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General Abstract 
 

Grassland bird populations are declining in many regions as a consequence of habitat 

modification and these declines have generated substantial effort to determine how 

grassland species cope with changes in habitat features, especially in agricultural 

landscapes. Grassland bird research has been concentrated in North America and Europe 

where changes in bird community composition and widespread species declines have 

been documented. In the Neotropical Region, however, many aspects of grassland bird 

ecology remain virtually unexplored. Avian communities currently associated with 

habitats that have experienced different land-use practices have not been fully 

characterized. The objective of this study was to examine the effects of habitat 

modification on the distribution, abundance, and reproductive success of grassland birds 

in the Northern Campos of Uruguay. The study focused on birds that inhabit four 

grassland habitats which differed in terms of agricultural management in the Northern 

Campos of Uruguay. Bird assemblages in croplands, planted pastures, and two natural 

grasslands under different grazing regimes were studied. First, distance sampling was 

used to characterize bird diversity patterns and population densities along the agricultural 

gradient. Second, nine vegetation structure variables were quantified and the response of 

birds species to these variables was assessed with multivariate analyses. Finally, 

systematic nest searching and monitoring activities were conducted during two breeding 

seasons and this information was used to estimate nest success patterns of both common 

and globally threatened species.  

Overall, a total of 50 species were recorded; cultivated and natural grasslands were 

dominated by grassland facultative and obligate species, respectively. Some threatened 
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species (Anthus nattereri, Sturnella defilippi) were largely restricted to natural grasslands. 

In terms of vegetation structure, grass cover and vegetation height were the two variables 

to which birds responded most strongly. With respect to nest survival, models that 

included temporal trends (i.e., seasonal effects) and habitat type effects were the ones 

best supported by the data. Nest survival of grassland birds was relatively low, but within 

the range documented in other grassland ecosystems. Contrary to expectation, nest 

survival of threatened taxa did not differ from that of common congenerics.  

This study is the first characterization of grassland bird communities inhabiting an 

agricultural landscape in the Northern Campos of Uruguay. Using modern sampling 

techniques and inferential procedures, information on bird diversity patterns and species-

habitat relationships was combined with reproductive success data to provide a clear 

understanding of the effects of habitat alteration on grassland bird populations. The 

results from this study provide a useful baseline for the development of guidelines 

targeting bird conservation and land management in the grasslands of the Pampas region. 
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CHAPTER 1 

AVIAN ASSEMBLAGES IN ALTERED AND NATURAL 

GRASSLANDS IN THE NORTHERN CAMPOS OF URUGUAY 

 

INTRODUCTION 

Grassland bird ecology and conservation have received substantial attention 

during the last decade. Numerous studies, mostly conducted in Europe and North 

America, have documented changes in the composition of grassland bird communities, as 

well as substantial declines of particular species highly dependent on grassland habitats 

(Zimmerman 1988, Knopf 1994, Tucker and Heath 1994, Patterson and Best 1996, 

Vickery et al. 1999, Murphy 2003). Declines of grassland birds worldwide have been 

recognized as a “prominent wildlife conservation crisis of the 21st century” (Brennan and 

Kuvlesky 2005). Habitat modification, particularly related to agricultural expansion and 

intensification, has been identified as one of the main causes of such declines (Askins et 

al. 2007). In the Neotropics, population declines of grassland birds have also been 

reported, especially in lowland grasslands (Tubaro and Gabelli 1999, Vickery et al. 1999 

and references therein), but specific studies on the effects of alternative land-use practices 

on grassland bird assemblages are still scarce. In fact, there has been a call to extend the 

current active research effort targeting grassland birds in North America to South 

America, not only to elucidate the wintering ecology of Nearctic migrants, but also to 

establish the conservation needs of resident endemic species (Vickery and Herkert 2001).    

In the Neotropical region, the most important expanse of grasslands is located in south-

eastern South America and is known as the Río de la Plata grasslands (Soriano 1992). 
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This region (ca. 700,000 km2), which is included within the Pampas biome (sensu Stotz 

et al. 1996), is dominated by temperate sub-humid grasslands that extend from 28 to 38° 

S and cover the plains of east-central Argentina, Uruguay and southern Brazil (Soriano 

1991). The original vegetation was a tall-grass steppe, intermingled with prairies, 

marshes, and other edaphic communities (Bucher and Nores 1988). These grasslands 

have, however, been heavily modified by long-term human use (Bucher and Nores 1988). 

Cattle were introduced to the Pampas in the 16th century (Vickery et al. 1999) and the 

development of sheep farming in the late 1800s intensified the use of these grasslands, 

while the building of fences introduced further alterations (Soriano 1991). Agricultural 

expansion after 1890 has had the most profound effects on this ecosystem. Apart from 

direct habitat loss, conversion to cropland involved other forms of modification from 

planting of exotic grasses, succession to shrublands and increased use of agrochemicals 

and technology (Vickery et al. 1999). In addition, agricultural operations in crop fields 

are known to negatively affect bird reproduction as a consequence of nest trampling 

(Wilson et al. 2005 and references therein). Today, in some mesic regions of the Pampas, 

more than 50% of the land is devoted to agriculture (Vickery et al. 1999).  

Pre-settlement information on grassland bird assemblages in the Pampas is 

limited, but evidence exists that the loss of pristine habitats in the region, as a 

consequence of expansion of agriculture and livestock grazing, has affected bird 

populations, producing marked decreases in species abundances and local extinctions 

(e.g., Bucher and Nores 1988, Soriano 1991, Collar et al. 1992, Tubaro and Gabelli 

1999). Recent studies in the Flooded Pampa of eastern Argentina have shown that 

changes in the structure of grassland habitats due to the effects of fire or grazing result in 
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the replacement of grassland specialists, highly dependent on tall grasslands, by others 

that prefer short grasslands (Comparatore et al. 1996, Isacch and Martínez 2001). These 

patterns are similar to those reported in areas of North America where declining 

grassland endemics have been replaced by more widespread counterparts (Knopf 1994). 

Studies in the Argentinean Pampas have produced differing results with respect to species 

richness and abundance. In the Flooded Pampa, species richness and abundance were 

positively related to the amount of tallgrass cover (Isacch and Martínez 2001), whereas in 

the West Pampa, grasslands under higher grazing pressure supported more species and 

individuals than patches of more pristine habitats (Isacch et al. 2003).   

In spite of these recent efforts, patterns of avian diversity currently associated 

with different land-use practices in the Pampas have not been fully characterized and 

more studies are needed to further assess the role of landscape alteration in shaping bird 

assemblages in South American grasslands. This is particularly important in Uruguay, 

located within the “campos” subregion of the Pampas, where agricultural lands are the 

most extensive wildlife habitat and, thus, represent key habitats for biodiversity; 

croplands, pastures, and rangelands greatly exceed those areas set aside for wildlife 

reserves (OEA 1992, World Resource Institute 2007).  

Here, I present results of the first study to examine the effects of land-use 

practices on grassland bird communities in the Northern Campos of Uruguay.  A major 

goal of this study was to determine the relative value for grassland bird conservation of 

areas that are under different management schemes. First, I characterized the distribution 

and seasonality of birds associated with croplands, pasturelands, and two types of native 

grasslands. Second, I compared species richness and abundance of bird communities 



    

 

Adrián B. Azpiroz, 2008, Ph.D. Dissertation, p. 4

found in each of these four habitat types. Finally, I examined the findings of this study in 

the light of data from other subregions of the Pampas and elsewhere. Based on theoretical 

grounds, and on the results of previous grassland bird research (mostly developed outside 

the Pampas), I expected natural grasslands to support more species and higher densities 

of grassland specialists than would cultivated lands, as well as more threatened taxa. 

Factors, such as habitat loss, that reduce niche availability should represent a particular 

threat to species that are ecologically specialized (Owens and Bennett 2000). If the 

degree of habitat specialization is a valid surrogate for ecological specialization, the 

proportion of grassland specialists (i.e., species that are highly dependant on grassland 

habitats) should be inversely related to the degree of habitat loss. Thus, obligate grassland 

species should be less well represented in terms of species numbers and densities in 

habitats where alteration has been more drastic (i.e., cultivated grasslands). 

 

METHODS 

STUDY AREA  

This study was conducted in the Northern Campos subregion of the Río de la 

Plata grasslands (Soriano 1991) within the Pampas biome (sensu Stotz et al. 1996; Fig. 

1). This subregion extends through most of Rio Grande do Sul, Brazil, southeastern 

Misiones and eastern Corrientes provinces in Argentina, and northern Uruguay (Bilenca 

and Miñarro 2004).  Within the Northern Campos, the study area was located in southern 

Salto and northwestern Paysandú departments (31°19’ to 31°44’S and 56° 42’ to 57° 

56’W) and it was composed of rolling topography in which low mesas and rocky 

outcrops are interspersed. The area has mesothermic and humid features (Soriano 1992), 
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with a mean annual temperature of 19°C and mean annual rainfall of 1300 mm (Lezama 

et al. 2006). Cattle ranching is the major activity, mainly on natural pastures, but also on 

planted pastures, the latter found especially in the west. Cropland also is widespread in 

the west, especially fields of wheat and barley. The eastern part of the study region is 

characterized by large expanses of natural grasslands which have never been plowed and 

which are used for open-range livestock grazing. The study was conducted on ranches 

and farms in the surroundings of Chapicuy, in Paysandú department, and San Antonio 

and Cerros de Vera in Salto department (Fig. 1). Large patches of each habitat type (500 

to 1200 ha) were selected within each of these areas.  

HABITAT DESCRIPTIONS AND SPECIES DEFINITIONS AND CATEGORIES 

The study focused on birds that inhabit four grassland habitats. A grassland 

habitat is defined as “any extensive area that is dominated by more than 50% grass 

(Poaceae) or sedge (Cyperaceae) cover and that generally has few scattered shrubs (< 4 m 

high) and trees” (Vickery et al. 1999). In northern Uruguay, as in other parts of the 

Pampas, native vertebrate herbivores, especially Pampas Deer (Ozotoceros bezoarticus), 

have been almost completely replaced by domestic livestock; Rhea americana is still 

relatively common throughout the region. Crops and planted pastures have replaced 

native vegetation in some areas and are considered here as grassland-like habitats. Thus, 

grasslands were classified into habitat categories on the basis of different cultivation and 

grazing regimes. A description of each habitat type follows (Fig. 2): 

(1) Crop habitat (Crop) was represented by barley fields which were integrated into a 

livestock grazing system where the crop is rotated with planted pastures that are grazed 

after the crop is harvested. In fact, this habitat type consisted of three different 
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management phases: 1) barley fields and stubble, 2) sunflower residual crop fields and 

stubble, and 3) planted pastures. Barley and pastures were planted in austral winter 2004. 

By the time bird censuses were initiated (September 2004), barley fields were well 

developed (> 1m height) and planted pastures were starting to grow beneath the crop. 

Barley was harvested in late October 2004. From December 2004 to March 2005, a 

residual crop of sunflower grew on these fields. This second crop developed from seeds 

that fell to the ground during the sunflower harvest in early 2004 and it was harvested in 

late March 2005; afterwards, the fields were used for cattle grazing on the planted 

pastures until the end of the study (November 2005). The management of this cropland is 

typical of areas in this part of the country. 

(2) Planted pastures habitat (Pasture) consisted of grasslands that have been seeded to 

exotic grasses. These pastures were part of dairy farms and were used for cattle grazing.   

(3) Sheep habitat (Sheep) was represented by fields of native grasslands that are grazed 

by livestock. On these fields cattle and sheep forage on native grasses and forbs. Due to 

the effects of grazing by sheep, vegetation diversity is lower than that in the following 

habitat type (Sturm 2001). 

(4) Deer habitat (Deer) consisted of fields of native grasslands grazed by cattle and 

Pampas Deer. The latter are thought to be indicative of distinct grassland habitats (Sturm 

2001). Due to the lack of sheep grazing (only about 20-30 sheep were maintained on 

these fields to supply the ranch), this habitat supports, in general, a more complex and 

higher vegetation structure than Sheep (Sturm 2001).  

Cultivated habitats (Crop and Pasture) and natural grasslands (Sheep and Deer) 

differ with respect to two important management activities: use of agrochemicals and 
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plowing. These activities are absent from natural grasslands. Additionally, the former 

habitat types were located within a matrix of croplands and planted pastures. In contrast, 

Sheep and Deer sites were included in a matrix under similar activities to those found in 

Sheep. However, because the study was conducted on large patches of each habitat type, 

any confounding effects related to matrix composition were minimized.  

Vickery et al. (1999) defined grassland birds on an ecological basis: “any species 

that has become adapted to and reliant on some variety of grassland habitat for part or all 

of its life cycle…”. They also identified two groups of grassland birds, obligate and 

facultative species. The former are those “exclusively adapted to and entirely dependent 

on grassland habitats and make little or no use of other habitat types”, while the latter 

“use grassland as part of a wider array of habitats… [and thus] are not entirely dependant 

on grasslands but use them commonly and regularly”. Here I have followed Vickery et 

al.’s (1999) definitions of grassland birds with minor modifications. First, a series of 

species not included in Vickery et al.’s scheme were classified here as grassland 

facultative birds. This applies to Pluvialis dominica and six species of Hirundinidae. 

Additionally, three of Vickery et al.’s facultative species were classified as obligate here: 

Rhea americana, Podager nacunda, and Neoxolmis rufiventris. I believe these 

adjustments better reflect these species’ dependence on grassland habitats in Uruguay 

(Azpiroz 2001). Species were classified into four categories reflecting migration patterns: 

residents (present year-round), summer residents (breeders that move northward during 

most of austral fall and winter, April-September), Nearctic migrants (non-breeders that 

are present in Uruguay during the austral spring and summer, September-March) and 

winter migrants (non-breeders that are present in Uruguay during the austral fall and 
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winter, April-September). Birds were also classified according to five feeding guilds 

which reflect the main component of their diets: carnivores, granivores, herbivores, 

insectivores, and omnivores. Information on species migratory status and diet in the 

Pampas were taken from the literature (e.g., Gore and Gepp 1978, Sick 1985, Canevari et 

al. 1991, Azpiroz 2001). 

GRASSLAND BIRD SURVEYS 

I conducted bird counts on eight 500-m variable-width transects on each of four 

habitat types every two months from September 2004 to November 2005. Thus, each 

transect was sampled eight times during the whole sampling period. Transects were 

located at least 400 m apart, far from fencerows (> 400 m), and avoided the intersection 

of other non-grassland habitats (i.e. gallery forest). Transects were selected randomly 

after considering these constraints. All bird surveys were conducted by the author who 

has extensive experience with the birds of the region. I walked transects at a pace of 

approximately 1km/hour from 0 to 3.5 hours after sunrise and recorded all birds seen or 

heard on each side with the exception of individuals passing by and making no use of the 

surveyed area. Swallows feeding on the wing within the surveyed plots were, however, 

recorded. Coverage of transects and the direction walked on each were rotated 

systematically. Distances and angles from transects to individuals were estimated with a 

rangefinder and a compass, to allow calculation of perpendicular distances (see Buckland 

et al. 2001). These data were used to estimate variables (species richness, composition 

and density) to describe the avian community structure on each study site.  
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DATA ANALYSIS 

Species richness - I calculated bird species richness in each habitat type as the 

total number of species encountered in all transects in each habitat across all sampling 

periods. I also calculated an estimate of species richness using observed species 

abundance distribution data and program SPECRICH (Hines 1996) which estimates total 

number of species using methods described in Burnham and Overton (1979). To 

determine differences in mean number of species and individuals per transect among 

habitats, I performed one-way analyses of variance (ANOVA); and I used a repeated-

measures analyses of variance (rmANOVA) to test for seasonal differences in species 

richness and number of individuals among habitats. Data were tested for normality and 

when necessary standard transformations were applied. All analyses of variance were run 

in SPSS, version 15.0 (SPSS 2006). I compared the rates of species accumulation across 

habitats through rarefaction analyses based on Monte Carlo simulations run 1000 times 

using EcoSim 7 (Gotelli and Entsminger 2006). The analyses were based on a sample of 

1038 individuals, which was the lowest number of birds recorded for any habitat (Deer). 

Community composition - I used species presence/absence data over all sampling 

periods in each habitat to calculate Bray-Curtis similarity coefficients among habitat 

types. Data from the similarity matrix were also used to test for differences in species 

composition among habitats through an analysis of similarity (ANOSIM; described in 

Clarke and Warwick 2001). ANOSIM determines whether samples (i.e., transects) within 

each habitat type are more similar to each other than samples taken at random from the 

whole sample pool (i.e., 32 transects). Thus, ANOSIM compares the level of similarity 

among transects of a given habitat to that among transects of all habitats and determines 
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if the former is greater than expected by chance. Results from ANOSIM were tested for 

significance with a Monte Carlo randomization procedure. Afterwards, I used nonmetric 

multidimensional scaling (MDS) to graphically compare species composition among 

transects and habitats. ANOSIM and MDS were done with PRIMER version 5.2.9 

(Clarke and Gorley 2002) and PC-ORD version 4 (McCune and Mefford 1999), 

respectively. Across-habitat differences in the proportions of species included in 

categories of grassland habitat specialization, migration and feeding guild were tested 

with G-tests. In order to identify characteristic species of each habitat type, I used an 

indicator-species analysis (Dufrêne and Legendre 1997). This analysis, which was 

conducted in PC-ORD version 4 (McCune and Mefford 1999), calculates an indicator 

value for species based on their relative frequency and relative abundance in all treatment 

categories (i.e., habitat types). Indicator values can range from 0 (no indication) to 100 

(perfect indication). A species’ perfect indication for a given habitat means that it was 

recorded in all samples (i.e., transects) within that habitat and was not observed in any of 

the samples of other habitats. Indicator values were tested for significance with a Monte 

Carlo randomization procedure which compares the observed indicator values to 

alternative values calculated from the same data and randomly assigned to habitat type. 

Only species with indicator values that were significant (P ≤ 0.01) and > 25% are 

reported. 

Population densities - I used program DISTANCE version 5.0 (Thomas et al. 

2005) to estimate densities of grassland birds from census data obtained on transects. I 

constructed detection functions for all species with at least 60 observations. For each 

species, data were grouped across habitats except when vegetation structure was thought 
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to influence detection probability. For example, census data obtained in fields of barley 

and sunflower were used separately from data from other habitats where vegetation was 

significantly lower (Chapter 2). Additionally, in a few cases species with similar 

morphological and behavioral traits were grouped together in order to increase sample 

sizes to allow for detection function construction (see Table 4 for details). The probability 

of detecting each species as a function of perpendicular distance from the transects was 

determined by using the robust models suggested by Buckland et al. (2001): uniform key 

function with cosine and simple polynomial expansion series, the half normal key 

function with cosine and hermite polynomial expansion series, and the hazard rate key 

function with cosine and simple polynomial expansion series. I evaluated each of these 

models considering the complete data set (i.e., all observations) or subsets with 5 and 

10% truncation of detections at largest distances to reduce errors incurred by outliers, as 

recommended by Buckland et al. (2001). Model suitability was evaluated through 

Akaike’s Information Criterion (AIC). Density estimates are presented with standard 

errors and 95% confidence intervals; estimates were considered significantly different for 

values with non-overlapping intervals.  

 

RESULTS 

SPECIES RICHNESS 

Throughout the whole 14-month sampling period, 4968 individuals of 50 

grassland bird species were recorded on all transects (Appendix). Total observed species 

richness varied from 24 on Deer to 34 on Sheep (Table 1, Fig. 3). Species richness values 

estimated with SPECRICH ranged from 26 ± 2.0 for Deer to 38 ± 2.8 for Sheep (Table 
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1). The lowest number of individuals (1038) was recorded in Deer while the highest 

(1555) was found in Crop. Species richness estimates corrected through rarefaction 

analysis resulted in similar patterns (Table 1).  

 Species richness in transects in Sheep and Crop showed the largest variation (10 

to 21 and 11 to 20 species, respectively). Transects in Crop also showed the largest 

variation in numbers of individuals (95 to 464). In contrast, transects in Deer showed the 

least variation, both in terms of species (12 to 16) and individuals (104 to 144). However, 

largely because of this variation, mean number of species (one-way ANOVA, F3,28 = 

0.81, P = 0.50) and individuals (one-way ANOVA, F3,28 = 0.42, P = 0.74) per transect for 

the total sampling period did not differ significantly across habitats.  

The mean number of species per habitat varied significantly throughout the 

sampling period (Fig. 4A), and responded to the effects of time (rmANOVA, F7,196 = 

7.46, P < 0.001), habitat (rmANOVA, F3,28 = 10.66, P < 0.001), and time x habitat 

interaction (rmANOVA, F21,196 = 2.99, P < 0.001). Mean number of individuals per 

habitat (Fig. 4B), varied as an effect of time (rmANOVA, F7,196 = 2.09, P = 0.045) and 

time x habitat interaction (rmANOVA, F21,196 = 2.09, P = 0.005); in this case, the effect 

of habitat was not significant (rmANOVA, F3,28 = 1.12, P = 0.359). During May 2005, a 

few large flocks (i.e., ≥ 38 individuals, the largest flock size recorded during the whole 

sampling period) of Zenaida auriculata and Molothrus bonariensis were observed in 

Crop (Fig. 4B). When these flocks were excluded from the analysis, the effect of time 

(rmANOVA, F7,196 = 1.75, P = 0.099) was not significant and the effect of time x habitat 

interaction (rmANOVA, F21,196 = 1.58, P = 0.058) was only marginally so.  

SPECIES COMPOSITION  
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The 50 species recorded during the study belong to 18 families and include 23 

obligate and 27 facultative grassland birds, 14 migrants, and seven globally threatened or 

near-threatened taxa. In terms of species composition, Crop and Pasture were the most 

similar habitats, whereas Crop and Deer were the most dissimilar (Table 2). The analysis 

of similarity indicated that overall differences in species composition among habitats 

were significant (Global R = 0.79, P = 0.01). Additionally, the MDS graphical 

representation suggests there are important compositional differences between cultivated 

and natural grassland habitats (Fig. 5).  

The indicator species analysis identified 11 species with significant indicator 

values; four were associated with Crop, three with Sheep, and four with Deer habitat 

(Table 3). No indicator species were detected for Pasture. Except for Embernagra 

platensis, Crop indicator species were all facultative grassland birds. Conversely, all Deer 

indicator species were obligate grassland birds. It is noteworthy that all three pipit species 

showed indicator signals (Anthus furcatus for Sheep and A. hellmayri and A. nattereri for 

Deer).  

The mean number of habitat types used per species was 2.4 ± 0.2. A total of 11 

species were recorded in all four habitats and 14 were seen in only a single habitat 

(Appendix). Species found in all habitats form a diverse group, including two grassland 

shorebirds, two swallows, two seedeaters, and two blackbirds, among others. Among the 

group of 14 species found on single habitats, most were observed on few occasions. Two 

exceptions were Geositta cunicularia and Heteroxolmis dominicana, both of which were 

recorded repeatedly throughout the sampling period in Sheep and Crop respectively, but 

while the former was observed on most transects, most of the latter were found on a 
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single transect. Crop was characterized by several distinct management phases (i.e., 

barley fields and stubble, sunflower fields and stubble, and pasture fields), each 

associated with particular vegetation structures. Although 10 species of those found in 

Crop were recorded during all three different phases, 12 were only observed during 

particular phases (Appendix).  

Bird species differed in terms of habitat specialization, migration status, and diet 

(Appendix). The total 50-species pool included 23 obligate and 27 facultative grassland 

species (sensu Vickery et al. 1999), respectively. Crop harbored the highest proportion of 

facultative species and the lowest of obligate species; opposite patterns were found in 

Deer (Fig. 6A). Bird assemblages were dominated by resident species which represented 

between 71 to 85% of all species in the four habitat types (Fig. 6B). Among migrants, 

only summer resident species (present mainly from September to March) were well 

represented, accounting for 12 to 14% of all species found on each habitat. In terms of 

feeding guilds, insectivores were the best represented in all habitats, accounting for 42 to 

66% of species recorded (Fig. 6C). Proportion of granivores was highest in Crop (30%) 

and lowest in Deer (8%). Despite these trends, overall proportions of obligate/facultative 

species (G = 3.20, df = 3, 0.50 > P > 0.25) and of species in different migratory (G = 

6.76, df = 9, 0.75 > P > 0.50) and feeding guild (G = 9.23, df = 12, 0.75 > P > 0.50) 

categories did not differ significantly among habitats. 

Conservation-concern species were recorded in all habitat types. Rhea americana 

was the only one found in all four habitats; Anthus nattereri and Sturnella defilippi were 

recorded in both Sheep and Deer, whereas Sporophila ruficollis was found in Crop and 
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Pasture. Tryngites subruficollis, Polystictus pectoralis and Heteroxolmis dominicana 

were recorded only in Sheep, Pasture and Crop, respectively.  

POPULATION DENSITIES 

Patterns of species densities differed among habitat types. Of the total species 

pool, 15 had enough observations (or could be combined with other frequently recorded 

species of similar characteristics) to built detection functions for density estimation 

(Tables 4 and 5). Of these, five species showed higher densities in Sheep, four species in 

Crop, and three species in Deer and Pasture, respectively (Table 5). Unlike most species, 

density estimates of the Tachycineta leucorrhoa and Progne tapera were similar for all 

four habitats (Table 5).  

Species with the highest densities included Sturnella superciliaris and Zenaida 

auriculata in Crop, Nothura maculosa and Sturnella superciliaris in Pasture, and Anthus 

furcatus and Nothura maculosa in both Sheep and Deer. Among the 10 species with the 

highest densities for each habitat (Table 6), Nothura maculosa and Sicalis luteola were 

the only ones shared by all. Additionally, Vanellus chilensis, Tachycineta leucorrhoa, 

and Anthus furcatus were included in the top ranks of all habitats except Crop. Other 

common species (within the five most abundant for each habitat) were shared by Crop 

and Pasture (Zenaida auriculata, Sturnella superciliaris), and by Pasture, Sheep and Deer 

(Vanellus chilensis, Anthus furcatus). In terms of individuals, the five most abundant 

birds accounted for 67.6% of all birds recorded in Crop, 78% in Pasture, 62.5% in Sheep 

and 73.0% in Deer (Appendix). 

 

DISCUSSION 
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Contrary to expectations, natural grasslands did not support more grassland 

obligate species than did cultivated grasslands, although all but one of the species 

restricted to natural grasslands were grassland obligates. The hypothesis that grassland 

specialists should attain higher densities in less modified habitats was, however, 

supported by the fact that, for those specialist grassland birds for which density estimates 

could be calculated, seven out of 11 were more abundant in natural grasslands. The value 

of natural grasslands for grassland specialists is further highlighted by the fact that most 

generalist indicator species were tied to Crop whereas most specialist indicator species 

were associated with either Sheep or Deer.  

SPECIES RICHNESS 

Although mean total number of species and individuals recorded per transect for 

the total sampling period did not differ significantly among habitats, fewer species were 

found in Deer than in the other habitat types. The highest number of species was recorded 

on Sheep, which is also a natural grassland but which has a lower vegetation structure 

than Deer (Sturm 2001, Chapter 2). A similar pattern in terms of the relationship between 

pristine conditions and species richness has been documented in the West Pampa, where 

ungrazed natural grasslands supported fewer species than did those under grazing 

regimes (Isacch et al. 2003). In this case, higher vegetation structural heterogeneity 

promoted by grazing activity was hypothesized to be responsible for differences in 

species richness (Isacch et al. 2003). In contrast, in his study of five North American 

grassland habitats, Wiens (1974) found it especially intriguing that habitats with higher 

structural development did not support more species than those with less. 
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Undoubtedly, the relatively high number of species found in Crop is explained, at 

least in part, by the fact that this habitat category included several management phases 

with differing vegetation structures. Out of the total number of species (30) observed in 

Crop, 24 were recorded during the “crop phase” (September 2004 to March 2005) and 28 

during the “pasture phase” (May to Nov 2005). Just as spatial habitat heterogeneity in 

agricultural landscapes is known to facilitate the co-occurrence of species with diverse 

habitat requirements (e.g., Verhulst et al. 2004), temporal habitat heterogeneity in Crop 

probably has a similar effect by allowing species with differing ecological needs to 

exploit these areas whenever suitable conditions become available (i.e., feeding and/or 

breeding opportunities). During the “crop phase”, more species were recorded in 

sunflower fields and stubble than in barley fields and stubble. Similarly, in southeastern 

Buenos Aires province, sunflower crops sustained higher species richness than did wheat 

stubble fields (Leveau and Leveau 2004). Also, outside the Pampas, oat and wheat fields 

were among the habitat types with the fewest species in agricultural landscapes in Iowa, 

North America (Best et al. 1995). 

In general, more species were present during the austral spring and summer than 

during fall and winter. Similar temporal patterns have been reported for the West and 

Flooding Pampas (Isacch and Martínez 2001, Isacch et al. 2003), where seasonal 

variation in species numbers stems from the fact, at least in part, that more migratory 

birds reach the study area during the summer than during the winter (Isacch and Martínez 

2001). This same pattern also applied to my study area in the Northern Campos, where 

the number of summer migrants (11) was substantially higher than that of their winter 

counterparts (2). 
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SPECIES COMPOSITION 

The total species pool found in the surveyed habitats represents about 45% of the 

grassland avifauna of the Pampas biome, including 50% of the Pampas indicator species 

(Stotz et al. 1996). A relatively low proportion (22%) of all species in the study area was 

present in all habitat types; most species were restricted to certain subsets of habitats 

(50%) or single habitats (28%). Few specific ecological characteristics define the former 

group except that most are common (92%), year-round resident (83%) species (Gore and 

Gepp 1978, Azpiroz 2001). As for groups of species absent from certain habitat types, 

some patterns are noteworthy. Species present in all habitats but Deer, nest off the ground 

(i.e., bushes, trees) and several are insectivores (Xolmis cinerea, X. irupero, and Tyrannus 

savana) that capture their prey using perch-and-wait techniques. This absence of several 

tyrant-flycatcher species from Deer is probably related to the lack of suitable perches, a 

key feature of these species’ foraging strategies. In contrast, most of those absent only 

from Crop are ground-nesting species that feed on insects by gleaning on the ground or 

probing under its surface (sensu Remsen and Robinson 1990). Also, although the 

proportion of obligate and facultative species did not differ significantly among habitat 

types, all but one Crop indicator species were facultative, whereas all Deer indicator 

species were obligate. None of the indicator species for Crop nest on the ground, whereas 

all of those of Deer do so. These patterns suggest that Crop provides limited opportunities 

for many ground-nesting species. This is not surprising since management operations in 

agricultural fields, especially crop harvesting, can have detrimental effects on nesting 

success (e.g., Müller et al. 2005). For example, barley fields in Crop were harvested at 

the end of October, a period which coincides with the nesting season for many local 
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species. In fact, harvesting activities in the study area are known to destroy nests of 

Rhynchotus rufescens (G. Battocletti, pers. comm.). The availability of nesting sites is 

thought to be a key factor shaping bird assemblages in agricultural areas (Söderström et 

al. 2003).   

Several of the species found exclusively in Sheep are birds typically associated 

with short grass landscapes (e.g., Oreopholus ruficollis, Tryngites subruficollis, Geositta 

cunicularia). Similarly, those absent from this habitat type include many species tied to 

tall grass vegetation (e.g., Rhynchotus rufescens, Polystictus pectoralis, Heteroxolmis 

dominicana, Donacospiza albifrons, Embernagra platensis, Sporophila ruficollis). All of 

the latter birds, with the exception of the Rhynchotus rufescens, a ground-nesting species, 

place their nests in tall grass or shrubs, which also suggests that nest site availability 

plays an important role in determining bird community assemblages in this habitat type.  

A number of birds that depend on tall vegetation for nesting, including several 

conservation-concern species, were only recorded in Crop or Pasture (e.g., Polystictus 

pectoralis, Heteroxolmis dominicana, Sporophila ruficollis). Most certainly, these species 

do not nest in Crop and Pasture fields, but probably take advantage of relict tall 

vegetation patches available within these agricultural landscapes (i.e., vegetation strips 

along roads and railroads, and non-tilled patches within agricultural fields). For example, 

no Polystictus pectoralis nest was found during thorough nest searches in Pasture habitat 

(Azpiroz unpubl. data). Also, nesting attempts of Heteroxolmis dominicana, and 

Sporophila ruficollis in Crop and Sheep were confirmed in these kind of patches but not 

within the sampled fields themselves (Azpiroz unpubl. data). Thus, the use that these 

species make of Crop and Pasture is probably related to the exploitation of feeding 
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opportunities enhanced by the reliance on nearby nesting habitat patches in a landscape 

complementation fashion (Dunning et al. 1992).  

Throughout this study, five of the seven conservation-concern species were 

recorded repeatedly (≥ 5 times); two were restricted to Sheep and Deer (Anthus nattereri 

and Sturnella defilippi), and two others to Crop (Heteroxolmis dominicana and 

Sporophila ruficollis). The general habitat requirements and other biological 

characteristics of the latter two species suggest that they were taking advantage of 

feeding opportunities (Heteroxolmis dominicana) or in transit to more favorable habitat 

(Sporophila ruficollis). Both species nest in patches of tall grassland (Fontana 1997, 

Azpiroz unpubl. data) which were not available in this habitat type. Such vegetation, 

however, was present in nearby areas which would facilitate opportunistic use of Crop 

(see Grzybowski 1982, Best et al. 1995). Additionally, most Sporophila seedeaters are 

stem-gleaning specialists (Remsen and Hunn 1979) which feed exclusively on native 

grasses (e.g., Bencke et al. 2003, Di Giacomo 2005, Azpiroz unpubl. data). Thus, feeding 

on seeds from crop species seems unlikely (see Silva 1999).  Finally, Rhea americana, 

which was found in all habitat types is not endangered at a national level (Azpiroz 2001). 

POPULATION DENSITIES 

Except for two swallow species, density estimates among frequently observed 

birds (i.e., species for whom detection functions were built) differed considerably among 

habitats. In general, species that showed higher densities in cultivated habitat types are 

common and widespread throughout the Pampas, while all conservation-concern species 

for which density estimates are available occurred exclusively or in higher densities in 

natural grasslands (Rhea americana, Anthus nattereri, Sturnella defilippi). Although 
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detailed information on the diet of Pampas grassland birds is very limited, data from the 

five most abundant species on each habitat type suggest that bird assemblages in 

cultivated grasslands were dominated by species that rely heavily on seeds as a feeding 

resource, while those in natural grasslands were dominated largely by species that 

regularly take insects.  

In the case of Rhea americana, density estimates for Sheep were 35 times higher 

than for Pasture. In contrast, the species’ habitat-use patterns in Córdoba province, 

Argentina, revealed a preference for planted pastures over natural grasslands and 

avoidance of cropland (Bellis et al. 2004). The effects of poaching, which was recorded 

in the Pasture sites and is known to severely affect natural populations of Rhea 

americana elsewhere (Bellis et al. 2004 and references therein), might explain the 

differences observed between these two areas. Poaching was infrequent in the Córdoba 

study area (Bellis et al. 2004).   

Anthus furcatus was the most abundant species in natural grassland habitats. 

Additionally, differences in pipit densities between cultivated and natural grassland 

habitat types were very marked. A comparison of pipit species density estimates between 

Deer and Crop habitats provide a striking example: the former were more than 150 times 

higher than the latter. Pipit species are also important elements in natural grasslands of 

other Pampas subregions. In the Flooding Pampa, Anthus correndera was one of the most 

abundant species in short grasslands (Comparatore et al. 1996), while in the West Pampa, 

Anthus chacoensis was the most abundant species during the spring-summer period 

(Isacch et al. 2003). Similarly, in North America Anthus spragueii was the most abundant 
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bird among five species of grassland passerines inhabiting undisturbed natural grasslands 

in southern Canada (Owens and Myers 1973).  

 

CONSERVATION IMPLICATIONS FOR GRASSLAND BIRDS 

Because of its fairly pristine conditions, bird assemblages in Deer probably more 

closely resemble those typical of pre-settlement times in the Northern Campos of 

Uruguay. Assuming that this is the case, and considering the diversity patterns 

established here for alternative land use practices, the effects of such practices on bird 

assemblages typical of undisturbed Northern Campos seem to have caused both an 

increase in species richness, and substantial shifts in species composition.  

Deer sustained fewer species than all other habitats. Additionally, the only species 

exclusive to Deer was Ciconia maguari, a grassland facultative species whose primary 

habitat is wetlands. Of those species recorded on Deer and for which density estimates 

are available, 11 were more abundant on other habitat types. Anthus hellmayri, A. 

nattereri, and Ammodramus humeralis were, however, characterized by higher densities 

in Deer. Thus, agricultural development over the last several hundred years has 

presumably benefited the former group of species while negatively affecting the latter.  

 Perhaps more informative with respect to future predictions based on trends of 

current land use are differences between bird assemblages associated with natural 

grasslands and those found in cultivated grasslands. Among the five species restricted to 

both cultivated habitat types, most are fairly common birds throughout Uruguay, 

including two species (Zenaida auriculata, Myiopsitta monachus) which are considered 

agricultural pests (Arballo and Cravino 1999). The exception is Sporophila ruficollis a 
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globally near-threatened species which is nonetheless considered locally common in 

northeastern Uruguay (Gore and Gepp 1978). In contrast, the four species restricted to 

natural grassland habitat types include a fairly common Nearctic migrant (Pluvialis 

dominica), two globally-threatened species (Anthus nattereri and Sturnella defilippi) and 

a Patagonian winter migrant (Neoxolmis rufiventris), which may be declining not only in 

Uruguay (Azpiroz and Menéndez 2008) but throughout its whole range (Fitzpatrick 

2004). In general, habitat use and abundance patterns of all these species are consistent 

with general descriptions of habitat and relative abundance reported elsewhere (e.g., Gore 

and Gepp 1978, Canevari et al. 1991, Tubaro and Gabelli 1999, Narosky and Yzurieta 

2003, Gabelli et al. 2004). 

The presence of Anthus nattereri in Uruguay was first confirmed during this 

study. It is unclear if the species is a recent arrival to Uruguayan Northern Campos, or 

whether the lack of previous reports stems from the inability to distinguish it from other 

co-occurring congenerics. Density estimates of Anthus nattereri for Deer were 20-fold 

higher than those for Sheep, which suggest that the species’ population trends will be 

affected by the availability of areas with similar characteristics to those found in Deer. In 

other parts of its range, it has been reported to inhabit burnt areas with regenerating short 

grass and lightly grazed grasslands (Tyler 2004). It is worth noting that a few individuals 

were recorded from early October to early November 2005 in Pasture (i.e., between 

sampling periods). Breeding attempts were not successful (nests were predated or 

abandoned; unpubl. data).  

 On the basis of available information, which suggested high sensitivity to habitat 

change (Fernández et al. 2003), a tight association of Sturnella defilippi with Deer was 
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expected. This was not the case, however, since the species was only regularly found 

along a single transect in Sheep and density estimates were one order of magnitude 

higher in Sheep than in Deer. The bird was once a widespread species throughout the 

Pampas, but its range has shrunk 90% in the last 100 years (Tubaro and Gabelli 1999). In 

southern Buenos Aires province, where the largest remaining populations are located, the 

species prefers ungrazed natural grasslands or fields with low grazing pressure as 

breeding sites (Fernández et al. 2003, Gabelli et al. 2004). Here, most of the reproductive 

groups were found in natural grasslands with high vegetation cover (Fernández et al. 

2003). In terms of habitat structure, Sturnella defilippi sites in southern Buenos Aires 

province differ markedly from inhabited areas in the Northern Campos (R. Sánchez pers. 

comm., Azpiroz unpubl. data). It is intriguing that Sturnella defilippi was largely 

confined to a specific area of Sheep and mostly absent from Deer, even though, in terms 

of grazing pressure and vegetation cover, the latter habitat better resembles the species’ 

preferences in its southern distributional range (Fernández et al. 2003). Interestingly, in 

southern Buenos Aires, planted pastures were occupied by a few reproductive groups 

while many fields with adequate vegetation characteristics remained unused (Fernández 

et al. 2003). It has been suggested that factors such as limited food resources and 

presence of predators may deter the species from occupying what seem to be adequate 

nesting sites (Fernández et al. 2003). Data to test such hypotheses are currently 

unavailable, either for Buenos Aires or the northern Uruguay populations.   

 Cultivated and natural grasslands sites differed not only in terms of agricultural 

management practices (local characteristics), but also in terms of the composition of the 

matrix in which the different types of grasslands were embedded (regional 
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characteristics). Cultivated grasslands were located within a similar matrix of crops and 

planted pastures, whereas natural grasslands were located within a matrix characterized 

by conditions resembling Sheep habitat. This reflected a logistic constraint, since there is 

currently no region in Uruguay that contains habitat patches with the characteristics of 

those studied here within a single type of matrix. Because of this mismatch in matrix 

characteristics, bird community differences between habitats in cultivated and natural 

grasslands may be influenced by this variable. But the fact that a substantial proportion of 

species was restricted to a single habitat within each matrix type indicates that 

management practices (i.e., local conditions) do play an important role in determining 

species richness in the region (Crop and Pasture did not share 33% of the species found in 

either habitat and, similarly, Sheep and Deer did not share 49% of the species). 

Information from the southern Pampas supports this conclusion; the presence of Sturnella 

defilippi reproductive groups could be predicted by local variables (e.g., local habitat-

specific characteristics) but not by landscape variables (Fernández et al. 2003). A study 

of grassland bird assemblages in farmlands of southern Portugal, however, found that 

species richness was primarily influenced by landscape context (Moreira et al. 2005). 

This pattern is supported in my study area by Crop and Pasture’s similar species richness 

values, but not by those of Sheep and Deer, which differed markedly.   

 Here I presented the first characterization of grassland bird communities 

inhabiting an agricultural landscape in the Northern Campos of Uruguay. I found that 

cultivated grasslands seem to provide suitable habitat requirements for a substantial 

proportion of grassland birds, including some of the Pampas conservation-concern 

species. Threatened species, however, only attained relatively high densities (i.e., 
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included within the top 10 rank of most abundant species) in natural grasslands. The 

availability of feeding and breeding opportunities seem to have been an important factor 

shaping bird community structure in this region, something that has also been reported 

for avian communities in other farmland ecosystems (e.g., Söderström et al. 2003, 

Whittingham et al. 2006). Because these patterns are based solely on presence/absence 

data and species’ density estimates, the question of whether each habitat type can support 

viable populations of those species recorded on them has not been fully addressed. To do 

so, information on demographic parameters, such as species survival rates and breeding 

success on each habitat type need to be considered. Also, the availability of more detailed 

ecological information (e.g., species diets, nesting requirements, dispersal capabilities) 

will provide additional insight with respect to the mechanisms driving the bird 

assemblage patterns found here. There is still a great need of further research on the 

grassland birds of South America (Vickery et al. 1999, Vickery and Herkert 2001). 

Hopefully, the information presented will promote future studies of grassland bird 

ecology in the threatened Pampas region. 
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Table 1. Observed numbers of individuals and species and expected number of species 
(see Methods) on each of four habitats types in the Northern Campos of Uruguay. 
 

 
 
 
 
 
 
Table 2. Bray-Curtis similarity among habitats located in the Northern Campos of 
Uruguay. Similarity based on species presence-absence.   
 
Habitat Crop Pasture Sheep 

Pastures 0.729   

Sheep 0.589 0.666  

Deer 0.461 0.644 0.634 

 

 Crop Pasture Sheep Deer 

Total number transects 8 8 8 8 

Total survey periods 8 8 8 8 

Individuals observed 1,555 1,150 1,225 1,038 

Observed species richness 33 30 34 24 

Rarified species richness (± 95 CI) 31.4 

(29.0-33.0) 

29.7 

(29.0-30.0) 

33.2 

(31.0-34.0) 

24.0 

(24.0-24.0) 

Estimated species richness (± SE) 36 ± 2.5 33 ± 2.5 38 ± 2.8 26 ± 2.0 
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Table 3. Indicator values (as % of perfect indication) and values of Monte Carlo test of 
significance of observed maximum indicator values. Only species indicator values 
significant at least at P < 0.01 are shown. 
 
 

Indicator values based on habitats  Species 

Crop Pasture Sheep Deer P 

Gallinago paraguaiae 0 6 9 61 0.002 

Columba maculosa 63 0 0 0 0.003 

Zenaida auriculata 87 13 0 0 0.001 

Geositta cunicularia 0 0 63 0 0.001 

Xolmis cinerea 68 0 1 0 0.001 

Alopochelidon fucata 1 0 56 0 0.002 

Anthus furcatus 0 19 47 30 0.003 

Anthus hellmayri 2 0 19 55 0.006 

Anthus nattereri 0 0 1 83 0.001 

Sicalis luteola 3 2 10 75 0.007 

Embernagra platensis 54 2 0 0 0.003 
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Table 4. Number of observations and model selection of detection functions of grassland 
birds in four habitats in northern Uruguay. Pluvialis dominica, Bartramia longicauda, 
Progne chalybea, and Sturnella defilippi had fewer than 60 observations each, so 
detection functions for these species included additional observations of species of 
similar characteristics and behavior (Vanellus chilensis for P. dominica and B. 
longicauda, Tachycineta leucorrhoa for P. tapera, and Sturnella superciliaris for S. 
defilippi) 
 

Species na Model selected mb 

Rhea americana 81 HRc + cosine 2 

Nothura maculosa 131 HR + cosine 2 

Vanellus chilensis 351 HNd + cosine 3 

Pluvialis dominica 367 HN + cosine 3 

Bartramia longicauda 377 HN + cosine 3 

Zenaida auriculata e 71 HN + cosine 2 

Zenaida auriculata f 62 HR + cosine 2 

Tachycineta leucorrhoa 80 HN + cosine 1 

Progne tapera 116 HN + cosine 1 

Anthus furcatus 498 HR + cosine 5 

Anthus hellmayri 63 UNg + polynomial 1 

Anthus nattereri 83 HN + cosine 1 

Ammodramus humeralis 68 HR + cosine 3 

Sicalis luteola 131 UN + cosine 1 

Sturnella defilippi 266 HR + polynomial 5 

Sturnella superciliaris e 89 HR + cosine 4 

Sturnella superciliaris f 264 UN + cosine 4 
a Number of observations. 
b Number of parameters in detection function. 
c Hazard-rate base function. 
d Half-normal base function. 
e Detection function was built exclusively with data collected from September 2004 to March 2005, which 
corresponded to the “crop phase” (barley and sunflower fields) of crop habitat. 
f Detection function was built with data collected from May to November 2005, which corresponded to the 
“crop phase” (barley and sunflower fields) of crop habitat, as well as with data from other habitats for the 
total sampling period. 
g Uniform base function. 



    

 

Adrián B. Azpiroz, 2008, Ph.D. Dissertation, p. 38

Table 5. Density (ind per 100 ha), SE, and 95% CI calculated with program DISTANCE 
for species with at least 60 visual observations. The highest density value for each species 
is shown in bold. 
 

Species/Habitat  Crop Pasture Sheep Deer 

Rhea americana Mean 
SE 

95% CI 

5.5 
2.1 

2.6-11.6 

0.3 
0.3 

<0.1-1.6 

10.7 
3.1 

6.2-18.7 

7.0 
2.3 

3.7-13.2 
Nothura maculosa Mean 

SE 
95% CI 

20.7 
9.6 

8.6-49.5 

126.7 
41.2 

67.8-236.8 

98.3 
32.5 

52.0-185.7 

93.1 
29.4 

50.6-171.2 
Vanellus chilensis Mean 

SE 
95% CI 

5.6 
2.1 

2.7-11.5 

28.1 
6.9 

17.3-45.6 

49.3 
5.9 

39.0-62.4 

31.7 
4.2 

24.4-41.1 
Pluvialis dominica Mean 

SE 
95% CI 

0.0 0.0 4.8 
1.9 

2.2-10.4 

1.1 
0.8 

0.3-4.2 
Bartramia longicauda Mean 

SE 
95% CI 

1.3 
1.0 

0.3-5.3 

4.0 
1.7 

1.7-9.1 

3.0 
1.2 

1.4-6.3 

1.3 
0.8 

0.4-4.1 
Zenaida auriculata a 
 

Mean 
SE 

95% CI 

134.4 
43.7 

70.8-255.3 

N/A N/A N/A 

Zenaida auriculata b 
 

Mean 
SE 

95% CI 

25.4 
15.0 

8.5-75.6 

66.1 
29.0 

29.0-151.2 

0.0 0.0 

Tachycineta leucorrhoa Mean 
SE 

95% CI 

18.4 
5.3 

10.4-32.4 

14.1 
3.8 

8.3-23.9 

11.7 
3.4 

6.6-20.7 

4.9 
1.9 

2.3-10.4 
Progne tapera Mean 

SE 
95% CI 

7.7 
2.1 

4.5-13.2 

5.1 
2.1 

2.3-11.5 

2.6 
1.7 

0.8-8.6 

3.1 
1.2 

1.4-6.7 
Anthus furcatus Mean 

SE 
95% CI 

0.0 94.3 
32.7 

48.5-183.3 

321.2 
78.5 

200.0-515.6 

219.2 
56.9 

132.7-362.0 
Anthus hellmayri Mean 

SE 
95% CI 

1.5 
0.7 

0.7-3.5 

0.0 5.8 
1.7 

3.2-10.4 

11.8 
3.2 

6.9-20.1 



    

 

Adrián B. Azpiroz, 2008, Ph.D. Dissertation, p. 39

Table 5. Continued 
 

Species/Habitat  Crop Pasture Sheep Deer 
Anthus nattereri Mean 

SE 
95% CI 

0.0 0.0 1.1 
0.8 

0.3-4.3 

21.1 
4.2 

14.2-31.1 
Ammodramus humeralis Mean 

SE 
95% CI 

20.2 
6.9 

10.5-39.0 

27.3 
14.0 

10.4-71.1 

9.7 
4.3 

4.2-22.3 

2.6 
2.1 

0.7-10.5 
Sicalis luteola Mean 

SE 
95% CI 

3.2 
1.5 

1.3-7.7 

3.2 
2.0 

1.0-9.9 

5.0 
1.7 

2.6-9.6 

47.9 
10.4 

31.2-73.5 
Sturnella defilippi Mean 

SE 
95% CI 

0.0 0.0 13.6 
6.7 

5.4-34.3 

1.5 
1.1 

0.4-5.8 
Sturnella superciliaris a 
 

Mean 
SE 

95% CI 

242.4 
83.7 

124.8-470.8 

N/A N/A N/A 

Sturnella superciliaris b 
 

Mean 
SE 

95% CI 

91.7 
27.0 

51.3-164.1 

95.1 
21.4 

61.2-147.7 

0.0 11.3 
4.1 

5.6-22.6 
 
a Detection function was built exclusively with data collected from September 2004 to March 2005, which 
corresponded to the “crop phase” (barley and sunflower fields) of crop habitat 
b Detection function was built with data collected from May to November 2005, which corresponded to the 
“crop phase” (barley and sunflower fields) of crop habitat, as well as with data from other habitats for the 
total sampling period 
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Table 6. Ranks of species with the 10 highest density estimates in each of four grassland 
habitat types in Northern Campos of Uruguay. Only Nothura maculosa, Vanellus 
chilensis, Tachycineta leucorrhoa, and Sicalis luteola are included in the ranks of all four 
habitat types. 

 

 HABITAT TYPE 
Species  Crop Pasture Sheep Deer 
Rhea americana 8  6 8 
Nothura maculosa 3 1 2 2 
Vanellus chilensis 7 5 3 4 
Bartramia longicauda  9   
Pluvialis dominica   10  
Zenaida auriculata 2 4   
Tachycineta leucorrhoa 5 7 5 9 
Progne tapera 6 8  10 
Anthus furcatus  3 1 1 
Anthus hellmayri 10  8 6 
Anthus nattereri    5 
Ammodramus humeralis 4 6 7  
Sicalis luteola 9 10 9 3 
Sturnella defilippi   4  
Sturnella superciliaris 1 2  7 
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Figure 1. Location of the study area in the Northern Campos subregion of southeastern 
South American Pampas. Large patches of four habitat types were selected in northern 
Paysandú and southern Salto departments in northern Uruguay. 
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Figure 2. Habitat types in which bird assemblages were studied. A) Crop habitat; B) 
Planted Pastures habitat; C) Sheep habitat, and D) Deer habitat. Crop habitat included 
three different phases (barley fields, sunflower fields, and planted pastures); figure 2A 
illustrates the first of these. 
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Figure 3. Species-accumulation curves for each of the four studied habitats, based on 
visual and aural detections from September 2004 to November 2005. 
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Figure 4. Temporal variation in mean species richness (A) and mean number of 
individuals (B) for each habitat type from September 2004 to November 2005 in the 
northern campos of Uruguay. 
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Figure 5. Nonmetric multidimensional scaling based on species presence/absence per 
transect during the total sampling period (September 2004-November 2005). Symbols 
represent individual transects in Crop (filled circles), Pasture (open circles), Sheep (open 
squares), and Deer (filled squares) habitats. The dashed line separates transects on 
cultivated grasslands from those on natural grasslands. Species showing high correlations 
with the horizontal axis are indicated. 
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Figure 6. Proportion of species in each habitat that belong to alternative ecological 
categories. (A) Level of dependence on grassland habitats (sensu Vickery et al. 1999); 
(B) Migratory status; and (C) Trophic guilds. 
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Appendix. Number of individuals and species found in four grassland habitats (Crop [CR], Pastures [PA], Sheep [SH], and Deer 
[DE]). For the Crop column superscripts denote species recorded only on specific management phase (a = barley, b = sunflower, c = 
pastures). Each species is also classified (+) within one of different habitat specialization, migration status and feeding guild 
categories. Habitat Specialization: obligate (OB) and facultative (FA) species sensu Vickery et al. 1999. Migration status: year-round 
resident (RE), summer resident (SR), Nearctic migrant (NM), winter migrant (WM). Feeding guild: carnivore (CA), granivore (GR), 
herbivore (HE), insectivore (IN), omnivore (OM). 
 
FAMILY/SPECIES HABITAT TYPE  HAB. SPE.  MIGRATION  FEEDING GUILD 

 CR PA SH DE  OB FA  RE SR NM WM  CA GR HE IN OM 

RHEIDAE                   
Greater Rhea                   
Rhea americana 41 4 69 50  +   +       +   

TINAMIDAE                   
Red-winged Tinamou                   
Rhynchotus rufescens 15 9 0 0  +   +         + 
Spotted Nothura                   
Nothura maculosa 38 143 142 116  +   +         + 

ARDEIDAE                   
Whistling Heron                   
Syrigma sibilatrix 2p 4 1 0   +  +     +     

CICONIIDAE                   
Maguari Stork                   
Ciconia maguari 0 0 0 3   +  +     +     

ACCIPITRIDAE                   
White-tailed Kite                   
Elanus leucurus 1 0 0 0   +  +     +     
Cinereous Harrier                   
Circus cinereus 0 1 0 2  + +  +     +     
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Appendix Continued. 

FAMILY/SPECIES HABITAT TYPE  HAB. SPE.  MIGRATION  FEEDING GUILD 

 CR PA SH DE  OB FA  RE SR NM WM  CA GR HE IN OM 

CHARADRIIDAE                   
Southern Lapwing                   
Vanellus chilensis 29p 146 278 186  +   +        +  
American Golden-Plover                   
Pluvialis dominica 0 0 130 16   +    +      +  
Tawny-throated Dotterel                   
Oreopholus ruficollis 0 0 1 0  +      +     +  

SCOLOPACIDAE                   
Upland Sandpiper                   
Bartramia longicauda 6p 20 27 15  +     +      +  
South American Snipe                   
Gallinago paraguaiae 0 6 9 34  +   +        +  
Buff-breasted Sandpiper                   
Tryngites subruficollis 0 0 4 0  +     +      +  

COLUMBIDAE                   
Spot-winged Pigeon                   
Columba maculosa 19 0 0 0   +  +      +    
Picazuro Pigeon                   
Columba picazuro 23c 10 2 0   +  +      +    
Eared Dove                   
Zenaida auriculata 481 74 0 0   +  +      +    

PSITTACIDAE                   
Monk Parakeet                   
Myiopsitta monachus 61c 12 0 0   +  +      +    
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Appendix Continued. 

FAMILY/SPECIES HABITAT TYPE  HAB. SPE.  MIGRATION  FEEDING GUILD 

 CR PA SH DE  OB FA  RE SR NM WM  CA GR HE IN OM 

STRIGIDAE                   
Burrowing Owl                   
Athene cunicularia 0 5 3 4  +   +     +     

CAPRIMULGIDAE                   
Nacunda Nighthawk                   
Podager nacunda 0 0 2 0  +    +       +  

PICIDAE                   
Field Flicker                   

Colaptes campestris 1c 25 20 1   +  +        +  

FURNARIIDAE                   
Common Miner                   
Geositta cunicularia 0 0 18 0  +   +        +  
Rufous Hornero                   
Furnarius rufus 2 0 0 0   +  +        +  
Firewood-Gatherer                   
Anumbius annumbi 0 5 5 4   +  +        +  

TYRANNIDAE                   
Bearded Tachuri                   

Polystictus pectoralis 0 3 0 0  +    +       +  

Grey Monjita                   

Xolmis cinerea 29 1 2 0   +  +        +  

White Monjita                   

Xolmis irupero 3c 2 1 0   +  +        +  
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Appendix Continued. 

FAMILY/SPECIES HABITAT TYPE  HAB. SPE.  MIGRATION  FEEDING GUILD 
 CR PA SH DE  OB FA  RE SR NM WM  CA GR HE IN OM 

   Black-and-white Monjita                   
Heteroxolmis dominicana 20 0 0 0   +  +        +  
Chocolate-vented Tyrant                   
Neoxolmis rufiventris 0 0 2 1  +      +     +  
Cattle Tyrant                   
Machetornis rixosus 4 1 5 0   +  +        +  
Fork-tailed Flycatcher                   
Tyrannus savana 14 12 5 0  +    +       +  

HIRUNDINIDAE                   
White-rumped Swallow                   
Tachycineta leucorrhoa 43 45 21 13   +  +        +  
Gray-breasted Martin                   
Progne chalybea 4a 3 0 6   +   +       +  
Brown-chested Martin                   
Progne tapera 22 22 7 6   +  +        +  
Blue-and-white Swallow                   
Notiochelidon cyanoleuca 0 0 2 0   +   +       +  
Tawny-headed Swallow                   
Alopochelidon fucata 1a 0 8 0   +   +       +  
Rough-winged Swallow                   
Stelgidopteryx ruficollis 0 0 2 0   +   +       +  
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Appendix Continued. 

FAMILY/SPECIES HABITAT TYPE  HAB. SPE.  MIGRATION  FEEDING GUILD 

 CR PA SH DE  OB FA  RE SR NM WM  CA GR HE IN OM 
MOTACILLIDAE                   

Short-billed Pipit                   
Anthus furcatus 0 118 292 216  +   +        +  
Hellmayr’s Pipit                   
Anthus hellmayri 5 0 23 48  +   +        +  
Ochre-breasted Pipit                   
Anthus nattereri 0 0 5 92  +   +        +  

EMBERIZIDAE                   
Rufous-collared Sparrow                   
Zonotrichia capensis 6b 0 1 0   +  +      +    
Grassland Sparrow                   
Ammodramus humeralis 29 43 32 13  +   +      +    
Long-tailed Reed-Finch                   
Donacospiza albifrons 1b 0 0 0   +  +      +    
Grassland Yellow-Finch                   
Sicalis luteola 15 9 26 148  +   +      +    
Great Pampa-Finch                   
Embernagra platensis 12 2 0 0  +   +      +    
Dark-throated Seedeater                   
Sporophila ruficollis 3 4 0 0  +    +     +    

ICTERIDAE                   
Pampas Meadowlark                   
Sturnella defilippi 0 0 33 4  +   +        +  

 



    

 

Adrián B. Azpiroz, 2008, Ph.D. Dissertation, p. 52

Appendix Continued. 

FAMILY/SPECIES HABITAT TYPE  HAB. SPE.  MIGRATION  FEEDING GUILD 

 CR PA SH DE  OB FA  RE SR NM WM  CA GR HE IN OM 
White-browed Blackbird                   
Sturnella superciliaris 460 416 0 55  +   +         + 
Brown-and-Yellow Marshbird                   
Pseudoleistes virescens 23 2 43 3   +  +         + 
Bay-winged Cowbird                   
Agelaioides badius 15 0 0 0   +  +         + 
Shiny Cowbird                   
Molothrus bonariensis 127c 3 4 2   +  +         + 

                   

   TOTAL INDIVIDUALS 1555 1150 1225 1038               

   TOTAL SPECIES 33 30 34 24  23 27  37 8 3 2  5 10 1 28 6 
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CHAPTER 2 

RESPONSES OF GRASSLAND BIRDS TO VARIATION IN 

VEGETATION STRUCTURE IN THE NORTHERN CAMPOS OF 

URUGUAY 

 

INTRODUCTION 

Vegetation composition and structure can directly affect bird survival and 

reproduction and, thus, are thought to be important influences on avian assemblages and 

bird-habitat relationships (e.g., Rotenberry 1985, Skowno and Bond 2003, Suárez et al. 

2003, Whittingham et al. 2006). For grassland birds in particular, empirical evidence 

indicates that species can respond strongly to vegetation structure (Cody 1985, Patterson 

and Best 1996). This factor is thought to influence bird distributions and numbers 

because it affects food and nesting resources and it provides protection from the elements 

and predators (e.g., Rotenberry and Wiens 1980, Grzybowski 1983, Cody 1985). In terms 

of foraging, vegetation structure may influence both prey availability and detectability. 

Mills et al. (1991), for example, found a relationship between vegetation volume and bird 

density and suggested that vegetation volume is a proxy for available resources. With 

respect to nesting resources, vegetation structure can assist in nest relocation, influence 

nest microclimate, provide thermoregulation advantages to incubating individuals, and 

probably most important for grassland birds, reduce nest predation risks by increasing 

nest concealment (Walsberg 1985, Hoekman et al. 2002, Davis 2005). Finally, vegetation 

structure not only influences predation risk for nests, but also for individuals themselves 

(Grzybowski 1983, Lima 1993, Whittingham et al. 2006). 
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The Pampas biome of southeastern South America is dominated by grassland 

ecosystems that extend from southern Brazil into Uruguay and eastern Argentina. The 

region’s extraordinary conditions for agriculture have resulted in a drastic modification of 

its native vegetation since European settlement (Vervoorst 1967, León et al. 1984, 

Bilenca and Miñarro 2004, Di Giacomo and Krapovickas 2005). Most of the Pampas 

have now been converted either to rangelands or croplands. The role of fire and grazing 

as major ecological drivers shaping grassland structure have been largely altered because 

of changes in natural fire regimes and the replacement of populations of native herbivores 

(i.e., Pampas Deer Ozotoceros bezoarticus and Greater Rhea Rhea americana) by large 

stocks of cattle, sheep and other domestic animals (Vervoorst 1967, Sala et al. 1986, 

Soriano 1992, Sarmiento 1996, González et al. 2002). Agricultural activities have also 

resulted in the replacement of tall grass by short grass species, the establishment of exotic 

plants, succession to shrublands, and increased use of agrochemicals and technology 

(Vervoorst 1967, Bucher and Nores 1988, Vickery et al. 1999, Di Giacomo and 

Krapovickas 2005). 

Habitat modification has been identified as the most likely factor behind declines 

of populations of Pampas grassland birds (Collar et al. 1992, Soriano 1992, Stotz et al. 

1996, BirdLife International 2000, Vickery et al. 1999). Even though information on 

population trends is limited, there is evidence that many species have suffered substantial 

reductions, coupled with important range contractions (Fraga et al. 1998, Krapovickas 

and Di Giacomo 1998, Tubaro and Gabelli 1999, Gabelli et al. 2004). Eight Pampas 

grassland birds are currently considered globally threatened and five additional ones are 

classified as near-threatened (IUCN 2007). Despite the need for relevant ecological 
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information, the region has received little attention in terms of research activity, 

especially when compared to other grassland biomes and agricultural landscapes in the 

Northern Hemisphere.  

The identification of habitat attributes that influence bird numbers can guide the 

design of sound management strategies (Davis et al. 1999, Rotenberry and Knick 1999). 

In the Pampas, there are limited data on the vegetation structure of fields under 

alternative management practices and habitat requirements for virtually all Pampas 

grassland birds remain largely unknown (Vickery and Herkert 2001). The available 

information suggests contrasting responses of bird species to agriculture-related 

activities. For example, whereas Pampas Meadowlarks (Sturnella defilippi) prefer 

ungrazed or lightly grazed natural grasslands as breeding grounds (Fernández et al. 

2003), Buff-breasted Sandpipers (Tryngites subruficollis) seem to depend on intensive 

livestock grazing pressure for the maintenance of suitable wintering habitat conditions 

(Lanctot et al. 2002). 

This study aimed to identify features of vegetation structure that influence avian 

assemblage organization within Pampas grassland habitat types that are under different 

agricultural management. To do this, I quantified vegetation structure variables and 

sampled bird populations in four habitat types. First, I used this information to test for 

differences in vegetation structure among habitats. Then, I used ordination analyses to 

explain bird distribution and numbers in terms of the vegetation variables considered. A 

series of analyses targeted the entire grassland assemblage as well as more specific 

groups of birds of ecological and conservation interest. Considering the known variation 

in vegetation structure of grasslands under different management regimes (Fletcher and 
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Koford 2002), I expected larger vegetation-structure differences between cultivated 

(crops and planted pastures) and natural grasslands (grasslands used to raise free-ranging 

livestock) than between habitat types within these two categories. Previous studies have 

identified several vegetation features that are especially important to grassland birds (e.g., 

Rotenberry and Wiens 1980, Wiens and Rotenberry 1981, Patterson and Best 1996, 

Delisle and Savidge 1997, Davis 2004). Based on such findings, I expected litter depth, 

vegetation height and vegetation density to have a major influence on bird distribution 

and abundance. I also expected habitat specialist and generalist grassland birds to show 

different responses to vegetation structure because grassland bird specialists have been 

found to show stronger correlations to grassland habitat features when compared to 

grassland generalists (Wiens and Rotenberry 1981, Patterson and Best 1996). Finally, 

since the conservation status of Pampas grassland birds has been linked to habitat 

modification (Tubaro and Gabelli 1999, Vickery et al. 1999), I expected threatened 

species (following IUCN 2007) to show a stronger association to vegetation features 

typical of natural sites as opposed to those characteristic of altered areas. 

 

METHODS  

STUDY AREA AND GRASSLAND HABITATS 

The study was conducted in northwestern Paysandú department and southern 

Salto department, northwestern Uruguay (31°19’ to 31°44’S and 56° 42’ to 57° 56’W). 

This area is located in the Northern Campos of Uruguay within the Río de la Plata 

grasslands (Soriano 1992) and the Pampas biome (Stotz et al. 1996). In terms of climate, 

the area has humid and mesothermic features with mean annual temperature and rainfall 
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of 19°C and 1300 mm, respectively (Lezama et al. 2006). The Northern Campos are a 

vast plain with few areas of relief and the general landscape is a mixture of flat and 

gently rolling areas, further characterized by a rich fluvial network (Soriano 1992). 

Within the study area, open-range livestock grazing is the major economic activity. 

Planted pastures and croplands are common in the western part of the region, while the 

eastern part is characterized by large expanses of unplowed natural grasslands. The latter 

are characterized by species in the families Poaceae and Asteraceae, with genera such as 

Stipa, Paspalum, Aristidsa, Conyza and Piptochetium being well represented (Lezama et 

al. 2006). This study was conducted in several ranches and farms in the surroundings of 

Chapicuy, in Paysandú department, and San Antonio and Cerros de Vera in Salto 

department. Within each of these regions large patches (500 to 1200 ha) of the following 

four habitat types were selected: 

1) Croplands (Crop) - This was defined as cultivated land that was plowed and seeded to 

annual crops (barley, sunflower) which grew during spring and summer of the first half 

of the sampling period and that later included a phase of planted pastures (through the 

second half of the sampling period) after crops were harvested.  

2) Planted pastures (Pasture) – These lands were plowed and seeded with non-native 

species and used for cattle grazing. 

3) Sheep rangelands (Sheep) – These native grasslands, which have never been plowed, 

were grazed by free-ranging sheep and cattle. Due to the effects of grazing by sheep, 

vegetation diversity is lower than that in the following habitat type (Sturm 2001). 
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4) Deer rangelands (Deer) – These were also native grasslands which have never been 

plowed, and which were grazed by cattle and Pampas Deer Ozotoceros bezoarticus (a 

few sheep were maintained on these fields for consumption at the ranch).  

More specific information about each habitat type has been described elsewhere (see 

Chapter 1). 

SAMPLING OF BIRD POPULATIONS 

Birds were sampled every two months from September 2004 to November 2005 

(i.e., six sampling periods). Eight replicates (i.e., transects) per treatment were 

established. On each 500-m variable-width transect, grassland bird species were counted 

using distance sampling (Buckland et al. 2001). Transects were placed randomly after 

considering certain constraints such as a minimum inter-transect distance of 400 m and 

the avoidance of fencerows or other non-grassland habitats. Sampling of each 500-m 

transect took approximately 25-30 min and was conducted within 3.5 hours after sunrise 

during rainless mornings. The direction and order in which transects were surveyed were 

rotated systematically throughout the whole sampling period to control for biases in 

detection related to varying degrees of bird activity throughout the morning. Except for 

transient individuals flying over the surveyed area, all other birds detected visually and 

aurally within the sampled plot were recorded, including birds feeding on the wing (i.e., 

swallows).  

SAMPLING OF VEGETATION STRUCTURE 

On the same bird transects and during the same periods, vegetation was sampled 

using a measuring tape and a cylindrical (6 mm diameter) metal rod. Five 100-m 

transects were placed at 100-m intervals; the first 100-m vegetation transect crossed the 
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bird transect perpendicularly at 50 m from its starting point and the last one at 450m from 

the starting point. In this way, half of each 100-m vegetation transect lay to the right of 

the bird transect and the other half to the left. Each 100-m transect was divided in 10 10-

m sections, and within each section a sampling point was randomly selected. Thus, on 

each bird transect, a total of 50 points were sampled during each of the six sampling 

periods. On each sampling point, the metal rod was placed through the vegetation and the 

number of contacts (hits) by different vegetation types (e.g., grasses, forbs, and standing 

dead vegetation) in successive 25-cm height intervals were counted following Rotenberry 

and Wiens (1980). Also within each sampling point, litter depth, and grass and vegetation 

height were measured to the nearest centimeter. Any plant material lying on the soil was 

considered litter, whereas dead plant material above the soil and still attached in the 

ground was classified as standing dead vegetation (Best et al. 1997). With this 

information I calculated nine vegetation variables known to influence grassland bird 

numbers (following Rotenberry and Wiens 1980 and Herkert 1994): mean litter depth, 

mean grass height, mean vegetation height, mean number of vegetation contacts (live 

grass + live forb + dead plant material) between 0-25 cm, mean number of vegetation 

contacts between 25-50 cm, mean number of total vegetation contacts, mean percentage 

grass contacts (grass cover), mean percentage forb contacts (forb cover), and mean 

percentage live vegetation contacts (live vegetation cover). Variables related to numbers 

of vegetation contacts in different height intervals were considered to be indicative of 

vegetation density. Forb contacts refer to hits of vegetation types other than grasses or 

dead plant material; contacts from crop species were included in this category. All bird 

and vegetation sampling were conducted by the same observer during the whole sampling 
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period, aided by one or two assistants. All vegetation surveys were conducted within a 

24-hour period concurrent with the bird counts.  

DATA ANALYSIS 

Vegetation structure information first was used to determine differences among 

habitat types and sampling periods. All data were combined at the transect level for 

analysis. Thus, for each vegetation variable, the 50 values recorded within a given 

transect on each sampling period were averaged to obtain a transect mean for that period. 

Because variables were not normally distributed, even after transformation, non-

parametric analyses of variance were used. A Permutational Multivariate Analysis of 

Variance (PERMANOVA, Anderson 2001) was used to test the simultaneous response of 

multiple vegetation variables to two factors, namely habitat type and time. Statistical 

significance was tested with a permutation procedure (9999 runs). After performing the 

analysis, a series of post hoc pairwise comparisons were conducted to identify differences 

between specific combinations of habitat types and sampling periods. These analyses 

were run with the program PERMANOVA (Anderson 2005).  

Second, Canonical Correspondence Analysis (CCA) was used to identify 

dominant relationships between grassland bird assemblage data and vegetation structure 

variables. Among alternative direct gradient analyses, CCA was selected after estimating 

gradient length through Detrended Canonical Correspondence Analysis following the 

procedure suggested by Lepš and Šmilauer (2003). CCA assumes that species’ responses 

along environmental gradients are unimodal and reduces the species data set into a few 

orthogonal gradients (i.e., CCA axes) which reflect the influence of the multiple 

environmental variables included in the analysis (Morey et al. 2005). This is achieved by 
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selecting linear combinations of these explanatory variables that best explain variation of 

the response variables (ter Braak 1995). The analysis provides a series of eigenvalues 

related to each of the CCA axes which are indicative of the explanatory power of each 

axis in terms of the variation in the species data set. Substantial differences between 

subsequent eigenvalues suggest the existence of dominant environmental gradients. 

When results from CCA indicated high correlation among variables (r ≥ 0.80), a 

subsequent analysis was run excluding one of the variables from correlated pairs. Also, 

because the removal of rare species generally results in higher eigenvalues and facilitates 

interpretation of graphical representation of CCA results (e.g., Kingston and Waldren 

2003), bird taxa with less than five observations were excluded from these analyses. The 

explanatory power of the vegetation variables was tested by a Monte Carlo randomization 

procedure (499 runs). The influence of a variable was considered significant if the 

additional variance explained by it was greater than that explained by 95% of the 

permutation tests (Morey et al. 2005). Since the first comprehensive CCA revealed 

important differences between obligate and facultative species, additional analyses were 

conducted for each of these groups of species independently. Similarly, data from other 

subgroups of species of special interest (e.g., common and threatened species) were also 

re-analyzed to facilitate the interpretation of the effects of vegetation structure on such 

groups. Results from CCA were visually represented with ordination graphs. In restricted 

analyses, weighted averaging (WA) and linear combinations of variables (LC) scores 

have different properties pertinent to the interpretation of results (Graffelman and Tuft 

2004). Because one of the objectives of the study was to characterize vegetation structure 

differences among habitat types, LC scores were used since these enable the 
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interpretation of the environmental characteristics of sites. In the resulting ordination 

diagrams, the environmental variables (i.e., vegetation structure variables) are 

represented by arrows and the site and species scores are represented by symbols. The 

length of the arrow is proportional to the importance of the variable it represents, and the 

location of site and species scores relative to arrows is informative of the environmental 

characteristics of sites and of the environmental preferences of species, respectively 

(Palmer 1993). CANOCO 4.5 (ter Braak and Šmilauer 2002) was used to run analyses 

and construct figures.   

Finally, the vegetation variables used in CCA were divided in two groups: those 

related to vegetation cover (grass, forb, and live vegetation cover) and alternative ones 

(litter depth, grass height, vegetation height, and variables related to numbers of 

vegetation contacts in different height intervals). With each of these groups of variables, 

partial CCAs were applied to determine the relative contribution of the two groups of 

variables and to establish how redundant their explanatory power was. This analysis, run 

in CANOCO 4.5, allowed designated variables to be treated as covariables and total 

variation explained by CCA to be partitioned (Wiser 1998). The analysis identifies the 

amount of explained variation accounted by each group exclusively, as well as the 

amount explained jointly by them. If the latter value is small this is indicative of low 

redundancy suggesting that each group of variables is explaining alternative aspects of 

the species dataset. As with CCA, statistical significance is determined by Monte Carlo 

permutation tests. 
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RESULTS 

BIRD ASSEMBLAGES AND VEGETATION FEATURES 

A total of 4968 individuals of 50 grassland bird species were observed on all 

transects during the whole sampling period; 36 species were recorded on five or more 

occasions. Overall, Nothura maculosa, Vanellus chilensis, Zenaida auriculata, Anthus 

furcatus, and Sturnella superciliaris were the five most common species (i.e. highest 

number of individuals recorded). Although about 22% of the total bird species pool was 

shared by all habitats, 28% were restricted to a single habitat type. Additionally, several 

species were restricted to either cultivated or natural grasslands (18%).  

 The structure of the vegetation also varied among habitats. For example, mean 

vegetation height was shortest in Sheep (< 5 cm), followed by Deer (< 12 cm), and 

Pasture (< 23 cm) (Appendix, Fig. 1). Whereas vegetation height in Crop showed 

considerable variation throughout the sampling period, the opposite was true in Deer and 

Sheep, where mean values were similar throughout the study (Appendix, Fig. 1). Grass 

cover was, in general, higher in natural grasslands than in Pasture. In Crop, mean values 

were very low except for March 2005, shortly before a second crop (sunflower) was 

harvested (Fig. 1). Forb cover showed higher mean values in Pasture than in natural 

grasslands. The highest values, however, were recorded in Crop during the first crop 

phase (Sep 2004) and during the planted pasture phase after broad-leaf pastures were well 

developed (Jul-Nov 2005). In contrast to other habitat types, mean live vegetation cover 

was low in Deer (Appendix). Overall, vegetation structure responded to the effects of 

habitat (PERMANOVA, F3, 255 = 17.05, P = 0.0001), time (PERMANOVA, F7, 255 = 

10.50, P = 0.0001) and habitat x time interaction (PERMANOVA, F21, 255 = 4.75, P = 
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0.0001). Post hoc pairwise comparisons indicated that, with the exception of Pasture and 

Deer, all other habitat combinations showed significant differences in vegetation 

structure.  Even when data from Crop were removed from the original analysis, the 

effects of both factors and their interaction were still significant (as well as the results of 

the relevant pairwise comparisons). 

BIRD-VEGETATION RELATIONSHIPS 

For the whole dataset (nine vegetation variables and 36 bird species; species 

recorded < 5 times excluded), the four CCA axes explained 11% of the total variance in 

the bird dataset and 82% of the canonical variance (Table 1). A first relatively high 

eigenvalue, coupled with a much weaker second eigenvalue implies that axis 1 represents 

a fairly strong gradient (Table 1), primarily reflecting a negative association of axis 1 

with grass cover (Fig. 2). Axis 2 reflected a negative relationship with grass height and 

vegetation density. Results from partial CCA showed that the variation explained 

independently by vegetation cover variables (6.43%) and by a group of alternative 

vegetation variables more related to structure per se (4.94%), was larger than the 

variation jointly explained by both groups (2.36%). This pattern indicates that the 

explanatory power of the two groups of variables is not very redundant and, thus, that 

each group is explaining different aspects of the species dataset.   

The relative position of samples (i.e. transects) in the ordination diagram indicates 

a segregation of natural grasslands from cultivated grasslands (Fig. 2). In addition, 

samples from Sheep and Deer were more clumped and showed less dispersion than 

samples from either Pasture or Crop. These patterns highlight the higher spatio-temporal 

variability of samples from cultivated grasslands in terms of vegetation structure, which 
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was especially evident for Crop transects. Most transects with the highest number of bird 

species were concentrated towards the left side of the diagram and, thus, evidenced a 

positive association with grass cover and a negative one with vegetation height and forb 

cover. The location of transects with low number of species was more variable, but 

several were positively associated with vegetation height and forb cover. Most were 

positioned to the right of the diagram which indicated a negative relationship to grass and 

live vegetation cover (Fig. 2). 

The positions of species scores in the ordination diagram showed an association 

of most obligate grassland birds with sites with an important grass component. This 

group was also negatively associated with vegetation height (Fig. 3). In contrast, a 

smaller group of obligate species (in the lower right corner in Fig. 3) were linked to tall 

non-grass vegetation. Among facultative species, birds that are considered as agricultural 

pests (Columba maculosa, C. picazuro, Zenaida auriculata, Myiopsitta monachus, 

Molothrus bonariensis) grouped close together (upper right corner in Fig. 3) and were 

negatively associated to most measured variables. With regard to breeding species, 

ground-nesters and burrowers (most of which are obligate grassland species), responded 

positively to grass cover, whereas birds that nest off-the-ground (i.e., in marshy 

vegetation, or on shrubs and trees) showed no specific association patterns (Fig. 3).  

When obligate and facultative species were analyzed independently, a few 

contrasting patterns were highlighted. Even though the first eigenvalue was fairly high in 

both analyses (suggesting relatively strong gradients), the proportion of variation 

explained in the case of the obligate species was greater than in the case of the facultative 

species (Table 2). In the first of these analyses, axis 1 was positively related to vegetation 
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height and negatively to live vegetation cover, whereas axis 2 showed an association to 

grass height and vegetation density in the 0-25 cm layer (Fig. 4A). Among obligate 

species, birds such as Rhynchotus rufescens and Sporophila ruficollis were positioned to 

the right of the graph, an indication of their association with high vegetation. Towards the 

upper left area of the ordination, a second group of species, including Sturnella defilippi 

and Anthus nattereri, responded positively to grass cover and negatively to forb cover. 

Finally, several species located within the lower left quadrant showed a preference for 

short, sparse vegetation, as evidenced by their negative association with variables related 

to vegetation height and density. Among the latter, Geositta cunicularia showed the 

strongest response (Fig. 4A). In the ordination diagram for facultative birds, most scores 

lay outside the center region and the scattered pattern of the points suggested that there 

was a high variability in the way facultative species respond to vegetation structure (Fig. 

4B). Overall, the comparison of arrow lengths in both ordinations indicated that, while 

grass cover was an important variable for both obligate and facultative species, live 

vegetation cover, vegetation height and density had contrasting contributions in the two 

groups (Fig. 4).  

An analysis limited to threatened taxa showed a high first eigenvalue followed by 

a second relatively high value, indicating that the first gradient was not very strong. 

Overall, vegetation variables explained 29% of the variation of these species’ distribution 

and abundance (Table 3). Species with the strongest response were Heteroxolmis 

dominicana and Sporophila ruficollis, which were positively affected by vegetation 

density in the 25-50 cm height interval and by vegetation height. Anthus nattereri and 

Sturnella defilippi showed relatively weak positive responses to litter depth and grass 
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cover, whereas Rhea americana was also weakly associated with forb cover and 

responded negatively to variables related to vegetation density (Fig. 5).  

A final analysis focused exclusively on the distribution of common bird species 

(i.e., those with 10 or more observations) on natural grasslands (i.e., Sheep and Deer 

habitats). Only birds and vegetation data restricted to Sheep and Deer were considered. 

The first axis explained 53% of the canonical variation but overall, the amount of 

variation in the bird data explained by all axes was low (12%, Table 4). The distribution 

of species along the first two axes resulted in three main groups: one comprising species 

related to higher vegetation (positioned to the right), one with species associated with 

short and sparse vegetation (located to left), and a third group whose species responded 

negatively to most variables, except litter depth (situated at the lower center, Fig. 6). The 

first two groups involved only obligate species, while the latter included both obligate 

and facultative birds.  

 

DISCUSSION 

Grassland birds in the Northern Campos of Uruguay are strongly influenced by 

vegetation structure. Most differences in vegetation structure among habitats can be 

linked to the specific management activities on each habitat type. Crop included several 

management phases, which explained the high variability in several of the vegetation 

parameters, such as mean vegetation height. In contrast, year-round grazing in Pasture, 

Sheep and Deer resulted in a less variable vegetation height throughout the sampling 

period. Vegetation height was shortest in Sheep habitat, in agreement with previous 
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studies in this area which documented the relationship between sheep grazing and low 

vegetation height (Sturm 2001).  

In this study vegetation height was among the structural variables that had the 

strongest influences on bird species richness and abundance. A similar result has been 

highlighted in other studies of grassland birds where the effects of this variable have been 

interpreted in terms of foraging and nesting opportunities (Grzybowski 1976, Isacch and 

Martínez 2001, Nocera et al. 2007 and references therein). Despite the general 

importance of vegetation height, not all bird species responded in the same manner to this 

variable. As in other major grassland ecosystems, some species are specialized in tall 

grass and others in short grass, as a consequence of specific foraging and nesting 

requirements.  

Vegetation height had an effect on distribution of common species even in 

habitats that did not differ in overall grass cover (i.e., Sheep and Deer). Here, however, 

vegetation density was also identified as an important factor. For grassland birds in North 

America, vertical vegetation density has also been reported as one of the most important 

explanatory variables for distribution and density of grassland birds (Renfrew and Ribic 

2001, Fletcher and Koford 2002, Nocera et al. 2007). Other studies have found positive 

correlations between grassland bird densities and litter depth (Wiens 1973, Grzybowski 

1976, Rotenberry and Wiens 1980, Renfrew and Ribic 2001). Litter depth, however, was 

not indicated as an important factor in this study. Only Anthus hellmayri and A. nattereri 

were positively associated to this variable in some of the analyses. Arthropod abundance 

has been shown to be positively related to the presence of litter (Facelli 1994) and this 

might explain the observed pattern for these two insectivorous birds.  
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Some of the most common birds were associated with short and sparse vegetation. 

This was the case of Nothura maculosa, Vanellus chilensis and Anthus furcatus, which 

were among the most abundant species in all three non-crop habitat types. The link 

between common grassland birds and short vegetation has been reported in other studies. 

Vanellus chilensis, Nothura darwini and Anthus correndera are thought to benefit from 

the effects of cattle grazing in the pampas of Argentina (Isacch and Martínez 2001, 

Isacch et al. 2005). Colwell and Dodd (1995, 1997) also found an inverse relationship 

between vegetation height and diversity and density of bird assemblages, especially 

shorebirds, feeding in pastures in the surroundings of Humboldt Bay, California. Species’ 

densities were greater in actively grazed pastures and this pattern was hypothesized to be 

a response to increased prey availability (Colwell and Dodd 1995). In fact, in another 

study conducted in the Great Plains of Texas, arthropod abundance was found to be 

higher in native shortgrass prairie than in several grasslands characterized by taller 

vegetation (McIntyre and Thompson 2003). Additionally, species that pick prey from the 

ground or snatch them from the air should benefit from access to the ground such as in 

areas with short vegetation (Clarke et al 1997, Bradbury and Bradter 2004). It has also 

been argued that foraging in short vegetation may reduce physiological costs in 

comparison to feeding in dense vegetation, since the latter is wetter and harder to move in 

(Moorcroft et al. 2002). Finally, a trade-off involving vegetation structure and nesting 

and predator detection advantages has also been proposed; the benefits of nest 

concealment in taller or denser vegetation may need to be balanced with predator 

detection efficiency by feeding and nesting birds, which is facilitated in short vegetation 

(Colwell and Dodd 1995, Gotmark et al. 1995). 
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In the analysis based on the complete dataset, all three Anthus species showed a 

similar positive response to grass cover. Within natural grasslands, however, Anthus 

nattereri occupied sites with relatively higher and denser vegetation and A. furcatus was 

found in sites with relatively short and sparse vegetation; A. hellmayri tended to be in 

intermediate sites. These patterns suggest resource partitioning among closely related 

species with similar morphologies. Vegetation height has been identified as one of the 

most important variables responsible for interspecific habitat differences among 

grassland birds (Cody 1968). In the case of three co-occurring species of Calcarius 

(Emberizidae), these distributed themselves in different parts of the vegetation height 

gradient in grasslands of Oklahoma (Grzybowski 1976).  

As expected, vegetation structure explained more variation among obligate than 

among facultative grassland bird species. The importance of specific variables also 

differed between the two groups. Vegetation structure is known to be important to species 

that nest in open fields (Bradbury and Bradter 2004 and references therein). Thus, 

differences reported here are probably related to the fact that, unlike grassland specialist 

birds, virtually all grassland species rely on this habitat for feeding but not for breeding 

purposes (Batáry et al. 2007). In fact, habitat models for grassland species have been 

shown to correlate with nesting requirements (Fletcher and Koford 2002). Among 

migrants, species that are grassland specialists during the breeding season also show 

stronger associations to specific habitat features even during the non-breeding season (Igl 

and Ballard 1999).   

Taxa of conservation-concern showed diverse responses to vegetation structure, 

with some favoring taller vegetation in cultivated grasslands (Heteroxolmis dominicana, 
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Sporophila ruficollis), others preferring short vegetation in natural grasslands (Anthus 

nattereri, Sturnella defilippi), and some with no strong association to any particular 

variable (Rhea americana). In agreement with the results from studies in the southern 

Pampas (Fernández et al. 2003), Sturnella defilippi was found to be largely restricted to 

natural grasslands and absent from cultivated lands in the Northern Campos. The species, 

however, showed contrasting patterns in relation to vegetation height in the two regions. 

In the Northern Campos, S. defilippi was not positively associated with vegetation height, 

but in the southern Pampas, this variable was among the most reliable predictors of 

meadowlark occurrence (Fernández et al. 2003). Comparison of results from both studies 

indicates that this species occupies fields with higher vegetation in the southern Pampas. 

Among the pipits, the response of Anthus nattereri to vegetation structure was more 

similar to that of more geographically restricted and less common congenerics (A. 

chacoensis, A spragueii), which seem to avoid short vegetation (Davis et al. 1999, Isacch 

et al. 2005), than to other common and more widely distributed pipits (A. correndera, A. 

furcatus, Isaach and Martinez 2001 and this study).  

In grassland ecosystems, land management practices can be especially important 

for species that feed and nest on the ground (Bradbury and Bradter 2004), such as most of 

the obligate grassland birds of the Pampas. The positive response of many obligate 

species to short and sparse vegetation indicates that they can successfully use areas 

grazed by sheep. This might not be the case for other species such as Anthus nattereri. 

Thus, management of natural grasslands to conserve obligate grassland birds should 

consider the different habitat needs of each species. 
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Even though bird distribution and abundance were associated with the vegetation 

variables considered, the substantial amount of variation in the bird dataset that remained 

unexplained indicated the influence of other important drivers. The high diversity of plant 

species in grasslands of the Pampas region (Soriano 1992), as well as the recent 

identification of several characteristic plant communities within the native grasslands of 

the Northern Campos (Lezama et al. 2006), suggest that floristics may be an additional 

aspect that warrants further examination. It has been suggested that, at local scales, 

vegetation composition may have important effects on bird communities because of 

specific resources that different plant species may provide (Rotenberry 1985). This is the 

first study to relate bird distribution and abundance to vegetation structure in the 

Northern Campos of Uruguay. My results support previous knowledge based on natural 

history data, and present new information on more specific bird responses to vegetation 

structure. It also provides evidence that population declines of grassland birds in the 

Pampas are the result, at least in part, of the negative effects of agriculture-related habitat 

modification on vegetation structure variables important to birds. Future studies should 

focus on determining the influence of vegetation structure on bird foraging and nesting 

requirements and on the investigation of additional factors responsible for grassland bird 

assemblage organization, such as vegetation composition. 
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Table 1. Canonical Correspondence Analysis of 36 species of Pampas’ grassland birds 
and nine vegetation structure variables. 
            

Axes 1      2      3      4 

Eigenvalues 0.362 0.150 0.087 0.063 
Cumulative percentage variance:  

Species data 6.1 8.7 10.2 11.2 
Species-environment relation 44.7 63.3 74.0 81.8 

Sum of all eigenvalues: 5.893 

Sum of all canonical eigenvalues: 0.809 

Test of significance of first canonical axis: F-ratio=16.02, P=0.002 

Test of significance of all canonical axes: F-ratio=4.33, P=0.002 
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Table 2. Canonical Correspondence Analysis of obligate (17 species) and facultative (18 
species) Pampas’ grassland birds and nine vegetation structure variables.  
 

GRASSLAND OBLIGATES 

Axes 1      2      3      4 

Eigenvalues 0.344 0.087 0.071 0.016 
Cumulative percentage variance:  

Species data 13.6 17.0 19.8 20.5 
Species-environment relation 61.5 77.2 89.8 92.7 

Sum of all eigenvalues: 2.529 

Sum of all canonical eigenvalues: 0.558 

Test of significance of first canonical axis: F-ratio=38.35, P=0.002 

Test of significance of all canonical axes: F-ratio=7.68, P=0.002 

 
GRASSLAND FACULTATIVES 

Axes 1      2      3      4 

Eigenvalues 0.344 0.177 0.157 0.106 
Cumulative percentage variance:  

Species data 4.0 6.1 8.0 9.2 
Species-environment relation 35.8 54.2 70.5 81.6 

Sum of all eigenvalues: 8.500 

Sum of all canonical eigenvalues: 0.961 

Test of significance of first canonical axis: F-ratio=6.49, P=0.002 

Test of significance of all canonical axes: F-ratio=2.18, P=0.002 
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Table 3. Canonical Correspondence Analysis of five conservation-concern Pampas 
grassland birds and nine vegetation structure variables. 
. 

Axes 1      2      3      4 

Eigenvalues 0.527 0.273 0.111 0.045 
Cumulative percentage variance:  

Species data 16.1 24.4 27.8 29.2 
Species-environment relation 55.1 83.7 95.3 100.0 

Sum of all eigenvalues: 3.279 

Sum of all canonical eigenvalues: 0.957 

Test of significance of first canonical axis: F-ratio=15.90, P=0.002 

Test of significance of all canonical axes: F-ratio=3.80, P=0.002 
 
 
 
Table 4. Canonical Correspondence Analysis of seven vegetation structure variables and 
17 common species of birds that inhabit natural grasslands in the Northern Campos. 
 

Axes 1      2      3      4 

Eigenvalues 0.134 0.051 0.035 0.021 

Cumulative percentage variance:  

Species data 6.7 9.3 11.0 12.1 

Species-environment relation 53.0 73.1 87.0 95.5 

Sum of all eigenvalues: 1.994 

Sum of all canonical eigenvalues: 0.252 

Test of significance of first canonical axis: F-ratio=8.697, P=0.002 

Test of significance of all canonical axes: F-ratio=2.923, P=0.002 
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Figure 1. Temporal variation of four of the vegetation variables (mean ± SE) that explained differences among the four habitat types in 
the Northern Campos: CR (Crop), PA (Pasture), SH (Sheep), and DE (Deer). 
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Figure 2. Grassland samples (i.e. transects) along a vegetation structure gradient in the Northern 
Campos of Uruguay. CCA ordination diagram with LC scores shows vegetation structure 
variables (arrows) and transects (symbols) of four grassland habitat types: Crop (circles), Pastures 
(squares), Sheep (triangles), and Deer (diamonds). Filled symbols show transects in which the 
highest number of  species (9-11) were recorded (black), and those transects in which the lowest 
number of species (2) were recorded (gray). The vegetation structure variables are: GH (mean 
grass height), VH (mean vegetation height), C25 (mean contacts under 25 cm), TC (mean total 
contacts), % GC (mean percentage grass contacts), % FC (mean percentage forb contacts), and % 
LC (mean percentage live vegetation contacts). Arrows representing LD (mean litter depth) and 
C50 (mean contacts between 25 and 50 cm) were very short and are not depicted here. One 
outlier (Crop transect 5/May 2005) is also excluded from the diagram. 
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Figure 3. Pampas’ grassland bird species along a vegetation structure gradient in the Northern 
Campos. The CCA ordination diagram shows vegetation structure variables (arrows) and five 
grassland bird categories: obligate (circles), facultative (triangles), and ground-nesting species 
(open symbols), as well as species that nest off-the-ground (black symbols), and non-breeders and 
a generalist brood parasite (gray symbols). The 36 species are: RHAME (Rhea americana), 
RHRUF (Rhynchotus rufescens), NOMAC (Nothura maculosa), SYSIB (Sirigma sibilatrix), 
VACHI (Vanellus chilensis), PLDOM (Pluvialis dominica), BALON (Bartramia longicauda), 
GAPAR (Gallinago paraguaiae), ATCUN (Athene cunicularia), COMAC (Columba maculosa), 
COPIC (Columba picazuro), ZEAUR (Zenaida auriculata), MYMON (Myiopsitta monachus), 
COCAM (Colaptes campestris), GECUN (Geositta cunicularia), ANANN (Anumbius annumbi), 
XOCIN (Xolmis cinerea), XOIRU (Xolmis irupero), HEDOM (Heteroxolmis dominicana) 
MARIX (Machetornis rixosus), TYSAV (Tyrannus savanna), TALEU (Tachycineta leucorrhoa), 
PRCHA (Progne chalybea), PRTAP (Progne tapera), ALFUC (Alopochelidon fucata), ANFUR 
(Anthus furcatus), ANHEL (Anthus hellmayri), ANNAT (Anthus nattereri), AMHUM 
(Ammodramus humeralis), SILUT (Sicalis luteola), EMPLA (Embernagra platensis), SPRUF 
(Sporophila ruficollis), STDEF (Sturnella defilippi), STSUP (Sturnella superciliaris), PSVIR 
(Pseudoleistes virescens), MOBON (Molothrus bonariensis). For details of the nine vegetation 
structure variables see legend in Fig. 2 (a very short arrow representing C50 is not shown). 
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Figure 4. Patterns of distribution of obligate (A) and facultative (B) grassland bird species 
(circles) in CCA ordination diagrams with nine vegetation structure variables (arrows).  One 
vegetation variable represented by a very short arrow (C50) and one outlier (Embernagra 
platensis) are not depicted in (A). For details of vegetation structure variables and bird species 
see legends in Figs. 2 and 3. 
 

 
 

 

A 

B 
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Figure 5. Conservation-concern grassland bird species along a vegetation structure gradient in the 
Northern Campos of Uruguay. The CCA ordination diagram shows vegetation structure variables 
(arrows) and conservation-concern obligate (circles) and facultative (triangle) species: Rhea 
americana (near-threatened), Heteroxolmis dominicana (vulnerable), Anthus nattereri 
(vulnerable), Sporophila ruficollis (near-threatened), and Sturnella defilippi (vulnerable). 
Vegetation structure variables are described in Fig. 2. 
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Figure 6. CCA ordination diagram of grassland bird species along a vegetation structure gradient 
in natural grasslands (i.e., Sheep and Deer) of the Northern Campos of Uruguay. The plot 
includes seven vegetation structure variables (arrows) and 17 common obligate (circles) and 
facultative (triangles) species (i.e., 10 or more observations). GH and TC were removed because 
of their high correlation with other variables. Acronyms for bird species and vegetation structure 
variables are specified in legends in Figs. 2 and 3.  
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Appendix. Mean values (± SE) of vegetation structure variables for each habitat type (CR: Crop; PA: Pasture; SH: Sheep; DE: Deer) 
and sampling period in the Northern Campos of Uruguay. LD: litter depth; GH: grass height; VH: vegetation height; TC: total 
contacts; C25: contacts under 25 cm; C50: contacts between 25 and 50 cm; %GC: percentage grass contacts; %FC: percentage forb 
contacts; %LC: percentage live vegetation contacts. Non-percentage values are in cm. 
 

  SAMPLING PERIODS 
Habitat Variables SEP 04 NOV 04 JAN 05 MAR 05 MAY 05 JUL 05 SEP 05 NOV 05 

CR LD 0.00 0.26±0.12 0.43±0.04 0.77±0.09 0.00 0.00 0.07±0.01 0.09±0.02 
PA LD 4.28±0.89 0.61±0.09 0.26±0.08 0.09±0.03 0.04±0.02 0.09±0.02 0.10±0.03 0.06±0.03 
SH LD 0.59±0.12 0.43±0.12 0.30±0.10 0.31±0.09 0.24±0.08 0.09±0.03 0.03±0.01 0.04±0.02 
DE LD 1.22±0.19 1.04±0.16 0.82±0.09 0.83±0.12 0.51±0.07 0.27±0.07 0.17±0.04 0.28±0.04 
CR GH 0.00 1.15±0.24 2.62±0.62 9.31±1.10 1.23±0.48 1.02±0.17 1.49±0.24 3.07±0.38 
PA GH 4.27±0.65 6.39±1.32 7.93±2.15 11.93±2.19 9.93±2.50 6.42±1.70 6.38±1.07 21.21±5.20 
SH GH 3.11±0.42 4.29±0.49 4.28±0.60 3.83±0.57 3.50±0.47 2.91±0.27 2.38±0.17 3.76±0.42 
DE GH 47.48±0.82 75.02±0.76 77.52±1.35 84.22±1.03 70.54±0.94 61.44±0.74 46.28±0.67 87.00±1.50 
CR VH 75.92±1.20 12.86±1.17 40.61±5.29 23.41±2.25 5.28±0.50 4.53±0.21 7.47±0.66 23.43±2.21 
PA VH 5.39±0.36 10.30±1.42 13.26±2.32 17.41±1.95 12.62±2.68 8.13±2.08 7.13±1.26 22.84±5.09 
SH VH 3.58±0.55 4.61±0.47 4.70±0.56 4.30±0.58 3.94±0.48 3.25±0.26 2.82±0.19 4.07±0.43 
DE VH 6.60±0.88 9.56±0.75 9.91±1.36 10.81±1.03 9.14±0.91 7.89±0.70 5.96±0.65 11.15±1.46 
CR TC 10.99±0.76 5.41±0.27 6.75±0.26 4.68±0.27 4.09±0.27 3.83±0.21 6.11±0.26 8.80±0.50 
PA TC 3.85±0.15 2.53±0.33 4.55±0.53 4.15±0.31 4.97±0.39 5.07±0.58 5.68±0.51 6.32±0.81 
SH TC 4.28±0.18 3.61±0.19 5.43±0.44 3.82±0.26 4.62±0.14 4.31±0.09 4.90±0.18 5.15±0.22 
DE TC 4.35±0.25 4.52±0.27 5.05±0.29 4.58±0.18 5.41±0.31 5.65±0.32 5.89±0.32 6.78±0.34 
CR C25 2.39±0.17 5.28±0.29 5.74±0.19 3.95±0.26 4.08±0.27 3.83±0.21 6.11±0.26 7.57±0.29 
PA C25 3.85±0.15 2.33±0.24 4.36±0.43 3.69±0.23 4.66±0.27 4.99±0.53 5.64±0.49 5.12±0.34 
SH C25 4.22±0.14 3.44±0.14 5.42±0.44 3.80±0.25 4.60±0.14 4.31±0.09 4.89±0.18 5.14±0.22 
DE C25 4.35±0.25 4.32±0.23 4.90±0.28 4.44±0.17 5.34±0.30 5.62±0.32 5.87±0.32 6.57±0.30 
CR C50 1.25±0.09 0.11±0.03 0.57±0.11 0.49±0.10 0.01±0.01 0.00 0.00 1.19±0.30 
PA C50 0.00 0.20±0.09 0.19±0.11 0.43±0.12 0.30±0.13 0.08±0.06 0.04±0.04 0.86±0.31 
SH C50 0.01±0.01 0.15±0.13 0.01±0.01 0.02±0.01 0.02±0.01 0.00 0.01±0.00 0.01±0.01 
DE C50 0.00 0.16±0.03 0.13±0.04 10.06±9.94 0.06±0.02 0.03±0.01 0.02±0.02 0.20±0.04 
CR %GC 0.00 5.13±1.60 6.64±2.05 34.64±4.31 7.65±1.85 10.82±1.67 8.51±1.37 6.97±1.29 
PA %GC 42.64±5.93 32.25±3.29 35.49±3.08 51.04±4.67 51.16±5.28 51.68±3.01 57.30±2.47 42.65±3.84 
SH %GC 62.98±2.25 65.69±2.89 55.24±4.10 63.51±4.84 62.79±4.28 55.27±3.76 53.41±2.76 49.89±2.77 
DE %GC 55.21±3.34 67.70±1.33 54.93±1.59 74.23±2.04 65.62±2.22 71.70±3.36 60.98±2.35 67.76±1.84 
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Appendix Continued 
 

  SAMPLING PERIODS 
Habitat Variables SEP 04 NOV 04 JAN 05 MAR 05 MAY 05 JUL 05 SEP 05 NOV 05 

CR %FC 87.23±1.52 20.96±2.42 31.43±1.92 36.77±4.12 27.28±2.38 54.12±2.97 70.63±2.34 70.10±2.06 
PA %FC 33.83±6.62 34.48±7.40 28.68±4.63 25.20±2.45 26.93±2.75 25.28±3.15 23.67±2.57 14.78±2.55 
SH %FC 18.79±3.40 14.52±3.08 8.00±1.66 15.33±2.93 25.23±5.38 32.59±3.92 26.39±3.77 12.80±1.18 
DE %FC 13.51±2.79 8.77±2.69 1.68±8.55 0.70±2.02 15.32±2.02 15.85±2.25 15.84±1.94 6.30±1.87 
CR %LC 87.24±1.52 26.10±2.96 39.41±2.40 75.37±4.06 34.93±2.90 64.94±2.59 79.14±1.32 77.06±1.30 
PA %LC 76.47±2.46 66.73±6.05 64.17±2.58 76.24±2.68 78.09±4.33 76.96±1.71 80.97±1.66 57.43±4.83 
SH %LC 81.78±2.27 80.20±2.19 63.25±2.78 78.85±2.64 88.01±2.04 87.86±2.25 79.80±2.84 62.69±2.33 
DE %LC 10.99±0.76 5.41±0.27 6.75±0.26 4.68±0.27 4.09±0.27 3.83±0.21 6.11±0.26 8.80±0.50 
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CHAPTER 3 

NEST SURVIVAL GRASSLAND BIRD IN CULTIVATED AND 

NATURAL GRASSLANDS OF THE NORTHERN CAMPOS OF 

URUGUAY 

 

INTRODUCTION 

Many populations of grassland birds are declining widely as a consequence of 

habitat modification (Askins 1993, Vickery et al. 1999, Herkert et al. 2003, Murphy 

2003, Brennan and Kuvlesky 2005). This has resulted in much effort devoted to 

determining how grassland species respond to changes in habitat features, especially with 

respect to those generated by agricultural activities (e.g., Herkert 1994, Knopf 1994, Best 

et al. 1995, Fletcher and Koford 2002, Filloy and Bellocq 2007). In general, population 

density has been traditionally used as a surrogate for habitat quality (Van Horne 1983) 

and under this premise the same resources that sustain high population densities also are 

assumed to positively affect indices of fitness, such as reproductive success (Vickery et 

al. 1992a). The relationship between density and nesting habitat quality, however, is 

variable, and it has been shown that the former it is not necessarily a reliable surrogate of 

the latter (Fretwell 1969, Maurer 1986, Vickery et al. 1992a, Hughes et al. 1999, Winter 

and Faaborg 1999).  

Population declines of grassland birds in North America have been related to low 

quality of breeding habitat (Askins 1993). Habitat modifications imposed by agriculture 

can reduce the availability of foraging and nesting resources through effects on 

vegetation structure and, thus, may force birds to breed in unfavorable areas (Evans 
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2004). For example, in the case of ground-nesting birds, livestock grazing may decrease 

vegetation density and heterogeneity which can, in turn, negatively affect nest 

microclimate and concealment (With and Webb 1993, Gregg et al. 1994, Beck and 

Mitchell 2000, Hoekman et al. 2002, Evans 2004). Brood parasitism poses an additional 

threat as brood parasites are thought to benefit from conditions provided by agriculture 

(Rodenhouse et al. 1993, Best et al. 1997, Davis and Sealy 2000). In the Neotropics in 

particular, the expansion of the Shiny Cowbird (Molothrus bonariensis) has been 

associated with habitat alterations related to agricultural development (Post and Wiley 

1977, Cavalcanti and Martins Pimentel 1988). 

Testing hypotheses about survival processes and determining survival estimates 

are fundamental steps towards a thorough understanding of animal population dynamics 

(Lebreton et al. 1992). The nesting season can be critical for bird populations (Martin 

1993a), and understanding patterns of nest survival is a key aspect for the management of 

declining birds (Grand et al. 2006). Agricultural landscapes include diverse management 

practices which probably affect birds’ reproductive success differentially. For example, 

some activities can result in the replacement of native vegetation by introduced species 

and grazing may involve different types of domestic and native animals. Given the 

importance of breeding ecology for bird population persistence and the diversity of 

agricultural habitats, there is a need for more studies that focus on species’ reproductive 

biology (Davis 2003, Thompson 2004), especially those that provide habitat-specific 

demographic measures (Johnson 2007).  

The Pampas biome of south-eastern South America comprises a region dominated 

by temperate sub-humid grasslands (Soriano 1992). The original vegetation, which 
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included a mixture of tallgrass steppe, prairies, and marshlands, has been extensively 

modified by agriculture (León et al. 1984, Bucher and Nores 1988, Vickery et al. 1999, 

Bilenca and Miñarro 2004). Most of the Pampas has now been converted either to 

croplands or to rangelands (Krapovickas and Di Giacomo 1998, Vickery et al. 1999). 

Within the latter, livestock has largely replaced native grazers (i.e., Pampas Deer 

Ozotoceros bezoarticus and Greater Rhea Rhea americana; Soriano 1992, González et al. 

2002), and a variety of grazing practices result in habitats of diverse vegetation structure 

that are used by grassland birds (e.g., Lanctot et al. 2002, Fernández et al. 2003). These 

agricultural habitats are key for grassland bird conservation because they greatly exceed 

the area set aside for wildlife reserves in the region (Di Giacomo and Krapovickas 2005, 

World Resource Institute 2007). The region’s conservation status has triggered new 

efforts focused on grassland research, most of which have been directed towards the 

characterization of bird assemblages in agricultural settings (e.g., Isacch and Martínez 

2001, Isacch et al. 2003) and the identification of bird-habitat relationships (Fernández et 

al. 2003; Isacch et al. 2005). Studies of nest success have also received some attention 

(e.g., Mermoz and Reboreda 1998), but not with the aim to contrast patterns among 

habitats with differing degrees of alteration.  

In this study, nest-survival patterns of ground-nesting birds breeding in cultivated 

and natural grasslands in the Northern Campos of Uruguay were investigated. After a 

general characterization of the breeding biology of ground-nesting species of the 

Northern Campos, nest-survival models were used to test hypotheses dealing with 

possible factors underlying avian nest-success patterns, including temporal, habitat type, 

and vegetation structure effects. In general, nest-survival rates were predicted to be 
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higher in native grasslands and in habitats with higher and denser vegetation, based on 

the positive effects these features can have on nest success (Davis 2005). Given the 

association of Molothrus bonariensis with cultivated lands, brood parasitism was 

predicted to be higher in cultivated rather than in natural grasslands. Among congeneric 

species with contrasting conservation status, patterns of nest survival were also predicted 

to reflect such differences (i.e., threatened species should have lower nest survival).  

 

METHODS 

Study area 

Research was conducted in southern Salto department, northwestern Uruguay (31°19’ to 

31°44’S and 56° 42’ to 57° 56’W), a region within the Northern Campos of the Río de la 

Plata grasslands (Soriano 1992). The general landscape of the study area is composed of 

rolling topography in which low mesas and rocky outcrops are interspersed. The climate 

is considered temperate humid with mean annual temperature of 19°C and 1300 mm 

annual rainfall (Lezama et al. 2006). Agricultural activity is primarily represented by 

open-range livestock grazing on natural and cultivated grasslands. Planted pastures and 

croplands are common in the western part of the region, whereas the eastern part is 

characterized by large expanses of natural grasslands which have never been plowed. 

These natural grasslands harbor many species in the families Poaceae and Asteraceae; 

Stipa, Paspalum, Aristidsa, Conyza and Piptochetium are all well represented (Lezama et 

al. 2006). Large patches of grasslands (800 to 1200 ha) were selected within ranches and 

farms in the surroundings of San Antonio and Cerros de Vera in Salto department.  
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Field work was conducted in three grassland types: 1) planted pastures (Pasture), 

represented by lands that were plowed and seeded with non-native species and used for 

cattle grazing; 2) sheep rangelands (Sheep), native grasslands that had not been 

previously plowed and were grazed by free-ranging sheep and cattle; and 3) deer 

rangelands (Deer), unplowed native grasslands which were grazed by cattle and Pampas 

Deer. The lack of sheep grazing (although a few animals were present in these fields to 

supply the ranch) in this type of grassland resulted in higher vegetation height and 

diversity than in Sheep (Sturm 2001, Chapter 2). Additional details about each habitat 

type are provided elsewhere (see Chapter 1). 

Nest searching and monitoring 

From September 2004 to November 2005 grassland bird populations were 

sampled on eight 500-m transects on each of the three grassland types. Four transects 

were chosen among the eight available (after considering constraints imposed by 

landowners’ and other logistic issues) and 15-ha plots (500 x 300 m) were established 

along them (i.e., four plots per habitat type). On these plots, the nests of the following 

ground-nesting species were targeted: Rhea americana, Nothura maculosa, Vanellus 

chilensis, Gallinago paraguaiae, Podager nacunda, Anthus furcatus, A. hellmayri, A. 

nattereri, Ammodramus humeralis, Sicalis luteola, Sturnella defilippi, and S. 

superciliaris. To locate nests, an adaptation of the rope-dragging method (Wiens 1969, 

Klute 1994) was used on each plot. This consisted of a 30-m length rope with 1-m pieces 

of rope suspended at 1-m intervals. Two observers walked parallel to each other while 

pulling the rope through the vegetation. At the same time, one or two additional observers 

walked 10-20 m behind the rope and spotted birds as they were flushed. After each 
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flushing event the area was carefully checked to locate a potential nest. This method 

performed poorly for Vanellus chilensis and Sturnella defilippi, because these species 

tend to abandon the nest in advance, as soon as a threat is perceived by the attending 

adult. Most nests of these species were located using behavioral clues. During the first 

breeding season (Sep 19-Dec 3, 2004), all plots were surveyed approximately every 25 

days. During the second breeding season (Sep 26-Dec 12, 2005) more assistants were 

available, and plots were surveyed approximately every 15 days. Despite differences in 

effort between the two consecutive breeding seasons, nest finding methods used were the 

same and, thus, nests monitored were assumed to be a random subset of all nesting 

attempts. Once a nest was found, its geographic coordinates were recorded into a GPS 

receiver and two marks (located ≥ 2.5 m from the nest) were placed forming a straight 

line with the nest in the middle. These marks consisted of small pieces of flagging 

attached to vegetation or small piles of natural materials such as dry cattle dung. The GPS 

receiver was very reliable in terms of relocating the general spot where the nest was 

located, whereas the marks provided cues regarding the specific nest placement. Nests 

were checked every 2-3 days until their final fate (e. g., predation, abandonment, young 

fledged) was established. Nest fate was determined following guidelines described by 

Martin (1993) and Martin and Geupel (1993). Potential nest predators sighted during 

field work included several snakes (e.g., Philodryas patagoniensis), birds (Cariama 

cristata, Circus cinereus), and mammals (Dasypus novemcinctus, D. hybridus, Conepatus 

chinga). Field assistants were trained in nest searching techniques and on how to 

minimize nest disturbance during marking and monitoring activities. In addition to nests 

located during the systematic searches on the designated plots, several nests of target 
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species were found incidentally while conducting other research activities. Whenever 

possible these nests were also monitored and were included in the analyses to increase 

sample sizes.  

Data Analysis 

 G-tests were used to examine across-habitat patterns in numbers of nests of 

different species as well as proportions of nests within several fate categories. These 

analyses were conducted in SPSS ver. 15 (SPSS 2006). 

Recent advances in analytical techniques and accompanying software allow sound 

nest-survival estimates to be computed (White and Burnham 1999, Dinsmore et al. 2002, 

Shaffer 2004). Program MARK (White and Burnham 1999, hereafter MARK) was used 

to model daily nest survival (DNS) as a function of several variables of interest. These 

analyses were restricted to species represented by five or more nests of known fate. DNS 

is defined as “the probability that a nest will survive a single day”, and nest survival as 

“the probability that a nest will be successful”, that is, will produce at least one young 

(Dinsmore et al. 2002). On the basis of encounter histories of individual nests, MARK 

uses likelihood-based procedures to estimate regression coefficients for those explanatory 

variables included in the analysis (Shaffer 2004). The nest survival model in MARK 

provides several advantages over classical approaches to true nest survival estimation 

(e.g., Mayfield 1961, 1975, Johnson 1979, Bart and Robson 1982). Some of the most 

important features include the ability to accommodate non-constant daily survival rates 

(i.e., nest survival can be modeled as a function of time-specific variables) and the 

consideration of multiple variables simultaneously (which can be either categorical or 

continuous), without the need to divide the data into discrete groups for testing 
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(Dinsmore et al. 2002, Jehle et al. 2004). The latter is especially useful when small 

sample sizes are involved. Thus, the program is particularly well suited for the 

consideration of specific biologically meaningful questions (Dinsmore et al. 2002, 

Shaffer 2004). Here, MARK was used with two objectives in mind: a) to identify factors 

driving nest survival patterns of grassland birds and, b) to estimate nest survival rates of 

grassland species, including closely-related pairs of common and threatened taxa.  

A total of 83 models were considered for different subsets of the data. The 

complete dataset included 259 known-fate nests which were monitored for a total of 1977 

exposure days across 76- (2004) and 78-day (2005) periods during the two-year study. A 

hierarchical approach based on a step-down procedure (Lebreton et al. 1992) was used. 

First, the fully parameterized model, one that included all variables of interest was run. 

Second, different variables were systematically excluded through a series of subsequent 

analyses. Considering the information available for each nest and based on results from 

previous research on nest survival of grassland birds, a priori models included linear and 

quadratic effects of date (i.e., seasonal effects) and year (2004, 2005), habitat type 

(Pasture, Sheep, Deer), and vegetation structure effects (mean vegetation height and 

vegetation density in the 0-25 cm height interval; Chapter 2). The latter referred to fields 

in which the nests were placed. Each model set also included a null model in which DNS 

was constrained to be constant across all nests and all days in the sample, and global 

models which included all the variables under consideration. These were incorporated as 

covariates with the use of a logit link function which constrains estimates between 0 and 

1. Analyses of the complete dataset were used to test for general effects on the grassland 

bird community. Apart from the factors mentioned above, the general analyses also 
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included the effect of species. Afterwards, specific nest survival patterns of species with 

relatively large sample sizes (i.e., ≥ 20 nests) were examined.  

Model selection was based on Akaike’s information criterion corrected for small 

sample sizes (AICc, Anderson and Burnham 2002); in each analysis sample size reflected 

the total number of days all nests in the sample were monitored (Dinsmore et al. 2002, 

Shaffer 2004). Apart from AICc values, MARK computes several other metrics: ∆AICc is 

the difference in AICc between a given model and the model with the lowest AICc; 

normalized Akaike weights (w) provide a measure of relative likelihood of each model 

given the candidate set of models and the data (Blums et al. 2005); deviance values 

represent a measure of discrepancy between observed and fitted values (Shaffer 2004). 

Models with ∆AICc ≤ 2 were considered to have substantial support while those with 

∆AICc ≥ 4 were thought to have little support (following Burnham and Anderson 2001 

and Anderson and Burnham 2002).  

Through consideration of these metrics the ultimate objective was to select the 

most parsimonious model, defined as the one which is consistent with the data while 

using the fewest number of parameters (Cooch and White 2008). To obtain nest survival 

estimates of species over the entire nest period, DSR was raised to the power equivalent 

to the average number of days of the species’ nesting cycle (Cooch and White 2008). On 

the basis of information available in the literature (Saunders 1932, Cabot 1992, Lanyon 

1995, Davis 2003, Cozzani et al. 2004, Tyler 2004) and on that obtained during this study, 

nesting cycle lengths of 16 days (Nothura maculosa), 26 days (Anthus spp.), and 24 days 

(Sturnella spp.) were used to determine nest survival estimates. Estimates are reported as 
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means ± SE or 95% upper and lower confidence intervals (95% CI) unless otherwise 

stated. 

RESULTS 

General nesting patterns  

A total of 315 nests from 12 grassland species were found during the study (Table 

1). Numbers of nests found in 2005 (224) more than doubled those found in 2004 (91), 

reflecting differences in searching effort. The greatest number of nests was found in 

Sheep, followed by Pasture and Deer (Table 1). The largest number of breeding species 

was recorded in Deer (11), followed by Sheep (10) and Pasture (8). All birds nested in 

two or more habitat types except for Sturnella defilippi, which bred only Sheep; the mean 

number of habitats used per species was 2.4 ± 0.2. There were differences among species 

in terms of habitat use, as indicated by the number of nests found in each habitat. Of 

those species with relatively large samples sizes (i.e, ≥ 20 nests), three (Nothura 

maculosa, Anthus furcatus, Sicalis luteola) nested in all three habitats, and two (Anthus 

nattereri and Sturnella superciliaris) nested in both Pasture and Deer. Proportions of 

nests in each habitat type were significantly different for both the first (G = 84.1, df = 4, 

P < 0.001) and second group of species (G = 50.7, df = 1, P < 0.001).  

Among nests of known fate (n = 283), 26% were successful, whereas predation, 

abandonment, and flooding accounted for 53%, 11%, and 4% of nest fates, respectively; 

6% of all unsuccessful nests could not be attributed to a specific category. Fate 

proportions were significantly different among species (G = 59.8, df = 33, 0.005 > P > 

0.001, Figure 1). Considering nests of known fate and species represented by 10 or more 

nests, the proportion of successful nests ranged from 14% for Sicalis luteola to 40% for 
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Vanellus chilensis (Figure 1). The incidence of brood parasitism was minimal; only two 

out of 170 passerine nests of known fate were affected. Single eggs of Molothrus 

bonariensis were found in one nest of Anthus furcatus and in one nest of Sturnella 

superciliaris in Sheep and Deer, respectively. 

Within the timeframe in which nest searching and monitoring was conducted (mid 

September to early December), the overall peak of the nest activity occurred from mid 

October to late November (Figure 2). Nesting activity patterns, however, varied among 

species, with some concentrated during the first (Vanellus chilensis), mid (Sturnella 

defilippi), or second half (Sicalis luteola and Sturnella superciliaris) periods. The nesting 

activity of two common species, Nothura maculosa and Anthus furcatus extended 

throughout the whole period, with peaks in October and early November (Figure 3).  

Nest survival patterns 

In the analyses of nest survival (all species combined), the best models included a 

quadratic seasonal trend (Tables 2 and 3) which indicated that nest survival increased 

during the first part of the nesting season and then decreased toward the late season; nest 

survival rates were highest during the midseason and lowest during the late season. In the 

first of these analyses, in which vegetation structure variables were not considered, the 

best model also included habitat and year effects. The weight of support for the latter was 

high (67%) in comparison to other models, all of which had ∆AICc values > 2 and w ≤ 

0.22 (Table 2). The second analysis was restricted to 199 nests for which information on 

vegetation structure data were available. In this case, there were five equally-supported 

models (i.e., ∆AICc values < 2), all of which included habitat type effects apart from the 

quadratic trend for calendar day. In addition, effects of year, vegetation height and 
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density also were incorporated in some of the models. The summed weight of support for 

these five best-fitting models was 68%; none of the other models considered had more 

than 9% support (Table 3). Also, in the two analyses, neither the global nor the null 

models had much support (∆AICc values > 9, w ≤ 0.01; Tables 2 and 3).  

Analyses that focused on Nothura maculosa revealed similar patterns. Habitat 

type was incorporated in all best-fitting models together with seasonal trends (included 

either as a linear or quadratic effects) in most cases; year and vegetation structure effects 

were also included in some of the best supported models. For the analysis that included 

all nests (n = 78), the five best models had a summed weight of support of 89% (Table 4), 

whereas in the analysis of nests for which additional vegetation structure data were 

available (n = 60), the top four models comprised 60% of the support in the data (Table 

5). Considering both analyses, habitat type was the only variable among those 

investigated for which direct effects were supported (Tables 4 and 5). In general, patterns 

of model support were similar in both analyses. The exceptions were the models that 

included habitat and year effects and habitat effects alone, which were among the best 

fitting models only in the analysis corresponding to the complete nest data set. 

Conversely, when considering nests with vegetation structure data, these models were 

weakly supported (∆AICc values > 3, w ≤ 0.04). This suggests that there was an 

additional effect of vegetation structure variables on DNS irrespective of habitat type. 

The best supported model in the analysis without vegetation structure variables (habitat 

type + year effects) yielded higher nest success estimates for 2004 (0.26 [0.07-0.53, 95% 

CI] to 0.61 [0.38-0.82]) than for 2005 (0.07 [0.01-0.22] to 0.44 [0.23-0.59]). Estimates 

were higher for Pasture (0.44 [0.23-0.59] to 0.61[0.38-0.82]), than for Sheep (0.11 [0.03-
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0.27] to 0.31 [0.08-0.62]) or Deer (0.07 [0.01-0.22] to 0.26 [0.07-0.53]). Nest success 

estimates from the best supported model in the analysis that included vegetation structure 

data (quadratic trend in calendar day + habitat effects) were congruent with the latter 

results. The estimated values for the middle of the nesting season (when nest success was 

hypothesized to be at its highest) were: 0.58 (0.36-0.75, 95% CI), 0.27 (0.06-0.55) and 

0.14 (0.02-0.38) for Pasture, Sheep, and Deer, respectively. 

Two additional analyses focused on the pairs of closely-related birds with 

differing conservation statuses. In the case of Anthus species (A. furcatus is common 

whereas A. nattereri is threatened), all of the models considered had approximately equal 

weight in the data (∆AICc values < 2), including the one that assumed constant DNS. In 

terms of Akaike weights, the model that considered differences in DNS among species 

was the only one to have more support than the null model (30% vs. 21%, Table 6). On 

the basis of the model considering species differences, the nest survival estimates were of 

0.11 and 0.03 for Anthus furcatus and Anthus nattereri, respectively. 

 The analysis of nest data from Sturnella species revealed little support for the 

existence of time effects or difference between species in DNS. The model that included 

species as a sole factor received considerably less support than the others. Models that 

combined effects of species and time had approximately equal weight in the data (Table 

7). The model with the highest Akaike weight (0.39, linear trend of calendar date + 

species effects) provided early-season nest success estimates (which decreased linearly 

during the nesting season as a consequence of the hypothesized calendar date effects) of 

0.25 (0.07-0.50, 95% CI) and 0.51 (0.12-0.81) for Sturnella defilippi and S. superciliaris, 

respectively. It is worth noting, however, that on the basis of differences in AICc, the 
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latter model had approximately the same weight in the data (∆AICc values < 2) as did the 

null model (constant nest success). 

DISCUSSION 

General nesting patterns 

Most grassland birds in the study area nested in more than one habitat type, but 

numbers of nests varied significantly across habitats. For a given species, the greatest 

number of nests was found in the habitat in which the species attained its highest density 

(Chapter 1). Nothura maculosa was the only relatively common breeder (i.e., > 20 nests 

on each habitat type) in all three habitats. Nest success was greater in Pasture, where 

population density was greatest as well (Chapter 1). Thus, for this species, population 

density might be indicative of nesting habitat quality. 

Sturnella defilippi was the only species that bred in only one habitat (Sheep). The 

species’ absence from Pasture is in agreement with its strong association with natural 

grasslands (Fernández et al. 2003, Chapter 2). In terms of vegetation structure, however, 

Deer more closely resembled the characteristics of breeding sites in southern Buenos 

Aires province (Fernández et al. 2003, R. Sánchez pers. comm.), where vegetation height 

seems to be one important element driving Sturnella defilippi’s selection of breeding 

habitat (Fernández et al. 2003; Cozzani et al. 2004).  In the Northern Campos, the 

presence of this species in areas with relatively short vegetation (Sheep) suggests that 

other factors, such as breeding-site fidelity, also influence breeding habitat use patterns. 

In Argentina, nesting areas tend to be reoccupied except when land use changes occur; 

some reproductive groups even reoccupied sites after they had been transformed from 

natural grassland to agricultural lands (Fernández et al. 2003). In the Northern Campos, 
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Sturnella defilippi occupied the same nesting areas for at least three consecutive breeding 

seasons. Site-fidelity, however, can not fully account for the lack of breeding activity in 

Deer. 

Predation accounted for most nest losses. The overall predation rate estimated in 

this study (53%) is similar to that reported for North American grassland birds (48.8% ± 

2.7; reviewed by Martin 1993b). Comparisons restricted to obligate grassland passerine 

species (sensu Vickery et al. 1999), however, showed higher predation rates in the 

Northern Campos sites (63.2-77.3%) than in North America (22.3-64.4%), whereas 

abandonment rates were similar in these two regions (Martin 1993b, Martin 1995, Best et 

al. 1997, Davis 2003, Winter et al. 2004). Given the disproportionate impact of nest 

predation on avian nest fate (Ricklefs 1969, Martin 1993a), rates of successful nests were, 

accordingly, higher in North America (25.8-62.8% vs. 11.5-22.2% in this study). 

Unfortunately, additional data for temperate South American grassland species are 

limited. For one well-studied species, Pseudoleistes virescens, predation and desertion 

rates were 61.2% and 15.8% (Mermoz and Reboreda 1998). Although these figures are 

similar to the ones reported here, this should be viewed with caution since P. virescens is 

an above-ground nester (Mermoz and Reboreda 1998). For one ground-nesting species, 

Sturnella defilippi, a study of a small sample of nests revealed a predation rate of 46.7% 

(Cozzani et al. 2004).  

Contrary to expectations, rate of brood parasitism was not higher in cultivated 

grasslands and, in fact, instances of parasitism were particularly infrequent overall. All of 

the studied species are known or suspected to be hosts of Molothrus bonariensis 

(Friedmann et al. 1977, Fraga 2002). Although the incidence of brood parasitism tends to 
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be lower in grasslands than in shrublands or forested habitats, the low proportions of 

parasitized nests in the Northern Campos contrast with those reported for North 

American grassland regions (from 10% to more than 20%; Peer et al. 2000 and references 

therein). Relatively lower brood parasitism rates may reflect either the effects of high 

levels of egg rejection behavior or low cowbird densities (Peer et al. 2000, Herkert et al. 

2003). In the Northern Campos, the latter seems a more plausible explanation given the 

fact that Molothrus bonariensis was recorded in small numbers in all three habitat types 

(Chapter 1), and that egg rejection was not observed in the few parasitized nests found. 

Another explanation for the low incidence of brood parasitism in the study sites could be 

the general lack of elevated perches and wooded edges, two factors that are thought to 

facilitate cowbird activity (Johnson and Temple 1990).   

Nest survival patterns 

Overall, quadratic temporal trends and habitat type effects were the two most 

frequent variables included in best-supported models of nest survival. These effects were 

particularly evident in the general analyses that included nests of all species and in those 

restricted to Nothura maculosa. Seasonal effects on nest survival have been identified in 

other studies of grassland birds (e.g., Dinsmore et al. 2002, Davis 2005, Wilson et al. 

2007). A higher nest survival during midseason, such as the one reported here, was also 

found for Pseudoleistes virescens, a tallgrass nesting species. The pattern may have been 

related to higher nest defense levels due to the presence of more nesting conspecifics 

during the midseason (Mermoz and Reboreda 1998). This factor cannot, however, apply 

to Nothura maculosa because, unlike Pseudoleistes, it does not nest colonially or provide 

active nest defense. An alternative explanation is that nest survival could be highest 



    Adrián B. Azpiroz, 2008, Ph.D. Dissertation, p. 109

 

during the peak of the breeding season because of the satiated predator effect (Ims 1990), 

but this is not supported by available evidence. Nothura maculosa does not display 

reproductive synchrony (despite a peak of activity in October and November its breeding 

extends through several months; De la Peña 2007, pers. obs.), and species that commonly 

depredate avian nests are incidental, not specialized predators (Vickery et al. 1992b, 

Herkert et al. 2003, Renfrew and Ribic 2003). In addition, other studies of open habitat 

birds suggest that predators may prey on nests when the latter are most abundant (Wilson 

et al. 2007). A higher nest survival during midseason may also be explained by a change 

in the abundance of preferred prey for nest predators, which may switch to nests when 

preferred prey becomes scarce or unavailable. 

Both in the case of the general analyses that included nest data sets of all species, 

and those that focused on Nothura maculosa, habitat effects revealed higher nest survival 

rates in Pasture, followed by Sheep and Deer. One factor responsible for this result could 

be among-habitat differences in conditions affecting nest concealment. Vegetation 

structure differed among habitats (Chapter 2) and some studies have shown that 

vegetation height and density, in particular, can influence nest survival of grassland birds, 

with species tending to place nests in taller vegetation than that randomly available on 

nesting grounds (Davis 2005). Nest survival, however, was higher in Sheep than in Deer, 

despite vegetation being shorter and sparser in the latter (Chapter 2). However, vegetation 

structure data available for the study sites refer to nesting fields, not nesting sites (i.e., 

specific sites where nests were placed). Grassland birds that nest in areas with short and 

sparse vegetation can still select nest sites with taller and denser vegetation (Davis 2005). 

It has also been suggested that there is a trade-off between nest concealment and 
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predation detection efficiency (Gotmark et al. 1995). Whereas taller and denser 

vegetation may provide more concealment, these conditions also limit predator detection 

capabilities of nesting birds. The latter may drive birds to nest in short and sparse 

vegetation (Gotmark et al. 1995). In any case, vegetation structure through its effect on 

nest concealment cannot explain all observed nest survival patterns; Pasture and Deer 

were similar in terms of vegetation structure characteristics (Chapter 2), but nest survival 

was highest in the former and lowest in the latter. In addition, vegetation variables were 

contained in few of the best-supported models in this study and, in fact, few studies have 

found strong effects of vegetation on nest success of grassland passerines (Winter et al. 

2005). Differences in predator communities among habitats may provide additional 

insight. Pasture habitat was imbedded in a more altered landscape than that of Sheep and 

Deer (see Chapter 1); if predator communities in the former are depauperate they may 

exert lower nest predation pressure on grassland birds. Another subject that merits further 

investigation relates to recent evidence that livestock and cervids can act as grassland 

nest predators (Pietz and Granfors 2000a, Renfrew and Ribic 2003, Nack and Ribic 2005, 

Walsberg 2005), and whether this may be related to relatively lower nest survival of 

grassland birds in Deer habitat.  

 Although nest survival estimates for threatened species were lower than those of 

congenerics, models failed to identify any strong “species” effects.  Models that tested for 

differences between species had levels of support similar to that of null models (i.e., 

∆AICc values < 2). Thus, with respect to nest survival, common taxa seem to have no 

advantage over their globally threatened counterparts. These results suggest that nest 

survival may not be the main factor behind declines of grassland bird populations in the 
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Northern Campos. A lack of association between reproductive success and population 

decline has been reported for other ground-nesting birds in North America (Aldridge and 

Bridham 2001).  

In general, nest survival estimates were low but within the range of those reported 

for other North American and South American grassland species (Mermoz and Reboreda 

1998, Jehle et al. 2004, Shriver et al. 2007). Anthus nattereri had a particularly low nest 

survival (0.03), despite a relatively high population density in Deer (Chapter 1). It is 

important to note that nest success metrics do not necessarily equate to annual 

reproductive output (Thompson et al. 2001). Re-nesting and multiple brooding attempts 

can have substantial influence on productivity and, in the case of ground nesters, may 

counteract the effects of heavy predation pressure (Beitiema and Müskens 1987, Winter 

1999). Little information on this topic is available for South American grassland birds, 

but replacement clutches and re-nesting are known or suspected in at least some species 

(e.g., Ammodramus humeralis, Sturnella defilippi; Di Giacomo 2005, pers. obs.). Also, 

high nest predation tends to be associated with production of more broods (Martin 1995).  

Here, the breeding biology of grassland birds in the Northern Campos was 

characterized for the first time. Apart from new natural history data, patterns of nest 

survival were documented and the factors responsible for these patterns were tested using 

modern inferential procedures. Additional work is much needed and results from this 

study should provide a useful baseline for future research efforts. First, there is a need for 

more natural history information. Basic data such as nesting cycle lengths and incidence 

of multiple nesting are poorly documented among many Pampas grassland birds. This 

type of information is crucial for rigorous assessments of nest survival and annual 
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productivity (e.g., Thompson et al. 2001). Given the pervasive effects of predation on 

nest survival, the general characterization of the predator community and precise 

identification of predator species may also provide valuable information, especially for 

management activities (Ammon and Stacey 1997, Pietz and Granfors 2000b, Renfrew 

and Ribic 2003). These efforts may be especially useful in combination with 

experimental manipulations of grazing regimes given the potential direct and indirect 

influences of native and domestic grazers on the breeding activity of populations of 

grassland birds (i.e., predation, vegetation modification). In this context, the inclusion of 

livestock-free sites could provide new insight. Finally, the highly variable nature of 

grassland ecosystems calls for more studies at large spatial and temporal scales (Winter et 

al. 2005) which could provide broad application of results within the threatened Pampas 

region.  
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Table 1. Number of nests found for each of 12 grassland bird species during 2004 and 

2005 in three habitat types in the Northern Campos of Uruguay. The last column 

specifies the number of nests used for nest survival analyses (NSA).  

 

Species Habitat Type  

 Pasture Sheep Deer Total NSA 

Rhea americana 1 4 3 8  
Nothura maculosa 36 21 26 83 78 
Vanellus chilensis 5 3 2 10 6 
Gallinago paraguaiae 0 2 4 6 5 
Podager nacunda 0 5 1 6  
Anthus furcatus 1 44 8 53 42 
Anthus hellmayri 0 4 2 6 6 
Anthus nattereri 4 0 19 23 21 
Ammodramus humeralis 4 1 1 6  
Sicalis luteola 3 2 21 26 20 
Sturnella defilippi 0 36 0 36 33 
Sturnella superciliaris 50 0 2 52 48 

Total 104 122 89 315 259 
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Table 2. Comparison of the models used to assess the combined effects of season 
(modeled as linear [SS] and quadratic [SS2] time trends in the most parameterized 
models), year (YR), habitat (HAB), and species (SPE) on daily survival rates (DNS) of 
nests (n = 259) in the Northern Campos of Uruguay. A “+” indicates an additive effect of 
variables. Models are ranked by the difference in Akaike’s information criterion 
corrected for small sample size (AICc); w reflects the relative support for the model in 
question given the model set and the data; K is the number of parameters estimated by the 
model; deviance is a measure of model fit. Treatments within factors are: 2004 and 2005 
for YR; Pasture, Sheep, and Deer for HAB; and Nothura maculosa, Vanellus chilensis, 
Gallinago paraguaiae, Anthus furcatus, A. hellmayri, A. nattereri, Sicalis luteola, 
Sturnella defilippi, and S. superciliaris for SPE. The original set included 12 models of 
which the top-10 (which include the global models indicated with a “*”) and a null 
models (constant DNS) are shown. Effective sample size = 1977. 
 

Model ∆AICc w K Deviance 

SS 2 + HAB + YR                0.00 0.67     6 898.36 
SS 2 + HAB                                2.19 0.22 5 902.56 
SS 2 + YR              4.20 0.08 4 906.58 
SS 2                            7.51   0.02 3 911.90 
SS 2 + HAB + Year + SPE *           9.21 0.01   14 891.40 
SS 2 + YR + SPE        11.37   <0.00   12 897.61 
SS + HAB + YR + SPE *           11.88 <0.00  13 896.10 
SS 2 + HAB + SPE     13.27 <0.00 13 897.49 
HAB + YR                    13.84 <0.00 4 916.22 
HAB                                 14.59 <0.00 3 918.98 
Constant DNS           15.40 <0.00 1 923.80 
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Table 3. Model set used to assess the combined effects of season (modeled as linear [SS] 
and quadratic [SS2] time trends in the most parameterized models), year (YR), habitat 
(HAB), species (SPE), vegetation density (C25), and vegetation height (VH) on daily 
survival rates (DNS) of nests (n = 194) in the Northern Campos of Uruguay. Models 
included additive effects of variables of interest. Models are ranked by the difference in 
Akaike’s information criterion corrected for small sample size (AICc); w reflects the 
relative support for the model in question given the model set and the data; K is the 
number of parameters estimated by the model; deviance is a measure of model fit. For 
treatments within factors see legend in Table 1. The original set included 26 models of 
which the top-10, two global (indicated with a “*”) and null models (constant DNS) are 
shown. Effective sample size = 1541. 
 

Model ∆AICc w K Deviance 

SS 2 + HAB                            0.00 0.23 5 680.11 
SS 2 + HAB + YR                                 0.54 0.17 6 678.64 
SS 2 + HAB + YR + VH                             1.71 0.10 7 677.76 
SS 2 + HAB + VH                                  1.76 0.09 6 679.86 
SS 2 + HAB + C25                            1.79 0.09 6 679.89 
SS 2 + HAB + YR + C25                         2.02 0.08 7 678.10 
SS 2 + HAB + VH + C25                              2.08 0.08 7 678.16 
SS 2 + HAB + YR + VH + C25                    3.71 0.04 8 677.77 
SS + HAB             3.99 0.03 4 686.12 
SS 2 + C25 + VH          4.82 0.02 5 684.93 
Constant DNS                               12.27 <0.00 1 700.42 
SS 2 + HAB + YR + SPE + VH + C25 *    15.20 <0.00 16 673.00 
SS + HAB + YR + SPE + VH + C25 * 16.78 <0.00 15 676.62 
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Table 4. Model set used to assess the combined effects of season (modeled as linear [SS] 
and quadratic [SS2] time trends in the most parameterized models), year (YR), and 
habitat (HAB), on daily survival rates (DNS) of Nothura maculosa nests (n = 78) in the 
Northern Campos of Uruguay. Variables are modeled as additive effects and models are 
ranked by the difference in Akaike’s information criterion corrected for small sample size 
(AICc); w reflects the relative support for the model in question given the model set and 
the data; K is the number of parameters estimated by the model; deviance is a measure of 
model fit. Treatments within factors are specified in Table 1.The model set included two 
global models (*) and a null model (constant DNS). Effective sample size = 575. 
 

Model ∆AICc w K Deviance 

HAB + YR                                     0.00 0.27 4 227.66 
SS + HAB + YR *                    0.34 0.23 5 225.96 
SS 2 + HAB + YR *                  1.30 0.14 6 224.88 
SS + HAB                               1.52 0.13 4 229.18 
HAB                                   1.69   0.12 3 231.37 
SS + YR                          3.49 0.05 3 233.17 
SS                                        3.60 0.05 2 235.30 
YR                                        7.27 0.01 2 238.98 
Constant DNS                                 8.78 <0.00 1 242.50 
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Table 5. Comparison of the models used to assess the combined effects of season 
(modeled as linear [SS] and quadratic [SS2] time trends in the most parameterized 
models), year (YR), and habitat (HAB), vegetation density (C25), and vegetation height 
(VH) on daily survival rates (DNS) of Nothura maculosa nests (n = 60) in the Northern 
Campos of Uruguay. Variables are modeled as additive effects and models are ranked by 
the difference in Akaike’s information criterion corrected for small sample size (AICc); w 
reflects the relative support for the model in question given the model set and the data; K 
is the number of parameters estimated by the model; deviance is a measure of model fit. 
Treatments within factors are specified in Table 1. The original set included 26 models of 
which the top-10, and the global (indicated with a “*”) and null models (constant DNS) 
are shown. Effective sample size = 428. 
 

Model ∆AICc w K Deviance 

SS 2 + HAB    0.00 0.24 5 166.00 
SS 2 + HAB + YR                           1.08 0.14 6 165.02 
SS 2 + HAB + C25                          1.28 0.12 6 165.22 
SS 2 + HAB + VH                            1.81 0.10 6 165.75 
SS 2 + HAB + YR + VH                   3.00 0.05 7 164.88 
SS 2 + HAB + YR + C25  3.05 0.05 7 164.93 
SS 2 + HAB + VH + C25                 3.24 0.05 7 165.11 
Year + HAB                            3.70 0.04 4 171.75 
HAB                                              4.24 0.03 3 174.33 
HAB + C25        4.47 0.03 4 172.52 
SS 2 + HAB + YR + VH + C25 *     5.05 0.019 8 164.85 
SS + HAB + YR + VH + C25 *      5.88 0.012 7 167.76 
Constant DNS 9.73 <0.00 1. 183.87 
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Table 6. Model set used to assess the combined effects of season (modeled as linear [SS] 
and quadratic [SS2] time trends), year (YR), and habitat (HAB), on daily survival rates 
(DNS) of Anthus furcatus and A. nattereri nests (n = 41 and n = 21, respectively) in the 
Northern Campos of Uruguay. Variables are modeled as additive effects and models are 
ranked by the difference in Akaike’s information criterion corrected for small sample size 
(AICc); w reflects the relative support for the model in question given the model set and 
the data; K is the number of parameters estimated by the model; deviance is a measure of 
model fit. Treatments within factors are specified in Table 1.The model set included a 
null model (constant DNS). Effective sample size = 514. 
 

Model ∆AICc w K Deviance 

SPE 0.00 0.30 2 241.06 

Constant DNS  0.68 0.21 1 243.76 

SS 2                   0.72 0.21 3 239.76 

SS 2 + SPE *                        1.09 0.17 4 239.10 

SS + SPE *                  1.99 0.11 3 241.03 

 

 
 
 
Table 7. Model set used to assess the combined effects of season (modeled as linear [SS] 
and quadratic [SS2] time trends), year (YR), and habitat (HAB), on daily survival rates 
(DNS) of Sturnella defilippi and S. superciliaris nests (n = 33 and n = 47, respectively) in 
the Northern Campos of Uruguay. Variables are modeled as additive effects and models 
are ranked by the difference in Akaike’s information criterion corrected for small sample 
size (AICc); w reflects the relative support for the model in question given the model set 
and the data; K is the number of parameters estimated by the model; deviance is a 
measure of model fit. Treatments within factors are specified in Table 1. The model set 
included a null model (constant DNS). Effective sample size = 622. 
 

Model ∆AICc w K Deviance 

SS + SPE *                       0.00 0.39 3 294.16 

SS                      1.41 0.19 2 297.59 

SS 2 + SPE *                1.49 0.18 4 293.62 

Constant DNS                                 1.63 0.17 1 299.82 

SPE                            3.55 0.06 2 299.73 
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Figure 1. Fates of nests from 12 grassland birds breeding in the Northern Campos of 
Uruguay in 2004 and 2005. Species: Rhea americana (RAM), Nothura maculosa (NMA), 
Vanellus chilensis (VCH), Gallinago paraguaiae (GPA), Podager nacunda (PNA), 
Anthus furcatus (AFU), Anthus hellmayri (AHE), Anthus nattereri (ANA), Ammodramus 
humeralis (AHU), Sicalis luteola (SLU), Sturnella defilippi (SDE), Sturnella 
superciliaris (SSU). Numbers on top of each column refer to samples sizes.  
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Figure 2. Overall nesting activity of 12 grassland birds in three habitat types in the 
Northern Campos of Uruguay in 2004 and 2005. 
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Figure 3. Number of active nests discriminated by egg (black columns) and nestling (gray 
columns) stages of eight grassland birds in the Northern Campos of Uruguay (Rhea 
americana, Nothura maculosa and Vanellus chilensis are precocial species). 
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