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ABSTRACT 
 
Sociality and the unequal apportionment of reproductive success among social 

individuals is a common characteristic of many vertebrate taxa. To date, our 

understanding of what factors drive high variance in reproductive success (i.e., intra vs. 

inter-sexual selection) and which male attributes contribute to that variance, are still 

fragmentary for most species. Moreover, how social structure interacts with individual 

behavior and fitness remains understudied despite its potential importance to the 

evolution of cooperation. This dissertation research focused on understanding this 

complex synergistic interplay between social and reproductive dynamics in a lek-

breeding bird, the wire-tailed manakin. The first chapter examines the complex display 

ritual of this species of manakin (Pipra filicauda). More specifically, it quantifies and 

compares the frequency of individual behavior among males of different age and social 

status. In addition, the first chapter examines in detail the genetic relatedness of male 

partnerships to test the kin selection hypothesis. The second chapter uses these complex 

reticulate interactions to build social networks. This chapter details the emergent 

properties of these networks and examines their role in determining male social 

ascendancy and access to reproduction. The third chapter uses a combination of 

molecular tools and network analysis to create a synthetic understanding of variance in 

male reproductive success. This chapter presents molecular estimates of reproductive 

skew and examines the social correlates of male reproductive success. Our primary 

results show 1) that males within leks are not more related than expected by chance, 

enabling us to reject the role of kin selection in the lek evolution of wire-tailed 

manakins; 2) that the complex networks of social interactions among males contain the 
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ingredients needed for the evolution of cooperation; 3) that social connectivity of young 

males was predictive of their later social ascendancy; 4) that the number of male 

affiliations was strongly predictive of the number of offspring he sired. Overall our 

findings greatly advance our understanding of social relationships and the role they play 

in the evolution of cooperation and reproductive variance. 
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CHAPTER 1- DISPLAY DYNAMICS AND RELATEDNESS OF MALE WIRE-
TAILED MANAKINS  
 

ABSTRACT 

 Understanding the social organization involved in group behaviors remains 

integral to the field of behavioral ecology. In particular, systems where animals engage 

in apparent cooperative acts despite unequal apportionment of reproductive success 

continue to be of interest in evolutionary biology. Wire-tailed manakins (Pipra 

filicauda) engage in communal displays in which some males appear to forego 

individual reproductive success. Here, we investigate the social organization of males 

engaged in coordinated display behavior, the relatedness of male display partners, and 

the proximate role of this complex display using data from a three-year study of the 

wire-tailed manakin. Males in our system followed an age-graded queue which was 

specifically facilitated by the coordinated-display behavior. We found variation in the 

frequency of display behaviors among males within leks but not among the leks 

themselves. Our analysis of male relatedness showed that male coordinated display 

partners are not more related than expected by chance and ruled out the possibility of 

indirect fitness benefits to display partners. Coordinated displays functioned in 

maintaining social dominance via non-aggressive competition and influenced the 

probability of territorial inheritance for subordinate partners. Our examination of this 

social behavior helps to understand how it has been maintained over evolutionary time. 

Keywords: Coordinated display, leks, manakins, Pipridae 
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INTRODUCTION 

Animal sociality is a widespread phenomenon yet its function varies among taxa. 

Of special interest is the maintenance of coordinated behaviors in social systems where 

there are clear costs and no obvious benefits. In particular, coordinated display as seen in 

some members of the manakin family Pipridae (e.g. Pipra aureola clade ) are complex 

social behaviors that remain poorly understood with respect to their social function and 

the associated fitness consequences for participants.  

Manakins in the family Pipridae are small, sexually dimorphic sub-oscine 

passerines found in warm, humid regions of Central and South America (Hilty and 

Brown 1986; Ridgely and Tudor 1994). Manakins are well known for their marked 

secondary sexual characteristics, and their displays performed at communal lek sites. 

Males aggregate at leks where they attract and court females (Beehler and Foster 1988) 

and leks are traditionally thought not to be resource-based (but see Ryder et al., 2006). 

Manakin leks are located at established sites and adult males tend to show strong 

philopatry, whereas younger satellite males progress in social status and fidelity with age 

(Snow 1962b; Snow 1962a; Lill 1976; Foster 1981; Foster 1987; McDonald 1989). 

Moreover, where it has been studied, behavioral estimates of male mating success on 

manakin leks are highly skewed (Snow 1962b; Lill 1974; McDonald and Potts 1994).  

The ritualized courtship behaviors of manakins are among the most complex 

interactions known among passerine birds (Snow 2004). In most manakin species, males 

display solitarily on a territory within a lek. Less common are species with true 

coordinated or cooperative displays, in which pairs or groups of males engage in 

complex ritualized behaviors (Schwartz and Snow 1978; Foster 1981; Robbins 1985; 
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Foster 1987; Heindl 2002). Of particular interest are species that engage in coordinated 

display routines where multiple members of a social group exhibit ritualized behaviors 

in which some individuals play a subordinate role and, potentially, forego individual 

reproductive success. Coordinated displays among males can take two forms; males may 

express intra-sexual aggression as ritualized behaviors in a competitive fashion (Snow 

1962b; Tello 2001); or male ritualized behavior could have reproductive benefit by 

enhancing the attraction of females, favoring cooperative displays (Snow 1971a; Snow 

1971b; Foster 1981; McDonald 1989). Such displays among manakins appear to have 

evolved independently at least twice:  in Chiroxiphia and in the Pipra aureola clade 

(Prum 1994). Previous studies of P. aureola complex (i.e., aureola and filicauda) have 

provided different evidence on the function of coordinated display (Robbins 1985; 

Heindl 2002). 

Pipra filicauda, the wire-tailed manakin, has a true communal display but shows 

variation in the frequency of coordinated male partnerships (Heindl 2002). Males 

maintain dispersed display sites (i.e., exploded lek sensu Bradbury, 1981) in which 

territory-holding males interact with other territory holders and non-territorial males 

(Schwartz and Snow 1978; Heindl 2002). Thus, within a single lek we may find some 

court holders who display alone and others who engage in coordinated displays with 

neighboring court holders and non-territorial individuals. Further, there is variation in 

the frequency with which individuals coordinate, potentially resulting in differential 

costs and benefits.  

Of late, the evolution of lekking and sociality among male manakins has received 

significant attention. Recent work has focused on the kin-selection model which has 
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been used to explain why individuals might join in social behaviors (Dugatkin 1997). 

Under the kin-selection model, individuals join leks with close relatives to obtain 

indirect benefits through the passage of shared genes. To date, kin selection does not 

appear to have played a role in the evolution of lekking or sociality among manakins 

(Loiselle et al., 2007b; McDonald and Potts, 1994, but see Shorey et al. 2000). Despite 

the lack of support for kin selection as an ultimate mechanism in the evolution of 

lekking, it still could be a proximate explanation for social partnering in the P. aureola 

clade. To date no studies have examined finer scale relatedness patterns of social display 

partners. 

Over three years, we have examined the nature of coordinated display in the 

wire-tailed manakin to specifically examine the complex nature of social dynamics 

among males, the proximate function of coordinated display, and the potential role of kin 

selection. Here we detail the frequency, stability and social nature of male relationships 

as well as test the kin selection hypothesis for coordinating male partners. Further we 

examine two potential benefits involved in social coordination, 1) territorial inheritance 

and 2) indirect benefits via kin selection. Lastly, we describe how males progress in the 

social queue and how that progression is related to their plumage sequence as well as 

their social role in the lek. Overall, our findings advance understanding of the complex 

male affiliations found in the family Pipridae. 

 

METHODS  

Field sampling 
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      We conducted our field study during 2003, 2004 and 2005 at Tiputini Biodiversity 

Station (TBS), Orellana Province, Ecuador (0º 38´ S 76º 08´ W), a 650-ha biological 

station located at ~200 m above sea level adjacent to Yasuní National Park yet 

embedded within the 1.5-million ha Yasuní Biosphere Reserve. The site is dominated by 

upland terre firme forest but also includes some varzea habitat (Ryder et al., 2006). 

During 2001, two 100-ha plots (~1 km x 1 km each) were established at TBS by J. G. 

Blake and B. A. Loiselle (for description of Harpia and Puma plots see Loiselle et al., 

2007a; Loiselle et al., 2007b; Ryder et al., 2006). 

We located leks of  wire-tailed manakins by systematically searching and 

mapping singing male manakins along 36 km of transects that form the grids of two 100-

ha study plots as well as along 30 km of trails outside of the plots. Wire-tailed manakin 

leks tend to vary in size from 4 to 10 territorial individuals with as many as 10-15 other 

associating individuals, based on 12 leks in Ecuador. Leks were found in both seasonally 

flooded forests as well as in adjacent terra firme. Leks were typically in low elevation 

flat areas near streams (Loiselle et al. 2007a). The under-story vegetation at leks varied 

from extremely open to marginally closed with old tree falls and vine tangles. 

We used ground-level mist-nets (12.5 m X 2.8 m, 36-mm mesh) to capture 

manakins over the course of the three year study. Captured manakins were weighed, 

sexed, aged, and banded with aluminum and individual color-band combinations. 

Overall, 414 individuals consisting of 133 females, 245 males and 36 of unknown sex 

were individually color marked. Blood samples were taken (~ 50 µL per individual) via 

puncture of the brachial vein and stored in lysis buffer (Longmire et al. 1988). To 

determine optimal times for observation we assessed male activity at five leks using 
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song frequency across the day as an indicator of number of males present and active. We 

then sampled 25 different territorial male manakins from seven different leks with 2-

hour continuous focal sampling (Martin and Bateson 1986) during periods of peak 

activity (e.g., morning 6:30-8:30 and afternoon 13:30-15:30) (see results).  

During observations, we recorded the frequency of all display behaviors, songs 

and interactions with other individuals. Wire-tailed manakin displays took two forms, 

either solitary or coordinated, each including a variety of complex ritualized behaviors. 

Coordinated displays engaged two or more males in alternating and, at times, highly 

synchronized display routines. Display elements included the side to side, short back and 

forth jumps or hops on a display perch, the stationary display, back feathers raised and 

quivering wings drooped, the twist, rapid twisting while sidling backwards with tail 

raised, the flutter, an awkward stumbling maneuver, the hover flight, a rapid hovering 

flight typically to grab a piece of a nearby leaf, the swoop-in-flight, a rapid upward flight 

trajectory which culminates in an s-shaped return over the display perch and partner, and 

the butterfly flight, a slow fluttering flight from perch to perch where the white wing 

patches are displayed (for detailed description of display behaviors see Heindl, 2002; 

Schwartz and Snow, 1978). 

Male status was classified by plumage and territoriality over the three years of 

observation, as follows: Definitive territory holders  were males of at least three-years of 

age in definitive plumage with their own display territory that did not visit other 

territories; Definitive territorial visitors  were definitive-plumage males of at least three-

years of age with their own territory who were frequently seen visiting neighboring male 

territories; Definitive floaters were definitive plumage males of at least three-years of 
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age without territories but regularly seen visiting territorial males; Pre-definitive-

plumage floaters were males approximately two-years of age with some red head 

feathers and black back feathers, without territories, but seen visiting lek territory 

holders; and Formative-plumage floaters were young males less than one-year of age in 

green plumage without territories seen visiting other males on leks. 

Molecular techniques 

   We isolated DNA from blood samples via standard phenol-chloroform 

extraction (Sambrook et al. 1989), with a cleaning step of dialysis in 1X TNE2. 

Concentration of samples was determined using spectrophotometry and verified through 

electrophoretic gels stained with ethidium bromide. We screened 25 microsatellite loci 

developed for other species of manakins and chose a subset of 7 markers with sufficient 

polymorphism (DuVal and Nutt, 2005; McDonald and Potts 1994; Piertney et al., 2002; 

Brumfield R and Braun M, personal communication).  All polymerase chain reactions 

(PCR) were run in 5 µl volumes consisting of genomic DNA, 1mM DNTP’s, 10X 

reaction buffer, 25 mM MgCl2, forward and reverse primer pairs, DMSO additive, and 

Taq DNA polymerase (Bioline). For fragment analysis we tagged PCR products using 

fluorescently-labeled forward primers (Applied Biosystems, Inc.). PCR conditions are 

described in more detail in Loiselle et al. (2007b).  PCR amplicons were multiplexed and 

run on an ABI 3100 automated capillary sequencer.  Each sequencing plate contained up 

to five positive controls. Fragment sizes were determined using a size standard 

GENESCAN© LIZ (500) and genotypes were assigned using Genemapper 4.01 (Applied 

Biosystems, Inc.).  Most individuals, and all homozygotes, were run at least twice; any 
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questionable allelic calls were repeated to avoid spurious results and discarded when 

necessary. 

Statistical analyses 

 We examined display variation in eight response variables (song, side to side, 

stationary display, twist, flutter, hover, butterfly flight and swoop-in-flight) as predicted 

by lek and males nested within those leks. In a second analysis, we examined variation 

in only four of the most common display elements as predicted by age/social class and 

display type. All variables were tested for normality and homoscedasticity prior to data 

analysis. We used DSTLM (Anderson 2004) to analyze our behavioral data, because 

many variables were non-normally distributed.  DSTLM, calculates either multivariate 

ANOVA or multivariate regression of any symmetric distance matrix using permutations 

of the observed data (for theoretical background see Anderson, 2001a; Anderson, 2001b; 

McArdle and Anderson, 2001). This non-parametric statistical tool accommodates more 

complex statistical designs, including covariates, unbalanced ANOVA designs and tests 

of individual terms in a multi-factorial ANOVA. DSTLM enabled us to examine 

variation in behavior as predicted by males nested within leks. We used XMATRIX 

(Anderson 2003) to produce design matrices (i.e., dummy variable coding) for the 

predictor variables, lek and male, in our unbalanced nested design and display type and 

age/social status for the second analysis.  In an unbalanced design, the terms are no 

longer orthogonal and the two X matrices were therefore fit sequentially (i.e., Type I SS) 

as is appropriate for a nested design (Anderson, M. J., pers. comm.). DSTLM generates a 

pseudo F-statistic based on our distance measure, Bray-Curtis dissimilarity, and the P-

value is obtained by recalculating this statistic for a large number of random re-orderings 
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of the observations (Anderson 2004), in our case 999 permutations. To examine which 

display maneuvers differed among males and between display types, we conducted post-

hoc univariate ANOVA’s with DTSLM, using Euclidean distance as our distance metric. 

Means ± standard error are reported unless otherwise noted. 

Descriptive information for each locus (i.e., allele frequencies, richness, linkage 

and H-W equilibrium) was determined using FSTAT v. 2.9.3.2 (Goudet 2002).  We 

assessed equilibrium departures using randomization procedures and applied Bonferroni 

corrections when appropriate. We included only the loci that were in Hardy-Weinberg 

equilibrium and showed no significant linkage (Loiselle et al. 2007b). 

We estimated pair-wise, within-lek and population-baseline relatedness using 

RELATEDNESS Version 5.0 (Queller and Goodnight 1989; Goodnight and Queller 

1999). Relatedness patterns of males within leks were compared to background levels of 

relatedness among the rest of the population sampled both within the 100-ha study plot 

or around outside leks.  All relatedness values were bias-corrected for population allele 

frequencies by excluding the focal individual and all other lek members from the 

calculation of population allele frequencies. Bias correction prevents an underestimate of 

true relatedness for small sample sizes or samples with large numbers of relatives 

(Queller and Goodnight 1989; Goodnight and Queller 1999).  Standard error estimates 

and 95% confidence intervals were obtained by jackknifing over loci. 

 
RESULTS 

Male Activity and Display Patterns 

Male wire-tailed manakins sang throughout the day; however, their song frequency 

varied greatly and peak activity was bi-modally distributed (Figure 1). Males typically 
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arrived at the lek at sunrise and stayed until mid to late afternoon with peak periods of 

activity occurring from 0630 to 0800 and from 1300 to 1500 (Figure 1). Male activity 

was greatly reduced after 1530 and was nearly complete by 1630. During periods of 

peak activity, we observed 25 males during 181.5 observation periods that totaled 363 

hours of observation. Observation time per male ranged from 7.5 to 20 hours ( ! = 14.5 

± 0.91 hrs). During the observations, we observed 145 displays, of which 31% (45/145) 

were coordinated and 69% (100/145) were solitary. The frequency with which individual 

males engaged in coordinated display ranged from 0 to 100% (! = 31.3 ± 5.50 %). The 

number of visitors per displaying male ranged from 1 to 5 (! = 2.6 ± 0.25) over all 

observations.  

Social Partnerships 

Visitors that engaged in coordinated display fell into several categories 

(formative-plumage floaters, pre-definitive-plumage floaters, definitive-plumage floaters 

and definitive-plumage territorial visitors). Formative-plumage birds known to be males 

were observed moving freely among leks and beginning to build associations with lek 

territory holders. Four males in this plumage class were observed visiting relatively 

distant (e.g., 500-700 meters) male territories at spatially contiguous leks within a 

breeding season. These males were never observed displaying during six social 

interactions but were often present during bouts either in a stationary role or observing 

other males during display activity. However, outside of formal observation periods, 

these males occasionally engaged in display with territory holders and also in apparent 

practice sessions with other floaters outside male territories. Pre-definitive-plumage 

males regularly engage in coordinated display bouts which contain most display 



 19 

elements (Table 1). Often more than one non-definitive male may be present during 

display bouts. Definitive-plumage males fall into one of three social classes. Definitive-

plumage floaters had the highest frequencies of display maneuvers among birds of non-

territorial status (Table 1), yet their subordinate status was especially apparent when 

territory holders flew off the perch before they completed their swoop-in-flights. 

Conversely, when visiting definitive-plumage floaters played the stationary role, they 

allowed the territory holder to do a complete swoop maneuver. Definitive territorial 

visitors were territory holders yet spent bouts of time in neighboring territories engaging 

in coordinated display (Table 1). Lastly, definitive territory holders are “dominant” 

territory holders who receive visits from both visiting neighbors and non-territorial 

floaters but were not seen leaving their territory to visit neighboring males. 

Social relationships among males were typically stable over time yet complex 

and formed small networks of interacting members (Figure 2). More specifically, 76% 

(19/25) of males had stable display partners within breeding seasons (~ 5 months) and at 

least 44% (11/25) of males maintained partnerships between seasons. Particular males 

received a greater number of visitors (e.g., B/W and PU/PU) and this pattern repeated 

itself for all the leks observed (Figure 2). Of the 104 social interactions and 

corresponding displays by territory holders we observed, 31% (32/104) were with 

definitive-plumage territory neighbors, 47% (49/104) were with definitive-plumage 

floaters, 16% (17/104) were with pre-definitive plumage floaters and 6% (6/104) were 

with formative-plumage floaters.  

Territorial turnovers 
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During the three year study we observed seven male territorial turnovers. In five 

of the seven cases, the floater male who inherited the territory had been previously 

identified as a non-territorial display partner of the former territory holder. In the other 

two cases, the floater males who inherited the territories had known display associations 

with other neighboring territory holders at the lek.  In all seven instances of territorial 

turnover, the new territory holder was later observed displaying in contiguous male 

territories at the lek, apparently maintaining previously established affiliations. 

Display Rate Variation 

All age classes of visitors, except for formative-plumage floaters, engaged in 

active display routines and some singing while on the territory of another male (Table 1). 

Mean frequencies were, however, lower than those of territory-holding males and certain 

maneuvers (e.g., butterfly flight) were never done by visiting males (Table 1).  

Unfortunately, we can not determine male age past the attainment of definitive plumage 

and therefore can not relate display frequency to territory holder age. However, because 

of age-graded queuing, social status is a good proxy for male age in pre-definitive 

plumages. We found that social status was a predictor of display rate among male 

visitors during social interactions of coordinated display. Rates of performance of the 

four most common display maneuvers differed between pre-definitive, definitive 

floaters, and definitive territorial visitors (pseudo-F2,49 = 2.76, P = 0.020). 

We found display and song frequency did not differ among leks (pseudo-F6,17 = 

0.41, P = 0.969) but that territorial males nested within those leks varied significantly 

(pseudo-F17,159 = 2.12, P = 0.001). Variation in the frequency of male behavior within 

leks stemmed from the twist (pseudo-F17,165 = 2.68 , P = 0.001), swoop-in-flight display 
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(pseudo-F17,165 = 2.60, P = 0.001), hover flight (pseudo-F17,165 = 2.45, P = 0.002), and 

the stationary display maneuvers (pseudo-F17,165 = 1.65, P = 0.043), but not by the side 

to side display (pseudo-F17,165 = 1.34, p = 0.161), flutter display (pseudo-F17,165 = 1.25, P 

=0.237 ) or butterfly-flight (pseudo-F17,165 = 1.19, P = 0.256).  

We further tested for differences between solitary and coordinated display in the 

four most common display maneuvers. We found that coordinated displays had 

significantly higher maneuver frequencies than did solitary display (pseudo-F1,144 = 9.36, 

P = 0.001). During coordinated displays males performed side to side (pseudo-F1,144 = 

40.11, P = 0.001), stationary display (pseudo-F1,144 = 15.69, P = 0.001 ), twist (pseudo-

F1,144 = 12.92, P = 0.002 ) and swoop in flight (pseudo-F1,144 = 29.28, P = 0.001) at 

higher rates than did those same individuals when engaged in solitary display bouts 

(Figure 3). 

Male Relatedness 

     By measuring male relatedness, we assessed the potential for indirect male benefits. 

We investigated the possibility for kin selection by examining pair-wise relatedness for 

males who engaged in coordinated display. Our primary finding was that 15 of 21 of the 

pair-wise comparisons fell below the lek average, with relatedness values ranging from -

0.3826 to 0.2344 (see stars in Figure 4). Those males whose pair-wise values fell within 

second order relatedness (see open circles leks 1,3 and 5 ) were never observed to 

engage in joint display. Average relatedness among male territory holders within leks 

ranged from -0.0567 to 0.0166 for five wire-tailed manakin leks (Figure 4). At every lek, 

mean relatedness was within the range expected by chance.  
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DISCUSSION 

Coordinated Display and Male Partnerships 

    Our results show that males engaged in both solitary and coordinated displays 

but the frequency of these display types varied among males. On average, male territory 

holders had visitors 30% of the time as described by both Robbins (1983, 1985) and 

Heindl (2002). However, territorial males varied in the number and type of visitors they 

received, as reported by Heindl (2002). In contrast to Heindl (2002), however, our 

results show relatively common stable relationships among males through time as 

described for P. fasiicauda by Robbins (1983, 1985).  

Age-graded Queuing, Social Partnerships and Dominance 

Age-dependent sexual advertisement is a characteristic of lekking social systems 

and includes both aural and visual signaling (Kokko 1997). Moreover, some manakins 

have been shown to have age-graded social queuing where pre-definitive plumages are 

accurate indicators of status in an age-based dominance system (McDonald 1989; 

Doucet et al. 2007). Our observations of interactions among color-banded males of three 

plumages classes (i.e., formative-plumage, pre-definitive plumages and definitive 

plumage) combined with the knowledge that plumage is an accurate indicator of age up 

to definitive plumage support the supposition that males change status in accordance 

with their plumage ascension (i.e., age-graded queuing) (Schwartz and Snow 1978; 

Robbins 1985; McDonald 1989). Males less than a year old in formative-plumage had 

weakly established social bonds and spent very little time engaging in display. Two- 

year old males in pre-definitive-plumage contrastingly had developed lasting social 

bonds with one or more territory holders of a specific lek. Males of at least three years of 
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age in definitive-plumage yet of floater status had the strongest social bonds with 

territory holders but have not yet attained a territory. Territorial subordinates who were 

also at least three-year of age had attained territories yet had lower with apparent lower 

ranking in social status based on behavioral dominance interactions. Lastly, changes in 

social status, as defined by age-class, were also a predictor of sexual advertisement in 

the form of the coordinated display.  

The social organization of P. filicauda in this study is similar to that of P. 

fasiicauda (Robbins 1983; Robbins 1985) and has many similarities to that described by 

Heindl (2002) for P. filicauda yet, here we present a previously unrecognized 

component of social complexity. Unlike P. fasiicauda, territorial males in our system 

may have as many as three to four beta partners whose associations appear to be 

maintained by dominance relationships. Moreover, these beta-male partners can include 

pre-definitive-plumage males, definitive floaters and even apparently subordinate 

territorial neighbors. Whereas Robbins (1985) found that P. fasiicauda males regularly 

excluded contiguous territory owners, we found that 31% of coordinated displays in P. 

filicauda were with territorial neighbors. The propensity for new or apparently lower-

ranking territory holders to visit their neighbors for coordinated display may function to 

maintain dominance hierarchies within the lek after new members inherit territories. The 

hierarchy maintenance idea is evidenced by males which recently inherited territories yet 

maintained the same social bonds as during their floater status.  

Our observations also suggest coordinated display visits to territorial males are 

skewed toward a few individuals within a lek. The variance in number of partners may 

be explained by age and social status. As a result of males building social networks over 
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time and interacting with multiple lek territory holders as well as floaters, the 

assessments of dyadic dominance alone does not encompass all interactions. The more 

complex social network of male interactions described here suggests that dominance 

hierarchies may extend beyond close male associations as previously proposed by 

Heindl (2002). If males have social interactions with multiple partners over time, the 

potential exists for a global or whole-lek dominance hierarchy (Ryder, unpubl data). 

This suggests the need to examine social relationships of males as they progress through 

the social queue. 

The duration of male partnerships in manakins has been shown to influence the 

synchronization of behaviors (Trainer and McDonald 1995; Trainer et al. 2002).  In 

wire-tailed manakins, the key to highly coordinated interactions is male synchronization 

and consistent role alternation (for detailed display description see Schwartz and Snow, 

1978). Although we lack specific data on the duration of male partnerships, our 

observations of coordinated interactions suggested an obvious pattern. Our data 

corroborate the finding that deterioration of coordinated displays appeared to occur when 

male partners were closer in status or lacked an established relationship (Schwartz and 

Snow 1978). We found that display bouts between males close in social status (e.g., 

territorial neighbors) lacked clear coordination. More specifically, partners close in 

status often interrupted the display maneuvers of their partner. In contrast, coordinated 

displays between males of different social status (e.g., definitive territory holder and pre-

definitive male) were the most behaviorally coordinated, with high frequencies of 

display behavior exhibited by both males and consistent role alternation. Increased 

behavioral coordination between partners of different status suggests that partnership 
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tenure influences behavioral coordination until a male becomes a direct competitor 

through territory inheritance. Thus, both social status and partnership tenure appear to 

affect behavioral coordination in the wire-tailed manakin. 

Variation in Display Rate among Leks, Males and Age-classes 

 Variation in display rates among males has been shown for several lekking birds 

(Hoglund and Alatalo 1995) but few studies have examined inter-lek display-rate 

variation. We did not find differences in the mean frequency of male behavior among 

leks. The most parsimonious explanation for the lack of differences among leks is that 

all leks have some higher ranking and some lower ranking members that exhibit 

differences in display rate. Further, under the assumption that display behavior is a 

sexually-selected signal (for review see Searcy and Nowicki, 2005), leks with low 

display rates would eventually disappear because of lack of female visits and 

reproductive output of territorial males. Moreover, if age is a determinant of display 

frequency and frequency of coordinated male partnership, then older higher ranking 

males would be expected to display at higher rates than younger newer territory holders. 

We expect lek territory holders to be a mix of older more dominant males and newer 

younger territorial males because of turnover. 

Joint Display Benefits and Functionality 

Benefits for non-resident display partners can accrue if social partners are more 

likely to inherit territories from the former owner (Robbins 1985; Heindl 2002). Our data 

showed that multiple males inherited the territory of their previous partners. These 

observations support the supposition that subordinate males can gain the direct benefit of 

territory inheritance through the formation of social partnerships. Moreover, floater 



 26 

males may increase their chances of inheritance by maintaining social relationships with 

multiple territory holders in the same lek, as we have observed in our system. 

Behavioral coordination could be the result of kin-selection if social partnerships 

form between relatives to maximize indirect fitness for non-territorial partners (Loiselle 

et al., 2007b). In this type of lekking, system kin selection could work at lek level but 

would likely have a larger fitness effect at the partnership scale. Loiselle et al. (2007b) 

found that males within leks of P. filicauda were not more related by chance. Similarly, 

we found that male partners were also not more related than expected by chance 

allowing us to reject the kin selection hypothesis.  

Male tolerance and potential solicitation for social partnerships would be 

enhanced if joint displays are more stimulating to a female than solitary displays and 

produce reproductive benefits for territory holders (Snow 1971b; Foster 1981). We have 

yet to quantify reproductive fitness via molecular paternity for individuals involved in 

coordinated behavior. We can, however, comment on signal intensity for solitary versus 

coordinated displays. The finding that coordinated display involves higher rates of 

display maneuvers suggests that it may be more visually appealing to females. We agree 

with Heindl (2002) that complex coordinated display is not likely to attract females from 

further distances but would only affect female choice once at the lek. Males in our study 

appeared willing to engage in social interactions based on the observations that males 

clearly solicit display partners and rarely aggressively chase visitors. Moreover, male 

solicitation of partners suggests an intrinsic benefit to male behavioral coordination. As 

we begin quantifying male reproductive success, we will examine if this behavior is 

fitness enhancing and, thus, sexually selected through female mate choice. 
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Coordinated display in the wire-tailed manakin appears to serve some 

competitive function that maintains and defines male social status among lek members 

(see also Heindl 2002, Robbins 1985). Although the behavior does not appear obligatory 

for female attraction the increased display rates associated with coordinated display do 

represent an enhanced signal. However, the role that enhanced signal plays in female 

attraction and stimulation remains undocumented. The stability of male partnerships and 

the lack of aggression suggests that this behavior does not solely serve a competitive 

function. We have shown a concrete delayed direct benefit in the form of territorial 

inheritance for partners, as previously described in Chiroxiphia spp. (McDonald 1989; 

DuVal 2005). Until the fitness increments of this behavior are fully quantified, it remains 

premature to suggest that coordinated display is a vestigial trait maintained in P. 

filicauda without substantial advantages (Prum, R. pers comm. as cited in Heindl, 2002). 

Ultimately, the function of coordinated display like so many other traits may have been 

selected in one context and co-opted for another resulting in a proximate function that is 

both dynamic and context dependent.  
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Table 1 Mean display rate (maneuvers/2 hrs) by the age and social status of wire-tailed 
manakins at Tiputini Biodiversity Station, Ecuador. 

 
Pre-

definitive 
Floater  
(n = 16) 

Definitive 
Floater 
(n = 17) 

Definitive 
Territory 

Visitor 
(n = 19) 

Definitive 
Territory 

Holder 
(n = 25) 

Song 8.81 ± 2.72 
12.88 ± 

4.36 
13.00 ± 3.40 86.63 ± 2.22 

Side-side 5.19 ± 1.09 4.64 ± 1.74 5.32 ± 2.10 15.85 ± 2.12 

Stationary Display 1.63 ± 0.42 3.18 ± 1.34 2.47 ± 1.60 3.18 ± 0.35 

Twist 2.50 ± 1.18 2.35 ± 1.14 0.79 ± 0.28 3.10 ± 0.39 

Butterfly Flight 0 0 0 0.57 ± 0.15 

Flutter 0.31 ± 0.22 0.12 ± 0.08 0.11 ± 0.07 0.14 ± 0.03 

Swoop-in-Flight 1.88 ± 0.63 2.47 ± 1.52 0.95 ± 0.31 1.81 ± 0.28 
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Figure 1 Male activity as measured by song frequency ± SE at five wire-tailed manakin 

leks at Tiputini Biodiversity Station, Ecuador shows a distinct bimodal distribution with 

morning and afternoon activity peaks. 
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Figure 2 Display affiliations of male wire-tailed manakins within leks form a reticulate 

network of social interactions. The display partnerships among definitive territory 

holders (black circles), definitive territorial visitors (white circles) and visiting floaters 

(gray circles) are shown using lines. 
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Figure 3 Rates of four common display maneuvers in the wire-tailed manakin are higher 

during coordinated display than solitary display as evidenced by average frequency ± 

SE.  
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Figure 4 Wire-tailed manakin coordinated display partners are not more related than 

expected by chance as depicted in this box-plot showing 5th and 95th percentiles around 

average relatedness for 5 wire-tailed manakin leks. Circles show pair-wise relatedness 

value outliers for males within the lek and stars show pair-wise values for known male 

display partners (both territorial and floaters included). 
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CHAPTER 2- SOCIAL NETWORKS IN THE LEK-MATING WIRE-TAILED 
MANAKIN (Pipra filicauda)  
 
ABSTRACT 

 How social structure interacts with individual behavior and fitness remains 

understudied despite its potential importance to the evolution of cooperation. Recent 

applications of network theory to social behavior advance our understanding of the role 

of social affiliations in various contexts. Here we applied network theory to the social 

system of lek-mating wire-tailed manakins (Pipra filicauda, Pipridae, Aves). We 

analyzed the network of interactions among males in order to examine the position of the 

coordinated displays and affiliative behaviors of this species along the spectrum that 

ranges from solitary to obligately cooperative dual-male displays in the family Pipridae. 

Network degree (the number of links from a male to others) ranged from 1 to 10, with 

low mean and high variance, consistent with theory for the evolution of cooperation 

within social networks. The manakin networks had a “small-world” topology, with high 

node clustering and short mean path length among individuals. We also assessed factors 

that could predict social and reproductive success of males.  Four network metrics, 

degree, eigenvector centrality, information centrality, and reach, some of which assess 

circuitous as well as shortest (geodesic) paths of male connectivity, predicted male social 

rise.  The duration of a male’s territorial tenure during the four years of the study 

predicted his probability of siring offspring.  

KEYWORDS: Cooperation, Coordinated display, Pipridae, Social networks, Wire-

tailed manakin 
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1. INTRODUCTION 

Social interactions are a ubiquitous characteristic of many animal taxa, yet our 

understanding of how social structure affects selective pressures, and resulting behavior, 

is incomplete. Recently, social network theory, developed for the study and analysis of 

human social behavior (Wasserman & Faust 1994), has been applied to vertebrate 

animal systems (Croft et al. 2004; Lusseau 2003; Lusseau & Newman 2004; McDonald 

2007; Sundaresan et al. 2007). These novel applications of network theory represent a 

“natural history” phase where empirical data can inform theory, while theoretical work 

develops a predictive framework for network function (Proulx et al. 2005). Thus far, the 

analysis of animal social networks has provided insight into the complex dynamics of 

animal social behavior, while concurrently establishing similarities with human social 

systems (Connor et al. 1999; Lusseau & Newman 2004).  

Social network analysis provides a statistical framework for quantifying 

individual associations, within and among groups, that are characterized by structured 

interactions (Croft et al. 2004). More specifically, network analysis produces 

quantitative metrics that help interpret reticulate multi-actor interactions (Newman 2003; 

Wasserman & Faust 1994). In its simplest form, a social network is a graph consisting of 

nodes (individual actors) connected by links (social interactions) (Newman 2003; 

Wasserman & Faust 1994). A path is the number of unitary links required to connect 

individuals within the network.  Individuals that interact directly do so along a path of 

length one; individuals separated by one intermediate individual are connected by a path 

of length two, and so forth. The shortest path between a pair of nodes is called a 

geodesic. Degree measures the number of links to other actors, and is the basic measure 
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of social connectivity. Thus, networks can be characterized by their degree distribution 

(Albert & Barabasi 2004), defined as the fraction of actors (nodes) in the network, pk, 

that have degree k (Newman 2003) where k ranges from zero (i.e., no interactions) to the 

degree maximum (i.e., an actor that is fully connected to all other actors in the network). 

Many real-world networks (e.g., power grids, world-wide web, etc.) are “scale-free”, 

with a degree distribution that obeys a power law, where a few nodes of high degree link 

many nodes of lower degree (Santos & Pacheco 2006; Santos et al. 2005; Santos et al. 

2006b). Networks constructed from vertebrate social interactions, however, are smaller 

with fewer links and therefore limit our ability to fully assess all “scale-free” network 

properties. 

In addition to degree distributions, the topology of a network (i.e., the 

arrangement and lengths of paths among nodes) has obvious implications for the 

dynamics of network processes (Newman 2003). For example, the extent to which nodes 

are clustered, and the length of paths among them, influence the speed with which 

information travels through the network. The topologies of real-world networks are often 

compared to mathematically well-studied random and ordered networks. Real-world 

networks often exhibit the “small-world effect” (Newman 2003; Watts & Strogatz 

1998), with high clustering (characteristic of ordered networks) and short average 

geodesic paths (characteristic of random networks).  

Recently, evolutionary game and network theories have been applied jointly to 

investigate the evolution of cooperation, altruism, and indirect reciprocity (Nowak & 

Sigmund 2005; Ohtsuki et al. 2006; Santos & Pacheco 2005; Santos & Pacheco 2006; 

Santos et al. 2006a; Santos et al. 2005).  These models have shown that certain network 



 41 

structural components can drive selection gradients that affect behavioral outcomes. 

Networks exhibiting low average degree (k) and preferential attachment, where new 

actors tend to attach to nodes of high degree, provide sufficient conditions for the 

evolution of cooperation (Ohtsuki et al. 2006; Santos et al. 2005). Similarly, the 

architecture of relations in “small-world” networks (high clustering and short geodesic 

path lengths among nodes) facilitates behavioral coordination among nodes (Cassar 

2007). 

Following Hamilton (1964), Ohtsuki et al. (2006) derived an elegant rule for the 

evolution of cooperation within social networks: the ratio of benefit to cost must exceed 

average degree (k). Scale-free networks (those with low average k and high variance in 

k) have the highest probability of promoting cooperation over the entire cost-benefit 

range (Santos & Pacheco 2005). Despite theoretical advances towards explaining the 

evolution and maintenance of cooperation, few real-world networks have been shown to 

have the characteristics predicted to foster the evolution of cooperative behaviors. The 

lack of evidence for this relationship, however, likely reflects the recent origin of the 

models rather than a lack of the necessary conditions, especially given the prevalence of 

cooperation in vertebrate social systems. We are aware of no studies linking theory to 

empirical data for taxa that exhibit a range of behaviors from non-cooperative to strongly 

cooperative. Manakins (Pipridae) provide a useful opportunity to examine how network 

structure and social behavior interact given the continuum from solitary to obligate 

cooperative male display behaviors across the roughly 40 species in the family.  

Lek-mating manakins (Pipridae) are Neotropical birds well known for their 

exaggerated courtship displays, which involve complex movements by, and sometimes 
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interactions between, males. These displays have been described as the most complex 

behaviors known among passerine birds (Snow 2004). All manakin species engage in 

displays, yet the degree of coordination between the displays of males varies greatly, 

ranging from solitary to obligately cooperative. In most species, males aggregate at leks 

and defend individual display territories where male-male interactions often consist 

mainly of brief antagonistic encounters.  Less common are species with true coordinated 

or cooperative displays, in which pairs or groups of males engage in complex ritualized 

courtship displays.  

True coordinated or cooperative displays occur only in the genus Chiroxiphia 

and three species in the Pipra aureola clade (DuVal 2007b; Foster 1987; Heindl 2002; 

McDonald 1989b; Robbins 1983; Robbins 1985; Schwartz & Snow 1978) and are 

thought to have evolved independently on two occasions (Prum 1994). The Chiroxiphia 

species can range from frequent but not obligate cooperation (C. lanceolata, Duval 

2007a,b) to strict obligate cooperation (C. linearis, McDonald 1989a,b).  The wire-tailed 

Manakin (Pipra filicauda), the focus of this study, is a member of the P. aureola clade, 

and is intermediate on this continuum, exhibiting intermittent or special-context 

coordinated display behaviors (Schwartz and Snow 1978) that appear to represent 

incipient cooperation.  Associations among males in all these species appear to be based 

on linear dominance hierarchies (Foster 1981; Foster 1987) and may serve two 

functions: either competition to establish reproductively beneficial dominance or 

cooperation to attract females (Prum 1994).  In manakins, these functions appear not to 

be mutually exclusive. In both Chiroxiphia and the P. aureola clade, joint male displays 

function in establishing and maintaining dominance (i.e., age-graded queuing for social 
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status), while concurrently providing benefits to subordinate display partners (DuVal 

2007a; McDonald 1989a; McDonald & Potts 1994).  

 Reproductive success in male manakins is wholly dependent upon a male’s ability 

to rise in social status and attract mates. Nevertheless, virtually nothing is known about 

the ontogeny of male status (but see McDonald 2007). In C. linearis, social rise depends 

upon a multi-year history of social interactions (McDonald 2007), but no studies have 

yet examined the link between interaction history and genetically-based paternity 

assignments. Here we examine three social networks over four years, to quantify the 

structure of multi-male social interactions in the wire-tailed manakin. Specifically, we 

examine how network structure and topology (i.e., low average degree, high variance in 

degree distribution and extent of clustering) relate to the incipient cooperation involved 

in the intermittent phenomenon of coordinated courtship displays. Further, we examine 

the power of network metrics to predict male social rise and reproductive success. Each 

of the three social networks contained two spatially clustered leks that were linked 

socially by young males that moved between the paired leks. We expand upon the 

previous work of McDonald (2007) by examining the relationship between network 

structure and coordinated display behavior in the wire-tailed manakin.  This work begins 

building a comparative framework for understanding variation in the levels of 

cooperative display within manakins and, more broadly, the evolution of cooperation. 
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2. METHODS 

(a) Field Work 

We studied social dynamics of male wire-tailed manakins from November to March 

2003-2007, the height of the reproductive period, at Tiputini Biodiversity Station (TBS), 

Orellana Province, Ecuador (0º 38´ S 76º 08´ W). TBS is a 650-ha biological station 

operated by the Universidad San Francisco de Quito; the site has ~ 30 km of trails and 

two gridded 100 ha study plots (Loiselle et al. 2007). The station is in primary lowland 

rainforest dominated by upland terra firme and varzea habitats (Ryder et al. 2006). 

We located 13 wire-tailed manakin leks by systematically searching the habitat 

along all trails and within the two 100 ha gridded study plots. All captured males were 

and fitted with aluminum leg bands and unique color combinations to aid in individual 

recognition. Blood was taken from the brachial vein of all individuals for genetic 

analyses (see below). Leks range from seven to ten territorial males and to quantify 

male-male affiliations we employed two sampling techniques: 1) observations of 27 

territory holding male manakins at six leks during two-hour focal observation periods 

totaling 414 hours of observation, and 2) systematic scan samples at all other male 

territories within those leks. The two techniques over four years yielded 818 color-band 

resightings from which we quantified male social affiliations. Social interactions among 

males were restricted to the cases where the color combinations of both males were 

positively identified. Male social affiliations often occurred between males of differing 

status. Male plumage categories included formative plumage males characterized by 

green plumage with molt-limits showing them to be less than one year of age, 

predefinitive plumage males characterized by green plumage intermittently flecked with 
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yellow in the breast, black in the back and red in the head, who are approximately two 

years of age, and definitive plumage males characterized by adult plumage and who were 

at least three years of age (see Ryder & Durães 2005). Female-male affiliations (almost 

exclusively for mating) were excluded from the analyses because of their brevity and 

rarity and because our goal was to assess the dynamics of male-male social structure. 

 

(b) Male Social and Reproductive Success 

Male status was classified by plumage and territoriality as follows: Formative floaters 

were all-green males, less than one year old, who did not hold territories, but who were 

seen visiting other males on leks; Predefinitive-plumage floaters were males with some 

red head feathers and black back feathers, who did not hold territories, but who were 

seen visiting lek territory holders; Definitive floaters were definitively-plumaged males 

without territories who regularly were seen visiting territorial males; and Definitive 

territory holders were males in definitive plumage with their own display territory. 

Males in the formative or predefinitive plumage stages never held territories. Changes in 

male social and plumage status were determined across the four years of the study by 

subsequent resightings and affiliative behavior with other males. Males were considered 

to rise in social hierarchy when they changed from floater status and inherited a territory. 

Male status was coded as 0 if a male failed to change status and 1 if he inherited a 

territory during the four years of the study. Rises in male social status were always 

maintained within and across years (i.e., there were no reversals in status). 

Male reproductive success was determined using molecular markers to assign 

paternity. Paternity was assigned using the likelihood approach (Marshall et al. 1998) 
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and reproductive success was quantified in binary fashion 0/1, where any male that sired 

an offspring with at least 80% confidence was coded 1, and any male who could not be 

assigned at least one offspring with 80% was coded 0 (see Electronic Supplementary 

Material for detailed information on genetic analyses). We used binary coding instead of 

a weighted measure of success in this study because our intent was to examine 

differences between successful versus unsuccessful territory holders as they relate to 

network metrics. We view this as a first step towards later investigating more fine-

grained variation in success. 

 

(c) Network Metrics 

We constructed social network models based on four years of behavioral observations of 

color-banded individuals. Network links (1 vs 0 in the corresponding adjacency matrix; 

Wasserman and Faust 1994) represented social affiliations among males and were 

unweighted and undirected (0/1), so that frequency of interactions was not incorporated. 

Several applications of social network theory have applied filtering to data for co-

occurrence in groups in fission-fusion type societies (see Rubenstein et al. 2007; 

Sundaresan et al. 2007). Such filtering reduces the likelihood of over-emphasizing 

random or chance co-occurrence that do not represent any real affiliation or partner 

choice. The links in the manakin network do not occur in the fission-fusion context of a 

flock or herd, but rather result from explicitly defined affiliative behaviors in the context 

of courtship displays.  The minimum requirement for a link (1 vs 0 in the corresponding 

adjacency matrix) was joint perching within 20 centimeters for several minutes. Our 

observational data indicate that this behavior is frequently the precursor to coordinated 
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male displays and that males rarely perch close to males with whom they do not engage 

in coordinated displays. Moreover, the vast majority of links (~90%) among males 

represent joint coordinated display events in which males engaged in ritualized 

coordinated displays (for a detailed description see Schwartz and Snow 1978). We also 

explicitly examined the relationship between observer effort and social connectivity to 

make sure our results were not biased towards certain males. Our investigation of these 

patterns yielded no relationship between number of hours observed and the number of 

male affiliations (r2 = 0.0081) or time in the network and number of male affiliations (r2 

= 0.069). 

We created three social networks, hereafter referred to as the Tower, Huaira and 

Puma networks, from male interactions at six leks. Each of the three networks included 

two leks that were spatially adjacent. The different networks, however, were not 

spatially contiguous; all were separated by at least 2 km.  That is, each network 

comprised a distinct pair of leks and had a non-overlapping set of individuals, making 

each a statistically independent replicate.  A few floaters males, with affiliations to 

territory holders in each of the paired leks within a network, formed the links between 

spatially adjacent leks. We used the cumulative interactions over the entire four-year 

study period to compute all network metrics and statistical measures, because individual-

year sub-networks were not fully connected.  

We used the program UCINET™ v 6.0 (Borgatti et al. 2002) to calculate seven 

network metrics for each node (degree, nEigenvector centrality, power [β = 0.05], 

nCloseness, dwReach, information centrality, and nBetweenness). Degree is the number 

of links (edges) from a node (male) to the males with whom he was directly affiliated; 
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eigenvector centrality assesses how central a node is in the network from eigen-analysis 

of the adjacency matrix (the matrix equivalent of the network graph/diagram, which is 

the computational basis for most network metrics); power is a measure of focal node 

influence over adjacent nodes of lesser degree; nCloseness is the mean geodesic 

(shortest) path between the focal node and all other nodes in the network, where path 

length is the number of unitary links separating pairs of nodes (each link contributes one 

unit to total path length); dwReach is a measure of the percentage of nodes within two 

links of the focal node, weighted by path length; information centrality is a path-length-

weighted measure of how often a node lies along paths connecting other pairs of nodes, 

including paths longer than the geodesic (Stephenson & Zelen 1989); nBetweenness is a 

measure of the number of geodesic paths between pairs of nodes that run through the 

focal node (see Albert & Barabasi 2004; Newman 2003; Wasserman & Faust 1994). We 

also used UCINET™ to generate constrained random networks (same number of nodes 

and links, which yields a network of equal density) for comparison to our observed 

networks. The random graph generator randomly reattaches links with the constraint of 

equal density, and is the procedure routinely used for comparing real-world graphs to the 

well-developed theory of random graphs (e.g., Watts and Strogatz 1998).  Average 

network degree (k ) was calculated following (Albert & Barabasi 2004). D. B. 

McDonald programmed Mathematica™ routines following algorithms in Wasserman 

and Faust (1994) and Newman (2003) to generate ordered networks and to calculate 

network diameter, global clustering and mean geodesics (shortest path lengths). Network 

diagrams were created using Netdraw 2.504 (Borgatti 2002), with nodes arranged using 

a spring-embedding algorithm.  
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(d) Statistical Analyses 

We used binary logistic regression to determine whether network metrics predict 1) male 

social rise or 2) reproductive success. Both logistic regressions used all seven network 

metrics as potential predictors. The reproductive success analysis added an eighth 

potential predictor, “territorial tenure”, a measure of how many years a male held his 

territory (range 0 to 4). Because each regression had multiple predictors, we used a best-

model-subset analysis and Akaike’s Information Criterion (AIC) to assess model fit 

among candidate models that involved combinations of predictors (Burnham & 

Anderson 2002). We used random and ordered networks of equal density (same number 

of links and nodes) as comparators for the degree distribution, network statistics and 

topology of the observed manakin networks. Best-subsets analyses were done using 

Minitab™; all other statistical tests were done using SPSS v 13.0. Means and standard 

errors are reported unless otherwise noted. 

 

3. RESULTS 

(a) Network Properties 

The network diagram for the Tower network shows that the social relationships of male 

wire-tailed manakins have discernible structure, with a tendency for older, territorial 

males to be socially central (Fig. 1A). Within-lek connectivity (Fig. 1A) was primarily 

determined by a few territorial males and their associated partners (e.g., PI/B and 

G/WW), whereas among-lek links were created by younger floater males (e.g., R/OO 

and G/BW) that interacted with territorial males at the two different leks within each 
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network. The observed networks were topologically intermediate between the random 

and ordered networks of equal density (same number of nodes and links; Fig. 1). That is, 

they were “small-world” networks, with short mean geodesic path lengths among nodes 

(like the random network of Fig. 1B; Table 1) and high clustering of nodes (like the 

ordered network of Fig. 1C).  

The three manakin social networks varied in size (i.e., n = number of males) and 

average degree (Tower n = 46, k  = 3.86 ± 0.36; Huaira n = 32, k  = 2.63 ± 0.28; Puma 

n = 31, k  = 2.83 ± 0.29). When compared to the random and ordered networks (Fig. 1), 

the manakin networks had intermediate average degree yet the highest variance in 

number of links (Manakin k = 3.34, 

! 

"
k

2
= 4.17; Random k = 3.60, 

! 

"
k

2
= 3.32; Ordered 

k = 2.66, 

! 

"
k

2
= 0.33).  The variance in degree was further evident in the cumulative 

degree distribution of the three observed manakin networks, each of which showed a 

strong positive skew (Fig. 2A), with a few nodes of high degree linking many nodes of 

lower degree. In contrast, the cumulative degree distributions of the random and ordered 

networks were homogeneous, with low skew (Fig. 2B & C).  

 

(b) Social Rise 

The best-fitting logistic regression model incorporated degree, eigenvector centrality, 

information centrality and reach as predictors of a male’s probability of social rise 

(Table 2). Predictors incorporated into the model varied in their explanatory power, with 

degree (P= 0.001, odds ratio = 7.31, 95% CI 2.36 to 22.62) having the largest effect. 

That is, each additional degree increased a male’s odds of inheriting a territory by a 

factor of seven. Other predictors had lower predictive power, but did influence the 
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overall fit of the model (eigenvector centrality P = 0.034, information centrality P = 

0.013, reach P = 0.007). Other network metrics not selected by model fit criteria also 

varied between males that rose in status and those that did not (Table 3). 

 

(c) Reproductive Success 

Territory tenure best predicted the probability that a male would sire offspring (P = 

0.001, odds ratio = 3.64, 95% CI 1.66 to 8.02; Table 2). That is, a male’s odds of siring 

offspring increased by a factor of about four for each additional year he was a territory 

holder (Fig. 3). The single-parameter tenure model was the best choice because it had 

the lowest AIC score, but a two-parameter model (tenure and betweenness) and a three-

parameter model (territory tenure, degree and reach) were also good fits (i.e., ΔAIC 

within 2).  None of the other network metrics contributed to best-fit models for 

reproductive success. 

  

4. DISCUSSION  

 Our major results were to show that social network connectivity explained a 

male’s ability to become a territory holder and that the network topologies were 

consistent with theory for conditions that facilitate the evolution of cooperation. 

Territory tenure was a strong predictor of a male’s reproductive success. Obtaining a 

territory is a prerequisite for, but not the sole basis of, male reproductive success. 

Topologically, the manakin networks had a high clustering coefficient and short 

geodesic path lengths among nodes, key characteristics of “small-world” networks.  

Cassar (2007) showed that a small-world effect increases the likelihood of behavioral 
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coordination among nodes. The manakin networks also met other theoretical criteria 

favoring the evolution of cooperation. Although we did not measure cost-benefit ratios, 

the manakin networks had low average degree (k) and high variance in k; such networks 

have the highest probability of promoting cooperative behavior over the entire cost-

benefit range (Santos & Pacheco 2005). The manakin networks have the low average 

degree and skewed degree distribution with a long tail that characterize scale-free 

networks, although demonstrating a power-law distribution (versus alternative 

distributions) is virtually impossible in small networks (Keller 2005).  

 

 (a) Evolutionary Implications of Network Topology 

The evolution of cooperation has long been an evolutionary puzzle.  In spite of its 

relevance, understanding cooperation, particularly among unrelated individuals, remains 

a fundamental challenge for evolutionary biologists (Santos et al. 2006b). Graph-

theoretical modeling of both static and dynamic networks has shown that selection can 

favor the evolution of non-selfish behavior in the context of heterogeneous social ties 

(Cassar 2007; Santos & Pacheco 2005; Santos et al. 2006a).  

Manakins show a spectrum of cooperation in courtship display from completely 

individual display to obligate cooperative display (Chiroxiphia). Coordinated male 

display, however, is rare among manakins and could represent intra-sexual aggression 

(Snow 1962; Tello 2001), or could produce reproductive benefits by enhancing 

attractiveness to females (Foster 1981; McDonald 1989a; Snow 1971a; Snow 1971b). 

Wire-tailed manakins show such intermediacy, with behavioral coordination (joint 

display) among males being common but not obligate (Schwartz & Snow 1978). The 
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concordance between our social network topologies and theoretical predictions for 

conditions favoring the evolution of cooperation suggest that cooperative benefits, at 

least as much as aggressive, dominance-establishing benefits, may be important in wire-

tailed manakin social interactions.  

The ingredients needed for the evolution of cooperation are present in the 

complex networks of social affiliations among male wire-tailed manakins.  Establishing 

that the social networks meet some of the necessary criteria specified by theoretical 

models is a first step toward the larger goal of specifying the set of necessary and 

sufficient conditions that could distinguish those species in which males cooperate in 

courtship display from those species that do not. We still do not know whether the 

observed network topology evolved as a precursor to, or concurrent with, the complex 

social interactions observed in the wire-tailed manakin. Comparative data from other 

manakin and lek-mating taxa could help us distinguish features critical for evolving 

cooperation from features that are simply the inevitable consequences of interactions 

among spatially-clustered males.   

 

(b) Social Implications 

Recent evaluations of social networks (e.g., Croft et al. 2006; McDonald 2007) have 

shown that investigating social contacts can improve our understanding of complex 

behaviors. Moreover, because social interactions are dynamic in space and time, network 

metrics that integrate information on the history of interactions, phenotype, and 

performance may best predict an individual’s ultimate fate (McDonald 2007). Here, we 

present further evidence that the connectivity among males in a social network has a 
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direct effect on individual fitness. Several related network metrics of connectivity 

predict male social rise, as encapsulated in the critically important form of territorial 

inheritance. Those predictive metrics include measures that credit geodesic paths among 

nodes as well as longer, more circuitous paths across the network. Degree and path-

length-weighted reach, two of the best predictors of male social rise, take into account 

only geodesic paths between males. The other predictive metrics (eigenvector centrality 

and information centrality) also credit path lengths longer than the geodesic (shortest) 

path.  

Our data support the recent findings for the long-tailed manakin, Chiroxiphia 

linearis, that social capital is a complex mix of male persistence and interactions, with 

multiple male partners of higher and lower social status (McDonald 2007). The existence 

of an age-graded queue in wire-tailed manakins requires them to build social affiliations 

over time that increase the probability of territorial inheritance. Over time, all males 

acquire social affiliations (network links) with both territorial males and non-territorial 

floaters, but the relative number of links determines the speed of male social ascendancy. 

Although de novo establishment of new territories does occur, most males acquire 

territories by inheritance, for which social partnership with the previous territory holder 

is an essential prerequisite (Ryder, unpubl. data).  

 

(c) Reproductive Implications 

Variance in male mating success has been argued to be the single most important 

component of male fitness in lek mating systems (McDonald 1989b). However, 

understanding the sources of variation in male mating success continues to be a major 
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challenge for behavioral ecology. Recent molecular estimates of reproductive skew in 

Chiroxiphia manakins are concordant with early observational estimates and suggest that 

a few males do most of the mating (DuVal 2007a). The wire-tailed manakin also exhibits 

reproductive skew, but with a more equitable distribution across males (Ryder, unpubl 

data). This lower variance in mating success in wire-tailed manakins as compared to 

Chiroxiphia spp. means males have more options for mating success in the short term. 

The high variance in Chiroxiphia, skewed toward the oldest males, and hence fewer 

reproductive options for young males, may have helped drive evolution toward the 

extreme of obligate cooperation. 

Male reproductive success was best predicted by the duration of a male’s 

territorial tenure. Likewise, male tenure has previously been shown to predict male 

reproductive success in at least one other vertebrate (Engh et al. 2002). Unfortunately, 

males cannot currently be accurately aged by phenotype after attainment of definitive 

male plumage late in their second year of life (Ryder & Durães 2005). It is likely, 

however, that territorial tenure is a good proxy for male age, given the nature of age-

graded social queuing in other species of manakins (Doucet et al. 2007; DuVal 2007b; 

McDonald 1989a). 

Two additional well-fitting models of male reproductive success incorporated 

additional network metrics. Those models included degree, a measure of the number of 

other males with whom a male interacts directly, betweenness, a measure of the number 

of geodesic paths running through a given node (male), and reach, a measure of the 

proportion of nodes reachable by paths of length two or less.  The inclusion of these 
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metrics in two of the three models suggests the importance of indirect interactions 

involving intermediaries, requiring the multi-actor formalism of network models.   

 Previous network studies of animal social behavior have focused largely on the 

emergent properties of networks, particularly classifications based on degree 

distributions. These studies have shown that affiliation data, in a network theory context, 

provide useful quantitative measures of social interaction (Lusseau & Newman 2004). 

Fewer studies have addressed the evolutionary or fitness implications of dynamic 

network topologies at the level of individual nodes.  Examining dynamic social 

interactions in spatial and temporal contexts may clarify behavioral strategies that 

previously lacked demonstrable fitness benefits (McDonald 2007). Here, we have 

demonstrated that connectivity plays a critical role in territory acquisition. Once 

established as a territory-holder, a male’s probability of siring offspring appears to be 

largely a function of territory tenure. Our results, therefore, provide a framework for 

beginning to partition the components of variance in male mating success. Further 

progress will require partitioning tenure into stochastic versus performance components 

and understanding in better detail how the complex social interactions described here 

result from the behavioral patterns of young males. 
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Table 1. Average network metrics for three different network topologies, each with the 

same density (same number of nodes and links). The manakin network has short mean 

geodesic path lengths among nodes (like a random graph) and high clustering coefficient 

(like an ordered graph), two characteristics of “small world” networks.  

 Manakin Random Ordered 

Diameter 8.33 ± 0.33 7.33 ± 0.58 10.67 ± 1.20 

Mean Geodesic 3.92 ± 0.28 3.27 ± 0.14 5.60 ± 0.47 

Local Clustering 0.39 ± 0.03 0.06 ± 0.01 0.58 ± 0.04 
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Table 2. Akaike Information Criteria (AIC) used to predict the best-fit models for male 

social rise and reproductive success in male wire-tailed manakins at Tiputini 

Biodiversity Station, Ecuador. 

 Pa Log (L)b AICc 

Social Rise Models    

Degree + Eigen + Information Centrality + dwReach 5 -27.200 64.400 

Degree + Closeness 3 -33.027 72.054 

Degree + Eigen 3 -33.299 72.598 

Degree 2 -34.785 73.570 

Power 2 -35.422 74.844 

Reproductive Success Models    

Territory tenure 2 -29.141 62.282 

Territory  tenure + Betweenness 3 -28.495 62.990 

Territory tenure + Degree + dwReach 4 -27.977 63.954 

Betweenness 2 -34.448 72.896 

Betweenness + dwReach 3 -33.876 73.752 

Betweenness + Information Centrality 3 -34.084 74.168 

Betweenness + Closeness + Information Centrality 4 -33.379 74.758 

a Number of model parameters including a constant 
b Maximized log-likelihood 
c Akaike’s Information Criterion used in model selection 
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Table 3. Measures of male network connectivity predict fitness components in male 

wire-tailed manakins at Tiputini Biodiversity Station, Ecuador. Note that even network 

metrics not incorporated into the best-fit model varied across the response variables. All 

but two network metrics rose in concert with the response variables. Means ± SE are 

shown. 

 
Network Metrics 

 
Social Risea 

 

 
Reproductive Successb 

  
0 

 
1 

 
0 

 
1 
 

Degree Centrality 3.03 ± 0.2 
 

4.47 ± 0.6 
 

3.56 ± 0.41 
 

3.89 ± 0.46 
 

nBetweenness 7.44 ± 1.67 
 

9.08 ± 1.76 
 

6.39 ± 1.55 
 

13.48 ± 3.04 
 

nCloseness 27.66 ± 0.76 
 

27.85 ± 1.50 
 

26.14 ± 0.97 
 

27.52 ± 1.20 
 

Power 4.04 ± 0.31 
 

5.79 ± 0.91 
 

4.65 ± 0.58 
 

4.93 ± 0.62 
 

nEigenvector Centrality 16.58 ± 2.17 
 

19.00 ± 4.62 
 

15.53 ± 3.13 
 

17.06 ± 3.18 
 

Information Centrality 0.52 ± 0.03 
 

0.56 ± 0.07 
 

0.52 ± 0.04 
 

0.49 ± 0.04 
 

dwReach 14.16 ± 0.49 
 

14.94 ± 1.20 
 

14.38 ± 0.73 
 

13.96 ± 0.80 
 

Territory Tenure N/A N/A 2.56 ± 0.19 3.58 ± 0.15 

     

a Male social status coded 0 (no social rise) and 1 (social rise) 
b Male reproductive success coded as 0 (zero offspring sired) and 1 (at least 1 offspring sired) 



 66 

Figure 1. A) A representative social network for male wire-tailed manakins during a 
four-year period at Tiputini Biodiversity Station, Ecuador. Each node represents a male, 
and the links represent social affiliations among males. Path lengths are integer-valued 
counts of the number of links separating males. Note that the placement of nodes 
represents social, rather than spatial, proximity, although the two may often be 
correlated. The nodes are divided into four sections, representing a male’s status during 
each year of the study, moving clockwise from the upper right quadrant. Gray: not 
present in the network; green: formative-plumage floater; yellow: pre-definitive-
plumage floater; red: definitive-plumage floater; and black: definitive-plumage territorial 
holder. The network shown is the Tower network, comprising 46 males and 89 social 
links, from two spatially contiguous leks. The cluster of nodes on the left represents one 
lek and the cluster on the right represents a nearby lek linked socially by floater males.  
Bridging links between the leks pass through two non-territorial floater males (G/BW 
and R/OO). Removing those two males would disconnect the two leks. Note that several 
males of high connectivity (social hubs, usually court-holders) link males of lower 
connectivity (often floaters), resulting in distinct clusters of affiliated males. B) A 
random network with the same number of nodes and links as the observed network, for 
comparison. Relatively short path lengths connect any two nodes in the random network 
(as well as the manakin network). C) An ordered network with the same number of 
nodes and links as the observed network, for comparison. Many paths across the network 
are long (unlike the manakin network) but distinct clusters of nodes exist (like the 
manakin network but unlike the random network).   
 
Figure 2. A) The cumulative degree distribution, averaged across the three manakin 
social networks, shows low average degree (dashed vertical line), high variance, strong 
positive skew and a long tail. A few highly connected males (degree > 7) connected 
many males of lower degree. B) The cumulative degree distribution of random social 
networks also shows low average degree, yet it differs from the observed in having low 
variance and negative skew. C) The cumulative degree distribution for ordered social 
networks shows low average degree, very low variance and negative skew. The most 
striking difference was the high variance and positive skew of the observed manakin 
network. 
 
 
 Figure 3. Territorial tenure in wire-tailed manakin social networks predicts probability 
of reproductive success, using binary logistic regression. Probability of siring offspring 
is plotted as a function of territorial tenure (logit[p] = - 4.10 + 1.29 * territory tenure). 
Points are response averages ± SE binned by tenure. The odds of territorial inheritance 
increased by a factor of 4 for each additional year a male held his territory.
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CHAPTER 3- MOLECULAR ESTIMATES OF REPRODUCTIVE SKEW AND 
SOCIAL CORRELATES OF MALE MATING SUCCESS IN A LEK BREEDING 
BIRD 
 
ABSTRACT 

Variance in reproductive success among individuals has become a defining characteristic 

of many highly social vertebrates. Our understanding of what factors drive high variance 

in reproductive success (i.e., intra vs. inter-sexual selection) and which male attributes 

contribute is still fragmentary in most cases. Here the joint application of molecular tools 

and a novel analytical methodology (network analysis) have enhanced our ability to 

measure reproductive variance as well as to better understand the role of sociality in a 

lek breeding bird. We examine the complex social and reproductive dynamics of the 

wire-tailed manakin (Pipra filicauda) from a four-year study in the Amazon basin of 

Ecuador. More specifically, we present reproductive skew estimates generated from 

molecular paternity analyses and explain the variation in male reproductive success in 

the context of complex male social affiliations via the application of social network 

theory. Our data show that four of six leks examined have significant reproductive skew 

with the majority of success apportioned to very few individuals in each lek. Metrics of 

male social affiliations derived from our networking analysis, specifically, male 

connectivity, as measured by the number of other males with whom the focal male has 

extended interactions explained a large portion of the variance in male reproductive 

success. Not surprisingly, number of both male-female and male-male affiliations 

explained a portion of the variance in male reproductive success. Female selectivity of 

highly connected males may explain the selective regime, which promoted the evolution 

of the complex male-male display behavior in this species. 
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1. INTRODUCTION 

The unequal apportionment of reproductive success among individuals (i.e., 

reproductive skew) is a defining characteristic of many animal societies (Mackenzie et 

al. 1995). Understanding the reasons for and the adaptive significance of these 

inequalities has become a major focus of both empirical and theoretical research 

(Haydock & Koenig 2003). Measures of skew are often used to model reproductive 

strategies of dominants and subordinates under different social and ecological conditions 

(Cant & Johnstone 1999; Kokko & Johnstone 1999; Magrath & Heinsohn 2000; Reeve 

et al. 1998). Moreover, such indices provide an important framework for understanding 

the evolution and maintenance of social behavior because they assess the immediate 

fitness costs and benefits that are associated with group living and cooperation (Clutton-

Brock 1998; Griffin et al. 2003; Keller & Reeve 1994).  

At the center of much of skew research are lekking taxa in which males are 

spatially aggregated presumably due to their inability to profitably control or monopolize 

resources essential for the acquisition of females (Emlen & Oring 1977). Lekking as a 

reproductive strategy is of primary interest because leks are characterized by high 

reproductive variance among males, an essential fitness component of the lek social 

system (Hoglund & Alatalo 1995; Mackenzie et al. 1995; McDonald 1989; Wiley 1991). 

Leks are also of interest because female choice is assumed to be the major determinant 

of non-random mating and that those choices are not related to immediate fitness gains 

(Hoglund & Alatalo 1995). Recently, however, the paradigm that female choice is the 

only determinant of variance in male mating success has been challenged (Kirkpatrick & 

Ryan 1991). Although female choice clearly operates in many lekking systems (Hoglund 
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and Alatalo 1995), the relative contributions of intra- and inter-sexual forces to variance 

in mating success remain largely unknown. The importance of male-male competition as 

a factor driving high variance in male reproductive success also merits attention and is 

suggested to be important in lekking taxa where males share perches or engage in 

coordinated display. In a broader context, adaptive female mate choice for elaborate 

male traits also remains an enigmatic problem in evolutionary biology because female 

preferences are predicted to exhaust genetic variation in male traits (the paradox of the 

lek) (Kirkpatrick & Ryan 1991).  

Male reproductive coalitions, where two or more males join together to display 

for females are of particular interest among lekking taxa. Such coalitions represent an 

evolutionary paradox because one individual often accrues all the reproductive benefits 

while the other individual appears to sacrifice their own reproductive potential to assist 

the social partner. Males in several species of manakins, in the family Pipridae, engage 

in social partnerships for the attraction of females (e.g., Chiroxiphia and Pipra aureola 

clade). Previous work has revealed strong reproductive skew among male Chiroxiphia 

partners (DuVal 2007; McDonald 1989), yet no work has addressed the cost or benefits 

of coalitions in the Pipra aureola clade. Ultimately, the study of species which engage in 

facultative social behavior , such as those in the P. aureola clade, can begin to elucidate 

the relationship between variable social traits and fitness trade-offs (Wey et al. 2008). 

In the past, our understanding of variance in reproductive success was often 

limited by the techniques applied (e.g., incongruities between observationally-derived 

and true molecular estimates of reproductive success). The relatively recent integration 

of molecular techniques into behavioral studies, however, has revolutionized our 
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understanding of reproductive variance and mating systems (Hughes 1998). Specifically, 

microsatellite loci have reunited theory and practice to provide a powerful molecular 

tool for parentage analysis in most biological systems (Jones & Arden 2003).  

Ultimately, coupling paternity analysis with a mathematical framework, will provide a 

starting point for the examination of selective forces in social evolution, and 

reproductive skew in hierarchically structured populations (Ross 2001). 

In addition to molecular tools, recent analytical tools, such as the mathematical 

framework of networking analysis, have begun to advance our understanding of the 

fitness implications of social structure at the individual level (Ryder et al. 2008) (Krause 

et al. 2007; McDonald 2007).  Social network analysis provides a statistical framework 

for quantifying individual associations, within and among groups (Croft et al. 2004), by 

using metrics that help interpret reticulate multi-actor interactions (Newman 2003; 

Wasserman & Faust 1994). Moreover, correlative analyses between quantitative network 

metrics and fitness attributes have the potential to identify the selective pressures for 

different aspects of sociality (Wey et al. 2008). This mathematical framework, coupled 

with molecular assessments of reproductive success, may provide the exact kind of 

coupling Ross (2001) had envisioned. Despite the enormous potential of network 

applications in animal behavior it has received relatively little attention (reviewed in 

Krause et al. 2007, Wey et al. 2008), especially in birds (but see McDonald 2007, Ryder 

et al. 2008). Of particular value would be an examination of how quantitative measures 

of male network connectivity relate to variation in reproductive success (Krause et al. 

2007).  

Here, we investigate the strength of reproductive skew as measured using 
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molecular markers and examine the social correlates of variance in male reproductive 

success using metrics derived from a social network analysis of a lek breeding bird. 

More specifically, we use data from a four-year study of the wire-tailed manakin (Pipra 

filicauda), a member of the P. aureola clade that engages in coordinated male-male 

partnerships, to investigate the costs associated with group living and the roles of social 

partnerships in determining reproductive success. 

 

2. METHODS 

(a) Field Methods 

We studied a population of wire-tailed manakins from 2003 to 2007 at the 650 ha 

Tiputini Biodiversity Station located in Orellana province of eastern Ecuador (0º 38´ S 

76º 08´ W) (for a detailed site description see (Loiselle et al. 2007a). During this time, 

we located 13 leks by systematically searching along trails as well as within two 100-ha 

study plots established by J. G. Blake and B. A. Loiselle. Over the four years of the 

study, we captured 424 individuals, consisting of 133 females, 250 males and 36 of 

unknown sex, using mistnets. Captured manakins were weighed, sexed, aged, and 

banded with aluminum and individual color-band combinations. A blood sample of 

approximately 20-25 µL was taken from the brachial vein of all individuals and stored in 

lysis buffer (Longmire et al. 1988) for later genetic analyses. Two-hour focal behavioral 

observations and half-hour territorial scans were conducted in male territories to assess 

male behavior and quantify social affiliations through time (for details see Ryder et al 

BES). 
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Over the course of the four years, we searched for manakin nests between 

November and March. These months correspond to the drier part of the year and 

encompass the main avian reproductive period in the region. Nests were located via 

systematic searches within two 100-ha study plots as well as around known lek localities 

off the study plots. In 2005, 2006, and 2007, we concentrated our systematic efforts 

within known female territories as well as near sites where nests were found in the 

previous years. Systematic nest searching was supplemented by following radio-tagged 

females to their nests. Radio transmitters (Holohil Systems Ltd.) weighed 0.54 -0.70 

grams (i.e., <5% of the bird’s body weight) and were attached using a Rappole harness 

(Rappole & Tipton 1991). Females were tracked using Advanced Telemetry Systems 

Field Master receivers and three-element Yagi antennas. There was no evidence that 

radio transmitters affected the mating behavior of females, as tagged females were able 

to build nests, copulate, incubate eggs and raise young (pers. obs.). Once the nest was 

located, nets were placed strategically around the nest for recapture of the female and 

radio removal. 

(b) Male Classification and Status 

Male wire-tailed manakins undergo a series of plumage and social transitions (age 

graded social queue) from when they leave the nest until they become eventual territory 

holders. Changes in male plumage and social status have four transition phases: 

formative plumage floaters are young males in female-like plumage who move freely 

between leks and male territories but lack territories themselves; predifinitive plumage 

floaters have mixed formative and definitive plumage who have established social 

relationships with territory holders but lack territories; definitive plumage floaters are the 
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same as predifinitive plumage floaters except they have attained definitive adult 

plumage; and definitive plumage territory holders have attained the apex of social and 

plumage status (see Ryder et al. 2008) 

(c) Molecular Analyses and Paternity Assignments 

DNA was isolated using standard phenol-chloroform extraction followed by dialysis in 

TNE2. Once DNA was extracted and concentrations were checked we screened 25 

microsatellite primers (DuVal & Nutt 2005; McDonald & Potts 1994; Piertney et al. 

2002)( Brumfield R and Braun M, personal communication) and isolated seven 

polymorphic markers for the genotyping analyses of individual wire-tailed manakins. 

PCR reagents and reaction conditions are detailed in (Loiselle et al. 2007b). We tagged 

our PCR products using fluorescently labeled forward primers (Applied Biosystems, 

Inc., Foster City, CA). PCR amplicons from different markers were mixed in the 

appropriate dilution ratios for multiplexes to run on an ABI 3100 automated capillary 

sequencer. Fragments were sized using GENESCAN LIZ (500), and genotypes were 

assigned using Genemapper 4.01 (Applied Biosystems, Inc.). All homozygotes were run 

at least twice; any questionable allelic calls were repeated to avoid spurious results and 

discarded when necessary.  

We typed all individuals using seven microsatellite markers that varied in the 

number of independently assorting alleles and polymorphic information content (Table 

1).  Allelic frequencies were determined from the proportion of individuals that were 

completely typed (0.96) and all markers had low proportion of typing error (Table 1). 

We assessed departures from H-W equilibrium and linkage using FSTAT version 2.9.3.2 

(Goudet 2002).  None of the loci examined showed linkage and only one of the seven 
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failed to meet Hardy-Weinberg expectations (e.g., MAN 7) likely due to a higher 

frequency of null alleles (Table 1). The loci yielded high exclusion power for paternity 

(1st parent = 0.98, 2nd parent = 0.99, combined = 0.99). Paternity assignments based on 

exclusion probabilities alone can be misleading, particularly when potential sires are 

relatives (Double et al. 1997; Marshall et al. 1998). Thus, we used the maximum 

likelihood approach for paternity assignments to minimize assigning males that matched 

offspring by chance (CERVUS v3.03, (Kalinowski et al. 2007; Marshall et al. 1998). 

The likelihood assignment approach of CERVUS uses Monte Carlo simulations to 

calculate confidence levels for putative parents via simulations that incorporate 

population allelic frequencies, the number of candidate sires and the proportion of those 

potential sires sampled. The confidence measure of CERVUS is based on delta, which is 

the difference between the likelihood score for the most likely candidate and the second 

most likely candidate (Marshall et al. 1998). Our preliminary simulations used 10,000 

cycles and (0.02%) as per locus genotyping error. True typing error was measured by 

CERVUS as the percentage of mismatches between identified mothers and offspring. 

Due to small sample sizes in some years, we performed paternity analyses on the 

cumulative data across the four years of the study to increase power.  We assumed all 

males had the potential to be candidate fathers and, thus, included all individuals 

captured in male plumage or sexed as males using molecular markers. The number of 

candidate males was 250 and given our complete sampling of territorial individuals at 

leks of interest we assumed we had sampled 95% of candidates across our four-year 

study. High male survival (see Blake and Loiselle in press) and strong male site fidelity 

also contribute to confidence in our sampling assumptions. In addition to nestlings 
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sampled, post-fledging individuals can be aged as less than a year old using molt limits 

within their greater-coverts (Ryder & Durães 2005). We also attempted to assign 

paternity to any post-fledging individual that was born during the four years of our 

study. 

We assigned offspring using both strict 95% and relaxed 80% confidence as well 

as using a “total evidence” approach (Prodohl et al. 1998; Webster et al. 2004). Under all 

three scenarios, assignments were only made when assigned fathers had one or fewer 

mismatches with the offspring. Using the total evidence approach, we rejected CERVUS 

assignments and assigned paternity to a lower ranking male under three circumstances: 

(1) if the other chick in the brood was assigned with confidence to the same male and the 

candidate had a similar LOD score to the CERVUS assigned male; (2) if two males with 

the same number of mismatches had similar LOD scores but the assigned male was 

compared to the offspring at fewer loci; (3) if both males had similar LOD scores and 

the same number of mismatches but only the mismatches of the male with the lower 

LOD score were consistent with null alleles.  

(d) Network Analyses 

Network analyses are useful for characterizing social structure at the level of the 

individual and can be used in conjunction with traditional statistical measurements 

(Krause et al. 2007). Specifically, networks are graphs of nodes (individuals) connected 

by vertices (social interactions) (see Newman 2003; Wasserman & Faust 1994). We 

constructed social networks based on data for four years of behavioral observations and 

scan sampling. Network links among males represent male-male social affiliations and 

male-female affiliations as determined by paternity. All links were undirected and 
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unweighted so that the frequency of male interactions was not incorporated. Frequency 

was not used in the analyses because some males received multiple two-hour focal 

observations while other males only received scan sampling resulting in an uneven 

sampling effort. Detail on the explicit behavior criterion used to create male links can be 

found in Ryder et al. (2008).  

Cumulative male interactions at six leks yielded three social networks that are 

described in detail in Ryder et al. (2008). We used the cumulative social network to 

calculate all network metrics because individual-year sub-networks were not fully 

connected. All network metrics were calculated using the program UCINET™ v 6.0 

(Borgatti et al. 2002). Specifically, we calculated seven network metrics for each node 

(degree, nEigenvector centrality, power (β = 0.05), nCloseness, dwReach, information 

centrality, and nBetweenness) as explanatory variables for variance in reproductive 

success. Degree is the number of links (edges) from a node (male) to the males with 

whom he was directly affiliated; eigenvector centrality assesses how central a node is in 

the network from eigen-analysis of the adjacency matrix (the matrix equivalent of the 

network graph/diagram, which is the computational basis for most network metrics); 

power is a measure of the degree of nodes to which the focal node is connected; 

nCloseness is the mean geodesic (shortest) path between the focal node and all other 

nodes in the network, where path length is the number of unitary links separating pairs 

of nodes (each link contributes one unit to total path length); dwReach is a measure of 

the percentage of nodes within two links of the focal node, weighted by path length; 

information centrality is a path-length-weighted measure of how often a node lies along 

paths connecting other pairs of nodes, including paths longer than the geodesic 
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(Stephenson & Zelen 1989); nBetweenness is a measure of the number of geodesic paths 

between pairs of nodes that run through the focal node (see Albert & Barabasi 2004; 

Newman 2003; Wasserman & Faust 1994).Network diagrams were created using 

Netdraw 2.504 (Borgatti 2002) with nodes arranged using a spring-embedding 

algorithm. 

(e) Skew Estimation and Statistical Analyses 

Measures of skew vary widely and may depend upon differences in group size, 

differences in survival, length of group membership and the per capita productivity of 

groups (reviewed in (Nonacs 2003). While many skew measures have been developed, 

there is no consensus on which measure is best (Nonacs 2003). Our data suffered from 

two known problems with traditional measures of skew (differences in the length of 

group membership and differences in the per capita productivity of groups). 

Consequently, we use the binomial skew index, in which observed group variance is 

corrected by expected variance if each member has an equal probability of gaining 

reproductive opportunity (Nonacs 2000). We used the skew calculator v1.2 to calculate 

indices and present the binomial index because it has the fewest statistical limitations, 

corrects differing lengths of group membership and calculates confidence intervals 

(Nonacs 2003).  

 To examine the social correlates of male reproductive success, we used step-wise 

multiple regression. We used number of offspring sired based on molecular paternity 

assignments as our response variable and the seven network metrics produced from our 

network analyses as potential predictors. We carried out these analyses in two steps, first 

using network metrics calculated with both males and females present in the networks 
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and second with females removed from the networks. We felt inclusion of females was 

biologically important because they are a strong component of the system, yet we 

wanted to see whether patterns based on male-male interactions remain after removal of 

females. Variables were entered into the model in a step-wise fashion to find the best-fit 

overall model. All analyses were run in JMP v5.0.1; means and standard errors are 

reported unless otherwise noted. 

 

3. RESULTS 

(a) Molecular Paternity and Reproductive Skew 

Over four years, we sampled 125 offspring from 63 broods and 76 post-fledging 

individuals and typed them at seven polymorphic microsatellite loci for paternity 

analyses (Table 1). Mother-offspring relationships were known for 101/125 (81%) of the 

nestlings and 0/76 (0%) of the individuals less than one year of age. Of the total 201 

offspring we successfully assigned paternity to 114 (57%) with varying degrees of 

confidence. More specifically, 16/99 (16%) were assigned using the “total evidence” 

approach, 31/99 (31%) were assigned at relaxed 80% confidence, 52/99 (53%) were 

assigned at 95% confidence for the nestlings. Of the young individuals, where neither 

mother nor father was known, all 15 individuals were assigned at the relaxed 80% 

confidence. 

We assessed detailed paternity patterns for 52 broods and found that within 

broods, only 7/38 (18%) females had mixed paternity in their nests while a single male 

sired each the remaining clutches. Within a single year, we observed six females that 

made repeated nesting attempts, each being represented by two broods.  In three of these 
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instances, females switched mates between broods and in three they did not.  Between 

years, females were more likely to switch mates 6/8 (75%) than to remain with the same 

partner from the previous year 2/8 (25%). 

Of the 114 offspring for which we assigned paternity, 112/114  (98%) were sired 

by territorial males whereas only 2/114 (2%) were sired by definitive plumage floaters 

(i.e., non-territorial individuals). In both instances the non-territorial floater sired a single 

chick and in one case was the partner of more successful male territory holder. The 

measured skew (binomial index) at six leks varied widely with the largest lek having the 

lowest skew (Table 2). Skew, however, only differed significantly from random 

expectations at four of the six leks (Figure 1). All six estimates of the binomial index 

differed from values expected under equal distribution or total monopolization of 

reproductive benefits (for Binomial Index comparison see Table 2). 

(b) Social Correlates of Male Mating Success 

The number of territorial males that sired offspring within each lek ranged from 

3-11 with an average of 5.3 ± 1.1 successful individuals per 10 territories. Although in 

some leks multiple males sired offspring, on average only three top-ranked males per lek 

sired more than 80% of the total offspring. We further examined the relationship 

between male rank and proportion of offspring sired at a larger spatial scale by 

combining males from spatially contiguous leks linked by floater individuals. In all three 

instances, these pairs of contiguous leks defined our social networks and again we found 

that only the three top ranked males sired 70-90% of the offspring (Figure 2).  In a step-

wise multiple regression analysis we found that degree, eigenvector centrality, 

information centrality, distance weighted reach and power were predictive of number of 
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offspring sired (F5,24 = 21.6, p = 0.0001, r2 = 0.82) (Table 3). We repeated the analysis to 

remove the effect of females in the social network and found that the two strongest 

predictors, degree and eigenvector centrality, predicted number offspring a male sired 

but with lower explanatory power (F2,25 = 9.1, p = 0.0011, r2 = 0.42) (Table 3). In both 

analyses, degree, which is a direct measure of a male’s social connectivity, was the best 

predictor of number of offspring sired (Figure 2 & Figure 3). 

 

4. DISCUSSION 

Here we have presented data on wire-tailed manakins, which begins elucidating the 

importance of reproductive and social dynamics in a lek mating system with male-male 

coordinated displays. Four of the six leks we studied showed significant reproductive 

skew with only a few territorial males receiving the vast majority of the reproductive 

benefits. Overall our data show that territoriality is a fairly strong prerequisite for access 

to reproduction in this system. Two social partners of reproductively successful males, 

however, did sire one offspring each but they both appear to be exceptions to the rule 

(i.e., 2% of matings) rather than common occurrences. Here we have also documented a 

previously unrecognized social component (i.e., number of male affiliations) important 

for understanding variation in male reproductive success. Metrics derived from a social 

networking analysis predicted the number of offspring a male was likely to sire. 

Moreover, variation in male reproductive success was explained by social affiliations 

that included both a female and male component. 

(a) Molecular Paternity and Reproductive Skew 
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Previously documented strong skew in lekking systems (Hoglund and Alatalo 1995; 

Mackenzie et al. 1995; Wiley 1991) suggests that females primarily make unanimous 

mate choices (Bradbury et al. 1985). Mate choice unanimity has two components that 

contribute to variance in male reproductive success, one unanimous mate choice among 

different females and two the unanimous consecutive within brood choices of a single 

female. Mate choice unanimity is evidenced in our data for both components. Strong 

skew within four of our six leks in which few individuals received the majority of the 

reproductive benefits suggests unanimity among females (e.g. in one lek a single male 

sired 20 0f 24 total offspring). Likewise, consecutive within brood choices of females 

showed that 82% of females make unanimous mate choices. Female mate choice 

unanimity can be achieved via utilization of the same mate-choice cues to assess and 

select males or via females copying their own or other female choices to consistently 

mate with particular males (reviewed in Balmford 1991). Information about the acuity 

and accuracy of females in assessing mating cues, however, is still lacking (Bradbury et 

al. 1985).  

Although mate-choice unanimity represents the general trend in our data, we did 

find some females that mated multiple times resulting in offspring with mixed paternity. 

Moreover, between-brood and among-year female choice suggest that females do mate 

with more than one male. This contrasts with data from two other species of manakins, 

which showed high between-brood female fidelity (e.g. Manacus manacus (68.8%), and 

Pipra erythrocephala (66.6%), Lill 1974; 1976). Female polyandrous behavior, 

however, has been previously documented in other lekking taxa (e.g. peacocks, Pavo 

cristatus, (Petrie et al. 1992); buff-breasted sandpipers, Tryngites subruficollis, (Lanctot 
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et al. 1997) yet clearly does not play as important a role in the reproductive strategies of 

female wire-tailed manakins. Regardless, such observations on female choice in a 

lekking system support the supposition that females are free to choose respective 

partners (Balmford 1991). Female choice of males at leks in wire-tailed manakins, 

however, does appear to be limited to a few top individuals, with the majority of mate 

changes being to other successful individuals. 

 The existence of reproductive skew in the majority of wire-tailed manakin leks we 

studied further adds to the number of documented behavioral and molecular skew 

estimates for manakin species that engage in male-male display (e.g., Chiroxiphia 

linearis and lanceolata) (Duval 2007; McDonald 1989). Skew at the lek level is an 

inevitable consequence of lek membership because solitary display or not joining a lek 

yields no fitness benefits. The costs of engaging in joint male coordinated display, 

however, likely vary by age class and social status. Engaging in male-male coordinated 

displays does provide access to reproduction yet the frequency of offspring sired by 

partners does not appear to produce a significant benefit. However, measurable delayed 

direct fitness benefits are associated with coordinated displays, where participation in a 

social network is an essential precursor for social ascendancy and territory acquisition 

(Ryder et al. 2008).  

Our results show that territoriality is a fairly strong prerequisite for male 

reproductive success because territorial males sired nearly all offspring. In addition, our 

previous work showed that the length of a male’s tenure as a territory holder was also a 

strong determinant of a male’s likelihood of siring offspring (Ryder et al. 2008).  Thus, it 

appears that males must build social affiliations via coordinated displays to accrue social 
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capital essential for territory acquisition and then maintain that territory to increase their 

chances for reproductive success.  

(b) Social Correlates of Male Success 

Understanding the adaptive significance of female mate choice in lekking taxa has 

remained a prominent goal of behavioral ecologists because of the apparent lack of 

fitness benefits for choosy females. Mate choice decisions in wire-tailed manakins 

appear hierarchical, in which females use territoriality and length of male tenure as the 

primary criteria (see Ryder et al. 2008). Once a female has narrowed the pool of 

potential candidate males, it is likely she uses multiple cues (e.g., behavioral, 

phenotypic, social and genetic) to assess mates and choose among territory holders. 

Evidence from other lekking taxa support the supposition that male mating success is 

determined by a multitude of potentially interacting traits (Hoglund & Alatalo 1995). 

Fiske et al. (1998) reviewed the importance of traits in a meta-analysis of male mating 

success on leks and found that behavioral (male attendance), territorial (territory 

centrality), and morphological (extravagant traits) cues all played important roles.  

Studies of mating success in male manakins have also found numerous factors to 

be determinants of male success. Predictors of male mating success in manakins have 

varied widely and include song and display rate in Chiroxiphia linearis (McDonald 

1989), male size, condition, territory position, and levels of aggression in Manacus 

manacus (Shorey 2002) and female preferences for male plumage brightness also in 

Manacus manacus (Stein & Uy 2005).  To date, however, no studies have documented 

the importance of social structure or male affiliations for reproductive success. 

Moreover, the direct fitness consequences of social relationships are rarely documented 
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(Wey et al. 2008). Social affiliations are likely not important in all manakin mating 

systems but are particularly pertinent for those where males engage in joint displays. The 

importance of network metrics, such as degree, that measure connectivity, have only 

recently been recognized to have bearing on both male social status and reproductive 

opportunities (see Krause et al. 2007, McDonald 2007, Ryder et al. 2008). 

We found that male degree, a direct measure of a male’s social connectivity, was 

the strongest positive predictor of variation in male reproductive success. Degree, as 

used in our analyses included both male and female components, where male links 

represented social display partnerships and female links represented copulations and 

successfully sired offspring. In a second analysis, we removed female links because of 

the known positive association between number of offspring and number of females a 

male mated with. Removal of female links did reduce the explanatory power of the 

model yet degree was still strongly predictive of number of offspring sired.   

We viewed the female contribution to degree as biologically important because 

of the potential role of female copying in lekking taxa. Female copying is known to 

increase the variance in male mating success (Pruett-Jones 1992; Wade & Pruett-Jones 

1990) and is characterized by groups of females at the lek, multiple visitation before 

mating and the existence of few males achieving the majority of the reproductive success 

(reviewed in (Losey et al. 1986). The existence of multiple female visitation and strong 

reproductive skew in our system and previous studies of other manakins (Lill 1974; Lill 

1976) do not prove the existence of copying in manakin mating systems but rather are 

compelling indication that it remains a biologically real possibility. 
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Although the potential for female copying might explain a portion of the strong 

variance in male reproductive success, it would not explain how females make mate 

choices in the absence of other females. This begs the question of how male-male 

connectivity (degree) might be assessed by females in our system. Degree quantifies 

male social affiliations and, thus, is a direct measure of the number of social display 

partners each male has.  As such, males with higher degree (more social partners) were 

more likely to engage in coordinated displays. Currently, we do not have direct evidence 

that coordinated display frequency and the numbers of offspring sired are correlated 

because not all males were monitored with detailed observation techniques. Previous 

work, however, did show a significant per male increase in the frequency of display 

maneuvers when social partners were present (Ryder et al. BES).  Females could 

indirectly assess male connectivity by this measured increase in display activity. 

Moreover, if females were selecting males based on coordinated display frequency, it 

would explain the fitness advantage of male partnerships and how selective pressures via 

female choice may have driven these elaborate behaviors to an evolutionary equilibrium. 

In addition to degree, we found that eigenvector centrality and information 

centrality also predicted male reproductive success. These centrality measures contrast 

with degree because they are negatively correlated with the number of offspring a male 

sired (see Table 3 beta parameters). Unlike degree, these measures credit indirect 

network paths and, therefore, incorporate the importance of weak social ties (need 

citation). More specifically, the centrality measure of each male is determined by the 

centrality of those males to whom he is connected. Why then might these measures be 

negatively correlated with reproductive success? Successful males have high 
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connectivity yet those connections are dominated by males of lower or equal degree but 

rarely to those with a higher degree than themselves. It is rather the young, typically 

floater, individuals who create links among these highly successful males territorial 

males. As a result, a young male who is connected to many individuals of higher degree 

will have a higher centrality measure than a territorial male with the same number of 

links. A male’s centrality during his years as a floater has previously been shown to 

predict his probability of social rise in both Chiroxiphia linearis and Pipra filicauda (see 

McDonald 2007, Ryder et al. 2008). 

Lekking social systems have long been at the center of empirical and theoretical 

reproductive-skew research. Here, we have coupled molecular and novel analytical tools 

to better understand the fitness implications associated with these complex social 

systems. Specifically, an examination of dynamic social interactions has begun 

clarifying behavioral strategies that were previously thought to lack demonstrable fitness 

benefits (see McDonald 2007, Ryder et al. 2008). Duval (2007) recently noted that 

selection for complex male behaviors requires long-term male social affiliations, which 

in turn reinforces the evolution of complex social structure. Here, we emphasize that 

understanding the evolution of behavioral strategies necessitates investigating the 

existence of social connectivity as well as measures of individual variation associated 

with those metrics. Undoubtedly, future research utilizing social network theory will 

continue to underscore the broader importance of social relationships in a fitness context. 
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Table 1. Details of the seven polymorphic microsatellite markers used in the paternity analysis 
of wire-tailed manakins at Tiputini Biodiversity Station. 
 

Locus Ka Nb Ho He PICc Excd H-
W 

Fnulle Error 

LAN10 15 508 0.797 0.801 0.779 0.454 NS 0.002 0.000 
LAN20 24 505 0.828 0.849 0.837 0.562 NS 0.012 0.000 
MAN13 8 495 0.521 0.550 0.471 0.156 NS 0.029 0.000 
MAN3 18 494 0.858 0.890 0.879 0.634 NS 0.017 0.049 
MAN6 5 479 0.526 0.506 0.460 0.132 NS -

0.019 
0.000 

MAN7 30 495 0.743 0.902 0.894 0.670 *** 0.095 0.074 
MAN(AC)-

13 
11 471 0.703 0.747 0.716 0.362 NS 0.031 0.018 

          
a) number of independently assorting alleles 
b) number of individuals typed 
c) polymorphic information content  
d) average exclusion probability of first parent 
e) frequency of null alleles 
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Table 2. Distribution of reproductive benefits among group members at wire-tailed 
manakin leks of different size at Tiputini Biodiversity Station, Ecuador. Binomial index 
for actual reproductive skew (B), equal distribution (equal) and monopolized distribution 
(monopoly) of benefits among group members are shown. Note that index values for 
equitable distribution of reproductive benefits are all negative. 
 

LEK Na Nbb B Equalc Monopolyd 
Tower 17 3 0.552 -0.038 0.836 

Chichico 19 6 0.127 -0.052 0.901 
Puma 2.5-800 16 6 0.080 -0.085 0.844 
Puma 2-200 15 5 0.238 -0.050 0.832 
Huaira/Lago 28 10 0.010 -0.050 0.923 

Danta 6 3 0.090 -0.104 0.715 
a) Number of males, both court-holders and their floater affiliates 
b) Number of males which sired offspring 
c) B index assuming equally apportioned reproductive benefits among group members 
d) B index assuming total monopoly by a single group member 
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Table 3. Results of a step-wise multiple regression between social network metrics and 
molecular estimates of male reproductive success for male wire-tailed manakins at 
Tiputini Biodiversity Station, Ecuador. 
 

Model Parameters ß F-Ratio P 
w/ Females    

Degree 1.150 24.086 <0.001 
dwReach 0.552 4.183 0.051 

Eigenvector Centrality -0.089 17.532 <0.001 
Information Centrality -25.198 7.773 0.010 

Power 0.241 3.925 0.059 
w/out Females    

Degree 1.182 15.534 <0.001 
Eigenvector Centrality -0.152 11.456 0.002 
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Figure 1 Binomial skew index with 95% confidence intervals for six wire-tailed manakin 
leks of varying sizes at Tiputini Biodiversity Station, Ecuador. Indices not overlapping 
zero are considered statistically different from random.  

 
Figure 2 Male ranks as a function of average proportion of offspring sired for spatially 
contiguous leks within a social network of male wire-tailed manakins. Inset within each 
graph is the corresponding social network. The top three ranked males in each lek are 
designated with numerical labeling and dashed circles. Each node is sized by degree, 
which is a strong predictor of male reproductive success. Territorial males are shown as 
black nodes, floater males are shown as gray nodes and females are shown as white 
nodes. Note that the larger black nodes (territorial males) with high degree are often 
found at the periphery of the social network while it is primarily gray nodes that create 
the connections among territory holders and between leks. A) Puma network, B) Tower-
Chichico network, and C) Huaira-Lago network. 

 
 

Figure 3 The relationship between degree and proportion of offspring sired in a social 
network of male wire-tailed manakins. A) Puma network, B) Tower-Chichico network, 
and C) Huaira-Lago network. 
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