauxi 213 Half Normal + Cosines* 2 1578.77

Scardafella squammata 1147 Hazard Rate + Simple Polynomials* 4 3953.63

Columbina passerina 109 Uniform + Cosines* 3 841.92

Leucippus fallax 95 Half Normal + Cosines 1 226.37

Hypnellus rufucollis 107 Uniform + Cosines 2 387.96

Melanerpes rubricapillus 398 Uniform + Cosines 2 3282.74

Synallaxis albescens 243 Half Normal + Cosines 1 2178.66

Synallaxis candei 69 Half Normal + Cosines 1 573.00

Xiphorhynchus picus 359 Hazard Rate + Simple Polynomials 4 3175.86

Sakesphorus canadensis 72 Half Normal + Cosines* 1 235.97

Formicivora intermedia 145 Hazard Rate + Cosines 2 450.02

Inezia tenuirostris 210 Half Normal + Cosines 1 522.82
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APPENDIX III. Continued 

Species n Model Selected (Key function + 
adjustment term) 

m AIC 

Myiarchus tyrannulus 119 Hazard Rate + Simple Polynomials 2 915.71

Pitangus sulphuratus 109 Uniform + Cosines* 1 473.05

Campylorhynchus griseus 188 Hazard Rate + Cosines* 2 748.79

Polioptila plumbea 499 Hazard Rate + Simple Polynomials* 2 3722.47

Mimus gilvus 571 Hazard Rate + Cosines* 3 1887.10

Coereba flaveola 114 Hazard Rate + Cosines 2 429.78

Saltator coerulescens 114 Uniform + Cosines* 3 444.91

Saltator orenocensis 113 Hazard Rate + Cosines* 2 960.06

Cardinalis phoeniceus 203 Hazard Rate + Cosines 2 720.15

Tiaris bicolor 79 Hazard Rate + Cosines 2 230.68

Icterus icterus 382 Hazard Rate + Simple Polynomials* 2 3463.40
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CHAPTER II 

 

BIRD-HABITAT RELATIONSHIPS IN ARID SCRUBLANDS OF NORTHERN 

VENEZUELA 

 

INTRODUCTION 

Bird species often respond to specific attributes of the habitats, so a better 

understanding of bird-habitat relationships can help identify environmental conditions 

that influence the distribution and abundance of bird species (Young and Hutto 2002). 

Previous studies on bird-habitat associations typically have used physical structure of the 

vegetation, floristic composition, or both as surrogates of habitat characteristics (Block 

and Brennan 1993). These components of the vegetation provide important elements of a 

bird’s habitat (i.e., food resources, nesting sites, cover from predators) (Morrison et al. 

1998). Given that changes in vegetation can alter habitat quality, knowledge of bird-

habitat relationships can be important for conservation (e.g., to predict susceptibilities of 

species to habitat modification; Sedgwick 1987, Fielding and Haworth 1995, Derrickson 

et al. 1998). Better predictive capabilities may be particularly relevant for species with 

specialized habitat requirements (i.e., habitat specialists) because extinction risk via 

habitat loss is positively correlated with the degree of habitat specialization (Owens and 

Bennett 2000, Norris and Harper 2004).  

Detailed bird-habitat associations remain unknown for most Neotropical birds 

and, further, information on habitat requirements needed to make even simple 

conservation decisions is lacking for most species, whether threatened or common. Arid 



      

 

Adriana Rodríguez-Ferraro, 2008, Ph. D. Dissertation, p. 56

scrublands in northern Venezuela constitute an interesting model system to investigate 

bird-vegetation associations relevant to conservation applications. This is, in part, 

because of the relatively large number of habitat specialists in these areas (e.g., Amazona 

barbadensis, Leucippus fallax, Chlorostilbon gibsoni, Picumnus cinnamomeus, 

Synallaxis candei, Inezia tenuirostris, Todirostrum viridanum, Cardinalis phoeniceus, 

Arremonops tocuyensis). These species are restricted to arid lands of northern Venezuela 

and northeastern Colombia (Stotz et al. 1996, Stattersfield et al. 1998) and their long-term 

survival is threatened by ongoing changes in vegetation structure and composition 

brought about by overgrazing by goats, mining, wood collection, and high-impact tourist 

developments (Stattersfield et al. 1998, pers. observ.). Identification of specific attributes 

of the vegetation that are associated with such habitat specialists is needed to develop 

predictive models that will allow an assessment of the possible effects of those land-use 

changes on population persistence and risk of extinction in Venezuelan arid scrubs. 

Both floristic and structural characteristics of vegetation have long been 

recognized as factors that can influence bird species richness, abundance, and habitat use 

(Wiens and Rotenberry 1981, Cody 1985, Rotenberry 1985, Block and Brennan 1993) 

but the relative importance of different variables in shaping bird communities varies 

considerably from habitat to habitat. Identification of a general pattern that describes the 

effect of vegetation structure on bird diversity and abundance in deserts and arid zones 

has been difficult. Foliage-height diversity (MacArthur and MacArthur 1961) was neither 

a good predictor of bird diversity in the Sonoran desert scrub (Tomoff 1974) nor in 

Venezuelan arid scrubs (Bosque 1984). Structural complexity of vegetation and 

vegetation volume, however, were positively correlated to both bird species diversity and 
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density in different scrub habitats of North and South America (Tomoff 1974, Wiens and 

Rotenberry 1981, Mills et al. 1989, 1991, Marone 1991). Several studies have indicated 

that floristic composition of the vegetation might have an even greater influence on bird 

species richness and abundance in these habitats. Sites dominated by columnar cacti in 

arid scrublands of northwestern Venezuela had higher bird diversity and densities than 

sites dominated by other plant species (Bosque 1984), possibly because these cacti 

provide sufficient resources to allow coexistence of more species and individuals (Silvius 

1995). In addition, birds found in arid scrub habitats are highly selective in their choice of 

plants for nesting and foraging (Tomoff 1974, Bosque 1984, Parker 1986, Bosque and 

Lentino 1987, Kozma and Mathews 1997, Sanz 2004).  

The objectives of this study were to compare structural and floristic features of the 

vegetation in six Venezuelan arid zones and to identify how such variables influence bird 

abundances. I addressed the latter question from two perspectives. First, I examined the 

relative importance of physical structure and floristic composition of the vegetation on 

the abundance of all bird species in the community. Because of strong associations of 

some arid scrub birds to particular plants for foraging and breeding (Tomoff 1974, 

Bosque 1984, Parker 1986, Bosque and Lentino 1987, Sanz 2004), I expected floristics to 

play a major role in explaining patterns of bird distribution and abundance. Second, I 

tested whether the whole set of vegetation variables affected the abundances of habitat 

specialists and generalists in different ways. It has been suggested that the influence of 

habitat features on bird distribution and abundance depends on the degree of habitat 

specialization of the bird species in question. Wiens and Rotenberry (1981), for example, 

found that patterns in bird-habitat relationships were more apparent for local specialists 
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than for generalists in North American shrub steppes.  Thus, I expected that abundances 

of habitat specialists in Venezuelan arid scrublands would be more strongly associated 

with vegetation variables than would abundances of habitat generalists. 

 

METHODS 

Study Areas. Fieldwork was conducted from September 2004 to August 2005 in six 

isolated arid regions in northern Venezuela (Fig. 1), regions which differed in area and 

geological origin. Three of these were located in the eastern part of the country: Clarines-

Píritu (CP), Araya Peninsula (AP), and Macanao Peninsula (MP) on Margarita Island; 

three were in the west: Paraguaná Peninsula (PP), Falcón lowlands (FL), and Lara 

Lowlands (LL). All regions were characterized by a mean annual temperature of 28°C, an 

annual rainfall between 300 and 700 mm, and xerophytic vegetation (Huber 1997).  

Vegetation Sampling. Three 50-ha plots, located at least 3 km apart, were established in 

thorn scrub vegetation in each of the six study areas (N = 18 plots). On each plot, 10 

points were selected for bird surveys (see below). The first point was randomly 

established with the subsequent nine points systematically located at least 250 m apart 

and at least 100 m from vegetation borders and roads. Vegetation was sampled in square 

plots (25 m x 25 m) around each of these points. I measured vegetation variables that 

included both floristic and structural attributes. The selection of variables was based on a 

modification of the variables suggested by Bibby et al. (2000) for studies in dry areas. I 

also included measurements of cacti because of the importance of Cactaceae in my study 

areas.  
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I counted and identified all trees, shrubs, and cacti within each square plot. 

Diameter at breast height (dbh, approximately at 1.2 m) of all trees ≥ 10 cm was 

measured with a diameter tape. A measuring rod was used to determine the height of 10 

individual shrubs per species and 10 individual cacti per species that made contact with 

line intercepts oriented in the four cardinal directions in each plot. The percentage of 

ground cover and the percentage of canopy cover were determined using a GRS 

densitometer (Geographic Resource Solutions, Arcata, California) at the center, corners, 

and at 20 random points within the plot. Percentage of either canopy or ground cover for 

a given sampling plot was derived from the number of points with canopy or ground 

coverage, divided by the total number of points sampled. Canopy height was determined, 

using a laser rangefinder, at the same points where canopy and ground cover were 

recorded.  

Bird Sampling. Bird surveys were conducted bimonthly in each plot, from September 

2004 to August 2005, from 6:00 to 10:00 am during three consecutive days (one day per 

plot). The sequence in which point counts in each plot were visited was alternated among 

sampling periods to compensate for the effects of hourly variation in bird activity. At 

each of the 10 point-counts in a plot, the number of individuals for all the bird species 

detected, both visually and aurally, was recorded during 10 min. Species flying over a 

point that did not use thorn scrub vegetation, such as vultures (Cathartidae), herons and 

egrets (Ardeidae), and swallows (Hirundinidae), as well as nocturnal species, such as 

owls (Strigidae) and nightjars (Caprimulgidae), were not included in the surveys.  

Analyses.  Prior to statistical analyses, all vegetation data were tested for assumptions of 

normality using the Shapiro-Wilk test. As most of the vegetation variables did not meet 
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the normality assumption of parametric tests, even after transformations, non-parametric 

methods were used throughout. Several variables were highly correlated (r ≥ 0.80), so 

within each correlated group some variables (tree density, total cacti species, and total 

tree species) were excluded from all subsequent analyses.  

I tested for differences in floristics and vegetation structure to determine if 

vegetation was similar among the six study areas. First, I conducted two nested 

permutational multivariate analyses of variance (PERMANOVA, Anderson 2001) to 

determine whether vegetation structure and floristic variables varied among areas. I used 

study areas and plots nested within study areas as factors and five floristic and 11 

structural vegetation variables, respectively, as response variables. Comparisons were 

based on Euclidean distances and significance was estimated based on 9999 permutations 

of residuals under a reduced model (Anderson and ter Braak 2003). These tests were 

followed by a posteriori pairwise comparisons. Next, I used analyses of similarity 

(ANOSIM, Clark and Warwick 2001) to compare vegetation composition among the six 

regions. ANOSIM is a non-parametric analysis, which tests whether differences among 

samples within pre-defined groups (30 points within each study area) were less than 

expected when compared to differences among samples across the six study areas. I 

conducted four ANOSIMs, one for each plant group (trees, shrubs, and cacti) and one for 

all groups combined. ANOSIM estimates a similarity value (R) among all groups as well 

as separate pairwise comparisons and provides R values that are a relative measure of 

separation of the a priori-defined groups. An R = 0 indicates that similarities between and 

within plots are the same on average, while an R = 1 indicates that all plots within each 

study area are more similar to each other than any plots from different arid zones. Four 
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Non-metric Multidimensional Scaling ordinations (NMS, Clarke and Warwick 2001) 

were also conducted to graphically represent the results of each ANOSIM.  

I conducted a Detrended Correspondance Analysis (DCA) to determine whether 

to use Redundancy Analysis (RDA) or Canonical Correspondence Analysis (CCA), 

following Lepš and Šmilauer (2003). This determination is based on the length of the 

gradient (the extent of species turnover along ordination axes), which is used to decide 

between linear (RDA) or unimodal (CCA) ordination methods for the analysis of bird-

habitat relationships. Linear methods are more appropriate when the length of the longest 

gradient is shorter than 3 SD, whereas unimodal methods should be used when that value 

is larger than 4 SD. For my data, the length of the longest gradient was < 3 for all the 

analyses mentioned above and, thus, the linear RDA was preferred over the unimodal 

CCA. Redundancy analysis is an ordination technique that consists of a canonical form of 

a Principal Components Analysis (PCA) (Jongman et al. 1995). It allows the estimation 

of the amount of variance in the bird distribution matrix that is explained by a canonical 

variate from the vegetation matrix based on a multiple regression of all species 

simultaneously with linear constraints on the regression coefficients (ter Braak and 

Šmilauer 2002). The results of the analysis consist of principal axis scores and 

eigenvalues plus the canonical coefficients derived from the multiple regression (Shaw 

2003), interpretation of the results can be easily derived from ordination diagrams (i.e. 

biplot or triplot). The latter display scores for sites (represented by symbols), bird species 

(represented by arrows), and vegetation variables (represented by arrows).  
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I conducted two independent RDA analyses to examine the relationship between 

features of the vegetation and bird abundance; explanatory variables included five 

floristic attributes in the first analysis, and 11 structural variables in the second. To 

determine whether habitat relationships of specialist birds differed from those of 

generalists, I conducted two additional RDA, one for each group of birds, including both 

floristic and vegetation structure attributes (16 in total) as explanatory variables. The bird 

matrix for the habitat specialists included seven species and the one for generalists 

included the 14 most common species recorded in the sampling areas. In all the analyses, 

bird data consisted of mean abundance per species, calculated as the total number of 

individuals of each species per point divided by the total number of visits (six) to that 

point. 

Descriptive statistics represent averages ± SE. Shapiro-Wilk test was conducted 

on SPSS 15.0 (SPSS 2006). The non-parametric multivariate analysis of variance and the 

a posteriori comparisons were run on program PERMANOVA (Anderson 2005). 

ANOSIM and NMS analyses were run on PRIMER v5.2.9 (Clark and Gorley 2003). All 

PCA, DCA, and RDA were conducted using CANOCO 4.5 (ter Braak and Šmilauer 

2002).  

 

RESULTS 

Vegetation characteristics. A total of 56 plant species was recorded across the six study 

areas including 9 cacti, 19 shrubs (including terrestrial bromeliads, agaves, and aloe), and 

28 trees (see Appendix). The mean number of species per sampling plot (0.0625 ha) was 

4.0 ± 0.10 cacti (range: 1.0 – 8.0, N = 180), 3.2 ± 0.13 shrubs (range: 0.0 – 9.0, N = 180), 
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and 4.2 ± 0.14 trees (range: 1.0 – 11.0, N = 180). The most common cacti in all six areas 

were Opuntia wentiana, Stenocereus griseus, and Melocactus sp. The most abundant 

shrubs were Croton sp., Castella erecta, and Cnidoscolus urens. Common trees in all 

areas belong mainly to Fabaceae (Prosopis juliflora, Cercidium praecox, Pithecellobium 

ungis-cati, Caesalpinia coriaria) and Capparidaceae (Capparis odoratissima) (Table 1).  

     Mean numbers of species within each plant category (Table 2) varied 

significantly among areas (PERMANOVA, F5,162 = 12.35, P = 0.0001) and among plots 

(PERMANOVA, F12,162 = 4.36, P = 0.0001). A posteriori pairwise comparisons indicated 

that Paraguaná peninsula, Falcón lowlands, and Macanao peninsula differed from all 

other areas (P < 0.05 in all cases), but Araya peninsula showed no differences in terms of 

floristics when compared to Lara lowlands (t58 = 1.17, P = 0.223) or Clarines-Píritu 

region (t58 = 0.94, P = 0.393). Differences in composition among areas were minor (but 

significant) when only cacti were considered (ANOSIM Global R = 0.237, P = 0.001, 

Fig. 2A), but were more pronounced when comparisons were based on shrubs (ANOSIM 

Global R = 0.401, P = 0.001, Fig. 2B) or tree species (ANOSIM Global R = 0.627, P = 

0.001, Fig. 2C). These latter two groups thus likely drove floristic differences among the 

study areas when all species were included in the analysis (ANOSIM Global R = 0.444, P 

= 0.001, Fig. 2D). Points in Clarines-Píritu region were separated from those of other 

study areas, indicating that this area was the most distinct in terms of plant composition 

(Fig. 2C and 2D). R values of pairwise comparisons involving this area were the highest 

of all (range: 0.473 – 0.669, P = 0.001 for all cases).  

 Vegetation in the study areas had a low and open canopy, and an intermediate 

percentage of ground cover (Table 3). These scrublands also had a high density of non-
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columnar cacti, medium densities of columnar cacti and shrubs, and a low tree density. 

When tree density was separated into tree size classes, it was clear that the total was 

mainly accounted by the contribution of small trees (dbh ≤ 10 cm). 

   Multivariate comparisons indicated that the 11 structural variables varied among 

the six areas (PERMANOVA, F5,162 = 7.25, P = 0.0001) and among plots 

(PERMANOVA, F12,162= 3.49, P = 0.0001) within study areas. Pairwise comparisons, 

however, indicated that Falcón lowlands, Lara lowlands, and Araya peninsula did not 

differ from each other (Falcón-Lara, t58 = 1.30, P = 0.133; Falcón-Araya, t58 = 1.51, P = 

0.066; Lara-Araya, t58 = 1.01, P = 0.362). Obvious differences among study areas 

included higher density of shrubs in the Clarines-Píritu region and higher density of non-

columnar cacti in Lara lowlands, as well as greater percentage of ground cover in both 

Clarines-Píritu and Paraguaná peninsula (Table 3).  

Bird diversity. A total of 96 bird species representing 26 families was recorded 

throughout the study areas. Seventy-three species that were widely distributed, and 

known to occupy more than two habitat types (i.e., arid scrublands, dry forests, humid 

forests) in the Neotropics, were referred to as habitat generalists. The 14 most common 

generalist species were included in the analysis of bird-vegetation associations: Zenaida 

auriculata, Scardafella squammata, Columbina passerina, Leptotila verreauxi, 

Synallaxis albescens, Xiphorhynchus picus, Sublegatus arenarum, Myiarchus tyrannulus, 

Campylorhynchus griseus, Polioptila plumbea, Mimus gilvus, Coereba flaveola, Saltator 

coerulescens, and Icterus nigrogularis. Only 7 species (7.3%) were considered habitat 

specialists with relatively limited distribution in northern Venezuela, Colombia and the 

Caribbean islands. These included Amazona barbadensis, Leucippus fallax, Synallaxis 
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candei, Inezia tenuirostris, Todirostrum viridanum, Cardinalis phoeniceus, and Tiaris 

bicolor.  

Bird-vegetation relationships. Species recorded only once or twice (N = 22) were 

excluded from the original bird matrix before conducting the RDA. Vegetation variables 

explained small but significant amounts of variation in bird distribution when all bird 

species were included in the analysis (Table 4). Eigenvalues for the first axis of RDAs 

based on structural variables and on floristic variables were less than 10%, indicating a 

very weak gradient along this axis. Floristic variables explained a total of 12% (F-ratio = 

4.91, P = 0.002) of the variation in bird distribution patterns, whereas structural variables 

explained 18% (F-ratio = 3.33, P = 0.002).  

Sample-vegetation variable biplots (Fig. 3) showed that sample plots largely did 

not segregate by study areas. Samples from Clarines-Píritu did, however, show a clear 

separation from other areas when the analysis was based on vegetation structural 

variables (Fig. 3B). Percentage of ground cover and density of shrubs were the most 

important variables separating this area from the other five. Both species-vegetation 

biplots (Figs. 4 and 5) showed associations between the abundance of bird species and 

different vegetation variables. In the species-floristic biplot (Fig. 4), there was a clear 

separation between species that were more abundant in plots dominated by non-columnar 

cacti, such as Campylorhynchus griseus, and species, such as Tiaris bicolor, whose 

abundances were higher in plots with more shrubs and small trees.  All floristic variables 

had significant (P < 0.005) conditional effects on the variation explained, but in all cases 

the amount of variance in species data accounted for was very low (< 4% for each 

variable).  In the case of the species-vegetation structure biplot (Fig. 5), the percentage of 
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ground cover accounted for most variation, but its contribution to the amount of variance 

in species data was also low (5.5%). Other variables with significant (P < 0.005), but 

even lower conditional effects, included density of non-columnar cacti, shrub density, 

and shrub height. 

When separate RDAs were conducted for specialists and generalists using all 

vegetation variables, there was a stronger gradient along the first axis for specialists than 

for generalists (Table 5). Vegetation variables explained a total of 30% (F-ratio = 4.36, P 

= 0.002) of the variation in the distribution of specialists, and 26% (F-ratio = 3.49, P = 

0.002) of the variation in the distribution of generalists. Both the species-vegetation 

correlations and the percentage of variance in the species-vegetation relation explained 

by the first two axes were greater for the analysis based on habitat specialists. This 

suggests vegetation variables measured in this study on had more influence on the 

distribution of habitat specialists than of habitat generalists. Three sub-groups of habitat 

specialists were associated with different vegetation variables (Fig. 6). The first group, 

composed of Amazona barbadensis, Leucippus fallax, and Tiaris bicolor, included 

species whose abundance was positively associated with the percentage of ground cover 

and the number of small tree species. The second was composed of Synallaxis candei, 

Inezia tenuirostris, and Todirostrum viridanum, species that were all restricted to the 

western areas and which apparently responded positively to the density of non-columnar 

cacti and percentage of canopy cover. Finally, the third group was represented only by 

Cardinalis phoeniceus, whose abundance was correlated with the height of shrubs and 

cacti (both columnar and non-columnar). In the species (generalists)-vegetation biplot 

(Fig. 7), density of non-columnar cacti accounted for the most variation, and abundances 
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of species such as Icterus nigrogularis and Campylorhynchus griseus were strongly 

associated with this variable. In contrast, density of non-columnar cacti had no apparent 

effect in the analysis that included habitat specialist birds (P = 0.118). Percentage of 

ground cover also had an important effect in the analysis that included the generalist birds 

(e.g., Coereba flaveola). 

 

DISCUSSION 

Arid scrublands in northern South America are typically characterized as low and sparse 

plant formations dominated by species belonging to Cactaceae, Capparidaceae, and 

Fabaceae, and with considerable areas of bare ground (Sarmiento 1972, 1976). Study 

areas in the present study fit this characterization both in floristic and structural attributes 

of vegetation. Although there were significant differences in mean values of both floristic 

and structural variables among the six study regions, the lack of separation of the 

sampling points into groups corresponding to each area indicated that, overall, the six 

areas had relatively similar vegetation. In some of the analyses, however, sampling points 

in Clarines-Píritu segregated as a unit different from all other study areas, mainly because 

this area had more ground cover and shrubs than all other areas. Annual rainfall, the most 

important climatic variable affecting plant life in arid scrubs (Sarmiento 1976), varies 

slightly among areas (between 400 and 700 mm in the case of Clarines-Píritu region and 

Lara lowlands, and below 600 mm for all other areas). This variation may explain the 

distinct nature of Clarines-Píritu relative to the other five areas, where there were more 

individuals of the same species (e.g., shrubs) per unit of area. Differences in floristics 

among the study areas may be partly explained by factors such as regional effects or the 
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presence of exotic plants. Regional effects may drive differences among areas because 

some plant species are restricted to some of the study areas because of historical and 

biogeographical reasons. Non-columnar cacti of the genus Mammillaria were only 

recorded in two of the western areas (Falcón and Lara lowlands) even though some 

species of the genus have been reported for eastern Venezuela (Hoyos 1985). Finally, 

introduction of exotic species in some of the study areas further increased floristic 

differences. Stapelia gigantea is an invasive (I. Herrera pers. comm.) only present in Lara 

lowlands, whereas Calotropis procera has been reported in several of the study areas 

(Hoyos 1985, pers. observ.), but in this study it was recorded only in plots within Falcón 

lowlands.  

 Abundances of most bird species were not well explained by variation in either 

floristic or structural vegetation variables. This lack of close association suggests that 

other environmental factors not considered in this study (e.g., abiotic factors) likely 

influence bird distribution and abundance and that most of the measured variables could 

be only indirect reflections of what birds are responding to. Spatial scale may represent 

another important influence not considered in this study. Bird distribution and abundance 

patterns related to habitat characteristics are known to be scale-dependent (Wiens et al. 

1987, Michaels and Cully 1998, Karl et al. 2000). There is evidence that birds respond to 

landscape-scale habitat features, such as topography or habitat heterogeneity 

(Cunningham and Johnson 2006, Mitchell et al. 2006). 

Structural variables explained a slightly higher percentage of the variation in bird 

distribution than did floristic ones, but because of the small magnitude of the difference, 

it was not possible to evaluate the relative importance of each group of variables. Thus, I 
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can only conclude that both types of variables do have some influence on bird 

distribution in the Venezuelan arid scrublands. The complementary effects of vegetation 

structure and floristics on bird distribution and abundance have also been found in other 

habitats, such as grasslands (Rotenberry 1985) and forests (Arnold 1988, Estades 1997).  

The relevance of floristic composition to bird communities in arid scrublands highlighted 

in some studies (Tomoff 1974, Bosque 1984) was not evident in the present study. The 

association between floristics and birds seems to be linked to microhabitat selection, 

specifically related to nesting (Tomoff 1974, Bosque and Lentino 1987, Kozma and 

Mathews 1997, Sanz 2004), a factor that was not evaluated in this study.  Direct 

measurements of resources (e.g., nesting sites and materials, food) are needed to elucidate 

how bird communities in arid scrublands respond to floristic composition of the 

vegetation.  

Vegetation variables explained more variation in distributions of habitat 

specialists and generalists when groups were considered separately than when they were 

combined in one analysis. Further, aspects of the vegetation explained similar amounts of 

variation (25-30%) in the distribution of both groups of birds, suggesting that habitat 

specialists of arid scrublands are not more strongly associated to the vegetation variables 

measured in this study than are generalists. These results are opposite to what was found 

for habitat specialists in open and forested habitats of North America (Wiens and 

Rotenberry 1981, Dettmers et al. 2002). The distribution of the habitat specialists in 

Venezuelan arid scrublands seems, instead, to be more related to historical and 

biogeographical factors than to any particular habitat or vegetation feature, as has been 
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suggested for restricted-range birds in other tropical dry forests that showed no or little 

association with vegetation variables (Gillespie et al. 2001). 

Habitat specialists differed in their responses to vegetation variables. This may be 

related to differences in foraging strategies, since birds belonging to different guilds tend 

to respond differentially to the same vegetation variables (Tomoff 1974, López de 

Casenave et al. 1998). Cardinalis phoeniceus, an opportunistic species (Poulin et al. 

1994a) that feeds on fruits, seeds, and insects (Poulin et al. 1994b), was associated to 

cacti and shrub height, presumably because it moves through different vegetation strata 

looking for food and because it usually sings from tops of columnar cacti (Hilty 2003). 

The three species restricted to the western areas, Synallaxis candei, Todirostrum 

viridanum, and Inezia tenuirostris, are insectivores that take insects under vegetation 

cover (Bosque 1984, Hilty 2003) and were associated with the same variables related to 

vegetation cover (canopy cover, density of non-columnar cacti, and ito a lesser degree, 

density of large trees). This association between surface or short-flight insectivores and 

tree and shrub cover seems to be a pervasive one, since it has been previously reported 

for different habitats, including scrublands (Marone 1991) and forests (Yahner 1986, 

Chettri et al. 2005). Although they belong to different feeding guilds, Amazona 

barbadensis, Leucippus fallax, and Tiaris bicolor appeared close together in the 

ordination diagram, probably as a response to the density of columnar cacti. The 

columnar cactus Stenocereus griseus is an important food resource for the three species, 

providing fruits for Amazona barbadensis, fruits and seeds for Tiaris bicolor, as well as 

nectar and juices for Leucippus fallax (Poulin et al. 1994b, Silvius 1995). The association 

between these three species and the percentage of ground cover is hard to explain.  
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Even though habitat-specialist birds did not respond strongly to vegetation 

variables, this study suggests that some structural attributes are important for the survival 

of this particular group of species. Thus, management and conservation programs 

devoted to protecting these birds should focus on the maintenance of the structural 

integrity of the habitat. Concerning future studies, two topics deserve further 

investigation. First, a multiscale approach, with the consideration of landscape-level 

variables, may complement the findings of this study. Second, in-depth studies that 

determine the influence of environmental features on habitat use (e.g., foraging, nesting 

performance) of habitat-specialists will provide a connection between the observed 

distribution patterns and the processes underlying them.  

 

LITERATURE CITED 

Anderson, M. J. 2001. A new method for non-parametric multivariate analysis of 

variance. Austral Ecology 26: 32-46. 

Anderson, M. J. 2005. PERMANOVA: a FORTRAN computer program for 

permutational multivariate analysis of variance. Department of Statistics, 

University of Auckland, New Zealand. 

Anderson, M. J., and C. J. F. ter Braak. 2003. Permutation tests for multi-factorial 

analysis of variance. Journal of Statistical Computation and Simulation 73: 85-113. 

Arnold, G. W. 1988. The effects of habitat structure and floristics on the densities of bird 

species in Wandoo woodland. Australian Wildlife Research 15: 499-510. 

Bibby, C. J., N. D. Burguess, D. A. Hill, and S. H. Mustoe. 2000. Bird census techniques. 

2nd ed. Academic Press, London, UK. 



      

 

Adriana Rodríguez-Ferraro, 2008, Ph. D. Dissertation, p. 72

Block, W. M., and L. A. Brennan. 1993. The habitat concept in ornithology: theory and 

applications. Current Ornithology 11: 35-91. 

Bosque, C. 1984. Structure and diversity of arid zone bird communities in Venezuela. Ph. 

D. dissertation. University of Washington, Seattle, Washington. 

Bosque, C., and M. Lentino. 1987. The nest, eggs, and young of the White-whiskered 

Spinetail (Synallaxis [Poecilurus] candei). Wilson Bulletin 99: 104-106. 

Chettri, N., D. C. Deb, E. Sharma, and R. Jackson. 2005. The relationship between bird 

communities and habitat: a study along a trekking corridor in the Sikkim Himalaya. 

Mountain Research and Development 25: 235-243.  

Clarke, K. R., and R. N. Gorley. 2001. Primer v5: User Manual/Tutorial. Primer-E Ltd, 

Plymouth, UK. 

Clarke, K. R., and R. M. Warwick. 2001. Change in marine communities: an approach to 

statistical analysis and interpretation. 2nd ed. Primer-E Ltd, Plymouth, UK. 

Cody, M. L. 1985. An introduction to habitat selection in birds. Pp: 3-56. In: M. L. Cody 

(ed.). Habitat selection in birds. Academic Press, Orlando, Florida. 

Cunningham, M. A., and D. H. Johnson. 2006. Proximate and landscape factors influence 

grassland bird distributions. Ecological Applications 16: 1062-1075. 

Derrickson, S. R., S. R. Beissinger, and N. F. R. Snyder. 1998. Directions in endangered 

species research. Pp: 111-123. In: J. M. Marzluff & R. Sallabanks (eds.). Avian 

Conservation: research and management. Island Press, Washington D.C. 

Dettmers, R., D. A. Buehler, and K. E. Franzreb. 2002. The habitat-relationship models 

for forest birds of the southeastern United States. Journal of Wildlife Management 

66: 417-424. 



      

 

Adriana Rodríguez-Ferraro, 2008, Ph. D. Dissertation, p. 73

Estades, C. F. 1997. Bird-habitat relationships in a vegetational gradient in the Andes of 

central Chile. Condor 99: 719-727.  

Fielding, A. H., and P. F. Haworth. 1995. Testing the generality of bird-habitat models. 

Conservation Biology 9: 1466-1481. 

Gillespie, T. W., and H. Walter. 2001. Distribution of bird species richness at a regional 

scale in tropical dry forest of Central America. Journal of Biogeography 28: 651-

662. 

Hilty, S. L. 2003. Birds of Venezuela. 2nd ed. Princeton University Press, Princeton, New 

Jersey.  

Hoyos, J. 1985. Flora de la Isla de Margarita. Sociedad de Ciencias Naturales La Salle, 

Caracas, Venezuela.  

Huber, O. 1997. Ambientes fisiográficos y vegetales de Venezuela. Pp: 279-298. In: E. 

La Marca (ed.). Vertebrados actuales y fósiles de Venezuela. Serie Catálogo 

Zoológico de Venezuela. Vol. 1. Museo de Ciencia y Tecnología de Mérida, 

Mérida, Venezuela. 

Jongman, R. H. G., C. J. F. Ter Braak, and O. F. R. Van Tongeren (eds.). 1995. Data 

analysis in community and landscape ecology. Cambridge University Press, 

Cambridge, UK. 

Karl, J. W., P. J. Heglund, E. O. Garton, J. M. Scott, N. M. Wright, and R. L. Hutto. 

2000. Sensitivity of species habitat-relationship model performance to factors of 

scale. Ecological Applications 10: 1690-1705. 



      

 

Adriana Rodríguez-Ferraro, 2008, Ph. D. Dissertation, p. 74

Kozma, J. M., and N. E. Mathews. 1997. Breeding bird communities and nest plant 

selection in Chihuahuan desert habitats in south-central New Mexico. Wilson 

Bulletin 109: 424-436.  

Lepš, J., and P. Šmilauer. 2003. Multivariate analysis of ecological data using CANOCO. 

Cambridge University Press, Cambridge, UK.  

López de Casenave, J., J. P. Pelotto, S. M. Caziani, M. Mermoz, and J. Protomastro. 

1998. Responses of avian assemblages to a natural edge in a Chaco semiarid forest 

in Argentina. Auk 115: 425-435.   

MacArthur, R. H., and J. W. MacArthur. 1961. On bird species diversity. Ecology 42: 

594-598. 

Marone, L. 1991. Habitat features affecting bird spatial distribution in the Monte Desert, 

Argentina. Ecología Austral 1: 77-86. 

Michaels, H. L., and J. F. Cully, Jr. 1998. Landscape and fine scale habitat associations of 

the Loggerhead Shrike. Wilson Bulletin 110: 474-482. 

Michaels, M. S., S. H. Rutzmoser, T. B. Wigley, C. Loehle, J. A. Gerwin, P. D. Keyser, 

R. A. Lancia, R. W. Perry, C. J. Reynolds, R. E. Thill, R. Weih, D. White, and P. 

Bohall Wood. 2006. Relationships between avian richness and landscape structure 

at multiple scales using multiple landscapes. Forest Ecology and Management 221: 

155-169. 

Mills, G. S., J. B. Dunning, Jr., and J. M. Bates. 1989. Effects of urbanization on 

breeding bird community structure in southwestern desert habitats. Condor 91: 416-

428.  



      

 

Adriana Rodríguez-Ferraro, 2008, Ph. D. Dissertation, p. 75

Mills, G. S., J. B. Dunning, Jr., and J. M. Bates. 1991. The relationship between breeding 

bird density and vegetation volume. Wilson Bulletin 103: 468-479.  

Morrison, M. L., B. G. Marcot, and R. W. Mannan. 1998. Wildlife-habitat relationships. 

Concepts and Applications. 2nd. Ed. University of Wisconsin Press, Madison, 

Wisconsin.  

Norris, K., and N. Harper. 2004. Extinction processes in hot spots of avian diversity and 

the targeting of pre-emptive conservation action. Proceedings of the Royal Society 

of London B 271: 123-130. 

Owens, I. P. F, and P. M. Bennett. 2000. Ecological basis of extinction risk in birds: 

habitat loss versus human persecution and introduced predators. Proceedings of the 

National Academy of Sciences USA 97: 12144-12148.  

Parker, K. C. 1986. Partitioning of foraging space and nest sites in a desert shrubland bird 

community. American Midland Naturalist 115: 255-267.  

Poulin, B., G. Lefebvre, and R. McNeil. 1994a. Characteristics of feeding guilds and 

variation in diets of bird species of three adjacent tropical sites. Biotropica 26: 187-

197. 

Poulin, B., G. Lefebvre, and R. McNeil. 1994b. Diets of landbirds from northeastern 

Venezuela. Condor 96: 354-367. 

Rotenberry, J. T. 1985. The role of habitat in avian community composition: 

physiognomy or floristics? Oecologia 67: 213-217. 

Sanz, V. 2004. Ecología de Amazona barbadensis (Aves: Psittacidae): caracterización y 

uso del hábitat en la Península de Macanao (Isla de Margarita) a diferentes escalas 

espaciales y temporales. Ph. D. dissertation. Universidad Central de Venezuela, 



      

 

Adriana Rodríguez-Ferraro, 2008, Ph. D. Dissertation, p. 76

Caracas, Venezuela. 

Sarmiento, G. 1972. Ecological and floristic convergences between seasonal plant 

formations of tropical and subtropical South America. Journal of  Ecology 60: 367-

410. 

Sarmiento, G. 1976. Evolution of arid vegetation in tropical America. Pp: 65-99. In: D. 

W. Goodall (ed.). Evolution of desert biota. Univ. of Texas Press, Austin, Texas. 

Sedgwick, J. A. 1987. Avian habitat relationships in pinyon-juniper woodland. Wilson 

Bulletin 99: 413-431. 

Shaw, P. J. A. 2003. Multivariate statistics for the environmental sciences. Arnold 

Publishers, London, UK. 

Silvius, K. M. 1995. Avian consumers of cardón fruits (Stenocereus griseus: Cactaceae) 

on Margarita Island, Venezuela. Biotropica 27: 96-105. 

SPSS. 2006. SPSS for Windows, ver. 15.0. SPSS Inc., Chicago, Illinois. 

Stattersfield, A. J., M. J. Crosby, A. J. Long, and D. C. Wege. 1998. Endemic bird areas 

of the world. BirdLife International, Cambridge, UK.  

Stotz, D. F., J. W. Ftzpatrick, T. A. Parker III, and D. K. Moskovits. 1996. Neotropical 

birds: ecology and conservation. University of Chicago Press, Chicago, Illinois.  

ter Braak, C. J. F., and P. Šmilauer. 2002. CANOCO Reference Manual and CanoDraw 

for Windows User's Guide: Software for Canonical Community Ordination 

(version 4.5). Microcomputer Power, Ithaca, New York.  

Tomoff, C. S. 1974. Avian species diversity in desert scrub. Ecology 55: 396-403. 

Yahner, R. H. 1986. Structure, seasonal dynamics, and habitat relationships of avian 

communities in small even-aged forest stands. Wilson Bulletin 98: 61-82. 



      

 

Adriana Rodríguez-Ferraro, 2008, Ph. D. Dissertation, p. 77

Young, J. S., and R. L. Hutto. 2002. Use of regional-scale exploratory studies to 

determine bird-habitat relationships. Pp: 107-119. In: J. M. Scott, P. J. Heglund, M. 

L. Morrison, J. B. Haufler, M. G. Raphael, W. A. Wall, and F. B. Samson (eds.). 

Predicting species occurrences: issues of accuracy and scale. Island Press, 

Washington, D.C.  

Wiens, J. A., and J. T. Rotenberry. 1981. Habitat associations and community structure of 

birds in shrubsteppe environments. Ecological Monographs 50: 287-308.  

Wiens, J. A., J. T. Rotenberry, and B. Van Horne. 1987. Habitat occupancy patterns of 

North American shrubsteppe birds: the effects of spatial scale. Oikos 48: 132-147.



      

 

Adriana Rodríguez-Ferraro, 2008, Ph. D. Dissertation, p. 78

TABLE 1. Mean number of individuals (± SE) per sampling plot (0.0625 ha) for the five most common species of cacti, shrubs, and 

trees in the six sampling areas in northern Venezuela: PP = Paraguaná peninsula, FL = Falcón lowlands, LL = Lara lowlands, CP = 

Clarines-Píritu region, AP = Araya peninsula, MP = Macanao peninsula. 

SPECIES PP FL LL CP AP MP 
CACTI 
Stenocereus griseus 37.3 ± 7.27 81.1 ± 16.47 59.3 ± 10.48 31.6 ± 5.47 80.5 ± 14.16 145.2 ± 20.71
Cereus repandus 0.4 ± 0.27 1.1 ± 0.53 11.5 ± 2.49 16.3 ± 3.60 5.4 ± 1.04 2.3 ± 0.55
Opuntia caribea 0.00 22.5 ± 6.05 19.1 ± 8.52 0.00 16.7 ± 8.66 0.00
Opuntia wentiana 309.2 ± 33.10 455.9 ± 59.31 913.6 ± 123.29 306.1 ± 56.40 583.2 ± 65.14 318.6 ± 40.51
Melocactus sp. 0.7 ± 0.51 25.0 ± 9.05 36.7 ± 14.76 14.8 ± 3.51 22.1 ± 4.04 57.3 ± 19.30
SHRUBS 
Bromelia humilis 0.00 0.00 0.00 239.1 ± 72.32 14.9 ± 5.65 0.00
Cnidoscolus urens 9.9 ± 5.25 1.1 ± 0.64 4.4 ± 1.23 11.7 ± 3.41 10.1 ± 2.50 9.0 ± 1.96
Croton sp.  28.3 ± 8.38 0.3 ± 0.30 105.5 ± 24.98 11.1 ± 3.59 7.2 ± 2.81 37.7 ± 14.02
Gossypium sp.  0.2 ± 0.16 0.00 0.00 19.7 ± 9.67 0.00 19.7 ± 9.01
Castella erecta 9.8 ± 3.54 42.6 ± 10.81 4.2 ± 3.20 2.4 ± 1.06 36.5 ± 4.05 4.8 ± 1.55
TREES 
Capparis odoratissima 0.9 ± 0.27 0.2 ± 0.12 0.00 18.6 ± 4.32 3.2 ± 0.52 3.4 ± 0.52
Pithecellobium ungis-cati 0.9 ± 0.38 0.4 ± 0.16 0.9 ± 0.24 2.5 ± 0.55 7.5 ± 0.84 5.5 ± 0.72 
Prosopis juliflora 11.5 ± 1.38 19.1 ± 3.75 14.8 ± 2.53 11.8 ± 1.96 2.2 ± 0.77 0.5 ± 0.19
Caesalpinea coriaria 0.2 ± 0.09 24.1 ± 8.10 0.2 ± 0.17 0.3 ± 0.20 9.3 ± 2.52 3.9 ± 1.09
Cercidium praecox 0.4 ± 0.34 3.9 ± 1.44 8.3 ± 1.93 0.00 8.5 ± 2.11 3.1 ± 0.76
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TABLE 2. Floristic attributes (Mean ± SE) of the six Venezuelan arid zones. Sampling areas are the following: PP = Paraguaná 

peninsula, FL = Falcón lowlands, LL = Lara lowlands, CP = Clarines-Píritu region, AP = Araya peninsula, MP = Macanao peninsula. 

 

 

 

 

 

 

 

VARIABLE PP FL LL CP AP MP 

# cacti species 2.7 ± 0.20 3.6 ± 0.23 5.2 ± 0.23 4.2 ± 0.18 5.0 ± 0.21 3.5 ± 0.15 

# columnar cacti species 1.2 ± 0.11 1.2 ± 0.14 2.3 ± 0.13 1.9 ± 0.07 2.3 ± 0.15 1.6 ± 0.10 

# non-columnar cacti species 1.6 ± 0.12 2.4 ± 0.15 2.9 ± 0.16 2.2 ± 0.15 2.7 ± 0.11 1.8 ± 0.08 

# shrub species 2.7 ± 0.30 1.6 ± 0.16 3.3 ± 0.28 4.0 ± 0.37 3.6 ± 0.29 4.1 ± 0.25 

# tree species 3.2 ± 0.34 3.1 ± 0.24 3.9 ± 0.28 5.0 ± 0.26 5.3 ± 0.43 4.9 ± 0.29 

# large tree (dbh ≥ 10cm) species 2.0 ± 0.17 1.2 ± 0.14 1.7 ± 0.19 1.8 ± 0.21 2.0 ± 0.28 1.0 ± 0.18 

# small tree (dbh ≤ 10cm) species 2.3 ± 0.32 2.9 ± 0.23 3.3 ± 0.25 4.8 ± 0.27 4.8 ± 0.40 4.7 ± 0.28 
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TABLE 3. Structural features (Mean ± SE) of the six Venezuelan arid zones. Sampling areas are the following: PP = Paraguaná 

peninsula, FL = Falcón lowlands, LL = Lara lowlands, CP = Clarines-Píritu region, AP = Araya peninsula, MP = Macanao peninsula.  

 

VARIABLE PP FL LL CP AP MP 

Tree density (ind/m2)  0.7 ± 0.06 2.2 ± 0.34 1.2 ± 0.14 2.1 ± 0.32 1.3 ± 0.13 1.0 ± 0.13

Large tree (dbh  ≥ 10cm) density (ind/m2) 0.2 ± 0.02 0.1 ± 0.02 0.1 ± 0.03 0.1 ± 0.02 0.1 ± 0.02 0.1 ± 0.01

Small tree (dbh ≤ 10cm) density (ind/m2) 0.5 ± 0.06 2.0 ± 0.34 1.0 ± 0.13 1.9 ± 0.32 1.2 ± 0.13 1.0 ± 0.13

Columnar cacti density (ind/m2) 1.5 ± 0.29 3.3 ± 0.66 2.9 ± 0.40 1.9 ± 0.23 4.3 ± 0.61 5.9 ± 0.83

Non-columnar cacti density (ind/m2) 13.2 ± 1.45 20.2 ± 2.41 39.6 ± 5.37 13.1 ± 2.33 25.6 ± 2.50 15.2 ± 1.50

Shrub density (ind/m2) 2.4 ± 0.40 3.3 ± 0.65 6.2 ± 1.11 15.3 ± 3.05 3.2 ± 0.38 4.0 ± 0.60

% ground cover 68.7 ± 2.13 37.4 ± 3.80 33.4 ± 3.51 76.6 ± 2.82 45.1 ± 2.59 50.9 ± 2.15

% canopy cover 38.2 ± 2.53 30.2 ± 2.62 26.9 ± 2.42 33.2 ± 2.92 24.9 ± 1.84 17.5 ± 1.16

Canopy height (m) 2.3 ± 0.19 1.7 ± 0.15 1.4 ± 0.12 2.1 ± 0.15 1.5 ± 0.15 1.0 ± 0.06

Shrub height (m) 1.2 ± 0.07 1.1 ± 0.09 0.8 ± 0.06 0.8 ± 0.06 1.0 ± 0.05 0.9 ± 0.06

Columnar cacti height (m) 3.6 ± 0.58 1.7 ± 0.19 1.7 ± 0.13 2.0 ± 0.14 1.6 ± 0.08 1.7 ± 0.06

Non-columnar cacti height (m) 0.7 ± 0.05 0.5 ± 0.04 0.4 ± 0.03 0.5 ± 0.02 0.5 ± 0.03 0.5 ± 0.04
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TABLE 4. Results of RDAs for 73 bird species and five floristic and 11 structural 

vegetation variables in six aridlands of northern Venezuela.  

 
 Axes 

Analysis – variables I II III IV 

RDA – 5 floristic variables     

Eigenvalues 0.066 0.029 0.016 0.009 

Correlations: bird species – floristics 0.645 0.514 0.524 0.448 

Cumulative percentage of variance:     

of bird species  6.6 9.5 11.1 12.0 

of bird species – floristics relation 53.4 77.0 90.1 97.3 

     

RDA – 11 structural variables     

Eigenvalues 0.072 0.035 0.028 0.015 

Correlations: bird species – vegetation structure 0.652 0.570 0.637 0.568 

Cumulative percentage of variance:     

of bird species  7.2 10.8 13.6 15.1 

of bird species – vegetation structure relation 40.4 60.1 75.9 84.2 
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TABLE 5. Results of RDAs including groups of birds that vary in the level of habitat 

specialization (7 specialists and 14 common generalists) and 16 vegetation attributes 

(both structural and floristic variables) in six arid scrublands of northern Venezuela. 

 
 Axes 

Analysis – variables I II III IV 

RDA Habitat specialist birds – 16 vegetation variables     

Eigenvalues 0.198 0.051 0.027 0.017 

Correlations: bird species – vegetation attributes 0.731 0.491 0.457 0.351 

Cumulative percentage of variance:     

of habitat-specialist species  19.8 24.9 27.6 29.3 

of habitat-specialist birds –  vegetation relation 66.0 83.0 92.0 97.7 

     

RDA Habitat generalist birds – 16 vegetation variables     

Eigenvalues 0.093 0.061 0.041 0.024 

Correlations: bird species – vegetation attributes 0.629 0.657 0.640 0.524 

Cumulative percentage of variance:     

of habitat-generalist species  9.3 15.3 19.4 21.8 

of habitat-generalist birds –  vegetation relation 36.3 60.2 76.1 85.5 
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FIGURE 1. Location of study areas in northern Venezuela. Study areas are the following: 

PP = Paraguaná peninsula, FL = Falcón lowlands, LL = Lara lowlands, CP = Clarines-

Píritu region, AP = Araya peninsula, MP = Macanao peninsula. 
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FIGURE 2. NMS ordination of plant composition among study areas. (A) Cacti only; (B) 
Shrubs only; (C) Trees only; (D) All plant categories combined. Species showing high 
correlations with the two axes are indicated. Study areas are the following: Paraguaná 
peninsula (filled up-triangles), Falcón lowlands (open down-triangles), Lara lowlands 
(filled squares), Clarines-Píritu region (open squares), Araya peninsula (filled circles), 
Macanao peninsula (open circles).  
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FIGURE 3. Bi-plot from redundancy analyses of  sampling plots and (A) floristic and (B) 
structural vegetation variables. Dashed arrows indicate variables; symbols indicate study 
areas: Paraguaná peninsula (filled up-triangles), Falcón lowlands (open down-triangles), 
Lara lowlands (filled squares), Clarines-Píritu region (open squares), Araya peninsula 
(filled circles), Macanao peninsula (open circles). Floristic variables represent the mean 
number of species for each plant category indicated in the diagram. Structural variables 
are: DST = mean density of small (dbh ≤ 10 cm) trees; DLT = mean density of large (dbh 
≥ 10 cm) trees; DS = mean density of shrubs; DCC = mean density of columnar cacti; 
DNCC = mean density of non-columnar cacti; GC: percentage of ground cover; CC: 
percentage of canopy cover; HC = mean canopy height; HS = mean shrub height; HCC = 
mean height of columnar cacti; HNCC = mean height of non-columnar cacti. 
 

 

 

 

 

 

 

 

A B 



      

 

Adriana Rodríguez-Ferraro, 2008, Ph. D. Dissertation, p. 86

 

 

FIGURE 4. Bi-plot from a redundancy analysis of bird species and floristic variables. 

Floristic variables represent the mean number of species for each plant category indicated 

in the diagram. Only correlation for bird species with a fit range > 10%  (N = 14) are 

shown. Dashed arrows indicate floristic variables; solid arrows indicate bird species.  
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FIGURE 5. Bi-plot from a redundancy analysis of bird species and vegetation structural 
variables. Only correlation for bird species with a fit range > 10%  (N = 25) are shown. 
Dashed arrows indicate floristic variables; solid arrows indicate bird species. Structural 
variables are: DST = mean density of small (dbh ≤ 10 cm) trees; DLT = mean density of 
large (dbh ≥ 10 cm) trees; DS = mean density of shrubs; DCC = mean density of 
columnar cacti; DNCC = mean density of non-columnar cacti; GC: percentage of ground 
cover; CC: percentage of canopy cover; HC = mean canopy height; HS = mean shrub 
height; HCC = mean height of columnar cacti; HNCC = mean height of non-columnar 
cacti. 
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FIGURE 6. Bi-plot from a redundancy analysis of habitat-specialist birds and vegetation 
variables (both floristics and structural). Dashed arrows indicate variables; solid arrows 
indicate bird species. Floristic variables represent the mean number of species for each 
plant category indicated in the diagram. Structural variables are: DST = mean density of 
small (dbh ≤ 10 cm) trees; DLT = mean density of large (dbh ≥ 10 cm) trees; DS = mean 
density of shrubs; DCC = mean density of columnar cacti; DNCC = mean density of non-
columnar cacti; GC: percentage of ground cover; CC: percentage of canopy cover; HC = 
mean canopy height; HS = mean shrub height; HCC = mean height of columnar cacti; 
HNCC = mean height of non-columnar cacti. 
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FIGURE 7. Bi-plot from a redundancy analysis of 16 common habitat-generalists birds 
and vegetation variables (both floristics and structural). Dashed arrows indicate variables; 
solid arrows indicate bird species. Floristic variables represent the mean number of 
species for each plant category indicated in the diagram. Structural variables are: DST = 
mean density of small (dbh ≤ 10 cm) trees; DLT = mean density of large (dbh ≥ 10 cm) 
trees; DS = mean density of shrubs; DCC = mean density of columnar cacti; DNCC = 
mean density of non-columnar cacti; GC: percentage of ground cover; CC: percentage of 
canopy cover; HC = mean canopy height; HS = mean shrub height; HCC = mean height 
of columnar cacti; HNCC = mean height of non-columnar cacti. 
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APPENDIX. Family, species, and floristic category of plants in Venezuelan arid zones. 

FAMILY SPECIES CATEGORY 

Agavaceae Agave cocui Shrub 

 Agave sisalana Shrub 

Asclepiadaceae Calotropis procera Shrub (exotic) 

 Stapelia gigantea Shrub (exotic) 

Boraginaceae Bourreria cumanensis Tree 

Bromeliaceae Bromelia chrysantha Shrub 

 Bromelia humilis Shrub 

Burseraceae Bursera karsteniana Tree 

Cactaceae Acanthocereus tetragonus Non-columnar cactus 

 Mammillaria sp. Non-columnar cactus 

 Melocactus sp. Non-columnar cactus 

 Opuntia caribaea Non-columnar cactus 

 Opuntia elatior Non-columnar cactus 

 Opuntia wentiana Non-columnar cactus 

 Pereskia guamacho Tree 

 Pilosocereus lanuginosus Columnar cactus 

 Stenocereus griseus Columnar cactus 

 Cereus repandus Columnar cactus 

Capparidaceae Capparis hastata Tree 

 Capparis pachaca Tree 

 Capparis odoratissima Tree 

Convolvulaceae Ipomoea sp.  Shrub 

Euphorbiaceae Cnidoscolus urens Shrub 

 Croton sp.  Shrub 

 Jathropha gossypiifolia Shrub 

 Jathropha sp.  Tree 

Fabaceae-Mimosoideae Acacia flexuosa Tree 

 Pithecellobium ungis-cati Tree 

 Prosopis juliflora Tree 
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APPENDIX. Continued. 

FAMILY SPECIES CATEGORY 

Fabaceae-Caesalpinioideae Caesalpinia coriaria Tree 

 Caesalpinia granadillo Tree 

 Cassia sp. Tree 

 Cercidium praecox Tree 

Fabaceae-Papilionoideae Platymiscium diadelphum Tree 

Fabaceae-Unknown Unidentified 1 Tree 

 Unidentified 2 Tree 

 Unidentified 3 Tree 

 Unidentified 4 Tree 

 Unidentified 5 Tree 

 Unidentified 6 Tree 

Liliaceae Aloe vera Shrub 

Malpighiaceae Malpighia emarginata Tree 

Malvaceae Gossypium sp. Shrub 

Sapotaceae Bumelia sp.  Tree 

Simaroubaceae Castela erecta Shrub 

Solanaceae Lycium nodosum Shrub 

Sterculiaceae Melochia tomentosa Shrub 

Theophrastaceae Jacquinia aristata Tree 

 Jacquinia revoluta Tree 

Verbenaceae Lantana camara Shrub 

 Lippia micromera Shrub 

 Lippia origanoides Shrub 

Zygophyllaceae Bulnesia arborea Tree 

 Guaiacum officinale Tree 

Unknown Unidentified 8 Tree 

 Unidentified 19 Shrub 
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CHAPTER III 

 

COMPARATIVE PHYLOGEOGRAPHY OF THREE BIRD SPECIES 

RESTRICTED TO ARID ZONES OF NORTHERN SOUTH AMERICA 

INTRODUCTION 

Comparative phylogeography, “the geographical comparison of evolutionary 

subdivision across co-distributed species” (Arbogast and Kenagy 2001), is a relatively 

new approach to the study of community composition that allows determination of the 

long-term stability of a current species assemblage (Zink et al. 2001). Patterns of 

phylogeographic congruence imply that taxa under study have had a geographic 

association across time and have shared a common history.  Thus, if common patterns of 

geographic subdivision are observed, the assumption is that those patterns have emerged 

as a result of the same historical or geological events (i.e., vicariance) (Arbogast and 

Kenagy 2001).  

Comparative phylogeography is also relevant to conservation. Congruent 

phylogeographic patterns may provide evidence that particular areas are geographic 

centers of genetic diversity (Avise 1992) and, when combined with ecological data (i.e., 

endemism, species richness), can be used to identify areas that must be targeted by 

conservation efforts (Moritz and Faith 1998, Crandall et al. 2000).  Such efforts are 

needed to preserve the genetic integrity of regional faunas.  Additionally, information 

derived from phylogeographic analyses may yield guidelines useful to managers 
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interested in translocations or reintroductions of individuals from one population into 

another (Avise 1992). 

Arid zones of northernmost South America are of special biogeographic interest 

because xeric conditions have existed since at least the last glacial maximum (13,000-

18,000 BP) (Ochsenius 1983) and because these zones currently represent remnants of a 

much broader expanse of arid lands that was covered by xerophytic vegetation during 

past glacial times (Nassar et al. 2002). Additionally, these aridlands of northern South 

America harbor several restricted-range and habitat-specialist bird species (Stotz et al. 

1996, Stattersfield et al. 1998, Hilty 2003), and because of that have been designated as 

an Endemic Bird Area (Stattersfield et al. 1998).  

Recent studies in Venezuelan arid zones have described genetic variation of 

different taxa, such as bats and cacti. Results show interesting patterns of genetic 

structure that are explained by differences in dispersal strategies and the extent of gene 

flow between populations of the study species (for cacti see Nassar et al. 2001, 2002, 

2003; for bats see Newton et al. 2003). Here, I present the results of a study centered on 

three bird species, which are specialists of arid scrublands and are restricted to these same 

areas. Results of this study complement the findings from other taxa, and provide a better 

understanding of the evolution of arid zone biotas in northern South America. The target 

species are the Yellow-shouldered Parrot (Amazona barbadensis), the Buffy 

Hummingbird (Leucippus fallax), and the Vermilion Cardinal (Cardinalis phoeniceus). 

Selection of species for studies of comparative phylogeography is of extreme importance 

because the generality and strength of the results will be greater if the group of species is 

more diverse in terms of taxonomy and ecology (Zink 1996). I chose these three target 
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species because they are co-distributed across arid zones in northern South America and 

because they belong to distantly related families of birds and show differences in 

population sizes and dispersal abilities. For example, the Yellow-shouldered Parrot is a 

threatened species that became rare in some of the areas during the last decades 

(Rodríguez and Rojas-Suárez 1995), whereas the Buffy Hummingbird is the most 

common of the habitat specialists restricted to these arid zones (see Chapter 1).  

The general objective of this study was to examine patterns of genetic diversity of 

three co-distributed habitat specialists across their entire distributional range. I used 

mtDNA sequence data to i) investigate patterns of genetic diversity within and among 

populations of three bird species, ii) determine if a correlation exists between the genetic 

distance and the geographic distance among populations, and iii) examine if genealogical 

congruence exists among the three co-distributed species. I expected that if the three 

target species shared a common history and if the same isolating barriers separated their 

populations, then geographically congruent patterns should be recognized (Zink 2002). 

Congruent phylogeographic patterns would suggest that the presence of these species in 

the same bird assemblages has been stable across time. Incongruent patterns are evidence 

of species’ differences in response to barriers or selective gradients, levels of gene flow, 

effective population size, or lack of long-term sympatry in the ancestral species 

assemblage (Zink 1997, Crisci et al. 2003). Finally, I discuss how the phylogeographic 

patterns found in the present study may be used to help set priorities for conservation of 

birds restricted to arid zones of northern South America.  

 

 



      

 

Adriana Rodríguez-Ferraro, 2008, Ph. D. Dissertation, p. 95

METHODS 

Sample collection and storage. Samples of the three target species (Yellow-shouldered 

Parrot, Buffy Hummingbird, and Vermilion Cardinal) were collected during various trips 

between September 2004 and June 2007 to aridlands in northern Venezuela and some 

Caribbean islands, throughout the distributional range of each species (Fig. 1, Table 1). 

Hummingbirds and cardinals were captured using mist nets, whereas samples from 

parrots were collected from chicks taken manually from nests or from captive adults with 

known localities of origin. I collected blood, tissues, or/and feathers from individuals of 

the three species; additional samples (toepads) of parrots and cardinals were obtained 

from museum collections (Table 1, Appendix). Blood was collected from parrots and 

cardinals using heparinized microcapillary tubes following venipuncture of the brachial 

vein with a sterile syringe needle (Gaunt and Oring 1997) and stored in lysis buffer. 

Small portions of pectoral muscle were taken from hummingbirds, and from a few parrots 

and cardinals that were found dead, and preserved in 100% ethanol. Two symmetrical tail 

feathers were plucked from individuals of the three species (Smith et al. 2003) and 

preserved in 100% ethanol.  

DNA extraction, amplification, and sequencing. DNA extractions from blood samples 

were performed using standard phenol-chloroform procedures followed by ethanol 

precipitation (Sambrook and Russell 2001). DNA extractions from muscle tissues, 

feathers, and toepads were performed using the DNeasy Tissue Kit (Qiagen, Valencia, 

California) following the manufacturer’s protocol. For feather samples, I added 30 µl of 

10% (100 mg/ml) 1,4-Dithiothreitol (DTT;  US Biological, Swampscott, Massachusetts) 

solution to the digestion buffer before adding the proteinase K.  



      

 

Adriana Rodríguez-Ferraro, 2008, Ph. D. Dissertation, p. 96

Three mitochondrial genes were amplified using polymerase chain reaction 

(PCR):  the complete ATP-synthase 8 and ATP-synthase 6 (ATPase8 and ATPase6; 842 

bp) regions; the entire subunit 2 of the NADH dehydrogenase (ND2; 1041 bp), and part 

of the 12S rRNA (12S; 436 bp). I amplified the ND2 gene using combinations of primers 

L5216, H5766, L5758, and H6313 (Table 2; Sorenson et al. 1999). Whenever possible, 

the whole gene (1041 bp) was amplified as a single fragment to reduce the likelihood of 

amplifying nuclear pseudogenes, but this was not always feasible due to degradation of 

some of the samples. For the ATP8 and ATP6 genes, amplification reactions employed 

the external primers CO2GQL and CO3HMH, and the internal primer A8PWL (Table 2;  

Bermingham 2003). The 12S gene was amplified using the primer pair developed by T. 

Burke (Table 2; Miyaki et al. 1998). PCR amplifications typically consisted of an initial 

denaturation at 94°C for 2 min, followed by 35 cycles of 94°C denaturation for 45 s, 

52°C annealing for 30 s and 72°C extension for 60 s. Samples were then extended at 

72°C for 10 min. Each reaction contained 2.0 µl of 10 pM solution of each primer, 5.0 µl 

of 10X reaction buffer with 20 mM magnesium chloride, 4.0 µl dNTP mix (0.2 mM for 

each nucleotide), 0.25 µl of Takara® Ex Taq polymerase (Takara Bio, Madison, 

Wisconsin), and 1-2 µl of DNA template in a total volume of 50 µl. All PCR 

amplifications were conducted in a MJ Research PTC-200 Thermal Cycler (Bio-Rad, 

Hercules, California). Amplification products were confirmed visually on agarose gels 

stained with Ethidium Bromide and were cleaned using the QIAquick PCR Purification 

Kit (Qiagen, Valencia, California) following manufacturer’s protocol or treated with 2 µl 

ExoSAP-IT® (USB Corporation, Cleveland, Ohio) at 37°C for 27 min and at 80°C for an 

additional 15 min. Sequencing reactions were conducted using the amplification primers 
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via dye-terminator cycle sequencing. Sequences were then obtained in an ABI Prism 

3100 Genetic Analyzer (Applied Biosystems, Foster City, California).  

Analyses. Sequence assembling and editing were conducted using GENEIOUS PRO 

3.5.6. (Biomatters Ltd., Auckland, New Zealand), and multiple alignments were done 

using CLUSTALW2 (Larkin et al. 2007), and posteriorly verified and edited by eye using 

JALVIEW (Clamp et al. 2004). Data from the three mtDNA regions were combined for 

subsequent analyses. I used ARLEQUIN 3.11 (Excoffier et al. 2005) to calculate average 

number of pairwise differences (k), haplotype (h) and nucleotide (π) diversity of the three 

target species. Haplotype diversity is the probability that two randomly chosen 

haplotypes in a sample are different, whereas nucleotide diversity is a measure of 

pairwise nucleotide differences per site among haplotypes in a sample (Nei 1987).  

 To investigate geographic genetic structure, unrooted haplotype networks with 

95% parsimoniously plausible connections were constructed for each species using 

statistical parsimony run in the program TCS v1.21 (Clement et al. 2000). Loops due to 

homoplastic ambiguities in the networks were resolved following the criteria suggested 

by Crandall and Templeton (1993). ARLEQUIN 3.11 was also used to measure the 

amount of variance distributed among populations (FST) and to conduct an Analysis of 

Molecular Variance (AMOVA, Excoffier et al. 1992). The AMOVA is a testing 

procedure based on permutational analysis, which allowed me to examine the overall 

genetic structure of populations of each of the species being studied. By using an 

AMOVA, information on DNA haplotype divergence can be incorporated into an 

analysis of variance format, derived from a matrix of squared-distances among all pairs 

of haplotypes. This analysis produces estimates that reflect the correlation of haplotypic 
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diversity at different levels of hierarchical subdivision: among individuals within a 

population, among populations, and among groups of populations (east vs. west, island 

vs. mainland) (Excoffier et al. 1992).  

 The demographic history of each species was examined by constructing mismatch 

distributions. A mismatch distribution reflects the frequency distribution of pairwise 

genetic differences among individual haplotypes and its shape is an indicator of 

population expansion (Rogers and Harpending 1992, Rogers 1995). Unimodal 

distributions suggest rapid population expansion, whereas more ragged distributions 

suggest that the size of the population has changed little over time. I used ARLEQUIN 

3.11 (Excoffier et al. 2005) to obtain the observed and expected values of the mismatch 

distribution, to calculate the raggedness index (r, Harpending 1994), which measures the 

smoothness of observed mismatch distributions and has larger values for more stable 

populations, and to estimate the sum of squared deviations (SSD), which test the fit of the 

observed data to the expected population growth model.  

For each of the target species, sequence data were used to establish phylogenetic 

relationships among mtDNA haplotypes using the maximum likelihood criterion (ML) 

for tree selection in PAUP v4.0b10 (Swofford 2002). Closely related species of the same 

genus or family were used as outgroups. The Blue-fronted Parrot (Amazona aestiva) and 

the Yellow-headed Parrot (Amazona ochrocephala) were outgroups for the Yellow-

shouldered Parrot; the Speckled Hummingbird (Adelomyia melanogenys) and the 

Collared Inca (Coeligena torquata) were used as outgroups for the Buffy Hummingbird; 

and the Rose-breasted Grosbeak (Pheucticus ludovicianus) was the outgroup for the 

Vermilion Cardinal. Support for these analyses was assessed using 100 bootstrap 
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replications. To select the model of nucleotide substitution that best fitted the data, I used 

a hierarchical likelihood ratio test as implemented in MODELTEST 3.6.6 (Posada and 

Crandall 1998). The model selected was the General Time Reversible + Gamma rate 

correction (GTR + Γ). Estimated values of Ti:Tv ratio and gamma-distribution shape 

parameter (α) were 1.0081 and 0.2081, respectively, for the Yellow-shouldered Parrot, 

1.0433 and 0.0400 for the Buffy Hummingbird, and 1.7202 and 0.0400 for the Vermilion 

Cardinal. 

I used a Mantel test (Mantel 1967) to examine whether genetic distance (FST) and 

geographical distance (measured as the most plausible colonization route between each 

population pair) were correlated between all pairs of sampling areas for each target 

species. This test measures the association between elements in two matrices (i.e., a 

genetic distances matrix and a geographical distances matrix), and then assesses the 

significance of this association by comparing the correlation coefficient (R0) calculated 

for the original matrices to a large number of correlation coefficients calculated after 

permutation of rows and columns in one of the matrices. Significance was estimated by 

the number of permutated coefficients that exceeded the value of the original R0. The 

Mantel test was run in ARLEQUIN 3.11. 

 
 
RESULTS 
 
Genetic variation.  The Buffy Hummingbird showed the highest degree of sequence 

variation of the three species, with 3.4% of variable sites. The Yellow-shouldered Parrot 

and the Vermilion Cardinal had similar levels of sequence variation, with 0.8% and 1.3% 

of variable sites, respectively. These variable sites defined 54 haplotypes in the Yellow-
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shouldered Parrot, 88 in the Buffy Hummingbird, and 66 in the Vermilion Cardinal. 

Haplotype diversity (h) was above 75% for all populations of the Vermilion Cardinal and 

above 90% for all populations of the Buffy Hummingbird (Table 3). For the Yellow-

shouldered Parrot, however, haplotype diversity was above 90% in most of the 

populations but one (MP), where haplotype diversity was 60% (Table 3). Nucleotide 

diversity (π) varied within and among species (Table 3), with the Buffy Hummingbird 

having the highest levels of nucleotide diversity. 

Geographic structure. All three species showed some differentiation among populations 

as indicated by significant pairwise values of FST  (Table 4).  No significant correlations 

were detected between pairwise FST and geographic distance in the Yellow-shouldered 

Parrot (R0 = 0.108, P = 0.279) or in the Vermilion Cardinal (R0 = -0.059, P = 0.752). 

Conversely, the correlation was significant in the Buffy Hummingbird  (R0 = 0.548, P = 

0.024).  

 Overall geographic structure among populations was supported by AMOVA´s for 

the Yellow-shouldered Parrot. For this species, most of the molecular variation (60%) 

was represented by genetic diversity among populations, both in the analyses without 

groups and in the analyses in which populations were categorized into groups (Table 5A). 

In the latter analyses, it was evident that geographic structure was not explained by 

variation between either western and eastern populations or between populations located 

on islands vs. populations on the mainland. In the AMOVA’s for the Buffy Hummingbird 

and the Vermilion Cardinal, some geographic structure was indicated with 27% and 26%, 

respectively, of the molecular variation partitioned among populations (Tables 5B, 5C). 

In the analyses in which populations were classified into groups, most of the variance 
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(65% for the Buffy Hummingbird and 67% for the Vermilion Cardinal) was explained by 

variation among individuals within populations, and there was no support for the 

distinction of groups of populations located in western and eastern Venezuela.  

 In the unrooted haplotype networks of the three species, some geographic 

structure among populations was also evident as indicated by the clustering of haplotypes 

from different populations (Figs. 2, 3, 4). In all three species, most haplotypes were often 

restricted to a single population and only a few haplotypes were shared among 

populations. In the case of the Buffy Hummingbird (Fig. 3) and the Vermilion Cardinal 

(Fig. 4), haplotypes were shared only between neighboring localities, whereas haplotypes 

of the Yellow-shouldered Parrot were shared among populations located in the east (AP, 

MP) and in the west (FL, BO) (Fig. 2). The haplotype network of the Buffy 

Hummingbird indicates a separation between haplotypes of western and eastern 

populations. Two haplotypes, however, from western populations (LL and PP) were more 

closely related to haplotypes of the eastern populations and one haplotype from an 

eastern population (MP) was more related to a haplotype belonging to a western 

population (PP). 

Historical demography. The mismatch distributions of the populations of the Yellow-

shouldered Parrot supported a recent demographic expansion in these species on BO (Fig. 

5). The mismatch distributions of all populations of the Buffy Hummingbird (Fig. 6) 

were ragged, indicating that the size of all of them has been stable across time. Finally, in 

the case of the Vermilion Cardinal, the unimodal shape of the mismatch distributions of 

three populations (AP, CP, and FL) was an indication of demographic expansions (Fig. 

7). The other three populations of the Vermilion Cardinal (MP, LL, and PP) showed 
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ragged mismatch distributions (Fig. 7) were indicative of stable population size over 

time. Although the value of raggedness index (r) was low for all populations of each of 

the species, an indication of demographic expansion, none of them were significant 

(Table 6).  

Intraspecific phylogenetics. Heuristic maximum likelihood tree searches found the most 

likely trees for each of the three species (Figs. 8, 9, 10).  The monophyly of each of the 

species with respect to outgroups was highly supported in each of the haplotype trees. 

Separation of clades in the phylogenetic trees resembled the patterns of haplotype 

networks and reciprocally monophyletic groups did not correspond to unique populations 

or regions (e.g., western vs. eastern, island vs. mainlands). Haplotype trees for both the 

Buffy Hummingbird and the Vermilion Cardinal illustrate that most haplotypes from the 

western populations (PP, FL, LL) form a clade. In both species, however, there was no 

clear geographic structuring within this clade, as haplotypes of the same population are 

distributed throughout the clade. Haplotypes of the eastern populations were polyphyletic 

in both species. Most haplotypes of the Yellow-shouldered Parrot are part of a large 

clade, and within this large clade some population structure can be identified.   

 
 
DISCUSSION 
 
Genetic diversity and geographic structure. Levels of genetic diversity in the three target 

species are comparable to those found in other bird species in the Neotropics (e.g., Bates 

et al. 2003, González et al. 2003). Geographic patterns of genetic diversity varied among 

the three species; areas with higher and lower values were not the same for the three 

birds. Haplotype and nucleotide diversity for the Yellow-shouldered Parrot were lower on 
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Margarita Island (MP) than in populations on the adjacent mainland (AP) and other 

islands (BO and LB). This geographic pattern of diversity, however, was not observed in 

the other two species. Genetic diversity of the Buffy Hummingbird was similar among all 

populations. In contrast, nucleotide diversity of the Vermilion Cardinal was lower in the 

two mainland populations (CP, AP) in eastern Venezuela than in all other populations, 

including the Margarita Island population, which is also located in the eastern part of the 

country. Larger and more continuous habitats are thought to facilitate maintenance of 

high levels of genetic diversity (Frankham et al. 2004). Thus, one might expect that lands 

in northwestern Venezuela, the most extensive arid zone in the country (Sarmiento 1976), 

an area that has remained dry for at least 14,000 years (Ochsenius 1983), would harbor 

higher levels of genetic diversity in organisms adapted to this habitat. Recent studies of 

genetic diversity of cacti (Melocactus curvispinus, Pereskia guamacho, Stenocereus 

griseus, Cereus repandus, Pilosocereus lanuginosus) conducted in the same aridlands as 

the present study, did in fact, indicate an area of high genetic diversity in northwestern 

Venezuela, corresponding to LL and FL (Nassar et al. 2002, 2003). The only species in 

the present study, however, with high nucleotide diversity in two of the three western 

populations (LL and PP) was the Buffy Hummingbird, but that value was similar to the 

nucleotide diversity in an eastern population (MP). The highest levels of nucleotide 

diversity of the parrot and the cardinal, however, were found in eastern populations, 

contrary to expectations given that aridlands in this part of the country are relatively 

narrow and more subdivided than in the western part. However, it has been proposed that 

during the last Glacial Maximum (18,000 years BP), the climate in Venezuela was drier 

than at present (Shubert 1988). Thus, aridlands in the eastern region, likely were more 
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extensive and may have allowed the maintenance of larger, and more genetically diverse, 

populations (Nassar et al. 2001).  

Haplotype networks, FST values, and results of AMOVA´s all indicated 

geographic structure in the three target species. Geographic structure was expected in 

these species because these birds are specialists of aridlands which, in northern South 

America, form a disjunct habitat; intervening habitats are known to be able to isolate taxa 

among deserts or aridlands (Zink 1997). Evidence of genetic structure among populations 

in arid habitats had been detected in several bird species in North American deserts (Zink 

et al. 2001, Zink 2002, Scariglia and Burns 2003), as well as in cacti (Nassar et al. 2001) 

and bats (Newton et al. 2003) in aridlands of northern Venezuela. The extent of 

geographic structure, however, varied among the three target birds and did not show 

congruent patterns, indicating that diverse factors influenced geographic patterns of 

genetic diversity. All the analyses suggested some large-scale geographical structure in 

the Yellow-shouldered Parrot and, to a lesser degree in the hummingbird and the 

cardinal. These differences may be a result of differences in levels of gene flow, effective 

population sizes and/or levels of philopatry and dispersal capabilities of the target 

species. Gene flow decreases genetic distinctiveness between populations and increases 

genetic variability within a local population (Templeton 2006). Thus, the high levels of 

within-population genetic variation and lack of differentiation between populations found 

in both the Buffy Hummingbird and the Vermilion Cardinal indicate some gene flow 

among populations of these species. In the case of the Buffy Hummingbird, the extent of 

such gene flow seems to be limited by geographic distance among populations (isolation 

by distance). Differences in the level of philopatry were also evident among the target 
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species, and these differences may help explain the observed patterns of geographic 

structure. Available information suggests that the Yellow-shouldered Parrot is 

characterized by high philopatry (maximum home range about 20 km2; Sanz and Grajal 

1998), whereas high dispersal capabilities (even migratory behavior) have been suggested 

for the Buffy Hummingbird (McNeil and Rodriguez 1985). Even during the Pleistocene, 

when the climate in northern Venezuela was drier than at present (Shubert 1988, Rull 

1996) and aridlands had a broader distribution throughout the region, behavioral 

constraints (i.e., philopatry) may have limited gene flow among populations of the parrot.   

Genetic structuring among populations, however, was not absolute. In all three 

species, haplotypes of individuals in eastern populations were closely related to 

haplotypes of individuals in western populations (and vice versa), which indicates some 

level of gene flow between these two regions or insufficient time for lineage sorting. In 

all three species, however, a congruent pattern involved shared haplotypes between two 

adjacent areas (AP, MP), indicating a history of recent contact between populations of 

Margarita Island and Araya Peninsula. There is evidence that changes in sea level 

connected the island and mainland repeatedly during the late Pleistocene (Ochsenius 

1983), but the estimates of time periods when the sea receded and connected the island 

with the mainland are not clear.  

Historical demography. Mismatch distributions indicated that some populations of the 

Yellow-shouldered Parrot and the Vermilion Cardinal have experienced demographic 

expansions in recent times within the aridlands of northern South America, whereas the 

size of populations of the Buffy Hummingbird apparently has changed little. The 

discrepancy between the mismatch distribution and the raggedness index, observed in the 
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Yellow-shouldered Parrot, has been reported in other bird species (e.g., Piranga rubra, 

Shepherd and Burns 2007) as well, such discrepancies can be attributable to different 

factors and imply that the data do not correspond with the specific expectations of either 

the demographic expansion or the stable-equilibrium models. Additionally, it has been 

demonstrated that the raggedness index usually performs poorly to detect demographic 

expansions, because it is a very conservative test with low power to reject the null 

hypothesis (constant population size) when the alternative hypothesis (demographic 

expansion) is true (Ramos-Osins and Rozas 2002).  

Nucleotide diversity values have also been used to infer the direction of the 

demographic expansion (Merila et al. 1997, Zink 2002). When nucleotide diversity in one 

population is particularly low in comparison with other populations, this could be an 

indication that populations are expanding into that area. Using nucleotide diversity to 

infer the direction of the population expansion in the three target species of this study 

also highlighted different patterns among species. Based on nucleotide diversity values, it 

seems that the Yellow-shouldered Parrot had recently expanded from mainland 

populations into the islands of Margarita and Bonaire, whereas the Vermilion Cardinal 

showed an opposite pattern of expansion, from Margarita Island to adjacent mainland 

areas in eastern Venezuela, which matched the results of the mismatch distributions. The 

population of the Buffy Hummingbird apparently expanded into the Araya Peninsula on 

the eastern coast of Venezuela.  

Phylogeographic congruence. Even though the three target species are currently co-

distributed and restricted to the same aridlands, different analyses evidenced a lack of 

congruence in phylogeographic patterns. Unrooted haplotype networks and intraspecific 
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maximum likelihood trees of the three species showed incongruent topologies, an 

indication that the current distribution of these species is the result of species-specific 

histories. Additionally, analyses of demographic history of the target species indicated 

that all three species have experienced recent population expansions but in different 

directions. Thus, the ancestors of the study species were probably geographically 

restricted and were not part of the same species assemblage (see Zink et al. 2001). 

Intraspecific phylogenetics.There are no recognized subspecies in the Vermilion 

Cardinal, and both the haplotype network and the maximum likelihood tree of this 

species indicated no clear discrete evolutionary entities. A previous mtDNA study 

conducted with a small number of samples from the Yellow-shouldered Parrot failed to 

support the subspecies barbadensis (mainland populations) and rothschildi (island 

populations) (Amato 1995). Both the phylogeny and the AMOVA conducted in this study 

indicated that there is no genetic separation among mainland and island populations. In 

the Buffy Hummingbird, three subspecies have been recognized: fallax (north-central 

region of Venezuela including Lara in the western part of the country), cervina 

(northeastern Colombia and northwestern Venezuela), and richmondi (northeastern 

Venezuela) (Hilty 2003). Haplotypes belonging to the richmondi subspecies formed a 

clade but individuals belonging to the neighboring subspecies fallax and cervina 

appeared together both in the haplotype network and in the phylogenetic tree. Further 

revision of the validity of these two subspecies seems necessary, because the designation 

of subspecies that do not represent independent entities may misdirect conservation 

efforts (see Zink 2004).   
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Conservation implications. Population-level results indicated different patterns of 

geographic genetic structuring among populations of the three target species. In the 

Yellow-shouldered Parrot, the remaining largest populations that were well sampled (AP, 

MP, FL, and BO) showed differentiation with respect to haplotype frequency and 

sequence divergence. The degree of geographic structure observed across the current 

distributional range of this species suggests that individual populations may be 

demographically isolated. As this species has experienced population declines across its 

distributional range in the last century, with some populations (i.e., Aruba, Netherland 

Antilles) having been extirpated (Juniper and Parr 1998, Hilty 2003), the information 

derived from this study is particularly relevant for the conservation and management 

plans of the species. Data presented here can be used as a basis for a preliminary 

designation of management units (sensu Moritz 1994) for the Yellow-shouldered Parrot; 

however, the incorporation of information derived from further analyses of other 

molecular markers will provide more support to identify populations of this parrot as 

evolutionarily-significant units for conservation. Meanwhile, the data compiled in this 

study may be used as baseline information to guide management efforts focused on this 

species. Any initiative to manage the species should strive to maintain genetic diversity 

of each population.  

 In the case of the Buffy Hummingbird and the Vermilion Cardinal, most of the 

total genetic variation was found within populations. Thus, from a conservation 

perspective, it is not possible to assign conservation priorities to any specific population. 

As the main objective in conservation genetics is to preserve the genetic identity of a 

species, based on the results of this study, the preservation of all the populations of the 
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Buffy Hummingbird and the Vermilion Cardinal is not required, because the risk of 

negatively affecting the species’ gene pools by local population extinctions should be 

relatively low (Nassar et al. 2003).  
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Table 1. Sampling location (Fig. 1), and sample size for the three species used in the 

analyses. (*) includes museum samples. 

Sampling location Yellow-
shouldered 

Parrot 

Buffy 
Hummingbird 

Vermilion 
Cardinal 

FL: surroundings of Coro city, Falcón State, Venezuela 14 13 15 

PP: Paraguaná peninsula, Falcón State, Venezuela 1 17 14 

LL: Lara lowlands, Lara State, Venezuela 2* 19 11 

CP: Anzoátegui State, Venezuela 2* 15 8 

AP: Araya peninsula, Sucre State, Venezuela 15 19 11 

MP: Margarita Island, Venezuela 22 22 32 

LB: La Blanquilla Island, Venezuela 1* -- -- 

BO: Bonaire, Netherland Antilles 20 -- -- 

TOTAL 77 106 91 
 

 

 

Table 2. Primers used in this study. 

Primer Gene Sequence Reference 

L5216 ND2 5’-GGCCCATACCCCGRAATTG-3’ Sorenson et al. 1999 

H5766 ND2 5’-RGAKGAGAARGCYAGGATYTT KCG-3’ Sorenson et al. 1999 

L5758 ND2 5’-GGNGGNTGAATRGGNYTNAAYCARAC-3’ Sorenson et al. 1999 

H6313 ND2 5’-ACTCTTRTTTAAGGCTTTGAAGGC-3’ Sorenson et al. 1999 

CO2GQL ATP8/6 5’-GGACAATGCTCAGAAATCT GCGG-3’ Bermingham 2003 

CO3HMH ATP8/6 5’-CATGGGCTGGGGTC RACTATGTG-3’ Bermingham 2003 

A8PWL ATP8/6 5’-CCTGAACCTGACCATGAAC-3’ Bermingham 2003 

12S L 12S rRNA 5’-GGATTAGATACCCCACTATGC-3’ Miyaki et al. 1998 

12S H 12S rRNA 5’-AGGGTGACGGGCGGTATGTACG-3’ Miyaki et al. 1998 
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Table 3. Variation in number of haplotypes for each population of the three target 

species, and estimates of haplotype diversity (h), per site nucleotide diversity (π), and 

average pairwise number of nucleotide differences (k). 

 
Species 
      Population 

 
n 

Number of 
haplotypes 

 
h 

 
π 

 
k 

Yellow-shouldered Parrot      

AP 15 13 0.9810 0.0025 5.50 
LB 1 1 1.0000 0.0000 0.00 
MP 22 8 0.6017 0.0014 3.18 
CP 2 2 1.0000 0.0089 8.00 
LL 2 2 1.0000 0.0044 4.00 
FL 14 13 0.9890 0.0053 12.35 
PP 1 1 1.0000 0.0000 0.00 
BO 20 18 0.9842 0.0022 5.15 

TOTAL 77 54 0.9498 0.0063 13.90 
      
Buffy Hummingbird      

AP 19 13 0.9240 0.0035 7.87 
MP 23 17 0.9368 0.0079 17.13 
CP 15 13 0.9714 0.0059 13.17 
LL 19 18 0.9942 0.0080 14.26 
FL 13 13 1.0000 0.0047 9.95 
PP 17 16 0.9926 0.0078 14.79 

TOTAL 106 88 0.9881 0.0085 18.45 
      

Vermilion Cardinal      
AP 11 8 0.8909 0.0008 1.09 
MP 32 21 0.9456 0.0054 12.39 
CP 8 5 0.7857 0.0004 1.00 
LL 11 7 0.8182 0.0010 2.29 
FL 15 13 0.9714 0.0016 3.60 
PP 14 14 1.0000 0.0030 6.90 

TOTAL 91 66 0.9851 0.0039 8.91 
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Table 4. Pairwise FST values between populations of the three target species. Values 

given in bold are significant after Bonferroni correction. 

A) Yellow-shouldered Parrot 

Population AP CP LB MP LL FL BO PP 
AP 0.0000        
CP 0.1321 0.0000       
LB -0.4784 -0.7778 0.0000      
MP 0.1198 0.3968 -0.2711 0.0000     
LL 0.3512 0.1111 0.1111 0.6541 0.0000    
FL 0.2463 -0.1291 -2.5712 0.2797 0.2057 0.0000   
BO 0.1955 0.2401 -1.1220 0.1641 0.5230 0.3056 0.0000  
PP 0.9658 0.9637 1.0000 0.9886 0.9819 0.9526 0.9812 0.0000 

 

B) Buffy Hummingbird 

Population AP CP MP LL FL PP 
AP 0.0000      
CP 0.0528 0.0000     
MP 0.0010 0.0409 0.0000    
LL 0.0409 0.0170 0.0349 0.0000   
FL 0.0392 0.0145 0.0330 0.0030 0.0000  
PP 0.0420 0.0179 0.0359 0.0066 0.0038 0.0000 

          

C) Vermilion Cardinal 

Population AP CP MP LL FL PP 
AP 0.0000      
CP 0.1586 0.0000     
MP 0.0687 0.1047 0.0000    
LL 0.1455 0.1970 0.1110 0.0000   
FL 0.0674 0.1129 0.0422 0.1022 0.0000  
PP 0.0531 0.0985 0.0286 0.0882 0.0144 0.0000 
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Table 5. Results of the Analysis of Molecular Variance of the three target species. 
Populations were divided into two groups: west (PP, FL, LL, and BO) and east (CP, AP, 
MP, and LB), for the comparison among groups. 

A) Yellow-shouldered Parrot 

 

B) Buffy Hummingbird 

 

C) Vermilion Cardinal 

Groups Source of variation df Percent  
variation 

Φ-statistic P 

None specified Among populations 7 60.5 0.60 < 0.0001 

 Within populations 69 39.5   

East vs. west Among groups  1 -35.0 -0.35 0.7185 

 Among populations within groups 6 90.6 0.67 < 0.0001 

 Within populations 69 44.4 0.56 < 0.0001 

Islands vs. mainland Among groups  1 -28.2 -0.28 0.2727 

 Among populations within groups 6 84.6 0.66 < 0.0001 

 Within populations 69 43.6 0.56 < 0.0001 

Groups Source of variation df Percent  
variation 

Φ-statistic P 

None specified Among populations 5 26.9 0.27 < 0.0001 

 Within populations 100 73.1   

East vs. west Among groups  1 27.1 0.27 0.0987 

 Among populations within groups 4 7.7 0.11 < 0.0001 

 Within populations 100 65.2 0.35 < 0.0001 

Groups Source of variation df Percent  
variation 

Φ-statistic P 

None specified Among populations 5 26.1 0.26 < 0.0001 

 Within populations 85 73.9   

East vs. west Among groups  1 25.7 0.26 0.1124 

 Among populations within groups 4 7.6 0.10 < 0.0001 
 Within populations 85 66.7 0.33 < 0.0001 
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Table 6. Estimates raggedness index (r) and their respective P values for each population 

of the three target species. 

 Yellow-shouldered Parrot Buffy Hummingbird Vermilion Cardinal 

Population r P r P r P 

AP 0.012 0.95 0.025 0.69 0.059 0.94 

CP --- --- 0.014 0.88 0.301 0.19 

LB --- --- --- --- --- --- 

MP 0.099 1.00 0.018 0.83 0.023 0.44 

LL --- --- 0.006 1.00 0.072 0.61 

FL 0.041 0.45 0.024 0.74 0.031 0.70 

BO 0.017 0.80 --- --- --- --- 

PP --- --- 0.024 0.37 0.026 0.69 
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Figure 1. A) Distributional range of the three target species and B) map of the arid zones 
of northern South America indicating localities where samples were collected.  
 
A) Distributional ranges of the target species 

 

 

B) Map of sampling localities 
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Figure 2. Unrooted parsimony network of mtDNA haplotypes of the Yellow-shouldered 
Parrot. Circles represent each haplotype and the size of the circle indicates the frequency 
of the haplotype (the largest haplotype in the diagram was shared by 17 individuals). 
Black dots and numbers correspond to mutational steps between haplotypes. Each color 
represents a different population: AP (gray), MP (yellow), CP (blue), LB (white), LL 
(red), FL (green), and BO (brown).  
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Figure 3. Unrooted parsimony network of mtDNA haplotypes of the Buffy 
Hummingbird. Circles represent each haplotype and the size of the circle indicates the 
frequency of the haplotype. Black dots and numbers correspond to mutational steps 
between haplotypes. Each color represents a different population: AP (gray), MP 
(yellow), CP (blue), LL (red), FL (green), and PP (purple). 
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Figure 4. Unrooted parsimony network of mtDNA haplotypes of the Vermilion Cardinal. 
Circles represent each haplotype and the size of the circle indicates the frequency of the 
haplotype. Black dots and numbers correspond to mutational steps between haplotypes. 
Each color represents a different population: AP (gray), MP (yellow), CP (blue), LL 
(red), FL (green), and PP (purple). 
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Figure 5. Mismatch distributions of all haplotypes for four populations of the Yellow-
shouldered Parrot. Solid lines indicate the observed distribution of pairwise differences 
and dashed lines show the expected distributions under a model of sudden population 
expansion.   
 
 
 

     
 
 
 

       
 
 
 
 
 
 
 
 
 
 
 
 



      

 

Adriana Rodríguez-Ferraro, 2008, Ph. D. Dissertation, p. 126

Figure 6. Mismatch distributions of all haplotypes for six populations of the Buffy 
Hummingbird. Solid lines indicate the observed distribution of pairwise differences and 
dashed lines show the expected distributions under a model of sudden population 
expansion.   
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Figure 7. Mismatch distributions of all haplotypes for six populations of the Vermilion 
Cardinal. Solid lines indicate the observed distribution of pairwise differences and dashed 
lines show the expected distributions under a model of sudden population expansion.   
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Figure 8. Intraspecific maximum likelihood phylogeny of the Yellow-shouldered Parrot. 
Individuals are identified by its population acronym: AP = Araya peninsula, BO = 
Bonaire, CP = Anzoátegui, FL = falcón lowlands, LB = La Blanquilla Island, LL = Lara 
lowlands, MP = Margarita Island, PP = Paraguaná peninsula. Branch lenghts are drawn in 
proportion to genetic diversity as indicated by the scale bar. Asterisks (*) indicate nodes 
with bootstrap values > 75%.  
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Figure 9. Intraspecific maximum likelihood phylogeny  of the Buffy Hummingbird. 
Individuals are identified by its population acronym: AP = Araya peninsula, CP = 
Anzoátegui, FL = falcón lowlands, LL = Lara lowlands, MP = Margarita Island, PP = 
Paraguaná peninsula. Branch lenghts are drawn in proportion to genetic diversity as 
indicated by the scale bar. Asterisks (*) indicate nodes with bootstrap values > 75%.  
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Figure 10. Intraspecific maximum likelihood phylogeny  of the Vermilion Cardinal. 
Individuals are identified by its population acronym: AP = Araya peninsula, CP = 
Anzoátegui, FL = falcón lowlands, LL = Lara lowlands, MP = Margarita Island, PP = 
Paraguaná peninsula. Branch lenghts are drawn in proportion to genetic diversity as 
indicated by the scale bar. Asterisks (*) indicate nodes with bootstrap values > 75%.  
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Appendix. Localities and specimen information for samples used in this study. 

Species Collection Population Locality 
Amazona barbadensis This study AP Venezuela: Sucre, Taguapire, 10° 37' N, 64° 00' W 
Amazona barbadensis This study AP Venezuela: Sucre, Taguapire, 10° 37' N, 64° 00' W 
Amazona barbadensis This study AP Venezuela: Sucre, Taguapire, 10° 37' N, 64° 00' W 
Amazona barbadensis This study AP Venezuela: Sucre, Taguapire, 10° 37' N, 64° 00' W 
Amazona barbadensis This study AP Venezuela: Sucre, Taguapire, 10° 37' N, 64° 00' W 
Amazona barbadensis This study AP Venezuela: Sucre, Caimancito, 10° 37' N, 63° 49' W 
Amazona barbadensis This study AP Venezuela: Sucre, Caimancito, 10° 37' N, 63° 49' W 
Amazona barbadensis This study AP Venezuela: Sucre, Caimancito, 10° 37' N, 63° 49' W 
Amazona barbadensis This study AP Venezuela: Sucre, Cerezal, 10° 39' N, 63° 47' W 
Amazona barbadensis This study AP Venezuela: Sucre, Cerezal, 10° 39' N, 63° 47' W 
Amazona barbadensis This study AP Venezuela: Sucre, Cachicato, 10° 33' N, 63° 49' W 
Amazona barbadensis This study AP Venezuela: Sucre, Cachicato, 10° 33' N, 63° 49' W 
Amazona barbadensis This study AP Venezuela: Sucre, Guayacán, 10° 38' N, 63° 49' W 
Amazona barbadensis This study AP Venezuela: Sucre, Guayacán, 10° 38' N, 63° 49' W 
Amazona barbadensis This study AP Venezuela: Sucre, Guayacán, 10° 38' N, 63° 49' W 
Amazona barbadensis This study BO Netherland Antilles: Bonaire, Gotomeer, 12° 14' N, 68° 22' W 
Amazona barbadensis This study BO Netherland Antilles: Bonaire, Gotomeer, 12° 14' N, 68° 22' W 
Amazona barbadensis This study BO Netherland Antilles: Bonaire, Gotomeer, 12° 14' N, 68° 22' W 
Amazona barbadensis This study BO Netherland Antilles: Bonaire, Gotomeer, 12° 14' N, 68° 22' W 
Amazona barbadensis This study BO Netherland Antilles: Bonaire, Gotomeer, 12° 14' N, 68° 22' W 
Amazona barbadensis This study BO Netherland Antilles: Bonaire, Gotomeer, 12° 14' N, 68° 22' W 
Amazona barbadensis This study BO Netherland Antilles: Bonaire, Gotomeer, 12° 14' N, 68° 22' W 
Amazona barbadensis This study BO Netherland Antilles: Bonaire, Gotomeer, 12° 14' N, 68° 22' W 
Amazona barbadensis This study BO Netherland Antilles: Bonaire, Gotomeer, 12° 14' N, 68° 22' W 
Amazona barbadensis This study BO Netherland Antilles: Bonaire, Gotomeer, 12° 14' N, 68° 22' W 
Amazona barbadensis This study BO Netherland Antilles: Bonaire, Gotomeer, 12° 14' N, 68° 22' W 
Amazona barbadensis This study BO Netherland Antilles: Bonaire, Gotomeer, 12° 14' N, 68° 22' W 
Amazona barbadensis This study BO Netherland Antilles: Bonaire, Gotomeer, 12° 14' N, 68° 22' W 
Amazona barbadensis This study BO Netherland Antilles: Bonaire, Gotomeer, 12° 14' N, 68° 22' W 
Amazona barbadensis This study BO Netherland Antilles: Bonaire, Gotomeer, 12° 14' N, 68° 22' W 
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Appendix. Continued 

Species Collection Population Locality 
Amazona barbadensis This study BO Netherland Antilles: Bonaire, Gotomeer, 12° 14' N, 68° 22' W 
Amazona barbadensis This study BO Netherland Antilles: Bonaire, Gotomeer, 12° 14' N, 68° 22' W 
Amazona barbadensis This study BO Netherland Antilles: Bonaire, Gotomeer, 12° 14' N, 68° 22' W 
Amazona barbadensis This study BO Netherland Antilles: Bonaire, Gotomeer, 12° 14' N, 68° 22' W 
Amazona barbadensis This study BO Netherland Antilles: Bonaire, Gotomeer, 12° 14' N, 68° 22' W 
Amazona barbadensis This study CP Venezuela: Anzoátegui, Jose, 10° 05' N, 64° 55' W 
Amazona barbadensis COP14783 CP Venezuela: Anzoátegui, Barcelona, 10° 13' N, 64° 68' W 
Amazona barbadensis This study FL Venezuela: Falcón, Pedregal, 11° 05' N, 70° 10' W 
Amazona barbadensis This study FL Venezuela: Falcón, Pedregal, 11° 05' N, 70° 10' W 
Amazona barbadensis This study FL Venezuela: Falcón, Pedregal, 11° 05' N, 70° 10' W 
Amazona barbadensis This study FL Venezuela: Falcón, Pedregal, 11° 05' N, 70° 10' W 
Amazona barbadensis This study FL Venezuela: Falcón, Pedregal, 11° 05' N, 70° 10' W 
Amazona barbadensis This study FL Venezuela: Falcón, Pedregal, 11° 05' N, 70° 10' W 
Amazona barbadensis This study FL Venezuela: Falcón, Pedregal, 11° 05' N, 70° 10' W 
Amazona barbadensis This study FL Venezuela: Falcón, Pedregal, 11° 05' N, 70° 10' W 
Amazona barbadensis This study FL Venezuela: Falcón, Pedregal, 11° 05' N, 70° 10' W 
Amazona barbadensis This study FL Venezuela: Falcón, La Negrita, 11° 31' N, 69° 55' W 
Amazona barbadensis This study FL Venezuela: Falcón, La Negrita, 11° 31' N, 69° 55' W 
Amazona barbadensis This study FL Venezuela: Falcón, La Negrita, 11° 31' N, 69° 55' W 
Amazona barbadensis This study FL Venezuela: Falcón, La Negrita, 11° 31' N, 69° 55' W 
Amazona barbadensis This study FL Venezuela: Falcón, La Negrita, 11° 31' N, 69° 55' W 
Amazona barbadensis COP34037 LB Venezuela: La Blanquilla Island, 11° 51' N, 64° 36' W 
Amazona barbadensis COP77484 LL Venezuela: Lara, Sierra de Tamayare, 10° 53' N, 70° 13' W 
Amazona barbadensis COP77793 LL Venezuela: Lara, Carora, 10° 16' N, 70° 06' W 
Amazona barbadensis This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Amazona barbadensis This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Amazona barbadensis This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Amazona barbadensis This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Amazona barbadensis This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Amazona barbadensis This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
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Appendix. Continued 

Species Collection Population Locality 
Amazona barbadensis This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Amazona barbadensis This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Amazona barbadensis This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Amazona barbadensis This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Amazona barbadensis This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Amazona barbadensis This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Amazona barbadensis This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Amazona barbadensis This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Amazona barbadensis This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Amazona barbadensis This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Amazona barbadensis This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Amazona barbadensis This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Amazona barbadensis This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Amazona barbadensis This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Amazona barbadensis This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Amazona barbadensis This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Amazona barbadensis This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Amazona barbadensis This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Amazona barbadensis This study PP Venezuela: Falcón, Cerro Santa Ana, 11° 42' N, 69° 56' W 
Cardinalis phoeniceus This study AP Venezuela: Sucre, Surroundings of Guayacán, 10° 40' N, 63° 47' W 
Cardinalis phoeniceus This study AP Venezuela: Sucre, Surroundings of Guayacán, 10° 40' N, 63° 47' W 
Cardinalis phoeniceus This study AP Venezuela: Sucre, Surroundings of Guayacán, 10° 39' N, 63° 47' W 
Cardinalis phoeniceus This study AP Venezuela: Sucre, Surroundings of Guayacán, 10° 39' N, 63° 47' W 
Cardinalis phoeniceus This study AP Venezuela: Sucre, Sector La Alegría, 10° 38' N, 63° 47' W 
Cardinalis phoeniceus This study AP Venezuela: Sucre, Sector La Alegría, 10° 38' N, 63° 47' W 
Cardinalis phoeniceus This study AP Venezuela: Sucre, Sector La Alegría, 10° 38' N, 63° 47' W 
Cardinalis phoeniceus This study AP Venezuela: Sucre, Sector Cerezal, 10° 39' N, 63° 47' W 
Cardinalis phoeniceus This study AP Venezuela: Sucre, Sector Guamachal, 10° 39' N, 63° 46' W 
Cardinalis phoeniceus This study AP Venezuela: Sucre, Sector Guamachal, 10° 39' N, 63° 46' W 
Cardinalis phoeniceus This study AP Venezuela: Sucre, Sector Guamachal, 10° 39' N, 63° 46' W 
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Appendix. Continued 

Species Collection Population Locality 
Cardinalis phoeniceus This study CP Venezuela: Anzoátegui, Jose, 10° 04' N, 64° 55' W 
Cardinalis phoeniceus This study CP Venezuela: Anzoátegui, Jose, 10° 04' N, 64° 55' W 
Cardinalis phoeniceus This study CP Venezuela: Anzoátegui, Jose, 10° 04' N, 64° 55' W 
Cardinalis phoeniceus This study CP Venezuela: Anzoátegui, Jose, 10° 04' N, 64° 55' W 
Cardinalis phoeniceus This study CP Venezuela: Anzoátegui, Jose, 10° 04' N, 64° 55' W 
Cardinalis phoeniceus This study CP Venezuela: Anzoátegui, Jose, 10° 04' N, 64° 55' W 
Cardinalis phoeniceus This study CP Venezuela: Anzoátegui, Jose, 10° 04' N, 64° 55' W 
Cardinalis phoeniceus This study CP Venezuela: Anzoátegui, Nuevo Unare, 10° 04' N, 65° 12' W 
Cardinalis phoeniceus This study FL Venezuela: Falcón, Surroundings of La Negrita, 11° 19' N, 69° 38' W 
Cardinalis phoeniceus This study FL Venezuela: Falcón, Surroundings of La Negrita, 11° 19' N, 69° 38' W 
Cardinalis phoeniceus This study FL Venezuela: Falcón, Surroundings of La Negrita, 11° 19' N, 69° 39' W 
Cardinalis phoeniceus This study FL Venezuela: Falcón, Surroundings of La Negrita, 11° 19' N, 69° 39' W 
Cardinalis phoeniceus This study FL Venezuela: Falcón, Surroundings of La Negrita, 11° 17' N, 69° 36' W 
Cardinalis phoeniceus This study FL Venezuela: Falcón, Surroundings of La Negrita, 11° 17' N, 69° 36' W 
Cardinalis phoeniceus This study FL Venezuela: Falcón, Médanos de Coro N. P., 11° 26' N, 69° 40' W 
Cardinalis phoeniceus This study FL Venezuela: Falcón, Médanos de Coro N. P., 11° 26' N, 69° 40' W 
Cardinalis phoeniceus This study FL Venezuela: Falcón, Médanos de Coro N. P., 11° 26' N, 69° 40' W 
Cardinalis phoeniceus This study FL Venezuela: Falcón, 20 Km west of Coro, 11° 21' N, 69° 49' W 
Cardinalis phoeniceus This study FL Venezuela: Falcón, 20 Km west of Coro, 11° 21' N, 69° 49' W 
Cardinalis phoeniceus This study FL Venezuela: Falcón, 25 Km west of Coro, 11° 19' N, 69° 52' W 
Cardinalis phoeniceus This study FL Venezuela: Falcón, El Carrizal, 11° 23' N, 69° 33' W 
Cardinalis phoeniceus This study FL Venezuela: Falcón, El Carrizal, 11° 23' N, 69° 33' W 
Cardinalis phoeniceus This study FL Venezuela: Falcón, El Carrizal, 11° 23' N, 69° 33' W 
Cardinalis phoeniceus This study LL Venezuela: Lara, Sector Padre Diego, 10° 09' N, 69° 31' W 
Cardinalis phoeniceus This study LL Venezuela: Lara, Sector Padre Diego, 10° 09' N, 69° 31' W 
Cardinalis phoeniceus This study LL Venezuela: Lara, Sector Padre Diego, 10° 09' N, 69° 31' W 
Cardinalis phoeniceus This study LL Venezuela: Lara, Sector Padre Diego, 10° 09' N, 69° 31' W 
Cardinalis phoeniceus This study LL Venezuela: Lara, Sector Padre Diego, 10° 09' N, 69° 31' W 
Cardinalis phoeniceus This study LL Venezuela: Lara, Sector Padre Diego, 10° 09' N, 69° 31' W 
Cardinalis phoeniceus This study LL Venezuela: Lara, Sector Banco de Baragua, 10° 08' N, 69° 35' W 
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Appendix. Continued 

Species Collection Population Locality 
Cardinalis phoeniceus This study LL Venezuela: Lara, Sector Banco de Baragua, 10° 08' N, 69° 35' W 
Cardinalis phoeniceus This study LL Venezuela: Lara, Sector Tapa de Piedra, 10° 06' N, 69° 32' W 
Cardinalis phoeniceus This study LL Venezuela: Lara, Sector Tapa de Piedra, 10° 06' N, 69° 32' W 
Cardinalis phoeniceus This study LL Venezuela: Lara, Sector Tapa de Piedra, 10° 06' N, 69° 32' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, Murrión, 11° 00' N, 64° 12' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, Murrión, 11° 00' N, 64° 12' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, Murrión, 11° 00' N, 64° 12' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, Murrión, 11° 00' N, 64° 12' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, Murrión, 11° 00' N, 64° 12' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, Murrión, 11° 00' N, 64° 12' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, Murrión, 11° 00' N, 64° 12' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, Murrión, 11° 00' N, 64° 12' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, Murrión, 11° 00' N, 64° 12' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, Murrión, 11° 00' N, 64° 12' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, Chacaracual, 10° 57' N, 64° 17' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, Sector El Indio, 10° 58' N, 64° 09' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, Sector El Indio, 10° 58' N, 64° 09' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, Guacuco, 11° 05' N, 63° 58' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, Guacuco, 11° 05' N, 63° 58' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, Las Marvales, 10° 58' N, 64° 05' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, Las Marvales, 10° 58' N, 64° 05' W 
 

 



      

 

Adriana Rodríguez-Ferraro, 2008, Ph. D. Dissertation, p. 136

Appendix. Continued 

Species Collection Population Locality 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, Sector Comején, 11° 03' N, 64° 12' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, Sector Comején, 11° 03' N, 64° 12' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, Sector Comején, 11° 03' N, 64° 12' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, Sector Comején, 11° 03' N, 64° 12' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, Sector Comején, 11° 03' N, 64° 12' W 
Cardinalis phoeniceus This study MP Venezuela: Nueva Esparta, Sector Comején, 11° 03' N, 64° 12' W 
Cardinalis phoeniceus This study PP Venezuela: Falcón, 8 Km south of Adícora, 11° 49' N, 69° 50' W 
Cardinalis phoeniceus This study PP Venezuela: Falcón, 8 Km south of Adícora, 11° 49' N, 69° 50' W 
Cardinalis phoeniceus This study PP Venezuela: Falcón, 20 Km west of Pueblo Nuevo, 11° 58' N, 70° 01' W 
Cardinalis phoeniceus This study PP Venezuela: Falcón, 20 Km west of Pueblo Nuevo, 11° 58' N, 70° 01' W 
Cardinalis phoeniceus This study PP Venezuela: Falcón, 20 Km west of Pueblo Nuevo, 11° 58' N, 70° 01' W 
Cardinalis phoeniceus This study PP Venezuela: Falcón, 20 Km west of Pueblo Nuevo, 11° 58' N, 70° 01' W 
Cardinalis phoeniceus This study PP Venezuela: Falcón, 20 Km west of Pueblo Nuevo, 11° 58' N, 70° 01' W 
Cardinalis phoeniceus This study PP Venezuela: Falcón, 20 Km west of Pueblo Nuevo, 11° 58' N, 70° 01' W 
Cardinalis phoeniceus This study PP Venezuela: Falcón, Laguna Boca de Caño, 12° 01' N, 69° 51' W 
Cardinalis phoeniceus This study PP Venezuela: Falcón, Laguna Boca de Caño, 12° 01' N, 69° 51' W 
Cardinalis phoeniceus This study PP Venezuela: Falcón, Laguna Boca de Caño, 12° 01' N, 69° 51' W 
Cardinalis phoeniceus This study PP Venezuela: Falcón, Laguna Boca de Caño, 12° 01' N, 69° 51' W 
Cardinalis phoeniceus This study PP Venezuela: Falcón, Cerro Santa Ana, 11° 49' N, 69° 58' W 
Cardinalis phoeniceus This study PP Venezuela: Falcón, Moruy, 11° 42' N, 69° 56' W 
Leucippus fallax This study AP Venezuela: Sucre, Surroundings of Guayacán, 10° 40' N, 63° 47' W 
Leucippus fallax This study AP Venezuela: Sucre, Surroundings of Guayacán, 10° 40' N, 63° 47' W 
Leucippus fallax This study AP Venezuela: Sucre, Surroundings of Guayacán, 10° 40' N, 63° 47' W 
Leucippus fallax This study AP Venezuela: Sucre, Surroundings of Guayacán, 10° 40' N, 63° 47' W 
Leucippus fallax This study AP Venezuela: Sucre, Surroundings of Guayacán, 10° 40' N, 63° 47' W 
Leucippus fallax This study AP Venezuela: Sucre, Surroundings of Guayacán, 10° 39' N, 63° 47' W 
Leucippus fallax This study AP Venezuela: Sucre, Surroundings of Guayacán, 10° 39' N, 63° 47' W 
Leucippus fallax This study AP Venezuela: Sucre, Surroundings of Guayacán, 10° 39' N, 63° 47' W 
Leucippus fallax This study AP Venezuela: Sucre, Surroundings of Guayacán, 10° 39' N, 63° 47' W 
Leucippus fallax This study AP Venezuela: Sucre, Sector La Alegría, 10° 38' N, 63° 47' W 
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Appendix. Continued 

Species Collection Population Locality 
Leucippus fallax This study AP Venezuela: Sucre, Sector La Alegría, 10° 38' N, 63° 47' W 
Leucippus fallax This study AP Venezuela: Sucre, Sector La Alegría, 10° 38' N, 63° 47' W 
Leucippus fallax This study AP Venezuela: Sucre, Sector La Alegría, 10° 38' N, 63° 47' W 
Leucippus fallax This study AP Venezuela: Sucre, 3 Km south of Caimancito, 10° 36' N, 63° 55' W 
Leucippus fallax This study AP Venezuela: Sucre, 3 Km south of Caimancito, 10° 36' N, 63° 55' W 
Leucippus fallax This study AP Venezuela: Sucre, 3 Km south of Caimancito, 10° 36' N, 63° 55' W 
Leucippus fallax This study AP Venezuela: Sucre, 5 Km east of Araya, 10° 34' N, 64° 13' W 
Leucippus fallax This study AP Venezuela: Sucre, 5 Km east of Araya, 10° 34' N, 64° 13' W 
Leucippus fallax This study AP Venezuela: Sucre, Sector Guamachal, 10° 39' N, 63° 46' W 
Leucippus fallax This study CP Venezuela: Anzoátegui, Nuevo Unare, 10° 04' N, 65° 12' W 
Leucippus fallax This study CP Venezuela: Anzoátegui, Nuevo Unare, 10° 04' N, 65° 12' W 
Leucippus fallax This study CP Venezuela: Anzoátegui, Nuevo Unare, 10° 04' N, 65° 12' W 
Leucippus fallax This study CP Venezuela: Anzoátegui, Nuevo Unare, 10° 04' N, 65° 12' W 
Leucippus fallax This study CP Venezuela: Anzoátegui, 15 Km south of Clarines, 10° 01' N, 65° 11' W 
Leucippus fallax This study CP Venezuela: Anzoátegui, 15 Km south of Clarines, 10° 01' N, 65° 11' W 
Leucippus fallax This study CP Venezuela: Anzoátegui, Jose, 10° 04' N, 64° 55' W 
Leucippus fallax This study CP Venezuela: Anzoátegui, Jose, 10° 04' N, 64° 55' W 
Leucippus fallax This study CP Venezuela: Anzoátegui, Jose, 10° 04' N, 64° 55' W 
Leucippus fallax This study CP Venezuela: Anzoátegui, Jose, 10° 04' N, 64° 55' W 
Leucippus fallax This study CP Venezuela: Anzoátegui, Jose, 10° 04' N, 64° 55' W 
Leucippus fallax This study CP Venezuela: Anzoátegui, Jose, 10° 04' N, 64° 55' W 
Leucippus fallax This study CP Venezuela: Anzoátegui, Jose, 10° 04' N, 64° 55' W 
Leucippus fallax This study CP Venezuela: Anzoátegui, Jose, 10° 04' N, 64° 55' W 
Leucippus fallax This study CP Venezuela: Anzoátegui, Jose, 10° 04' N, 64° 55' W 
Leucippus fallax This study FL Venezuela: Falcón, Médanos de Coro N. P., 11° 26' N, 69° 40' W 
Leucippus fallax This study FL Venezuela: Falcón, Médanos de Coro N. P., 11° 26' N, 69° 40' W 
Leucippus fallax This study FL Venezuela: Falcón, Surroundings of La Negrita, 11° 17' N, 69° 36' W 
Leucippus fallax This study FL Venezuela: Falcón, Surroundings of La Negrita, 11° 17' N, 69° 36' W 
Leucippus fallax This study FL Venezuela: Falcón, Surroundings of La Negrita, 11° 17' N, 69° 36' W 
Leucippus fallax This study FL Venezuela: Falcón, Surroundings of La Negrita, 11° 17' N, 69° 36' W 
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Appendix. Continued 

Species Collection Population Locality 
Leucippus fallax This study FL Venezuela: Falcón, Surroundings of La Negrita, 11° 17' N, 69° 36' W 
Leucippus fallax This study FL Venezuela: Falcón, Surroundings of La Negrita, 11° 17' N, 69° 36' W 
Leucippus fallax This study FL Venezuela: Falcón, 20 Km west of Coro, 11° 21' N, 69° 49' W 
Leucippus fallax This study FL Venezuela: Falcón, 20 Km west of Coro, 11° 21' N, 69° 49' W 
Leucippus fallax This study FL Venezuela: Falcón, 20 Km west of Coro, 11° 21' N, 69° 49' W 
Leucippus fallax This study FL Venezuela: Falcón, 20 Km west of Coro, 11° 21' N, 69° 49' W 
Leucippus fallax This study FL Venezuela: Falcón, Sector La Zábila west of Coro, 11° 19' N, 69° 52' W 
Leucippus fallax This study LL Venezuela: Lara, Sector Padre Diego, 10° 09' N, 69° 31' W 
Leucippus fallax This study LL Venezuela: Lara, Sector Padre Diego, 10° 09' N, 69° 31' W 
Leucippus fallax This study LL Venezuela: Lara, Sector Padre Diego, 10° 09' N, 69° 31' W 
Leucippus fallax This study LL Venezuela: Lara, Sector Padre Diego, 10° 09' N, 69° 31' W 
Leucippus fallax This study LL Venezuela: Lara, Sector Padre Diego, 10° 09' N, 69° 31' W 
Leucippus fallax This study LL Venezuela: Lara, Sector Padre Diego, 10° 09' N, 69° 31' W 
Leucippus fallax This study LL Venezuela: Lara, Sector Banco de Baragua, 10° 08' N, 69° 35' W 
Leucippus fallax This study LL Venezuela: Lara, Sector Banco de Baragua, 10° 08' N, 69° 35' W 
Leucippus fallax This study LL Venezuela: Lara, Sector Banco de Baragua, 10° 08' N, 69° 35' W 
Leucippus fallax This study LL Venezuela: Lara, Sector Banco de Baragua, 10° 08' N, 69° 35' W 
Leucippus fallax This study LL Venezuela: Lara, Sector Banco de Baragua, 10° 08' N, 69° 35' W 
Leucippus fallax This study LL Venezuela: Lara, Sector Banco de Baragua, 10° 08' N, 69° 35' W 
Leucippus fallax This study LL Venezuela: Lara, Sector Banco de Baragua, 10° 08' N, 69° 35' W 
Leucippus fallax This study LL Venezuela: Lara, Sector Banco de Baragua, 10° 08' N, 69° 35' W 
Leucippus fallax This study LL Venezuela: Lara, Sector Banco de Baragua, 10° 08' N, 69° 35' W 
Leucippus fallax This study LL Venezuela: Lara, Sector Tapa de Piedra, 10° 06' N, 69° 32' W 
Leucippus fallax This study LL Venezuela: Lara, Sector Tapa de Piedra, 10° 06' N, 69° 32' W 
Leucippus fallax This study LL Venezuela: Lara, Sector Tapa de Piedra, 10° 06' N, 69° 32' W 
Leucippus fallax This study LL Venezuela: Lara, Sector Tapa de Piedra, 10° 06' N, 69° 32' W 
Leucippus fallax This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Leucippus fallax This study MP Venezuela: Nueva Esparta, La Chica Creek, 11° 06' N, 64° 25' W 
Leucippus fallax This study MP Venezuela: Nueva Esparta, Sector Comején, 11° 03' N, 64° 12' W 
Leucippus fallax This study MP Venezuela: Nueva Esparta, Sector Comején, 11° 03' N, 64° 12' W 
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Appendix. Continued 

Species Collection Population Locality 
Leucippus fallax This study MP Venezuela: Nueva Esparta, Sector Comején, 11° 03' N, 64° 12' W 
Leucippus fallax This study MP Venezuela: Nueva Esparta, Murrión, 11° 00' N, 64° 12' W 
Leucippus fallax This study MP Venezuela: Nueva Esparta, Murrión, 11° 00' N, 64° 12' W 
Leucippus fallax This study MP Venezuela: Nueva Esparta, Murrión, 11° 00' N, 64° 12' W 
Leucippus fallax This study MP Venezuela: Nueva Esparta, Murrión, 11° 00' N, 64° 12' W 
Leucippus fallax This study MP Venezuela: Nueva Esparta, Murrión, 11° 00' N, 64° 12' W 
Leucippus fallax This study MP Venezuela: Nueva Esparta, Murrión, 11° 00' N, 64° 12' W 
Leucippus fallax This study MP Venezuela: Nueva Esparta, Murrión, 11° 00' N, 64° 12' W 
Leucippus fallax This study MP Venezuela: Nueva Esparta, Murrión, 11° 00' N, 64° 12' W 
Leucippus fallax This study MP Venezuela: Nueva Esparta, Chacaracual, 10° 57' N, 64° 17' W 
Leucippus fallax This study MP Venezuela: Nueva Esparta, Chacaracual, 10° 57' N, 64° 17' W 
Leucippus fallax This study MP Venezuela: Nueva Esparta, Chacaracual, 10° 57' N, 64° 17' W 
Leucippus fallax This study MP Venezuela: Nueva Esparta, Chacaracual, 10° 57' N, 64° 17' W 
Leucippus fallax This study MP Venezuela: Nueva Esparta, Chacaracual, 10° 57' N, 64° 17' W 
Leucippus fallax This study MP Venezuela: Nueva Esparta, Chacaracual, 10° 57' N, 64° 17' W 
Leucippus fallax This study MP Venezuela: Nueva Esparta, Chacaracual, 10° 57' N, 64° 17' W 
Leucippus fallax This study MP Venezuela: Nueva Esparta, Chacaracual, 10° 57' N, 64° 17' W 
Leucippus fallax This study MP Venezuela: Nueva Esparta, Guacuco, 11° 05' N, 63° 58' W 
Leucippus fallax This study PP Venezuela: Falcón, 8 Km south of Adícora, 11° 49' N, 69° 50' W 
Leucippus fallax This study PP Venezuela: Falcón, 8 Km south of Adícora, 11° 49' N, 69° 50' W 
Leucippus fallax This study PP Venezuela: Falcón, 8 Km south of Adícora, 11° 49' N, 69° 50' W 
Leucippus fallax This study PP Venezuela: Falcón, 20 Km west of Pueblo Nuevo, 11° 58' N, 70° 01' W 
Leucippus fallax This study PP Venezuela: Falcón, 20 Km west of Pueblo Nuevo, 11° 58' N, 70° 01' W 
Leucippus fallax This study PP Venezuela: Falcón, 20 Km west of Pueblo Nuevo, 11° 58' N, 70° 01' W 
Leucippus fallax This study PP Venezuela: Falcón, 20 Km west of Pueblo Nuevo, 11° 58' N, 70° 01' W 
Leucippus fallax This study PP Venezuela: Falcón, 20 Km west of Pueblo Nuevo, 11° 58' N, 70° 01' W 
Leucippus fallax This study PP Venezuela: Falcón, 20 Km west of Pueblo Nuevo, 11° 58' N, 70° 01' W 
Leucippus fallax This study PP Venezuela: Falcón, Laguna Boca de Caño, 12° 01' N, 69° 51' W 
Leucippus fallax This study PP Venezuela: Falcón, Laguna Boca de Caño, 12° 01' N, 69° 51' W 
Leucippus fallax This study PP Venezuela: Falcón, Laguna Boca de Caño, 12° 01' N, 69° 51' W 
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Appendix. Continued 

Species Collection Population Locality 
Leucippus fallax This study PP Venezuela: Falcón, Laguna Boca de Caño, 12° 01' N, 69° 51' W 
Leucippus fallax This study PP Venezuela: Falcón, Laguna Boca de Caño, 12° 01' N, 69° 51' W 
Leucippus fallax This study PP Venezuela: Falcón, Laguna Boca de Caño, 12° 01' N, 69° 51' W 
Leucippus fallax This study PP Venezuela: Falcón, Cerro Santa Ana, 11° 49' N, 69° 58' W 
Leucippus fallax This study PP Venezuela: Falcón, Cerro Santa Ana, 11° 49' N, 69° 58' W 
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