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General Abstract 

Human activities, such as expansion of agricultural land and forest exploitation, have modified 

landscapes worldwide. Despite a large accumulation of empirical and theoretical knowledge on 

habitat loss and fragmentation, some aspects remain poorly understood, especially those related 

to the interaction between different forms of habitat degradation. The overall goal of this 

research was to study the effects of  habitat fragmentation and changes in forest structure on bird 

populations in a human-modified landscape in the temperate rainforest of South America using 

Aphrastura spinicauda (Furnariidae) as a model species. Specifically,  I evaluated i) if 

replacement of forest by open habitat leads to reduced dispersal influencing the genetic structure 

of populations; ii) if density and reproductive success vary across a fragmented landscape and if 

populations are limited because of nest-site availability in forests that differed in structure 

(modified by selective logging) and degree of isolation; and iii) if nest-site selection patterns and 

associated consequences on fitness are spatially variable in response to changes in forest 

structure and connectivity. First I show that forest replacement by open habitat reduced 

landscape connectivity and influenced the genetic structure of populations even within the time-

space scale of habitat fragmentation caused by human activities. Secondly, I show that bird 

density varied across the fragmented landscape while nesting success remained constant. 

Aphrastura spinicauda is a non-excavator cavity-nester and thus relies on old trees or snags 

where most cavities form. A nest-site supplementation experiment revealed that nest-site 

limitation is the primary cause of density reduction in selectively-logged forests, but that other 

processes directly related to forest fragmentation (e.g. loss of connectivity) also influence 

population responses to habitat changes. Finally, I showed evidence for adaptive nest-site 
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preferences, but also that nest-site choice is spatially variable in response to ecological gradients 

produced by human activities. By combining genetic and demographic responses of populations 

I provided evidence for unforeseen and potentially synergistic interactions among different forms 

of habitat degradation. These results emphasize the need of explicit and independent 

consideration of habitat fragmentation and other forms of habitat degradation, such as selective 

logging, when studying populations in human-modified landscapes. In that way, we can better 

understand and predict population persistence and their adaptive responses in these landscapes.  
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CHAPTER I 

 

Genetic structure of forest bird populations in naturally and human fragmented forests: a 

contrast between two time-space scales 

 

Abstract. - Habitat fragmentation can disrupt dispersal of organisms and therefore it can also 

influence genetic processes at the population level. Time since isolation, however, can be a 

limiting factor to detect the full extent of genetic consequences on populations, especially when 

fragmentation occurs at small spatiotemporal scales as in many human-modified landscapes.  

Naturally fragmented systems that have been isolated for long periods of time (i.e. thousands of 

years), such as relict cloud-forests in north-central Chile provide a good opportunity to study 

large-scale and long-term effects of forest fragmentation. The goals of this study were (1) to 

contrast the genetic structure of Aphrastura spinicauda (Furnariidae) populations inhabiting 

naturally fragmented relict-forests with those found in human-caused fragments and (2) to 

determine if forest replacement by open habitat reduces landscape connectivity and therefore 

influences the genetic structure of populations by comparing populations in fragmented and 

continuous forests. Six populations were sampled at a regional scale (distance range: 100-1000 

km) with two of those (one continuous forest and one anthropogenic fragmented landscape) 

further divided into several subpopulations to investigate genetic spatial patterns at a short and 

small time-space scale (distance range: 2-30 km). Individuals were genotyped at five 

microsatellite loci. Genetic consequences of isolation were observed at both small and large 

time-space scales although patterns in human-caused fragments were less pronounced. Relict 

forests were inhabited by two genetically distinct populations, but two continuous-forest 
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populations separated by the same distance were not differentiated, indicating that large 

distances are a barrier for A. spinicauda dispersal only if habitat separating populations is not 

forest. A similar pattern was observed at the small scale. The comparison of genetic 

differentiation among four sites in the continuous forest revealed that these subpopulations were 

not genetically differentiated. In contrast, subpopulations in forest fragments that were similarly 

distributed across space (but not connected by forest) were significantly differentiated suggesting 

reduced dispersal among fragments. There was a significant isolation by distance pattern at the 

large spatial scale. At the small scale, however, it was significant only after controlling for the 

landscape context of individual fragments (i.e. number and size of fragments within the 

neighborhood of a focal patch). In this study, I showed that time-space scales are important in 

revealing the genetic consequences of habitat fragmentation and that forest replacement by open 

habitat, geographic distance among populations, and size of forest fragments are important in 

determining genetic differentiation of populations. 

Key words: Aphrastura spinicauda, Chile, Furnariidae, habitat fragmentation, 

microsatellite, population genetic structure, south-temperate rainforest. 

 

Introduction 

An abrupt change in landscape connectivity, such as that resulting from forest fragmentation, 

may interfere with dispersal success of organisms. Reduction in size and increased isolation of 

habitat fragments are important causes of population decline (Davies et al. 2001) because 

dispersal restriction and population size reduction increase the probability of local extinction 

(Bender et al. 1998; Andren 1994; Brown & Kodrik-Brown 1977), disrupt important ecological 

processes (Kareiva & Wennergren 1995), and lead to the genetic deterioration of populations 
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(Avise & Hamrick 1996). Previous studies have shown that in the long term (i.e., tens of 

generations), habitat fragmentation can affect genetic population structure even in birds, a group 

considered to have high dispersal capability (Bates 2002). Furthermore, these effects may even 

be observed within the time frame of human-caused fragmentation in both, small mammal 

(Gerlach & Musolf 2000) and bird populations (Galbusera et al. 2000). However, time-since-

isolation can limit expression of the full extent of genetic consequences of human-caused 

fragmentation because observable effects on populations usually lag behind the disturbances that 

caused them (Tilman et al. 1994). Moreover, these habitat changes are usually an ongoing 

process and in many cases equilibrium situations may not have been attained (Hutchison & 

Temple 1999). Therefore, systems that have been naturally fragmented and are isolated in the 

long-term and at large spatial scales may provide a good contrast to more recent and human-

caused fragmentation. 

Relict cloud-forests in north-central Chile provide good comparative sites for detecting 

large-scale and long-term effects of fragmentation on populations (Cornelius et al. 2000). These 

forests occur in patches along the coastal mountain range where fog-induced microclimatic 

conditions allow the forest to exist in a semiarid region (Del Val et al. 2006). Bird (Cornelius et 

al. 2000; Ried et al. 2002) and plant (Perez & Villagran 1985) composition of relict forests 

closely resemble that of Valdivian rainforests, located more than 1000 km to the south. These 

relict forests are remnants of an ancient forest community that became fragmented and isolated 

during the Pliocene and Pleistocene periods (Villagran et al. 2004). During periods in the 

Quaternary, these forests expanded their ranges because of wetter conditions caused by 

glaciation events which resulted in periods of higher connectivity among these relict forests and 

the southern Valdivian forests (Villagran et al. 2004; Troncoso et al. 1980). 
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 Aphrastura spinicauda (Furnariidae), an endemic bird from the South American 

temperate rainforest, is a good model species to investigate population genetic consequences of 

habitat fragmentation because it is restricted to forest habitats and does not occur in any type of 

open habitat that typically surrounds forests within the study area (Cornelius et al. 2000; Diaz et 

al. 2005). It is an insectivorous, year-round resident bird that nests in tree cavities typically found 

at mid- and high-canopy levels in the forest (Diaz et al. 2005; Estades & Temple 1999; Chapter 

2). To date, no studies have investigated the population genetic structure of any bird species in 

the south-temperate forest, and only a few studies have investigated the genetic effects of 

human-driven forest fragmentation on bird populations in other systems (Ellegren et al. 1999; 

Galbusera et al. 2000; Galbusera et al. 2004; Brown et al. 2004). In the south-temperate 

rainforest, however, evidence from bird movements (Sieving et al. 1996; Castellón & Sieving 

2006a) and mating success (Willson 2004; Diaz et al. 2006a) have revealed dispersal restriction 

across open habitats for most understory bird species. Dispersal capability of A. spinicauda 

across open habitats has not been evaluated directly; however, it is likely to be higher than most 

understory bird species because of its non-terrestrial habits (Castellón & Sieving 2006b). 

Aphrastura spinicauda is among the few forest bird species that have been able to colonize and 

persist in relict-forest systems located outside the temperate forest region (Cornelius et al. 2000; 

Ried et al. 2002).  

The goal of this study is to determine if loss of connectivity, through the replacement of 

forest habitat by open habitat, results in changes to the genetic structure of populations, using 

Aphrastura spinicauda as a model species. To address this question, I studied the genetic 

structure of populations at two different time-space scales: (1) long-term and large-scale isolation 

by comparing populations in two relict forests with that of populations sampled in a continuous 
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forest, and (2) short-term and small-scale isolation driven by human-caused forest fragmentation 

by comparing populations among fragments within an agricultural landscape with populations 

within a continuous forest. 

Methods 

Large-scale sampling 

Populations of A. spinicauda were sampled within two main regions across its distributional 

range in coastal central-southern Chile: the northern semiarid region (30° S to 32° S) and the 

southern region (40° S to 43° S) where the broad-leaved and evergreen Valdivian rainforest type 

is dominant. Within these regions, populations were sampled in six sites (Fig. 1a). Two sites 

were in relict forests located along a north-south gradient of aridity; the northernmost forest, 

Fray Jorge, is separated by 165 km of semiarid scrub from the next relict forest to the south, 

Santa Inés. Both relict forests are small (< 300 ha) forest remnants that are surrounded by 

semiarid scrub habitat. Towards the south, aridity decreases and dense scrub and sclerophyllous 

forests become abundant. Thus, from Santa Inés to the south, forests are immersed in a region 

with increasing landscape connectivity. To control for isolation by distance, in contrast to 

isolation caused by the inability of A. spinicauda to cross large expanses of non-forested habitat, 

two sampling sites (Chaihuín and Parga) were established in the southern Valdivian region, that 

were separated by a similar distance (165 km) as the two relict forests. These two sites were 

located within the last continuous-forest remnant (439 000 ha) of the coastal range of the 

Valdivian region (40°S – 43°S; Smith-Ramirez 2004) and where the larger overall forest cover 

results in increased landscape connectivity (Castellón & Sieving 2006b). The final two sites were 

established on Chiloé, a large land-bridge island separated from the mainland by a narrow 2 to 5-

km wide marine channel. One site was established in Chiloé National Park (Chiloé-NP) in a 
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large continuous-forest remnant (35,200 ha) along the western coastal range. The second site was 

located 80 km from the National Park in an area where the landscape is composed of several 

forest fragments distributed across an agricultural landscape (Chiloé-AL) in north-east Chiloé 

(Fig. 1a). 

Small-scale sampling  

To study the structure of A. spinicauda populations at a finer scale, the two sampling sites in 

Chiloé were further subdivided into several subpopulations (Fig. 1b). In the agricultural 

landscape (Chiloé- AL), birds were sampled in nine anthropogenic forest fragments within an 

area of 550 km
2
; pairwise distances among fragments ranged from 1 to 22.8 km. Forest 

fragments in this area were surrounded by a matrix of agricultural fields, pastures and abandoned 

fields, habitat types not used by A. spinicauda. To control for isolation by distance in contrast to 

loss of connectivity caused by replacement of forest by agricultural land, four sampling sites 

were established in the continuous forest in Parque Nacional Chiloé (Chiloé-NP); pairwise 

distances among these sites ranged from 1.9 km to 14 km. Neither site (Chiloé-NP and Chiloé-

AL) contained major barriers such as mountains or large rivers. Landscape metrics were 

calculated from a 2001 Landsat Thematic Mapper image with a pixel resolution of 30 m; habitat 

was categorized as forest or non-forest using ArcGIS 9.1. Individual fragments were identified 

using program FRAGSTAT (McGarigal & Marks 1995). In the agricultural landscape, birds 

were sampled in three large (> 1,000 ha), three medium (100 – 400 ha) and three small fragments 

(10 - 15 ha). To quantify the isolation of forest fragments, I used an index of habitat patch 

proximity (PX) calculated with FRAGSTAT. This index is a measure of patch isolation that 

quantifies the spatial context of a focal patch in relation to other patches within a specified buffer 

distance (Gustafson & Parker 1992). This index distinguishes isolated patches (i.e. small PX 
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values) from those that are part of a cluster of patches (i.e. large PX values) by considering size 

and distance among patches, which are both important variables in determining the genetic 

structure of populations. Ideally, the buffer distance to evaluate PX should reflect the scale of 

movement of the organism investigated. Because no a priori information exists about the 

dispersal capability of A. spinicauda, I used an arbitrary buffer distance of 1 km. Proximity index 

values, however, remained quantitatively and qualitatively similar with buffer distances of 0.5 

km to 5 km. This small variation in PX with buffer distance is expected when overall forest 

cover exceeds 40% (Gustafson & Parker 1994).  

Sample collecting procedure  

Blood samples were collected from 235 individuals in 17 sites (including relict forests, sites in 

continuous forests and forest fragments, as described above), during August through October of 

2003, 2004 and 2005. Samples were collected before or during the early stages of the breeding 

season so that only adult breeding birds were included and so that, most probably, dispersal of 

birds hatched in the previous year already had occurred. Intensive mist-netting with playbacks 

was used to capture at least 10 individuals in each site (mean: 13.8; range: 10 – 18). At the fine-

sampling scale (i.e. in Chiloé-AL and Chiloé-NP), the size of the collection area within the 

continuous-forest sites and within large fragments was equivalent (10 – 15 ha) to the collection 

area within smaller fragments, to compare the existing diversity of large and small forests within 

equivalent sampling areas. Relict forests were sampled over their entire range and sites in the 

Valdivian region were sampled over a comparable geographical span. Each bird captured was 

uniquely marked with numbered aluminum bands and released in the same capture area. A small 

(0.05 µl) blood sample was taken using microcapillary tubes following a small puncture of the 
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brachial vein (McGuill & Rowan 1989); blood was stored in lysis buffer (1% SDS, 100mM Tris, 

10mM EDTA pH 8.0) for later analysis at University of Missouri St. Louis.  

Microsatellite analysis  

DNA was extracted with a standard phenol-chloroform protocol after incubation for 12 hours at 

65° C in the presence of 30 µg of proteinase K. Genotyping of individuals was based on five 

microsatellite loci previously developed for other bird species. Loci Man1, Man3, and Man13 

were developed for Manacus manacus, family Pipridae (Piertney et al. 2002) and loci wbwc-28 

and wbwc-58 for Glyphorynchus spirurus, family Dendrocolaptidae (Milá & Bardeleben 2005). 

Starting from the original PCR conditions, different concentrations of MgCl2, DNA template, 

and annealing temperatures were tested using normal thermal cyclers. Optimal reaction 

conditions for each locus for A. spinicauda are described in Table 1. Fluorescently labeled 

forward primers were used in PCR reactions and products were analyzed on an ABI 3100 

sequencer (Applied Biosystems). Fragment length was determined by comparison to an internal 

size standard to determine genotypes using GeneMapper 3.0 software (ABI Prism, Applied 

Biosystems). Genotyping accuracy was examined by visually checking each genotype; for each 

locus an average of 80% (range: 65% - 95%) of samples were amplified multiple times to 

minimize genotyping error. Samples with ambiguous or unique genotypes of low quality were 

reamplified until genotype could be verified. Samples that were amplified repeatedly with 

conflicting results were not assigned a genotype (< 1 % of samples at any locus).  

Data analyses 

Indices of genetic diversity and statistics such as number of alleles per locus (AN), allelic richness 

per locus (AR), a measure of allele number independent of sample size (El Mousadik & Petit  

1996), Nei’s gene diversity (HS) averaged over loci (Nei 1987), observed heterozygosity (HO), 
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and the index FIS, were estimated using program FSTAT version 2.9.3.2 (Goudet 2000). Hardy-

Weinberg (HW) equilibrium departures over all loci within each population were determined by 

examining deficiency of heterozygotes (FIS) and generating P-values with 600 permutations. 

Allelic richness and gene diversity in the northern and southern regions were compared with two 

sided t-tests with P-values based on 15,000 permutations using FSTAT. Observed (HO) and 

expected (HE) heterozygosities and departures from HW for each locus per population were 

estimated in ARLEQUIN version 3.0 (Excoffier et al. 2005). All pairs of loci were tested for 

linkage disequilibrium within each population using a log-likelihood ratio test with P-values 

based on 1,200 permutations in FSTAT. 

Population differentiation was first examined at three different spatial scales with Weir & 

Cockerham (1984) measure of global population differentiation FST (Φ); 95% confidence 

intervals were obtained by bootstrapping and significance was evaluated based on randomizing 

genotypes among populations 1,000 times using a log-likelihood test (Goudet et al. 1996) 

implemented in FSTAT. The statistic RST that assumes a stepwise mutation model (Slatkin 

1995), was also estimated for the global population differentiation analyses. Global FST (Φ) was 

compared at large, meso, and small spatial scales. The large spatial scale included all six 

populations (see Fig.1); the meso scale was a subset of all populations and consisted of the three 

populations from the southern region within continuous forests (Chaihuín, Parga and Chiloé-

NP); and the small spatial scale included populations sampled in fragments within the 

agricultural landscape (Chiloé-AL). Population differentiation was also evaluated by calculating 

population pairwise measures of FST (Wright 1968) among populations at the large spatial scale 

(i.e. among the six populations) and at the small spatial scale (i.e. among the nine forest 

fragments and among the four sites within the continuous forest in Chiloé) with significance for 
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pairwise values of FST determined by 120-720 permutations using FSTAT. Mantel tests (Mantel 

1967) with 10,000 permutations were used to determine the relationship between pairwise 

geographic distance (log10 transformed) and genetic distances with FST / (1- FST) as a measure of 

genetic distance (Rousset 1997). For all tests involving multiple comparisons, a Bonferroni 

correction was used.  

Dispersal patterns among populations at the large spatial scale were investigated with 

assignment tests (Waser & Strobeck 1998), implemented in ARLEQUIN 3.0, to determine the 

log-likelihood that each individual multi-locus genotype belongs to the population in which it 

was sampled. This test allows identification of individuals sampled in one population that appear 

genetically closer to a different population (i.e. potential migrants). Levels of mis-assignment 

were determined between the two relict populations (Fray Jorge and Santa Inés) in the northern 

region, and then contrasted to the levels of mis-assignment between the two populations in the 

continuous forest located in the southern region (Chaihuín and Parga) that are separated by the 

same distance as the two relict forests.  

To determine whether there was significant population differentiation, and to estimate the 

distribution of genetic variation within versus among populations, analyses of molecular variance 

(AMOVA; Excoffier et al. 1992) were conducted, with Weir and Cockerham’s (1984) FST as the 

measure of genetic distance, using ARLEQUIN 3.0. Different models were compared to 

determine whether differences between populations are better explained by geographic distance 

or by differences in landscape connectivity (i.e. whether habitat between populations is forest or 

non-forest). Significance was obtained after 10,000 permutations to determine the probability of 

a random FST value being greater than or equal to the observed value (Excoffier et al. 2005).  
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At the small scale (i.e. among fragments in the agricultural landscape), the relationship 

between geographic distance and genetic distance was investigated in two ways. First, the spatial 

genetic autocorrelation of individuals was investigated by calculating a correlogram, using 

Moran’s index (Iq) as a measure of pairwise distance, at 2-km interval classes using Spatial 

Genetic Software (SGS) version 1.0c (Degen & Kremer 2001). By examination of the 

correlogram, it is possible to determine the spatial extent at which individuals are more or less 

related than expected by chance. Second, the relationship between geographic distance and 

genetic distance was investigated by incorporating isolation of patches as a predictor variable for 

genetic distance among forest fragments. To obtain a pairwise value of isolation among 

fragments, I used the smaller value of the proximity index (PX) between two fragments being 

compared. The smaller value was chosen because pairwise genetic differentiation (i.e. a high FST 

value between two fragments) is not necessarily a result of the isolation of both patches; it can 

also result from the isolation of only one of the two patches being compared when controlling for 

the distance separating them. To compare two variables while controlling for a third variable, 

partial-Mantel tests (Smouse et al. 1985) with 10,000 permutations were conducted in FSTAT.  

Results 

Overall genetic diversity patterns 

Number of alleles ranged from 6 to 21 at the five microsatellite loci screened for A. spinicauda 

across south-central Chile (Table 2). Hardy-Weinberg (HW) equilibrium tests conducted for each 

locus in each population revealed a significant deviation from HW in only five cases (Appendix 

A). However, no locus or population had significant HW departure more than once, except for 

the locus wbwc-28 that had a significant departure from HW in two populations. Over all loci, 

there was no departure from HW equilibrium within populations except for the fragmented 
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population in the southern region (Chiloé-AL) where a significant deficiency in heterozygotes 

was detected (Table 2). Tests for genotypic linkage disequilibrium revealed no significant 

associations between pairs of loci in any population or over all populations (Appendix B).  

Observed heterozygosity (HO), averaged over all loci, ranged from 0.7 to 0.8 among the 

six populations. Both relict-forest populations had the lowest values of allelic richness (AR) and 

gene diversity (HS), with Fray Jorge having the lowest level of gene diversity of all populations 

sampled (Table 2). Allelic richness and gene diversity, however, did not differ significantly 

between the relict populations in the northern region and the populations in the southern 

temperate-forest region (AR = 6.58 and AR = 8.13, P = 0.060, respectively; HS = 0.787 and HS = 

0.828, P = 0.064, respectively). 

Long-term and large-scale population structure 

The regional comparison among all six populations revealed a global estimate of FST (Φ) that 

was low but significantly different from zero (Φ = 0.028, 95% CI 0.016 – 0.041, P < 0.001). The 

meso-scale comparison of the three populations found in continuous forests within the south 

temperate-forest region (Chaihuín, Parga and Chiloé-NP) revealed a low Φ estimate that was not 

significantly different from zero (Φ = 0.009, 95% CI -0.002 – 0.019, P > 0.05). However, at the 

small scale among-fragments within the agricultural landscape (Chiloé- AL), Φ was significantly 

different from zero (Φ = 0.02, 95% CI 0.01 – 0.033, P < 0.001). The relationship between global 

FST (Φ) estimates across the three spatial scales is shown in Fig. 2. Estimates of population 

differentiation based on a stepwise mutation model showed similar patterns with lowest values 

observed at the meso scale (RST = 0.0038) and highest values at the large (RST = 0.1159) and 

small scales (RST = 0.1163). A hierarchical AMOVA at the large spatial scale, in which 

populations were assigned to three groups according to their time-space isolation history (G1: 
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Fray Jorge and Santa Inés, G2: Chaihuín, Parga, Chiloé-NP, G3: Chiloé-AL), revealed a low but 

significant differentiation among the three groups, with most of the variation being explained at 

the lowest hierarchical level (Table 3, model a).  

 Pairwise comparisons of genetic distance (FST) among the six populations of A. 

spinicauda (Table 4) showed that Fray Jorge, the most-northern relict forest, had a significant 

reduction in heterozygosity relative to all other populations (FST ranged from 0.111 to 0.073, P < 

0.003). The population in the relict forest Santa Inés, also had significant FST values with all 

southern populations (FST ranged from 0.068 to 0.025, P < 0.003). FST between the two 

continuous forest populations in the Valdivian region (Chaihuín and Parga), separated by the 

same distance as the two relict forests, was not significant (Table 4), suggesting that dispersal of 

A. spinicauda is restricted across large distances only if the habitat separating populations is non-

forested (i.e. semi-arid scrub). The correlation between all pairwise genetic and geographic 

distances among the six populations indicated isolation by distance at the regional scale (Mantel 

test R
2
 = 0.34, P = 0.023). The genetic distance between the two relict forests, however, was a 

marked outlier in this correlation given that populations separated at equivalent distances in the 

southern region were much less differentiated (Fig. 3). Results from the assignment tests further 

confirmed that the relict populations are genetically distinct with no individuals mis-assigned 

between them (Fig. 4a). This is in contrast to the two southern populations in the Valdivian 

region where some overlap of the two likelihood distributions suggests a higher connectivity 

(Fig. 4b). 

That populations in the southern region were not differentiated (i.e. had no significant 

pairwise FST values, Table 4) was supported by two hierarchical AMOVA models conducted 

within the southern region (Table 3 models b and c). The first model conducted between two 
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groups of continuous forest populations (G1: Chaihuín and Parga, G2: four sites in Chiloé-NP), 

revealed no genetic differentiation between mainland populations (G1) and Chiloé island 

populations (G2), with no differentiation among populations within groups (Table 3 model b). 

The second model, in which the same mainland continuous forest populations (G1: Chaihuín and 

Parga) were compared with the fragmented forest populations in the agricultural landscape in 

Chiloé (G2: nine forest fragments in Chiloé-AL), again showed that there was no significant 

differentiation between the mainland and island populations; however contrary to the previous 

model, there was a small but significant differentiation of populations within groups, with 2.13 

% of the total variation explained by differences among subpopulations in the anthropogenic 

forest fragments (Table 3 model c).  

Short-term and small-scale population structure 

The local comparison of genetic differentiation among the four sites in the continuous forest 

(Chiloé-NP) revealed that subpopulations in the continuous forest were not genetically 

differentiated (AMOVA, FST = 0.011, P = 0.178), with no significant pairwise FST values among 

sites (Table 5). In contrast, subpopulations in forest fragments that were similarly distributed 

across space (but not connected by forest) were significantly differentiated (AMOVA, FST = 

0.022, P < 0.001). Only 2.18% of the total variation was explained, however, by differences 

among forest fragments; 97.82% of the variation was explained at the individual level within 

populations. The nine fragments sampled and their spatial relationships across the agricultural 

landscape in Chiloé are shown in Figure 5, in which isolation of fragments is classified according 

to the habitat patch proximity index (PX). Patch area was significantly related to PX value 

(Pearson r = 0.940, P < 0.001); so, small patches were in a more isolated landscape context than 

larger patches (Fig. 5). The analysis of pairwise genetic distances among fragments revealed that 
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several subpopulations in fragments were differentiated in relation to other fragments in the 

landscape. Significant pairwise FST values (after correction for multiple comparisons) ranged 

from 0.045 to 0.080 (P < 0.0014); marginally significant values of FST ranged from 0.028 to 

0.050 (P < 0.05). Results suggest that gene flow is restricted to a certain degree in this 

fragmented landscape (Table 6).  

Examination of Moran’s correlogram of spatial genetic autocorrelation of individuals 

across the fragmented landscape indicated that individuals are more related than expected by 

chance, at 2 km or less. At greater distances, individual relatedness is mostly within random 

expectations with only a few distance classes in which individuals were less or more related than 

expected by chance; there was no clear pattern between distance and relatedness (Fig. 6). The 

relationship between geographic distance and genetic distance among forest fragments showed a 

similar pattern. Geographic distance did not predict the genetic distance among fragments 

(Mantel R
2
 = 0.044, P = 0.222). Although low pairwise genetic distances were observed at short 

geographic distances, there was high variation in genetic distances at greater geographic 

distances (Fig. 7a), suggesting that other landscape characteristics are probably also important in 

determining genetic differentiation. When the effect of geographic distance on genetic distance 

was examined after controlling for the effect of isolation of forest fragments (i.e. using the 

pairwise patch proximity index) there was a significant correlation between geographic and 

genetic distance, with 11.4% (partial Mantel test P < 0.042) of the variance explained by 

geographic distance alone (Fig. 7b). On the other hand, patch proximity was significantly related 

to genetic distance among forest fragments (Mantel R
2
 = 0.198, P = 0.0052, Fig. 7c) but, after 

controlling for the effect of geographic distance among forest fragments, a higher percentage of 

the variation (25.7%, Mantel test P < 0.0018) was explained (Fig 7d). Therefore, patch isolation 
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or characteristics of the immediate neighborhood of forest fragments, given by the distance and 

size of neighbor fragments, is more important in determining genetic differentiation among 

forest fragments than geographic distance alone. 

Discussion 

Ecological consequences of human-driven habitat fragmentation have been widely demonstrated 

(Saunders et al. 1991; Harrison & Bruna 1999, Davies et al. 2001), whereas the extent to which 

genetic diversity and structure of populations may be modified is less understood (Galbusera et 

al. 2000; Gerlach & Musolf 2000; Garner et al. 2005). A thorough understanding of genetic 

consequences of habitat fragmentation requires the study of systems whose fragmentation history 

is sufficiently long to allow such consequences to have become detectable. Most habitat 

fragmentation caused by humans is too recent and, in most cases, occurs over too limited spatial 

scale to reveal the full extent of genetic consequences on populations.  Here, I used natural forest 

fragments isolated for thousands of years, and more recent human-caused fragments to contrast 

and demonstrate the influence of temporal and spatial scales on genetic differentiation of 

populations of a forest bird. Genetic consequences of habitat fragmentation were observed in 

both systems although patterns were less pronounced in human-caused fragments. Three main 

processes were associated with genetic differentiation among populations in fragmented 

landscapes: forest replacement by open habitat (i.e isolation), fragment size, and distance among 

populations. 

Long-term and large-scale isolation 

Populations of A. spinicauda in the relict forests Fray Jorge and Santa Inés were genetically 

distinct, with a higher pairwise FST  value (0.111) than between any other pair of populations 

compared in this study. Lack of mis-assigned individuals in either population also suggests 
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reduced migration between these forests (Waser & Strobeck 1998). FST values in the range of 

0.05 to 0.15, however, are considered to indicate moderate divergence (Hartl & Clark 1997), 

suggesting that although genetic differentiation has occurred, some birds may still disperse 

between these forests. Based on FST statistics, the number of migrants per generation (Nm) 

between these isolated forests is two birds, which is low but exceeding the threshold considered 

sufficient to counteract the effects of genetic drift (Slatkin 1987). This estimate needs to be taken 

with caution, however, because the number of migrants estimated indirectly from FST assumes 

that equilibrium conditions have been attained, in addition to other assumptions that are rarely 

met in natural populations (Whitlock & McCauley 1999). For example, if equilibrium has not 

been reached, dispersal rate estimates may reflect previous conditions and not current levels of 

dispersal.  

The two relict-forest populations were more differentiated from each other than either 

was from populations located more than 1,000 km to the south despite the fact that the distance 

between the two relict forests was much smaller (165 km). Fray Jorge and Santa Inés populations 

are confined to small forest remnants of less than 300 ha each, and as a consequence, fewer in 

number than the southern populations found in much larger forests. Therefore, the high 

differentiation between the two relict forests is likely because both are small populations and 

thus subject  to genetic drift. This is a process that becomes especially important in small 

populations (Hartl & Clark 1997) because the relative strength of gene flow (and mutations) 

decreases in relation to genetic drift (Wright 1968). Furthermore, there was a significant 

correlation between genetic and geographic distance among the six populations studied, but it 

was entirely driven by genetic distances among the relict forests and the southern populations. 

The isolation-by-distance model considers distance as the only factor determining genetic 
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differentiation and does not account for the presence of barriers to dispersal. For example, the 

large genetic distance between the two relict forests indicates the presence of a strong barrier to 

dispersal (i.e. semiarid habitat) because populations separated by similar distances in the 

southern-forest region were not genetically differentiated. Both relict forests also had lower 

values of allelic richness and gene diversity than did southern populations located within the 

temperate forest region, although these differences were only marginally significant. This 

suggests that, in the long term, habitat fragmentation can result in reduced genetic diversity even 

in a bird with moderate dispersal capability.   

 The two populations in the continuous forest of the Valdivian coastal region were 

separated by the same distance as the two relict forests. Thus, they provided a good control for 

the effect of isolation by distance in contrast to dispersal limitation because of the absence of 

forest habitat. Most parts of this coastal range remained free from glacial influence at the time 

glaciers reached their maximum extension in the southern hemisphere [20,000 year BP, 

Villagran (1990)]. Therefore, populations of A. spinicauda in the Valdivian region likely have 

been present over the same temporal scale as have relict forest populations in the northern 

region. The two populations in the Valdivian region were not genetically differentiated despite 

having been separated by the same distance as the two relict forests in the semiarid region. Lack 

of differentiation may indicate that gene flow can be substantial even over large distances in 

continuous forests and that dispersal of A. spinicauda is only restricted at this spatial scale if 

habitat separating populations is not forested.    

The cross-scale comparison of global estimates of FST (Φ) showed that, as expected, the 

highest level of differentiation occurred at the large spatial scale (1,000 – 1,400 km). In contrast 

to expectations, however, the lowest level of differentiation did not occur at the smallest spatial 
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scale (1 -30 km) that had intermediate but significant levels of differentiation, but at the meso 

scale (100-300 km). Populations at the meso scale were part of large and continuous forest 

populations, whereas populations compared at the small scale were a set of anthropogenic 

fragments in an agricultural landscape. Therefore, these Φ values can be re-interpreted as levels 

of differentiation across a temporal scale of time since isolation (Fig. 8), in which populations in 

continuous forests and relict forests represent two extremes of a time-since-isolation scale with 

human-caused fragments at an intermediate position.  

Sufficient time and an expanse of hostile habitat, such as that observed between the two 

relict forests, are enough to produce significant genetic differentiation among populations. The 

role of small-scale barriers, however, is not that clear. Populations in the Valdivian region were 

not differentiated from populations in Chiloé Island, despite separation by a narrow marine 

channel. Therefore, small distances (2-5 km) of non-forest habitat are not enough to genetically 

differentiate very large populations, as revealed with this set of microsatellite loci. This result, 

however, needs to be interpreted with caution, because A. spinicauda from Chiloé is recognized 

as a subspecies based on slight differences in plumage coloration relative to the mainland 

populations. The historical relationships among A. spinicauda populations are beyond the scope 

of this study, but further investigations using appropriate markers are warranted. Inferences 

based on microsatellite markers involving very large populations need to be taken with caution 

because high mutation rates can result in homogenization of populations, mimicking recurrent 

gene flow (Nauta & Weissing 1996). 

Short-term and small-scale isolation 

There was an overall genetic differentiation of subpopulations of A. spinicauda among forest 

fragments in the agricultural landscape in Chiloé. At a comparable spatial scale, however, 
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subpopulations from the continuous forest in Chiloé National Park were not genetically 

differentiated. This result strongly suggests that the replacement of forest habitat by agricultural 

land is having an effect on the genetic structure of populations in fragments, likely due to 

reduced dispersal across open habitats. It is important to remember that patterns of allele 

distribution across the landscape do not directly reveal how much gene flow is occurring, 

because such patterns are a result of a combination of processes, besides dispersal (Slatkin 1987). 

For example, gene flow does not only depend on movement of birds among fragments but also 

on successful breeding. 

 Genetic differentiation among forest fragments in the agricultural landscape is similar to 

the pattern obtained at the large time-space scale. Pairwise FST estimates among fragments were 

lower than those observed between the two relict forests and the southern populations but were, 

nevertheless, significantly different from zero (i.e. 0.08 to 0.027). FST values within this range 

are generally associated with moderate or little genetic differentiation (Hartl & Clark 1997). FST 

statistics, however, assume equilibrium conditions, which might not have been achieved in these 

fragmented forests that have been isolated for no more than 50 to 80 years. Therefore, it is 

possible that differentiation may increase in the long term, as currently observed among relict 

forests. Fragments did not show a decrease in allelic richness or gene diversity, relative to 

populations in continuous forests. As a whole, the population in the fragmented landscape did 

exhibit an overall reduction of heterozygosity, probably because this population is composed of 

several subpopulations and, thus, the excess of homozygotes is a consequence of pooling 

individuals across these subpopulations (i.e. Wahlund effect). 

  Only a few studies have reported genetic consequences of fragmentation of bird 

populations in anthropogenic fragments. For instance, Galbusera and collaborators (2000) found 
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high levels of differentiation among populations of an endangered bird in forest fragments in 

Africa. Pairwise FST values among these subpopulations ranged between 0.103 and 0.238, 

considerably higher than those found for A. spinicauda in the fragmented landscape in Chiloé. 

High levels of differentiation in the African study were attributed to isolation of small fragments 

(2 – 40 ha) produced by substantial habitat loss since the 1960s and small size of remaining 

populations. Another study with populations of understory birds in Costa Rica also showed very 

high pairwise population differentiation with FST values as high as 0.256 (Brown et al. 2004). 

These extreme and relatively recent fragmentation situations are producing patterns similar to 

those observed among relict forests in this study and suggest that high levels of genetic 

differentiation can be observed even within the time scale of human-driven habitat 

fragmentation, especially after extreme levels of habitat loss.   

 The degree of genetic differentiation of populations across fragmented landscapes 

depends on the dispersal capability of individuals and on how animals perceive the landscape. 

Studies on non-volant small mammals that inhabit anthropogenic fragmented landscapes have 

demonstrated high levels of differentiation, with pairwise FST  values ranging from 0.018 to 0.46 

(Garner et al. 2005; Gerlach & Musolf 2000; Trizio et al. 2005). This is not surprising, given that 

small non-volant mammals have a lower dispersal capability than most bird species. The striking 

result of this study on A. spinicauda and that of other studies that have examined the genetic 

structure of bird populations in anthropogenic fragments (Galbusera et al. 2000, 2004; Brown et 

al. 2004; Arguedas & Parker 2000) is that even with higher dispersal capabilities, bird 

populations still exhibit genetic consequences of fragmentation even at the temporal and spatial 

scale of human-caused habitat fragmentation. This is likely a consequence of the fact that 
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dispersal of individuals and, hence, gene flow usually occurs over much shorter distances than 

individuals are actually capable of moving (Ehrlich & Raven 1969; Slatkin 1987). 

  The role of geographic distance in reducing gene flow among populations is largely 

dependent on the scale of analysis (Rousset 1997) and on the landscape characteristics that 

promote or restrict movement of organisms (i.e. barriers, hostile habitats). In the agricultural 

landscape in Chiloé, relatedness of individuals did not show a clear pattern with distance. 

Moreover, distance among fragments was not a good predictor of genetic differentiation, 

indicating that other landscape features need to be accounted for to fully explain patterns of 

genetic differentiation. In fact, the patch proximity index PX - a measure of isolation defined by 

the neighborhood of each forest fragment - explained more of the variation in genetic differences 

among fragments than distance among them. Isolation by distance was also observed but only 

after controlling for the landscape context of forest fragments (i.e. patch proximity). 

Consequently, both the index PX and distance between fragments are important in shaping the 

population structure of A. spinicauda in the fragmented agricultural landscape.  

The proximity index used (modified from Gustafson & Parker 1992) was highly 

correlated with size of forest fragments in this study system and, thus, subpopulations in small 

fragments were also highly isolated (i.e. surrounded by few and small forest fragments). Highest 

FST values were observed among small fragments and among small fragments and other 

fragments in the landscape, with the highest (FST = 0.08) obtained between the two smallest and 

isolated fragments. This result also resembles that obtained at the large-scale between relict 

forests, reinforcing the role of small population size and isolation in determining genetic 

differentiation among populations. Therefore, populations in small fragments are those 

contributing most to the overall genetic differentiation among fragments, which is also the case 
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in other fragmented landscapes (Galbusera et al. 2000; Brown et al. 2004; McDonald et al. 

1999). This is likely the result of the higher relative effect of gene drift over other differentiating 

processes that occur in small and isolated habitat fragments.  

Concluding remarks 

As more habitat is lost and degraded, and as more of it becomes fragmented, populations will 

either adapt to the novel conditions imposed by human-driven modifications or they will 

progressively decline until extinction. Yet, before extinction or adaptation occur, processes 

associated with habitat loss can have detrimental consequences on populations (Davies et al. 

2001). Consequences of reduced landscape connectivity are usually difficult to measure. The use 

of appropriate genetic markers, however, can provide useful information by indirectly measuring 

movement patterns of organisms (Parker et al. 1998). In this study, I showed that populations of 

a forest bird in continuous forests showed high levels of dispersal even across large distances (> 

200 km) but that the replacement of forest by open habitat (e.g., agricultural land and pastures) 

can result in moderate levels of genetic differentiation even at short temporal and small spatial 

scales. 

Results from this study are rather conservative for three reasons. First, levels of forest 

fragmentation in the agricultural landscape in north-eastern Chiloé are not as extreme as in other 

fragmented landscapes. Current forest cover in the area ranges between 40 – 50 %, which is 

above the fragmentation threshold of 30 % below which detrimental consequences on 

populations are highest (Andren 1994). Second, A. spinicauda has moderate dispersal 

capabilities compared to most understory bird species in the south temperate forest for which 

several lines of evidence suggest reduced dispersal across open habitats (Sieving et al. 1996; 

Willson 2004; Diaz et al. 2006; Castellón & Sieving 2006a, 2006b). Therefore, based on the 
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results of this study, it is very likely that most understory bird species in this landscape will show 

equal or stronger genetic effects due to habitat fragmentation. Finally, indirect estimates of gene 

flow based on allelic frequency data are always higher than direct estimates of real dispersal 

patterns of organisms (Slatkin 1987).  

The temperate rainforest of southern South America has been recognized as an 

endangered ecosystem with high conservation priority (Dinerstein 1995); it is one of the 25 

global hotspots of biological diversity (Myers et al. 2000). Human activities have intensively 

modified the landscape in this region, resulting in high rates of forest fragmentation 

characterized by an increase in the number of small and isolated fragments (Echeverria et al. 

2006). Habitat loss and fragmentation has been especially high in areas north of Chiloé where 

only one large remnant remains on the coastal range and few small fragments remain in the 

central valley (Smith-Ramirez 2004). Therefore, at current rates of deforestation and forest 

habitat replacement, strong ecological and genetic consequences on plant and animal populations 

are foreseen in this region.  
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Table 1. Product size range, number of alleles and optimal reaction conditions per microsatellite 

primer set for A. spinicauda. 

Locus PCR product size (bp) Number of 

alleles 

Annealing temp. 

(C°) 

MgCl2 (mM) 

Man 1 143 – 165 6 54 2.5 

Man 3 195 – 280 15 52 2 

Man 13 123 – 151 14 52 2 

WbWc 28 236 – 293 21 53 1 

WbWc 58 236 - 271 13 51 0.75 

 

Table 2. Measures of genetic diversity and population statistics for Aphrastura spinicauda 

screened at five microsatellite loci in six study sites in north-central Chile.  

 

Population Region Forest NSP N AN AR HS HO FIS 
HW 

(P)   

Fray Jorge North Relict 1 17 
6.8 

(1.4) 

6.6 

(1.4) 
0.776 0.776 -0.001 0.547 

Santa Inés North Relict 1 14 
6.6 

(1.3) 

6.6 

(1.3) 
0.801 0.700 0.126 0.032 

Chaihuín South Continuous 1 15 
8.4 

(1.6) 

8.2 

(1.6) 
0.807 0.773 0.042 0.278 

Parga South Continuous 1 16 
8.2 

(1.4) 

7.8 

(1.4) 
0.819 0.800 0.023 0.375 

Chiloé- NP South Continuous 4 42 
10.4 

(1.9) 

8.2 

(1.5) 
0.816 0.780 0.084 0.005 

Chiloé- AL South Fragments 9 131 
12.8 

(2.2) 

8.3 

(1.4) 
0.834 0.778 0.068 < 0.002 

 

The number of subpopulations sampled (NSP) and individuals genotyped for all five 

microsatellite loci are indicated (N). Mean with SE in brackets is indicated for number of alleles 

(AN) and allelic richness (AR). Gene diversity (HS) and values for observed heterozygosity (HO) 

are reported as mean values over all loci. Multilocus estimates of FIS are reported with 

corresponding Hardy-Weinberg equilibrium P values for deficiency of heterozygotes (bold 

denotes significance after corrections for multiple comparisons based on 600 randomizations). 
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Table 3. Analysis of molecular variance (AMOVA) results to compare the genetic variation in 

microsatellite data from A. spinicauda using three models (a,b, and c). Populations were assigned 

to different groups according to their fragmentation status at two different spatial scales. 

 

Structure                    % of total       Fixation         

       Source of variation              d.f.       variation         indices        P value 

Large scale 

a) Relicts - Continuous – Fragments 

      Among regions   2 1.10 0.011 (FCT)      < 0.02 

      Among populations within regions             14 2.67 0.027 (FSC)      < 0.001 

      Within populations                            453            96.23 0.038 (FST)      < 0.001 

    Total                        469        

Meso scale 

b) Continuous – Continuous 

      Among regions                 1  0.00 0.000 (FCT)           NS 

      Among populations within regions               4               1.32 0.013 (FSC)           NS 

      Within population              140             98.68 0.013 (FST)      < 0.03 

    Total                        145        

 

c) Continuous – Fragments 

      Among regions                 1              -0.35       -0.003 (FCT)           NS 

      Among populations within regions              9  2.13        0.021 (FSC)      < 0.001 

      Within populations                         313              98.22        0.018 (FST)      < 0.001 

    Total                       323        
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Table 4. Pairwise FST (lower diagonal) and pairwise geographic distance in km (upper diagonal) 

among the six sample sites (R= relict, C = continuous, FR = fragments).  

 

Population R1 R2 C1 C2 C3 FR 

Fray Jorge   ( R1 )  167.5 1049.0 1212.9 1332.3 1257.4 

Santa Inés   ( R2 )  0.111*  888.3 1051.9 1171.2 1095.2 

Chaihuín      ( C1 ) 0.077* 0.068*  164.0 283.3 209.8 

Parga           ( C2 ) 0.080* 0.025* 0.016  119.8 49.1 

Chiloé-NP    ( C3 ) 0.090* 0.056* 0.003 0.012  81.1 

Chiloé-AL     ( FR ) 0.073* 0.044* 0.008 0.004 0.005  

 

Asterisks indicate significant pairwise FST with P values obtained after 300 permutations (P < 

0.003 adjusted nominal level for multiple comparisons). Grey shading indicates comparison 

between the two relict forests and the two sites in continuous forest.  
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Table 5. Pairwise FST (lower diagonal) and pairwise geographic distance in km (upper diagonal) 

between the four sites in the continuous forest in Chiloé National Park. 

 

 NP-1 NP-2 NP-3 NP-4 

NP-1  3.1 13.0 14.3 

NP-2 0.0055  11.2 12.3 

NP-3 0.0341 -0.0002  1.9 

NP-4 0.0007 0.0064 -0.0041  

 

All FST values were not significant (P > 0.05 after 120 permutations). 

 

 

Table 6. Pairwise FST (lower diagonal) and pairwise geographic distance in km (upper diagonal) 

between the nine forest fragments in an agricultural landscape in Chiloé (L = large, M = 

medium, S = small). 

 

Fragment L1 L2 L3 M1 M2 M3 S1 S2 S3 

L1  12.1 22.8 21.1 24.7 18.5 18.9 21.9 13.6 

L2 0.037**  10.7 10.4 13.2 8.2 8.0 10.1 7.0 

L3 0.006 0.007  7.4 3.9 7.8 6.8 4.2 12.6 

M1 0.006 0.027* 0.006  11.3 2.5 2.0 10.9 8.0 

M2 0.034* 0.012 0.004 0.028**  11.7 10.7 3.4 16.4 

M3 0.018 0.018 0.000 -0.007 0.000  1.1 10.4 5.7 

S1 0.036** 0.050** 0.025 0.016 0.030** -0.006  9.6 6.5 

S2 0.004 0.026 -0.003 0.004 0.017 0.000 0.017  14.3 

S3 0.060*** 0.041* 0.031** 0.059*** 0.045*** 0.050** 0.080*** 0.042**  

 

Asterisks indicate significant pairwise FST estimates with P values obtained after 720 

permutations (*** P < 0.003 adjusted nominal level for multiple comparisons, ** P < 0.01, * P < 

0.05).
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APPENDIX A 

Observed (Hobs) and expected (Hexp) heterozygosity per locus within each population and Hardy-

Weinberg (H-W) equilibrium departure P value (exact test using a Markov chain), bold values 

indicate significant departure from H-W equilibrium. N = number of individuals genotyped, AN = 

number of alleles. 

 

Population Locus N AN Hobs Hexp 
H-W 

P value 

       

Fray Jorge       

 Man 1 17 6 0.824 0.761 0.966 

 Man  3 17 10 0.765 0.923 0.090 

 Man 13 17 5 0.647 0.613 1.000 

 wbwc-28 17 7 0.882 0.811 0.839 

 wbwc-58 17 6 0.765 0.815 0.949 

Santa Inés       

 Man 1 14 4 0.500 0.772 0.354 

 Man  3 14 8 0.929 0.873 0.696 

 Man 13 14 6 0.786 0.720 0.753 

 wbwc-28 14 7 0.714 0.839 0.136 

 wbwc-58 14 8 0.571 0.841 0.013 

Chaihuín       

 Man 1 15 5 0.667 0.763 0.487 

 Man  3 15 7 0.600 0.828 0.000 

 Man 13 15 8 0.800 0.699 0.800 

 wbwc-28 15 10 0.867 0.883 0.875 

 wbwc-58 15 12 0.933 0.871 0.902 

Parga       

 Man 1 16 5 0.625 0.843 0.031 

 Man  3 16 10 0.813 0.865 0.064 

 Man 13 16 8 0.688 0.770 0.665 

 wbwc-28 16 8 0.875 0.788 0.848 

 wbwc-58 16 10 1.000 0.855 0.662 

Chiloé-NP       

 Man 1 42 5 0.619 0.801 0.141 

 Man  3 42 9 0.857 0.835 0.707 

 Man 13 42 11 0.690 0.791 0.057 

 wbwc-28 42 15 0.810 0.885 0.009 

 wbwc-58 42 12 0.762 0.773 0.314 

Chiloé-AL       

 Man 1 131 6 0.695 0.794 0.218 

 Man  3 131 12 0.763 0.855 0.148 

 Man 13 131 14 0.817 0.813 0.576 

 wbwc-28 131 19 0.791 0.893 0.014 

 wbwc-58 131 13 0.824 0.824 0.064 
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APPENDIX B  

 

P-values for genotypic disequilibrium between all pairs of loci within each population and over 

all populations. P-values were based on 1200 permutations and were not significant after 

correction for multiple comparisons with an adjusted 5% nominal level of 0.00083.  

 

Pair of loci 
Fray 
Jorge 

Santa 
Inés 

Parga Chaihuín Chiloé-AL Chiloé-NP All 

Man 1  X Man 3  1.000 1.000 1.000 0.636 0.208 0.188 0.209 

Man 1  X Man 13 0.960 0.537 1.000 0.623 0.193 0.832 0.395 

Man 1  X wbwc 28   1.000 1.000 0.483 1.000 0.674 1.000 0.834 

Man 1  X wbwc 58   1.000 1.000 1.000 1.000 0.606 0.984 0.88 

Man 3  X Man 13 1.000 0.305 1.000 0.255 0.385 0.698 0.337 

Man 3  X wbwc 28   1.000 0.125 1.000 1.000 0.038 0.688 0.042 

Man 3  X wbwc 58   1.000 0.195 1.000 1.000 0.032 0.949 0.100 

Man 13 X wbwc 28   0.909 0.385 0.369 1.000 0.104 0.042 0.025 

Man 13 X wbwc 58   0.674 0.573 1.000 1.000 0.802 0.882 0.855 

wbwc 28   X wbwc 58   0.220 0.285 0.353 1.000 0.467 0.823 0.263 
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Figure 1. (A) Six sample sites across central-southern Chile located in the northern semiarid 

region and southern temperate forest region (B) Populations in Chiloé were subdivided into four 

sites in the continuous forest (Chiloe-NP) and into nine forest fragments in the agricultural 

landscape (Chiloé-AL).
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Figure 2. Global population differentiation estimates (Weir & Cockerham’s FST (Φ) ± SE), 

measured among populations at three different spatial scales: small scale comparison among 9 

human-caused fragments in an agricultural landscape (F), meso-scale comparison among 3 

populations located in continuous forests (C), and large scale comparison among 6 populations 

including relict, continuous and fragmented forest populations (A). Asterisks indicated P < 

0.001. 
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Figure 3. Relationship between pairwise geographic distance and genetic distance among the six 

populations studied at the large spatial scale (Mantel test R
2
 = 0.34, P = 0.023).
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Figure 4. (A) Assignment test between individuals sampled in Fray Jorge and Santa Inés, two 

relict forests separated by 165 km of semiarid scrub and (B) assignment test between individuals 

sampled in Chaihuín and Parga located in a continuous forest in the southern region separated by 

165 km of forest. 
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Figure 5. Agricultural landscape in north-eastern Chiloé in which A. spinicauda was sampled in 

nine forest fragments. Fragments are classified according to their isolation using a modified 

version of Gustafson and Parker (1992) proximity index (PX) calculated in FRAGSTAT with a 1 

km buffer from each focal patch. Low values of PX indicate high levels of isolation (i.e. fewer 

and smaller neighboring fragments) whereas larger values indicate less isolation (more and larger 

neighboring fragments). 
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Figure 6. Moran’s I (Iq) correlogram indicating the pattern of spatial autocorrelation of 

individual genotypes. Open circles indicate values of relatedness that are higher or lower than 

expected by chance (P < 0.05).  
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Figure 7. (A) Relationship between geographic and genetic distance among subpopulations in 

the nine forest fragments in the agricultural landscape in Chiloé and (B) controlling for patch 

proximity as measured by the index PX. (C) Relationship between patch proximity (a measure of 

fragment isolation) and genetic distance and (D) controlling for geographic distance among 

fragments. Significance was obtained after 10,000 permutations using Mantel and partial-Mantel 

tests.  
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Figure 8. Global population differentiation estimates based in Weir & Cockerham’s FST (Φ) 

measured among populations but re-ordered along a time-since-isolation scale.   
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CHAPTER II 

Separating ecological effects of forest structure and habitat fragmentation on breeding 

birds: an experimental study with a secondary cavity-nesting bird 

 

Abstract -. Human-driven landscape modifications usually entail habitat degradation and habitat 

fragmentation. In many cases, however, these two processes occur simultaneously making it 

difficult to disentangle their effects. The goal of this study is to separate the ecological effects of 

changes in forest structure caused by selective logging from those triggered by habitat 

fragmentation on breeding birds. I studied populations of a secondary cavity-nester (Aphrastura 

spinicauda, Furnariidae) in the South American temperate rainforest during three breeding 

seasons (2003-2005). In 2003, I evaluated nest-site availability, density and nest success of A. 

spinicauda in three habitat treatments each replicated in two 10-ha plots. The habitat treatments 

were old-growth forest (OGF), selectively-logged forest (SLF; large enough to test for habitat 

degradation per se), and selectively-logged forest fragments (LFR; small and isolated fragments 

to test for additional effects of fragmentation). To test for nest-site limitation, a nest-site 

supplementation experiment was carried out in SLF and LFR plots. Nest boxes were placed after 

the 2003 breeding season and populations were followed during two subsequent years. This 

experiment allowed me to assess the roles of selective logging and habitat fragmentation in 

determining nest-site availability. Overall, there were more potential natural-nest sites in OGF 

than in SLF and LFR. In 2003, before nest box addition, density of A. spinicauda in OGF was 

higher than in SLF, but did not differ from density in LFR. In 2004, density in OGF remained 

unchanged, but density increased in SLF after nest boxes were added, suggesting nest-site 

limitation in selectively-logged forests. Density in LFR did not increase after nest box addition 
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as expected, but nest box use was higher than in SLF suggesting nest-site limitation in fragments 

as well. Patterns were similar in 2005 except for an overall decrease in density attributed to high 

mortality during the previous winter. Daily nest survival was not different among the three 

habitat treatments, but nests in snags had higher nest success than nests in live trees, regardless 

of forest type. Results suggest that nest site availability, which is affected by changes in forest 

structure, is an important factor limiting densities of A. spinicauda, but that landscape-level 

processes triggered by habitat fragmentation can also influence population responses to nest-site 

limitation. Individual birds in fragments may face a nest-site selection trade-off with respect to 

the cost of dispersing across open habitats or staying in fragments with reduced availability of 

cavities. 

Key words: Aphrastura spinicauda, cavity-nester, Chile, fragmentation, habitat degradation, 

nest-site limitation, south-temperate rainforest. 

 

Introduction 

Human-driven landscape modifications, such as selective logging and habitat fragmentation, may 

influence the distribution, abundance and fitness of species, especially if those species rely on 

resources that are strongly affected by habitat alteration. Secondary cavity-nesting birds are non-

excavators that typically nest in old trees or snags, where most cavities are formed (Newton 

1994). If cavities are limited, competition can force some individuals to use lower quality 

cavities which may lead to population limitation  (Li & Martin 1991; Martin & Pingjung 1992; 

Newton 1994; Holt & Martin 1997; Martin et al. 2004; but see Wiebe et al. 2006). Selective 

logging often leads to removal of large trees and, as a consequence, can reduce the availability of 

cavities and thereby decrease habitat quality for secondary-cavity nesters.   
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Landscape modifications that also involve habitat fragmentation can trigger processes 

that have additional detrimental consequences on populations. In general, habitat fragmentation 

involves two types of processes that influence populations, those associated with size and 

isolation of patches (e.g. metapopulation dynamics) and those associated with reduction in 

habitat quality. In most human-modified landscapes, however, these processes are not 

independent (Armstrong 2005). In some cases, habitat quality is correlated with fragment size, 

because habitat degradation is associated with edge effects that have a greater influence in small 

patches (e.g. increased predation rates or physical microclimatic changes on edges; Murcia 

1995). In other cases, habitat deterioration may be intensified by effects of human encroachment 

(e.g. fire, selective logging and cattle) that generally extend well beyond the usual “edge effects” 

(Laurance 2000). In this case, the overall habitat quality within fragments may be reduced more 

than expected simply on the basis of area, invalidating the use of fragment size as a surrogate for 

habitat quality. Therefore, the explicit and independent consideration of habitat fragmentation 

and reduction of habitat quality is essential for a complete understanding of population responses 

to habitat loss (Harrison & Bruna 1999) because even large forests or well-connected fragments 

cannot ensure the persistence of populations if habitat is not adequate for successful breeding. 

In fragmented landscapes, reproductive success of secondary cavity-nesting birds should, 

therefore, not only depend on the presence of key structures, such as old trees and snags, but also 

on landscape-level processes such as those triggered by habitat fragmentation. These processes 

can be manifested as population changes of nest predators or changes in microclimatic 

conditions that can modify the quality of available nesting cavities. In temperate forests of the 

northern hemisphere, increased nest predation has been identified as one of the main negative 

effects of habitat fragmentation on bird populations (Robinson et al. 1995; Lampila et al. 2005). 
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Similarly, in the temperate rainforest of South America, nest predation is also an important factor 

both for open-cup and cavity-nesting birds in fragmented landscapes (Willson et al. 2001; De 

Santo et al. 2002; Vergara & Simonetti 2003).  

Other landscape-level processes, such as those related to dispersal capabilities and 

connectivity of the landscape, are important because they determine whether individual birds 

will be able to disperse if cavities are limited. Most studies of secondary cavity-nesting birds 

have been carried out in undisturbed forests (Aitken et al 2002; Brightsmith 2005) or in managed 

forests (Brawn & Balda 1988; Newton 1994; Holt & Martin 1997) where nest sites can be 

limited.  No studies have attempted, however, to experimentally separate the effects of reduction 

in nest-site availability (e.g., through selective logging) from the effects due to reduction in 

landscape connectivity (e.g., through habitat fragmentation). Yet, consequences of nest-site 

limitation, at the population and individual level, may depend on the landscape context in which 

nest-site limitation occurs. The goal of this study is to separate the effects of reduction in habitat 

quality due to selective logging from those triggered by habitat fragmentation on populations of a 

secondary cavity-nesting bird. For this I established a nest-site supplementation experiment in 

study plots located in forests that differ in quality and degree of isolation. 

Study layout and predictions 

Secondary cavity-nesting birds are a good model system because an important component of 

fitness (i.e. reproduction) relies on the presence of easy-to-quantify structures, such as large trees 

and snags where cavities are formed. Habitat quality is often defined in relation to population 

density and resource availability, but population density should not be used as the only indicator 

of habitat quality (Van Horne 1983; Brawn & Robinson 1996). Habitat selection models 

(Fretwell & Lucas 1970; Rosenzweig 1991) predict that habitats of higher quality, which 
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maximize fitness, will be preferred over poor-quality sites, resulting in an “ideal-free 

distribution” (Fretwell & Lucas 1970), hereafter IDF. Under this scenario, better-quality habitats 

(e.g. old-growth forest) are occupied first, until their carrying capacity is reached or until the 

quality has been reduced to the point where it equals that of unoccupied lower-quality habitats 

(e.g. selectively-logged forest). At that point, use of “suboptimal” habitats might be more 

beneficial than staying in a “good” habitat in which high densities have decreased suitability. 

Thus, reproductive success should be similar in lower-density, poor-quality habitats when 

compared to high-density, good-quality habitats (Fretwell & Lucas 1970).  

Based on the “ideal-free distribution” model this study aims to test two predictions. First, 

I expect that density of secondary cavity-nesting birds should follow an IFD, in which density 

should decrease along a gradient of habitat quality (old-growth forest > logged forest > logged 

fragments) as measured by reduction in availability and quality of cavities.  Secondly, I do not 

expect reproductive success to remain constant along the habitat-quality gradient as the IFD 

model would predict. Such a distribution assumes that individuals are “free” to enter and leave 

any habitat on an equal basis, which may not be the case if the connectivity of the landscape is 

reduced. As populations increase in density, density-dependent processes may become 

important, resulting in decreased reproduction, decreased survival or increased emigration 

(Turchin 1999). Thus, under a scenario of reduced connectivity, I predict that individuals are 

forced to stay in habitat fragments and use cavities of lower quality causing a decline in the 

average reproductive success in fragments.  

To test these two predictions, I compared density and nesting success of a secondary 

cavity-nesting bird among three habitat treatments. The first two habitat treatments (large and 

connected old-growth forests and large and connected selectively-logged forests), allowed me to 
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determine the consequences of habitat degradation independent of habitat fragmentation. The 

third habitat treatment (selectively-logged forest fragments) allowed me to contrast the effects of 

habitat degradation with the added effect of habitat fragmentation. Then, to measure whether 

cavities were a limiting resource in selectively-logged forests, I conducted a nest-site 

supplementation experiment. Finally, I determined if the nest-site limitation process was 

modified because of habitat fragmentation.  

Methods 

Study system  

The Thorn-tailed Rayadito (Aphrastura spinicauda, Furnariidae) is an insectivorous, year-round 

resident and endemic bird of the temperate rainforest of southern South America. This species is 

a secondary-cavity nester that nests mostly in natural cavities in large trees and snags (Chapter 

3), it is an ideal species for this study because it occurs in different forest types at varying 

densities (Estades & Temple 1999; Diaz et al. 2005) and has been identified as a large-tree user 

(Willson et al. 1994; Diaz et al. 2005; Tomasevic & Estades 2006). Non-raptor cavity-nesting 

birds in the south-temperate forest include four species considered good to weak excavators and 

eight non-excavator species, four of which are strictly understory birds (Rhinocryptidae). 

Aphrastura spinicauda is found in the canopy and sub-canopy, and may interact or eventually 

compete for suitable cavities with three other non-excavator birds (two parrot and one swallow 

species) and a few excavator species such as another furnarid (P. albogularis) and three species 

of woodpeckers. Although no studies have specifically investigated interactions among cavity 

nesters in this system with low species richness, it is very likely that interactions are less 

complex than in other more diverse temperate (Martin et al. 2004) and tropical forests 

(Brightsmith 2005).  
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This study was conducted in the temperate rainforest region on Isla Grande de Chiloé, 

southern Chile (41°55’S, 73°35’W), during each spring and early summer (September-January) 

of 2003 through 2005. The forest is a broad-leafed evergreen rainforest of the Valdivian and 

North Patagonian types with mixed dominance of Nothofagus, Drymis, Eucryphia, and 

Podocarpus trees, several trees and shrubs from the family Myrtaceae, and a dense bamboo 

(Chusquea spp.) understory. Large and old trees usually are covered with vines and epiphytes 

such as ferns, mosses, and bromeliads (Muñoz et al. 2003). The climate is wet temperate with a 

strong oceanic influence (2,000-2,500 mm rainfall/year; mean annual temperature of 12°C; Di 

Castri & Hajek 1976). The study area is in an approximately 25 x 25-km agricultural landscape 

in the vicinity of Senda Darwin Biological Station, northern Chiloé (Fig. 1a). The landscape is 

characterized by flat lands and hills (50 to 100 m elevation) that are covered by woodlands and 

forest fragments dispersed in a matrix of pastures, cultivated fields, and scrublands. Major forms 

of human-caused habitat degradation have been widespread use of fire to clear land for pastures, 

forest encroachment by cattle, selective logging of valuable timber trees, and a significant 

amount of logging for domestic fire use. Logging is carried out usually by local landowners with 

no defined silvicultural system. These activities, which have mostly occurred over the past 100 

years, have markedly modified the landscape by increasing forest fragmentation and habitat 

degradation (Willson & Armesto 1996, Castellón & Sieving 2006b). The island was covered by 

forest in the late 1800s but current forest cover in the study area is about 35% (Castellón & 

Sieving 2006a). Human practices have, as a result, generated a landscape mosaic with forests 

that exhibit a broad range of successional stages and degrees of degradation, from recently 

disturbed to a few protected old-growth forests (Aravena et al. 2002). Forest remnants differ in 
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their structure and presence of habitat features that are important for birds (Willson et al. 1994; 

Reid et al. 2004; Diaz et al. 2005).  

Experimental design  

I established three habitat treatments, old-growth forest (OGF), selectively-logged forest (SLF), 

and selectively-logged forest fragment (LFR), to evaluate the effects of habitat degradation per 

se and the added effects of habitat fragmentation.  Each treatment was replicated in two distinct 

10-ha study plots, for a total of six study plots (Fig. 1b). In each plot, I established an array of 

three to eight transects, with a total transect length per plot of 1,600 to 1,800 m. Transects were 

systematically placed every 50 m with a random starting point. Bird, nest, and vegetation surveys 

(see below) were conducted along these transects. To test for effects of forest structure per se, 

OGF and SLF plots were located in sufficiently large (> 1000 ha) and not isolated forests (see 

Chapter 1) where processes associated with habitat fragmentation were assumed to be 

unimportant. In contrast, LFR plots were established in isolated forest fragments (see Chapter 1) 

of about the same size as the study plots (10-12 ha), to test for the added effects of habitat 

fragmentation. My intent was not to identify effects of different processes associated with habitat 

fragmentation (i.e. related to size, size-edge ratio, and isolation). Instead, the goal was to test for 

the combined effects of these processes in two fragments of similar size, degree of isolation 

(both are surrounded by open pastures and similarly isolated, Chapter 1), and size-edge ratios. 

Moreover, because I controlled for effects of sample area by studying plots of the same size but 

in different habitat contexts, I was able to quantify the effects of forest structure and 

fragmentation apart from any confounding effects associated with sample area.  
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Forest structure and nest site availability  

The diameter at breast height (dbh) of all live trees and snags (> 40 cm dbh and >15 cm dbh, 

respectively) were counted and measured within 10-m radius (314 m
2
) circular plots located 

every 100 m along transects within each study plot (18 vegetation plots/10 ha). Cut-off diameters 

for live trees was an arbitrary value below the lower boundary of the confidence interval for nest 

trees found in 2003 (n = 12, mean = 77.1 cm, 95% CI of 55.9 - 98.2 cm). Cut-off diameter for 

snags was as low as the minimum value recorded because snags are likely to have cavities 

independent of their size (n = 17, mean = 68.8 cm, 95% CI of 45.3 - 92.2 cm). To compare the 

number of large trees and snags among study plots the mean of three circular plots along a 300 m 

transect was calculated and a nested ANOVA was conducted, with study plots nested within 

each forest type and with the mean number of trees or snags per transect as the dependent 

variable. Numbers of trees and snags / transect were transformed using a Box-Cox 

transformation to attain conditions of normality.  

The number of large trees and snags was used as a surrogate for nest-site availability. In 

general, A. spinicauda nests more than 15 m from the ground in small, hidden cavities or 

crevices in trunks or in hollow, broken branches (Chapter 3). Because many cavities were 

concealed by epiphytes, it was impossible to quantify the actual availability of cavities in this 

forest. However, forest structure, in terms of number of large, old trees (i.e. that usually form 

cavities) and number of snags, can serve as a good surrogate for availability of potential nest 

sites for secondary-cavity nesters (Newton 1994).  This is especially true if birds rely on natural 

cavities rather than cavities made by other birds, which is the case for A. spinicauda (Chapter 3). 
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Density estimates and habitat specific detection functions  

I estimated density of A. spinicauda in each plot using line-transect surveys and the distance 

sampling method (Buckland et al. 2001). Birds were counted after pairs established their 

territories but before young fledged (October – November) in three consecutive breeding seasons 

(2003-2005). Each plot was surveyed weekly four or five times per season on non-rainy days 

between dawn and 10:00 hr. The focal species was recorded while walking along transects and 

perpendicular distances to each detection (aural or visual) were estimated with the aid of 

previously measured marks placed along transects. Surveys were performed by three observers 

who had been trained to estimate distances in this habitat. Two adjacent transects were never 

sampled simultaneously when more than one observer surveyed a plot to avoid movement of 

birds between transects because of observers (Buckland et al. 2001).  

The mean and variance of A. spinicauda density were estimated using DISTANCE 5.0 

(Thomas et al. 2005). I modeled detectability functions for each habitat type (i.e. OGF, SLF and 

LFR) to account for the effect of differences in forest structure on estimates of density. Habitat 

specific detection functions were based on data pooled over the three years of study to increase 

robustness of the model. Because habitat structure did not change over the study period, there 

was no reason to expect detection functions to change from year to year. To increase model fit 

and to minimize effects of errors in distance estimations in the field, distance data were truncated 

at 30 m and placed into five categories for OGF and into six categories for SLF and LFR 

(Buckland et al. 2001). I tested half-normal and hazard-rate key functions with different 

combinations of cosine, simple-polynomial and hermite-polynomial series expansions. 

Competing models of habitat-specific detection functions were compared based on Akaike’s 

Information Criteria (AIC, Akaike 1973). The model that best fit grouped data was selected 
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according to the lowest AICc (second-order AIC for small samples) among candidate models; χ
2
 

goodness-of-fit tests were examined among best candidate models.  

The detection function for each habitat type (Table 1) was a joint detection function 

based on detections from the two forest plots within each habitat category. This method was 

selected in opposition to a specific detection function for each plot, based on minimum AICc. In 

all three cases, the sum of AICc values across individual study plots within a habitat category 

was very similar to the AICc value from the pooled analysis (∆AICC ranged from 0.78 – 2.28), 

which suggests that detection functions were similar between the two replicate study plots and, 

thus, that a global-detection function for each habitat type was warranted (Buckland et al. 2001). 

Density estimates of A. spinicauda from plots within each habitat type (i.e. OGF, SLF 

and LFR) were compared with two-tailed t-tests (or Z-tests if df >30). I used a correction for 

lack-of-independence for t- and Z-tests because densities were estimated based on the same 

detection function (Buckland et al. 2001). Densities did not differ between the two replicate plots 

for any habitat type in any year of the study. Therefore, I report mean density (± SE) based on 

data pooled across the two study plot replicates for each year and for each habitat type using the 

corresponding detection function for each habitat type.  

Densities estimated with the same detection function, however, are not truly independent 

estimates and, thus, violate the assumption of independence for statistical analyses (Buckland et 

al. 2001). Therefore, when comparing densities among forest types using plots as replicates with 

ANOVA’s (see below), I used density estimates for each study plot based on plot-specific 

detection functions. Density estimates from plot-specific detection functions were qualitatively 

and quantitatively similar to density estimates from habitat-specific detection functions. 
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Nest site supplementation experiment  

I supplemented natural-cavity availability with nest boxes to test for nest-site limitation in logged 

forests. Nest boxes were added in the two SLF and the two LFR plots during January and 

February 2004, after surveys and nest monitoring were finished for the 2003 breeding season. 

This allowed me to have before-and-after manipulation data on the same study plots. OGF plots 

did not receive nest boxes and served as controls to account for natural changes in density 

between years (i.e. as a result of environmental variation). Moreover, it was assumed that nest-

sites were not limited in old-growth forest (Wiebe et al. 2006; Newton 1998) and that other 

factors, such as actual carrying capacity of the system or territoriality of birds, rather than nest 

site availability, limit maximum density. 

A total of 432 nest boxes were placed across the four study plots, with clusters of three 

nest boxes every 50 m along transects in each 10-ha plot (i.e. 36 clusters of 3 nest boxes, or 108 

boxes per study plot). Nest boxes were made of wood following Tomasevic & Estades (2006) 

and were attached to trees 3 to 4 m from the ground. This was sufficiently high for A. spinicauda 

(Tomasevic & Estades 2006) and sufficient to ensure that other small understory cavity-nesting 

species would not use nest boxes. The total number of nest boxes added per study plot was based 

on the maximum density of A. spinicauda observed in old-growth forest in 2003 (3.9 ± 0.28 

ind./ha), corresponding to approximately 20 breeding pairs in 10 ha.  The goal was to supply 

enough potential nest sites so that density could increase to a point where other factors, such as 

territoriality and / or carrying capacity, rather than nest sites, would limit density. Clusters of 

three boxes located 15 m from each other were used to provide birds with multiple options when 

choosing nest-sites within a potential territory (Tomasevic & Estades 2006).  
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Response to the supplementation experiment was measured by change in density from 

before (2003) to after (2004 and 2005) nest-box addition and by comparison of number of nest-

boxes occupied between habitat types. Densities were compared with one-way ANOVA’s with 

habitat type (OGF, LFO, LFR) as a fixed factor for each year separately. Density estimates were 

normally distributed (W = 0.974, P  =  0.92). The number of occupied nest boxes was compared 

between habitat types using χ
2
. I also used a repeated-measure ANOVA with years as within-

subject factor and habitat type as between-subject factor to compare density of A. spinicauda 

over the three-year period among the three forest types. Sphericity assumption was met for the 

rmANOVA (Mauchly’s test P = 0.061).  

Nest success and reproductive output  

Systematically searches for nests in natural cavities were conducted along transects in each plot, 

following standard protocols (Martin & Geupel 1993), during the three breeding seasons. Mist-

net captures were also conducted within plots targeting A. spinicauda by using play-backs to 

attract birds to nets. Adult birds were marked with uniquely numbered aluminum bands and a 

unique color combination to aid nest-searching, territory determination and nest monitoring. 

Between 50 and 80 % of individuals were color banded in each study plot. Behavioral cues were 

used, such as birds carrying nesting material or food, to help find nests; searches were not 

restricted to specific nest substrates to minimize potential for bias of where nests were found 

(Rodewald 2004). Once a nest was found, the tree was marked and then visited every three to 

four days to determine nest status. Nests were observed from the ground with binoculars for 20-

30 min and the number of times birds entered the cavity was combined with observations of 

adults carrying material, food or fecal sacs to determine the stage of each nest (i.e. constructing, 

incubating, or feeding nestlings; Martin & Geupel 1993). A nest was classified as successful 



Cintia Cornelius, 2006, Ph.D. Dissertation, p. 

 

62 

either if no activity was observed at the nest after 21 days of feeding, the typical length of the 

nestling stage for this species (Moreno et al. 2005), or if a family group was found that could be 

attributed to that particular nest (i.e. based on color bands of adults). If the nest was found prior 

to the feeding stage and if no activity was observed during two consecutive observation periods 

before 21 days of feeding had elapsed, the nest was considered to have failed. Nests found during 

the feeding stage and to which no family group could be assigned, were classified as 

undetermined unless evidence of failure was observed (e.g. destroyed cavity). Contents of nests 

in natural cavities could not be determined because cavities were inaccessible to observers; 

causes of failure were not, therefore, always possible to determine. 

The mean and variance of daily nest-survival (DNS) rate were estimated with a 

maximum-likelihood approach based on the Mayfield method (Mayfield 1975) and implemented 

with Program MARK (White 2000) using the nest-survival procedure (Dinsmore et al. 2002). I 

used AICc to evaluate different hypotheses about the source of variation in nest survival for A. 

spinicauda in our study area. I used biologically-meaningful pre-defined hypotheses to develop 

eight specific models to explain variation in nest success (Table 2). I examined the effects of 

forest type (OGF, SLF, LFR), year (2003, 2004, 2005), and nest-tree type (live tree, snag). 

Factors in models were incorporated as covariables and competing models were compared 

against the null-hypothesis model S(.) of constant DNS. I used a sine-link function for the 

constant DNS model and a logit-link function for models that incorporated covariates (Dinsmore 

et al. 2002). This method, however, does not allow incorporation of nests with uncertain fate into 

the model, which has been shown to bias DNS estimates (Manolis et al. 2000). In my data set, 

12.7 % of nests (13 out of  102) had uncertain fate. Therefore, I also conducted the traditional 

DNS Mayfield calculation including nests with uncertain fate (Manolis et al. 2000) to determine 
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if our DNS estimates from program MARK were upward-biased. Nesting success was assessed 

as the probability of surviving the entire nesting cycle, from the egg-laying period through the 

nestling period until fledgling, which was considered to be 45 days for A. spinicauda based on 

Moreno et al. (2005) and our field observations. Nest success and its associated variance were 

estimated by raising DNS rate to the exponent of the duration of the nestling cycle (Rotella 

2005). 

Nest-boxes also were monitored every 3 to 4 days in 2004 and 2005 to determine their 

content. In this study, I only report nest success in natural nests because nest success in nest-

boxes was lower than in natural cavities (unpublished data), corroborating the bias that nest 

boxes can sometimes introduce in ecological field studies (Moore & Robinson 2004). Data on 

clutch size and number of nestlings fledged/brood from nest boxes were used, however, to 

compare these parameters between the two habitats where nest boxes were placed (i.e., SLF and 

LFR). Clutch size and number of nestlings between the two forest types with nest-boxes were 

compared with a t-test. These parameters were not recorded in OGF because contents of natural 

nests could not be monitored. 

Results 

Forest structure and nest site availability 

Density of live large trees differed among the three forest habitats (F2,34 = 30.41, P < 0.0001), 

with more large trees in OGF than in SLF or LFR (P < 0.001, both cases) but no difference 

between SLF and LFR. In contrast, there was no significant difference in density of snags among 

the three forest habitats (F2,34 = 2.59, P = 0.09; Fig. 2). In addition, there was no effect of forest 

plot within each forest habitat for snags (F 3,34 = 2.57, P = 0.07), but there was an effect for large 

trees (F3,34 = 10.82, P < 0.0001). Differences in density of large trees between the two SLF plots 
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(P <0.0001) and between the two LFR plots (P = 0.009) probably reflect differences in logging 

intensity between study plots. In contrast, density of large trees did not differ between the two 

OGF plots (P = 0.63) where no logging has occurred.  

Density and nest site supplementation 

Density of A. spinicauda was lower in SLF than in OGF and LFR in 2003 before nest-site 

supplementation (F 2,6 = 15.12, P = 0.027; Fig. 3a). In 2004, there was no difference in density 

among the three forest types (F 2,6 = 0.31, P = 0.75) because of an increase in density in SLF 

after nest-site supplementation (t18 = 2.59, P = 0.018; Fig. 3b). Although a net increase in density 

was not observed in LFR after nest boxes were added (t24 = 1.28, P = 0.21), the number of nest 

boxes used over the two year period was higher in LFR (47 out of 216 boxes) than in SLF (26 

out of 216 boxes; χ2 =6.67, P = 0.007). There was a general decrease in density from 2004 to 

2005 (significant only for LFR; t24 = 5.43, P < 0.0001) but, as in 2004, there was no difference in 

density among forest types (F2,6 = 4.73, P = 0.118; Fig. 3c).  

Density of A. spinicauda varied across years (rmANOVA, F2,18 = 44.71, P < 0.001), with 

a significant overall increase in density from 2003 to 2004 after nest site supplementation (LSD 

test, P = 0.04) and a significant decrease between 2004 and 2005 (P < 0.001) and between 2003 

and 2005 (P = 0.016). A significant interaction between year and forest type (F 4,18 =  5.72, P = 

0.03) indicated that the patterns of differences in density of A. spinicauda among forests (OGF, 

SLF, LFR) changed among years (Fig. 4). Over the three years there was no effect of forest type 

(F2,18 = 1.03, P = 0.46) on density of A. spinicauda, which was expected as a result of nest site 

supplementation in 2004 and 2005 (because nest site addition increased densities eliminating the 

forest-type effect present in 2003). 
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Nest success and reproductive output 

A total of 102 nests of A. spinicauda were found in natural cavities located in both snags and live 

trees. Fifteen nests were not included in the analysis because they were abandoned during nest 

construction and were not used for reproduction. The best DNS model (see Table 2 for candidate 

models) only incorporated type of tree (live tree or snag), suggesting that DNS and, hence, nest 

success was influenced by the type of tree where the nest cavity was found but not by forest type 

(OGF, SLF, LFR) or year.  Based on DNS estimates from this model, the overall nesting success 

(±SE) was 74.8% ± 9 in snags (n = 36) and 46.9 % ± 10 in live trees (n = 38).  The best model 

and three other candidate models, however, had ∆AICc values that ranged only between 0 – 1.93 

and model weights (wi), the probability that model i is the actual expected best model for the 

sample situation considered, ranged between 0.30 – 0.11 (Table 2). Among these equally 

supported models (with ∆AIC < 2), however, the best-supported model was also the simplest 

(i.e. with the fewest parameters), supporting the conclusion that the main source of variation for 

nest survival was given by the tree type in which the nest-cavity was found. The general and 

simplest model assuming no source of variation in nest survival was poorly supported (Table 2). 

Nest success (± SE) based on DNS estimates from MARK was not different among 

forests; 61% ± 9 in OGF (n = 33), 61% ± 8 in SLF (n = 27) and 60% ± 14 in LFR (n = 14). 

When DNS was calculated using the Mayfield method including nests with uncertain fate, results 

were similar (Fig. 5), indicating that DNS estimates based on MARK were not upward biased. 

Data from nest boxes in SLF and LFR showed that mean clutch size (± SE) was 4.3 ± 0.12 

(range 3-6, n = 46) and, considering successful nests only, mean number of nestlings 

fledged/brood was 4.1 ± 0.21 (range 2-5, n = 19). There was no difference in clutch size or 

number of nestlings fledged/brood between the two forest habitats in which nest boxes were 
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added (SLF and LFR) (t24 = 0.12, P = 0.9, and t24 = 0.77, P = 0.47 respectively). 

Discussion 

In most human-modified landscapes, habitat degradation and habitat fragmentation occur 

simultaneously (Armstrong 2005; Harrison & Bruna 1999). Despite this, most studies on habitat 

fragmentation have focused on landscape-level processes, such as the spatial configuration of 

patches and dispersal patterns of organisms, and have given less attention to more basic but 

essential questions  related to habitat degradation within fragments (Harrison & Bruna 1999). 

This study is the first to use an experimental approach to compare the consequences of nest-site 

limitation due to habitat degradation per se with those due to habitat fragmentation for 

populations of a secondary cavity-nesting bird. Here, I discuss potential mechanisms responsible 

for the differences in population responses to nest-site limitation.  

Forest structure, habitat fragmentation and density of A. spinicauda 

Selective logging in the study area has reduced the number of large trees and, hence, availability 

of cavities, but has had no effect on the number of snags.  Previous studies in the south-

temperate rainforest have shown that abundances of birds that rely on large trees for nesting or 

foraging were considerably less in pine plantations and secondary forests, and these birds were 

almost absent from early-successional forests where large trees and snags were lacking 

suggesting nest-site limitation (Estades & Temple 1999; Diaz et al. 2005; Tomasevic & Estades 

2006). Yet, abundances of most large-tree users, including A. spinicauda, were not lower in 

small forest patches (Willson et al. 1994), although this study did not control for the effect of 

forest structure. 

 Results from the present study show that density of A. spinicauda was lower in forests 

with selective logging (SLF) than in old-growth forest (OGF), but that density was not lower in 
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logged-fragments (LFR) as predicted, despite the reduction of cavity availability, and thereby 

presumed reduction in habitat quality in fragments. Therefore, it is likely that mechanisms other 

than those related to selective logging, are responsible for the observed pattern in fragments. A 

widespread pattern observed in fragmented systems in many taxa, including insects and birds, is 

a positive relationship between area and population density (Connor et al. 2000). In other cases, 

however, confounding factors associated with the matrix surrounding habitat fragments or the 

development of ecological traps (Estades 2001; Ewers & Didham 2006), source sink dynamics 

(Brawn & Robinson 1996), stochastic processes and predator release in small fragments 

(Terborgh et al. 1997) may result in a departure from the expected positive relationship between 

abundance of forest birds and size of fragments. Similarly, in my study site, some of these 

mechanisms may be responsible for the observed higher density of A. spinicauda in logged-

forest fragments. 

Nest-site limitation 

Density of A. spinicauda increased in selectively-logged forest (SLF) plots after nest box 

addition, supporting the nest-site limitation hypothesis. Density in selectively-logged fragments 

(LFR), however, did not increase after supplementation. SLF plots were located in well-

connected and large forests where birds can leave the forest plot when nest-sites are limited and 

then re colonize from surrounding areas when nest sites increase in availability. In logged-

fragments (LFR), however, birds may be less likely to disperse if nest sites are limiting. In fact, 

density of A. spinicauda was higher than predicted by the availability of cavities (as indexed by 

abundance of large trees and snags) and there was a higher proportion of nest box use than in 

logged-forest (SLF) plots. Therefore, even though density did not increase after nest site 

addition, nest sites are probably also limited in fragments. Moreover, genetic data on populations 
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of A. spinicauda in this same fragmented landscape suggest a reduction of movement of 

individuals among forest fragments (Chapter 1).  

That the increase in density of A. spinicauda from 2003 to 2004 in logged-forest plots 

(SLF) was a consequence of nest-box additions rather than a response to environmental 

variation, is supported by two lines of evidence. First, while density in SLF increased from 2003 

to 2004, density in old-growth forest (OGF), where nest boxes were not added, remained 

unchanged during this period. Second, the relationship between density of A. spinicauda among 

the three forest types was influenced by year (i.e. whether nest boxes were added or not) as 

shown by a significant year × forest type interaction. Although this interaction may also be 

influenced by natural environmental changes, such as the overall decrease in density observed in 

2005, results suggest that the nest-site supplementation experiment did influence density 

relationships. In 2003, there was a lower density of birds in SLF than in OFG but this difference 

was not detected in the following two years when nest boxes were present. Thus, the relationship 

between SLF and OGF was maintained after nest site addition (i.e. they remained with similar 

densities) even in 2005 when all densities decreased because of changes in overall environmental 

conditions (Fig. 4). 

The overall decrease in density of A. spinicauda populations in 2005 was probably a 

result of low survival during the previous winter. Total rainfall in winter 2005 (May – August) 

was 1,501 mm, while rainfall in 2003 and 2004 winters was only 927 mm and 867 mm, 

respectively (data from Senda Darwin Biological Station weather station). The fact that density 

in logged fragments (LFR) decreased in 2005 to a greater extent than density in large and 

connected old-growth forest (OGF) and logged forest (SLF), is probably also a consequence of 

isolation of populations in forest fragments. Populations in fragments may have a smaller chance 
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to recover from high mortality events through re colonization from surrounding areas (Davies et 

al 2001). Furthermore, density in fragments was lower than in the other two forest types in 2005. 

Although this difference was not statistically different, it may provide evidence for the combined 

negative effects of changes in forest structure and fragmentation on density that was predicted 

initially. Finally, this study illustrates the dynamic nature of ecological systems and the 

importance of long-term monitoring programs. In only three years of monitoring populations of 

A. spinicauda, it was possible to describe the influence of natural environmental variation on 

density patterns. It is clear that if the study had been conducted only in 2005 (after the overall 

population decline presumably due to low survival during a rainy winter), conclusions would 

have been very different (e.g. reduced density of A. spinicauda in forest fragments). Therefore, 

long-term monitoring programs should be incorporated whenever possible in research agendas in 

the southern rainforests and other human-modified landscapes.  

Nest success among forests 

Daily nest survival (DNS) rate and, hence, nesting success of A. spinicauda did not differ among 

the three forest types (OGF, SLF, LFR); nest success varied from 53% to 63%. Whereas density 

was lower in forests with reduced nest-site numbers [i.e. higher in old-growth forest (OGF) than 

in logged-forests (SLF)], there was no decrease in nest success, implying that habitat 

degradation per se caused by selective logging produced a pattern according to an Ideal Free 

Distribution (Fretwell & Lucas 1970). Contrary to my predictions, however, nest success in 

logged-fragment (LFR) plots was not lower than in OGF and SLF plots. Although the lack of 

difference in nest success might be due to the small sample size of natural nests in LFR plots (n 

= 15), this may also indicate that there were fewer pairs nesting in forest fragments given that 

nest-search effort was constant across all study plots. Therefore, there are two possible non-
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exclusive hypotheses that can explain the lack of a reduced nest success in logged-fragments.   

The first is that some birds in fragments were not reproducing because of nest-site 

limitation and, therefore, nest success rates were only given by pairs reproducing in available 

good-quality cavities. Movement of forest bird species (Rhinocryptidae and Furnariidae) can be 

reduced or modified because of habitat fragmentation in the agricultural landscape of Chiloé 

(Sieving et al. 1996; Willson 2004; Castellón & Sieving 2006a,b; Diaz et al. 2006; Chapter 1). 

As a consequence, individuals of A. spinicauda may face a nest-site selection trade-off in 

fragments with respect to the cost of dispersing across open habitats or staying in fragments with 

reduced availability nest sites. Under this scenario, some birds would stay in fragments but 

would not nest. Some bird species living in extremely patchy habitat may preclude reproduction 

because of inability to disperse and stay as helpers in parents territories (e.g. Florida scrub-jay; 

Woolfenden & Fitzpatrick 1984). Although this is a less likely scenario for A. spinicauda, this 

hypothesis could at least in part explain the larger proportion of nest boxes used in fragments 

than in large and connected logged-forests (SLF). 

The second hypothesis, and the most likely, is that quality of cavities is not lower in 

forest fragments as I had initially predicted. Quality of cavities may change because of 

environmental changes caused by fragmentation, such as microclimatic changes triggered by 

edge effects or changes in predator populations. In the present study area, there is evidence that 

small mammals are the main predators of forest bird nests (Willson et al. 2001). Although 

abundance of small rodents may increase in forest fragments (Saavedra & Simonetti 2005), 

these are probably poor predators of nests in cavities located high in trees because most show 

poor climbing abilities  (Gallardo-Santis et al. 2005). The best candidate predator in the study 

area is a forest and arboreal marsupial (Dromiciops gliroides) that frequently placed nests in 
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nest-boxes on top of A. spinicauda nests, after eating their eggs (pers. obs.). There is little 

information about the biology and sensitivity of this marsupial to habitat fragmentation, but it 

has been reported to be absent from forest fragments in an area north of Chiloé (Saavedra & 

Simonetti 2005). In Chiloé this marsupial was observed depredating nest boxes in fragments, but 

there is no information available about their densities in isolated forests. Several arboreal 

marsupials, however, have shown to be affected by habitat fragmentation in other forest systems 

(Lindenmayer et al. 1999). Thus, the lack of a reduction in nest success for A. spinicauda in 

logged-fragments is possibly related to reduced nest predation rates. As a result, cavities that are 

usually of low quality because of higher predation rates in old-growth or logged-forest are no 

longer of low quality in logged-fragments. Therefore, even if cavity availability is quantitatively 

the same in logged-forests and logged-fragments, in fragments cavities are actually of higher 

quality and, thus, functionally there are more cavities available in logged-fragments than in large 

and connected logged forests.  

Although the relative importance of these two proposed mechanisms can not be 

quantified, results of this study suggest that both mechanism (i.e. reduced dispersal and predator 

changes) are likely responsible for observed patterns. I conclude that selective logging results in 

nest-site limitation for A. spinicauda, that population responses to nest-site limitation vary 

because of landscape level processes (e.g. changes in predator densities in fragments) and that 

habitat fragmentation may impose a trade-off situation in nest site selection. 

Selective logging and nest success 

Logging activities in the area of this study affected cavity availability mostly by reducing the 

number of large live trees. Results of this study suggest that pairs of A. spinicauda using live-

tree cavities had lower nest success than pairs nesting in snag cavities, regardless of the forest 
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type in which they were found. Thus, cavities in snags seem to be safer nesting sites than 

cavities in live trees. Snags used as nest-sites were usually bare trunks with little or no epiphyte 

cover (Chapter 3), which may make potential nest predators, such as the arboreal marsupial, 

more exposed to their own predators when attempting to reach nests. In contrast, trunks of large 

live trees in the study area, especially those of Nothofagus trees, are usually covered by a dense 

vine and epiphyte layer (Muñoz et al. 2003). Other studies have also shown that failed nests of 

secondary cavity-nesting birds were generally more concealed by foliage than successful nests 

(Li & Martin 1991; Nilsson 1984). 

Large Nothofagus trees, however, provide habitat on their foliage and dense epiphyte 

cover for a rich and abundant arthropod assemblage (Sapagarino et al. 2001), and therefore, can 

be important structures in determining the quality of territories in terms of food availability. 

Food availability was not directly evaluated in this study, but it is well known that changes in 

availability of food resources affect reproductive parameters such as clutch size and number of 

fledglings/brood among others (Martin 1987; Newton 1998). I did not find differences in clutch 

size or in the number of nestlings fledged/pair between logged forests (SLF) and logged 

fragment (LFR) plots, suggesting no differences in resource supply among these forests. 

Although in some cases small fragments have reduced food resources for insectivorous birds 

(Zanette et al. 2000; Burke & Nol 1998), other studies have shown no such reductions 

(Şekercioğlu et al. 2002). My data on reproductive output were based on nest-boxes placed in 

logged-fragment and logged-forest plots but these types of data could not be recorded from nests 

in old-growth forests where only natural nests were monitored. Therefore, further studies are 

needed to determine the role of food availability for insectivorous birds in these rainforests, 

which is especially important in fragmented landscapes (Zanette et al. 2000), and specifically for 
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A. spinicauda which is one of the most abundant insectivorous birds in the south-temperate 

rainforest ecosystem. 

Concluding remarks 

This study shows the ecological effects of habitat degradation due to selective logging, and the 

additional effects of habitat fragmentation on populations of a secondary cavity-nesting bird. 

Here, I show that the main factor limiting densities of a secondary cavity-nesting bird in a 

fragmented landscape is nest-site availability induced by changes in forest structure, rather than 

differences in nest success among forests. But processes related to changes in landscape 

connectivity also influenced the outcome of nest-site limitation. Thus, the availability of nest 

sites depends not only on the presence of key structures such as snags and large trees, but also on 

changes at the landscape level that are triggered by forest fragmentation, such as changes in 

dispersal patterns of birds or populations of nest-predators. 

Temperate rainforests in South America continue to be transformed by human activities 

causing rapid loss, degradation and fragmentation of this ecosystem (Etcheverria et al. 2006). 

Other cavity-nesting species also have shown evidence of nest-site limitation (Tomasevic & 

Estades 2006; Diaz et al. 2005; De Santo et al. 2002) and, thus, are also likely to be affected by 

processes similar to those described in this study. In this region, management guidelines and 

forest legislation should explicitly consider forest fragmentation and habitat degradation (in 

terms of changes in forest structure and presence of key structures) to develop better forest 

management strategies, at both large and local scales of logging and forest use.  
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Table 1. Summary of habitat-specific detection functions (selected among candidate 

models based on smallest AICc) used to estimate density of A. spinicauda in the south-

temperate rainforest in Chiloé (2003 – 2005). N = number of observations used to model 

the detection function, f(0) = probability detection function at 0 m,  cv = coefficient of 

variation for f(0), P = probability of detection up to 30 m. 

 

Forest Type N Key Function f(0) cv (%) P P-value* 

Old-growth 722 Hazard Rate 0.0421  2.7 0.79 0.6 

Logged-forest 682 Hazard Rate 0.0418  3.2 0.80 0.8 

Logged-fragments 473 Half-normal 0.0593  3.9 0.56 0.4 

 

* Goodness of fit test for grouped data 
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Table 2. Summary of model selection results using MARK for the nest survival of A. 

spinicauda in the south-temperate rainforest in Chiloé (2003-2005) based on 73 known-

fate nests in natural cavities. Models are ranked by ascending ∆AICc; wi is normalized 

model weight and K number of parameters. 

 

Model K AICc ∆AICc wi 

S (tree type) 1 151.622 0.00 0.300 

S (tree type + year) 3 151.970 0.35 0.252 

S (forest type + tree type)  3 153.528 1.91 0.116 

S (forest type + year + tree type)  4 153.548 1.93 0.114 

S (.) 1 153.742 2.12 0.104 

S (year) 2 154.989  3.37 0.056 

S (forest type) 2 155.746 4.12 0.038 

S (forest type + year)  3 156.971 5.35 0.021 
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Figure 1. (A) Study region and (B) study site in Isla Grande de Chiloé, southern Chile. 

The satellite image (Landsat 5-T 2001) shows the spatial pattern of forest fragment 

distribution in the study area. Squares represent 10-ha plots in each of three habitat 

treatments [1 = old-growth forest (OGF), 2 = selectively-logged forest (SLF), 3 = 

selectively-logged forest fragments (LFR)]. 
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Figure 2. Mean number (± SE) of large trees and snags per circular vegetation plot (340 

m
2
) among the three habitat treatments; OGF = old-growth forest, SLF = selectively-

logged forest, LFR = selectively-logged fragments. Different letters indicate P < 0.001 

from Tukey post-hoc test for comparison of live trees among habitat treatments. 
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Figure 3. Density of Aphrastura spinicauda (± SE) estimated with habitat-specific 

detection functions among the three forest habitats before nest-site supplementation 

(2003), and after nest-site supplementation (2004 and 2005). Different letters indicate P< 

0.05 from Tukey post-hoc test within each year (OGF = old-growth forest, SLF = 

selectively-logged forest, LFR = selectively-logged fragments).
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Figure 4. Comparison among years of A. spinicauda density (± SE) based on habitat-

specific detection functions for the three forest habitats. 
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Figure 5. Daily Nest Survival (DNS ± SE) for A. spinicauda in each forest type, 

estimated with MARK including known-fate nests only, and estimated with the Mayfield 

method including nests with uncertain fate (OGF = old-growth forest, SLF = selectively-

logged forest, LFR = selectively-logged fragments). 
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CHAPTER III 

 

Nest-Site and Territory Selection by a Secondary Cavity-Nesting Bird Breeding in 

Forests with Different Nest-Site Availabilities 

 

Abstract. - Nest site choice can have important consequences on fitness and, as a result, 

characteristics of nest sites that influence nesting success should be important in 

determining nest site preferences. Characteristics of successful vs. unsuccessful nest sites, 

however, are likely to vary over time and space in response to habitat changes that 

influence nest-site quality.  As a consequence, nest-site selection patterns should also 

vary across the landscape. The goal of this study was to determine if nest-tree selection 

by a secondary cavity-nesting bird, and associated consequences on fitness, vary spatially 

in response to human-driven landscape modifications such as changes in forest structure 

and connectivity. In this study, I characterized territories and nest trees used by 

Aphrastura spinicauda (Furnariidae) in the temperate rainforest of southern South 

America among three forest types that differed in nest-site availability and levels of 

connectivity (old-growth forest, logged forest, and logged-forest fragments). Results 

indicated that landscape variation in nest-site selection was given by differences in 

connectivity and not by differences in forest structure among study plots.  Aphrastura 

spinicauda used smaller trees and different tree species in fragments than in large and 

connected forests (logged and unlogged), although this differential nest-tree use had no 

consequences on fitness. Overall, nest success decreased with epiphyte cover of trees. 

Live trees had more epiphyte cover than snags, and nests in snags had a higher success 
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(74.8% ± 9) than nests in live trees (46.9 % ± 10). In large and connected forests (logged 

and unlogged), snags were used in a higher proportion than based on their availability 

suggesting an adaptive nest-site choice; among live trees, Nothofagus nitida was used 

more than expected based on their availability. In logged fragments, however, use of nest 

trees was proportional to availability. Territories were similar among forest types and 

were characterized by forest-gap conditions with open canopy, dense understory and with 

more large trees and snags than unused areas. Results of this study showed evidence for 

an adaptive nest-tree preference by A. spinicauda and also that nest-site choice is 

spatially variable in response to ecological gradients produced by human activities. 

Key words: Aphrastura spinicauda, cavity-nester, Chile, habitat fragmentation, nest-

site selection, south-temperate rainforest. 

 

Introduction 

Selection of a nest site can have important consequences on fitness and, as a result, nest-

site preferences are usually under strong selection in birds (Martin 1998; Clark & Shutler 

1999). The choice of a particular nest site is based on the behavior of individuals which, 

in many cases, is genetically based (Jaenike & Holt 1991), supporting the idea of an 

adaptive value of nest-site selection. Therefore, factors that influence nest site choice 

should be related to processes that affect nesting success (i.e., the probability of fledging 

at least one young). For example, nest predation is the primary cause of nest failure in 

birds (Ricklefs 1969; Martin 1993) and, therefore, an important selective force for most 

bird species, including cavity-nesting species (Nilsson 1984; Martin & Li 1992; Martin 

1993, Fontaine & Martin 2006).  
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The chance that an individual bird will find a suitable nest site depends on the 

availability of the substrate that is preferred for nesting. Availability, however, is 

influenced not only by the abundance of the preferred substrate but also by access to that 

substrate (Jones 2001). Forest birds that nest in cavities typically rely on old trees or 

snags, where most cavities are formed (Newton 1994), and in many cases their 

populations can be limited by the availability of suitable nesting sites (Martin & Li 1992; 

Newton 1994; 1998; Wiebe et al. 2006). Limitation of nesting sites, however, is more 

likely for secondary cavity-nesting species (i.e., non-excavators) because they rely on the 

presence of existing cavities (Newton 1994). As a consequence, nest-site availability for 

secondary-cavity nesters also is influenced by the presence of primary-cavity nesters that 

create cavities (Martin et al. 2004), and by the number of individuals seeking or 

competing for suitable nesting sites. Therefore, if nest sites are limited, some individuals 

may be forced to use lower quality cavities, suggesting that competition may be another 

important factor in nest-site choice (Nilsson 1984; Li & Martin 1991). 

Distribution of resources important for breeding can vary naturally across the 

landscape. Human activities, however, such as selective logging or clearing of forest for 

pastures, can influence the distribution, abundance and availability of resources, 

especially those important for cavity-nesting birds (i.e., large trees and snags). For 

example, logging practices typically target large trees and can, therefore, reduce the 

abundance of cavities, leading in many cases to population limitation (e.g, Holt & Martin 

1997, Chapter 2). On the other hand, habitat fragmentation can reduce the number of 

potential nest sites available to birds by reducing landscape connectivity. Connectivity 

refers to the degree to which a landscape facilitates or impedes ecological flow, such as 



Cintia Cornelius, 2006, Ph.D. Dissertation, p. 

   

92 

the movement of organisms among habitat patches (Turner & Gardner 1990). Changes in 

landscape connectivity, such as those resulting from habitat fragmentation, may interfere 

with the dispersal of birds (Chapter 1), reducing the “functional connectivity” of the 

landscape (Belisle 2005). As a consequence, not all nest sites may be truly available for 

birds in areas with reduced connectivity. Therefore, if nest sites are limited (e.g., because 

of selective logging) birds may either disperse to other areas in search of suitable nesting 

sites  or, if connectivity is reduced, stay in fragments and not reproduce or use cavities 

that otherwise would not be considered suitable.  

Besides reducing landscape connectivity, habitat fragmentation can trigger 

changes in microclimatic conditions or changes in predator populations (Andren 1994), 

that also can influence the quality of nesting cavities in forest fragments. For instance, 

abundance of nest predators such as small mammals may either increase or decrease in 

small fragments, depending on the idiosyncrasies of each system (reviewed in Chalfoun 

et al. 2002). Although several studies have shown that nesting success for secondary-

cavity nesters is not reduced in fragments (e.g., Matthysen & Adriansen 1998; Walters et 

al. 1999) other studies have reported increased nest predation in fragments (e.g., because 

of edge effects, Deng & Gao 2005). Therefore, because characteristics of successful vs. 

unsuccessful nest sites are likely to vary over time and space (Wiens 1985), nest site 

selection patterns should vary across the landscape as well. 

Aphrastura spinicauda (Furnariidae) is a small and common secondary cavity-

nesting bird in the temperate rainforest region of southern South America. It is most 

abundant in old-growth forests, but it does occur at lower densities in secondary forests 

(Diaz et al. 2005), forests with selective logging (Chapter 2), and exotic pine plantations 
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(Estades & Temple 1999). A nest-site supplementation experiment indicated that 

population densities of A. spinicauda were limited by nest-site availability in forests 

where selective logging had reduced the number of large trees (Chapter 2). Density and 

population responses to nest-site supplementation, however, varied not only in relation to 

the number of large trees and snags, but also in relation to connectivity (Chapter 2). 

These results suggested that nest-site availability, influenced by changes in forest 

structure, was an important factor limiting densities of A. spinicauda, but that other 

processes related to habitat fragmentation were also important in determining nest-site 

availability.   

The goal of this study was to determine if nest-site selection by A. spinicauda, and 

associated consequences on fitness, vary spatially in response to forest structure (i.e. nest-

site availability) and connectivity. Three aspects of nest-site selection were addressed 

(following  Clark & Shutler 1999). First, characteristics of used and non-used territories 

and nest-trees were described across the landscape; differences in such characteristics, if 

they exist, are thought to provide evidence consistent with long-term natural selection. 

Second, characteristics of successful and unsuccessful nest-trees were compared by 

determining the source of variation in nest survival; such a comparison can provide 

evidence consistent with ongoing natural selection. Third, to show evidence for adaptive 

nest-site preferences, fidelity to nest-trees and the increased use of specific nest-trees 

were evaluated in relation to fitness. 
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Methods 

Study site 

This study was conducted in the temperate rainforest region on Isla Grande de Chiloé, 

southern Chile (41°55’S, 73°35’W), during three breeding seasons from 2003 through 

2005.  Climate in this region is wet temperate with a strong oceanic influence (2,000-

2,500 mm rainfall/year; mean annual temperature of 12°C; Di Castri & Hajek 1976). The 

forest is a broad-leafed, evergreen rainforest of the Valdivian and North Patagonian 

types, with mixed dominance of Nothofagus, Drymis, Eucryphia, and Podocarpus trees, 

several trees and shrubs from the family Myrtaceae, and a dense bamboo (Chusquea spp.) 

understory. Large trees usually are covered with vines and epiphytes such as ferns, 

mosses, and bromeliads (Muñoz et al. 2003). The study area is in an approximately 25 x 

25-km agricultural landscape in the vicinity of Senda Darwin Biological Station, northern 

Chiloé (Fig. 1a). The landscape is characterized by flat lands and hills (50 to 100 m 

elevation) that are covered by woodlands and forest fragments dispersed in a matrix of 

pastures, cultivated fields, and scrublands. Major forms of human-caused habitat 

degradation include habitat fragmentation caused by widespread use of fire to clear land 

for pastures, forest encroachment by cattle, and selective logging by local landowners for 

domestic and commercial use. As a consequence, human practices have generated a 

landscape mosaic with forest remnants that differ in their structure and presence of 

habitat features that are important for birds (Willson et al. 1994; Reid et al. 2004; Diaz et 

al. 2005).  
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Study design 

Nest-site selection was compared among three forest habitats: old-growth forest, 

selectively-logged forest, and selectively-logged forest fragment (old-growth, logged-

forest, and logged-fragments hereafter). Each habitat treatment was replicated in two 

distinct 10-ha study plots, for a total of six study plots (Fig. 1b). Old-growth and logged- 

forest plots were located in large (> 1,000 ha) and non-isolated forest stands (see Chapter 

1) where processes associated with habitat fragmentation were assumed to be 

unimportant. In contrast, logged-fragment plots were established in forest fragments of 

about the same size as the study plots (10-12 ha); both fragments were isolated from 

other large forest fragments (see Chapter 1) and completely  surrounded by open pastures 

with distances to the nearest forest ranging from 100 to 300 m (Fig. 1b). An array of six 

300-m transects, encompassing a total of 1,800 m, was established in each 10-ha plot to 

facilitate nest searches and habitat measurements. In fragments, however, the number and 

length of transects was adjusted to fit the form of fragments but still covering a 10-ha 

area with a total transect length of 1,800 m in one fragment and 1,250 m in the other 

fragment.  

Nest-site availability (as indexed by density of trees larger than 40 cm dbh and 

snags) was higher in old-growth forests than in logged-forest and logged-fragments 

(Chapter 2).  Density of A. spinicauda was higher in old-growth forest than in logged-

forest but not different from density in logged fragments. Consequently, density of birds 

in logged-fragments was higher than expected based on nest site availability. For details 

on A. spinicauda density estimations see Chapter 2. Further, a nest-site supplementation 
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experiment provided evidence for nest-site limitation in both logged-forests and logged-

fragments (see Chapter 2).  

Nest-tree and territory characteristics 

Nests in natural cavities were located during the three breeding seasons by systematically 

searching along transects in each plot, following standard nest-searching protocols 

(Martin & Geupel 1993). Behavioral cues, such as birds carrying nesting material or 

food, were used to help find nests; searches were not restricted to specific nest substrates 

to minimize potential for bias in where nests were found (Rodewald 2004).  I used mist 

nets and play-backs to capture A. spinicauda individuals; birds were marked with 

numbered aluminum bands and a unique color combination to allow identification of 

birds associated with particular nests. Between 50% and 80% of individuals were color 

banded in each study plot. Each identified nest tree was monitored to determine its status 

(see below); nest-tree and cavity characteristics were recorded only for nests that were 

used for reproduction. Nest-tree characteristics recorded were tree species, tree condition 

(live or snag), diameter at breast height (dbh), height, and epiphyte cover (estimated in 5 

cover classes 0: 0%, 1: 1%-25%, 2: 26% - 50%, 3: 51% - 75%, 4: 76% - 100%). Cavities 

were characterized by height from the ground, cavity type (1: in main trunk top, 2: in 

main trunk, 3: in secondary branch, 4: in broken branch end), origin of cavity (1: hole-

fissure, 2: bird-made), diameter class (< 3 cm,  3-6 cm,  > 6 cm), and concealment 

(percentage of vegetation, estimated in classes of 10% increments, in a 1-m radius and 1-

m tall imaginary cylinder around the branch or trunk where the cavity was located). To 

determine characteristics of available trees and snags in each forest type, 10-m radius 

(314 m
2
) circular plots were systematically placed every 100 m along transects within 
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each study plot (18 vegetation plots/10 ha). In each circular plot, all large live trees and 

snags (> 40 cm dbh and >15 cm dbh, respectively) were counted with height, dbh and 

species recorded. All variables were tested for normality using a Shapiro-Wilk test and 

transformed to attain normality when possible. Nest-tree, cavity and available tree 

characteristics were compared using one- or two-way ANOVAs with forest type (old-

growth, logged-forest, logged-fragments) and status (used and not used) as factors; 

Mann-Whitney or Kruskal-Wallis tests were used when data did not fit assumptions of 

parametric tests.  

 Nest boxes were systematically added along transects (108 boxes / 10 ha) in 2004 

to conduct a nest-site-supplementation experiment in logged-forest and logged-fragment 

plots; details about nest boxes and their distribution within study plots are described in 

Chapter 2. Territory characteristics were recorded within the area surrounding natural 

nests (n = 30) and used nest boxes (n = 24). Habitat characteristics were measured in each 

territory along two 40-m perpendicular transects centered at the nest. All snags and live 

trees found in 2-m strips on each side of each transect were identified to the species level, 

counted, and assigned to a size class (dbh < 40 cm, 40 – 80 cm, and > 80 cm). Canopy 

cover, canopy height, and understory volume were recorded in five 2-m radius circular 

plots, one at each end of a transect and one centered on the nest.  Canopy cover was 

estimated using four cover classes (1: 0-25%, 2: 26%-50%, 3: 51%-75%, 4: 76%-100); 

understory volume was determined by measuring understory height (h) and ground cover 

(c) estimated in 10%-increment cover classes within the 2-m radius (r) circle. Volume 

was then calculated as h*c*πr
2
 following Reid et al. (2004). Mean values across the five 

circular plots were used in further analyses. To compare territory characteristics of used 
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vs. unused territories, habitat measurements were recorded following the same methods 

but with transects centered on non-used nest boxes (n = 16). Non-used territories were 

defined as the area surrounding a nest box that was unoccupied during any season and 

had neither a natural nest nor a territory ever recorded within a radius of 50 m. Non-used 

territories were measured in logged-forest plots (n = 8) and in logged-fragment plots (n = 

8).  

Habitat variables were used to discriminate among the three different territory 

types evaluated in this study (i.e., natural nest, used nest box, and non-used territory) and 

among the three forest types using a discriminant function analysis. Covariance matrices 

were tested for homogeneity using Box’s M criterion. The matrices showed non-

significant heteroscedasticity (P > 0.05) so within-group covariance matrices were used. 

Wilk’s lambda was used for separation of groups. Prior probabilities were computed from 

group sizes to account for differences in sample sizes among groups. Results from a 

MANOVA were also used to describe significant differences among habitat variables that 

determined group memberships. 

Nest-success and nest-tree characteristics 

Nest trees were visited every three to four days to determine nest status. Actual content of 

nests could not be assessed because cavities were too high and not accessible to the 

observers. Therefore, parent activity was observed from the ground with binoculars for 

20-30 min. This observation period allowed recording at least one incubation exchange 

and several feeding visits (unpublished data). The number of times birds entered the 

cavity combined with observations of adults carrying material, food or fecal sacs was 

used to determine the stage of each nest (i.e. constructing, incubating, or feeding 
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nestlings) (Martin & Geupel 1993). A nest was classified as successful either if no 

activity was observed at the nest after 21 days of feeding, the typical length of the 

nestling stage for this species (Moreno et al. 2005), or if a family group was found that 

could be attributed to that particular nest (i.e. based on color bands of adults). If the nest 

was found prior to the feeding stage and if no activity was observed during two 

consecutive observation periods before 21 days of feeding had elapsed, the nest was 

considered to have failed. Nests found during the feeding stage and to which no family 

group could be assigned, were classified as undetermined unless evidence of failure was 

observed (e.g. destroyed cavity).  

The mean and variance of daily nest survival (DNS) rate were estimated with a 

maximum-likelihood approach based on the Mayfield method (Mayfield 1975) using 

Program MARK (White 2000) and the nest-survival procedure (Dinsmore et al. 2002). 

Akaike’s information criterion corrected for small sample size (AICc) was used to 

evaluate different hypotheses about the source of variation in nest survival for A. 

spinicauda in the study area. Nests in boxes had lower nest success than natural nests in 

this study area (unpublished data), so only natural nests were used to estimate nest 

success (i.e., to minimize potential biases from nests in boxes), with similar number of 

nests in each habitat treatment (see results). Daily nest survival rate was examined in 

relation to nest-tree characteristics (tree type, height, dbh and epiphyte cover), cavity 

characteristics (cavity height, type, concealment and diameter), year, and forest type. The 

relative importance of the eight tree and cavity variables in explaining variation in DNS 

was examined by first running a series of models that incorporated one variable at a time 

and second by comparing these models against the null-hypothesis model S (.) of constant 
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DNS. Of these models, only two models (that included the variables tree type or epiphyte 

cover) had more support than the S (.) model. Therefore, only the variables tree type 

(snag, live tree) and epiphyte cover (1-5) were used in addition to forest type (old-growth, 

logged-forest, logged-fragments) and year (2003, 2004, 2005) to develop a set of 11 a 

priori defined models (Table 1). Factors in models were incorporated as covariables and 

competing models were compared against the null-hypothesis model S(.) of constant DNS. 

A sine-link function for the constant-DNS model was used and a logit-link function for 

models that incorporated covariates (Dinsmore et al. 2002). These analyses only included 

natural nests with known fate (n = 74) because nests with uncertain fate can not be 

included into these models. Although this may bias DNS estimates (Manolis et al. 2000), 

a previous analysis with the same data set showed that DNS estimates from program 

MARK were not downward-biased when nests with uncertain fate were excluded 

(Chapter 2). Nesting success was assessed as the probability of surviving the entire 

nesting cycle, from the egg-laying period through the nestling period until fledging, 

which was considered to be 45 days for A. spinicauda based on Moreno et al. (2005) and 

field observations. Nest success and its associated variance were estimated by raising 

DNS rate to the exponent of the duration of the nestling cycle (Rotella 2005) 

Nest-tree preferences and reuse patterns 

Nest-tree preferences were evaluated by comparing the number of trees used for nesting 

with the number of trees available within predefined categories using Likelihood Ratio 

tests (G) and their associated P-values. To determine if use of nest-trees was adaptive, 

categories compared were defined by characteristics of successful and unsuccessful nests. 

First, use and availability were compared between snags and live trees without 
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considering the identity of species within categories. Second, use and availability were 

compared among species of trees to evaluate preference for or avoidance of particular 

tree species.  

 As a second line of evidence for an adaptive value of nest-site preference, fidelity 

to nest-sites was examined in relation to nest success. A cavity was considered to be 

reused if at least one banded bird (i.e., an individually identifiable bird) used the same 

cavity in two or more consecutive breeding attempts within or among seasons. Because 

not all birds were banded, it was not always possible to determine the identity of birds 

reusing a particular cavity. From 39 reused nests, 12 had known-identity birds (both 

individuals banded n = 7; one individual banded n = 5). In all 12 cases, at least one 

individual reused a nest cavity in subsequent nesting attempts. Thus, in this study I 

assume that most if not all reuse events involved at least one bird from the previous 

nesting attempt. Moreover, all active nests in a breeding season were checked for reuse in 

subsequent seasons; therefore, patterns observed represented true reuse frequencies. 

 If fidelity to nest-sites is more frequent for nests in which fitness was previously 

high, as expected if nest-site choice is adaptive, then nests that are reused in subsequent 

seasons should have an overall higher nest success than nests that are not reused. To 

determine this, DNS was evaluated in relation to reuse of nest-trees. Daily nest survival 

was also evaluated in relation to tree type, forest type and year to determine if reuse 

varied across space and time. The reuse variable was determined by classifying each nest 

as either used or not used in the subsequent season. Consequently, only 2003 and 2004 

nests (n = 56) were included in this analysis because 2005 nests were not checked for 

reuse in the following season. A set of predefined models was developed and candidate 
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models were evaluated based on minimum AICc values (Table 2). Again, factors in 

models were incorporated as covariables and competing models were compared against 

the null-hypothesis model S(.) of constant DNS following the same procedures described 

above.  

Results 

Nest-tree and territory use patterns 

A total of 80 different nest trees (corresponding to 102 nesting attempts) were identified 

during the course of three breeding seasons.  Of these, 15 were not used for reproduction 

and were excluded from analyses. Nest trees were either large canopy trees (n = 35) or 

snags (n = 35); size (dbh) of nest trees and snags did not differ (F1,69 = 2.13, P = 0.13). 

Mean size (± SE) of nest trees and snags combined (85.1 ± 3.5 cm dbh) was higher than 

the mean size of available trees and snags (57.3 cm ± 1.8 cm; F1,341 = 27.3, P < 0.001; 

Fig. 2). When used and available trees were compared among forests (two-way 

ANOVA), there was a significant effect of size of trees among forests (F2,341 = 6.72, P = 

0.001) and a significant difference between size of trees used for nesting and those 

available (F1,341 = 27.3, P < 0.001) with a significant interaction (F2,341 = 4.76, P = 0.009) 

between forest and tree status (i.e. used vs. available). Thus, in terms of diameter, trees 

used for nesting in fragments were, overall, smaller and more similar to trees available 

than in old-growth and logged-forest plots where trees used for nesting were larger than 

available trees (Fig. 3).  

 In live trees, most cavities used for nesting were in large canopy Nothofagus 

nitida (27 out of 35 nests in live trees). Other tree species used were Eucryphia 

cordifolia, Laureliopsis philippiana, and three species of the family Myrtaceae. Most 
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snags used for nesting were dead Nothofagus nitida trees (24 out of 35 nests in snags); 

remaining snags were mostly Weinmania trichosperma or undetermined species: a few 

were Saxe-gothaea conspicua, Laureliopsis philipiana, and Eucryphia cordifolia. For 

further analyses, all snags were grouped into a single category regardless of species. 

Proportional use of live tree species and snags differed among forest types (G
 
= 26.33, df 

= 12, P = 0.01). In old-growth and logged-forest plots, most nest cavities were in 

Nothofagus trees or in snags, whereas nests were found in a greater variety of tree species 

in fragments (Fig. 4). For 73 active-nest cavities, tree-height /cavity-height ratio did not 

differ among forest types (F2,72 = 1.9, P = 0.16). Cavities used for nesting were usually in 

tall canopy trees at a mean height (± SE) of 15.5 ± 0.7 m; two nest cavities found in 

forest fragments were, however, less than 1 m from the ground. Types of cavities used for 

nesting included small crevices or fissures in trunks (47.9%) or in secondary branches 

(26%), within broken branch ends (15.1%), or in trunks with broken tops (4.1%); only 

6.8 % were in cavities made by other birds. Proportional use of cavity types did not differ 

among forest types (G = 9.15, df = 8, P = 0.33). Most cavities were small with diameters 

smaller than 3 cm (46.8 %) or of 3 – 6 cm (51.1 %); only one had an entrance diameter 

larger than 6 cm. Most cavities had no or very little concealing vegetation (70.1% of 

cavities had 0% or 10% cover; Fig. 5).  

Habitat characteristics varied among territories that surrounded natural nests, nest-

boxes, and non-used nest boxes (MANOVA, F2,12  = 3.51, P < 0.0001, Fig. 6). The first 

axis of the discriminant function analysis was highly significant (W = 0.557, P < 0.001) 

and explained 75.1% of the variance; the second axis accounted for the remaining 24.9% 

and was only marginally significant (W = 0.851, P = 0.065). The structure coefficients 
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(SC) of the correlations between discriminating variables and the first standardized 

canonical discriminant function showed a high positive relationship for canopy cover (SC 

= 0.92), number of small live trees (SC = 0.427), and canopy height (SC = 0.304) and a 

negative correlation for understory volume (SC = -0.426). Number of large live trees (SC 

= -0.195) and number of snags (SC = -0.127) had low loadings in the first axis, but had 

high positive loadings in the second axis (SC = 0.729 and SC = 0.446, respectively; Fig. 

7). Based on these two axes, territories of A. spinicauda surrounding natural nests and 

nest boxes were characterized by an open canopy with a dense understory with a few 

large trees and snags whereas unused territories had a closed canopy, scant understory 

and many small trees.  

The canonical axes correctly classified 60% of territories. This success rate 

appears rather low because used nest-box and natural-nest territories were 

interchangeably classified with each other. Of 24 nest-box territories, 41.7% were 

classified correctly, whereas 45.8% were classified as a natural-nest territory. Similarly, 

of 30 natural-nest territories, 66.7% were classified correctly with 20% classified as a a 

used nest-box territory. The remaining natural-nest and nest-box territories were 

classified as non-used territories (13.3% and 12.5%, respectively). Non-used territories 

(i.e. the area that surrounds an unused nest box) had the greatest classification accuracy, 

with 75% (12 of 16) of non-territories classified correctly. When the analysis was 

repeated after pooling natural-nest and used nest-box territories into one category, there 

was a highly significant separation (W = 0.655, P < 0.001) between used and non-used 

territories. Structure coefficients remained qualitatively and quantitatively similar but 

classification accuracy increased substantially for nest site categories, with 90.7% of used 
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territories (i.e., either nest-boxes or natural nests) classified correctly.  Classification 

success did not change for non-territories. Finally, characteristics of territories around 

nests (natural nests and nest-box territories combined) were similar among the three 

forest types, with no significant separation among forests (W = 0.666, P = 0.082).  

Nest success and tree characteristics 

Characteristics of 74 known-fate nests in old-growth (n = 33), logged-forest (n=27) and 

logged-fragments (n = 14) were used to evaluate the effects of nest-tree type (snag or live 

tree), tree epiphyte cover, forest type and year on DNS, using 11 a priori models (Table 

1). The first six models were equally supported with ∆AICc values < 2; of these models, 

S (tree) and S (epiphyte) had the fewest parameters and had similar model weights and 

likelihood (Table 1). Thus, there were no differences in nest success among the three 

forest types; differences were only given by the characteristics of trees in which nests 

were placed. This suggests that nest success was influenced more by tree characteristics 

than by forest type or year. Based on estimates from the S (tree) model, nest success (± SE) 

was higher in cavities in snags (74.8% ± 9) than in cavities in live trees (46.9 % ± 10). 

Based on the S (epiphyte) model, DNS decreased with epiphyte cover (Fig. 8). Because 

epiphyte cover was correlated with type of tree, snags had less epiphyte cover than live 

trees (U = 640.0, P = 0.034), the underlying variable that links tree type with DNS is very 

likely the amount of epiphyte cover on trees. This is also supported by the model with 

lowest AICc that included both tree type and epiphyte cover as explanatory variables 

(Table 1). Moreover, among nest trees, Nothofagus was intermediate in epiphyte cover 

relative to snags (least cover) and the remaining tree species (most cover); Kruskal-

Wallis test; χ
2
 = 9.05, df = 2, P = 0.011). 
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Nest-site selection and reuse patterns 

The frequency of use of different tree types was compared to the frequency of available 

tree types to identify potential nest-site preferences. These preferences were also 

evaluated among forests to determine if nest-site selection varied over space and between 

successful and unsuccessful nests to determine if nest site selection is adaptive. Overall, 

snags were used as nest sites more often than expected based on their availability (G = 

7.67, df = 1, P = 0.006) compared to when all live trees were combined (Fig. 9). This 

result, however, was not consistent among forests. In old-growth forest and logged-forest 

plots, snags and live Nothofagus trees were used in a higher proportion than expected 

based on their availability whereas all other tree species combined were used less than 

expected (G = 20.56, df = 2, P < 0.001 and G = 36.63, df = 2, P < 0.001, respectively). In 

contrast, in logged fragments, the use of snags, live Nothofagus trees, and all other tree 

species combined did not differ from expected based on their availability (G = 2.79, df = 

2, P = 0.248; Fig. 9).  

To examine nest-tree fidelity patterns, nest success was evaluated in relation to 

reuse (i.e., reused or not), tree type (snag or live tree), forest type, and year. The first two 

models  S (reuse + tree) and S (reuse) had more support than the constant DNS model S (.), but 

the first model had almost twice the model likelihood and weight as the second (Table 2). 

Thus, based on the model with most support, S (reuse + tree), nest success (± SE) of A. 

spinicauda in trees that were reused was higher (89.7 % ± 9.7 %, n = 16) than in trees 

that were not reused (56 % ± 9.8 %, n = 40). Moreover, nests in snags, which have a 

higher probability of survival, also were more likely to be reused than nests in live trees. 
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Models that included the variables reuse and forest type or year were ranked low (Table 

2), suggesting that reuse patterns were similar among forest types and years.  

Discussion  

Spatial differences in nest-site selection by Aphrastura spinicauda were mostly given by 

patterns observed in fragments relative to patterns observed in large and connected 

forests regardless of nest-site availability (i.e. with or without logging). Here, I discuss 

possible mechanisms that may drive the observed spatial differences in nest-site 

characteristics and nest-site selection.  

Nest trees and territories used: evidence for long-term selection 

Most trees used for nesting by A. spinicauda were large canopy trees or large snags, 

presumably because these trees are more likely to form cavities than are younger and 

smaller trees (Newton 1994). The majority of cavities used for nesting were natural 

cavities that developed where branches became detached, because of fungal decay or 

because of trunk wounds, knots or crevice formation; less than 7% of used cavities were 

made by other birds. Although primary-cavity nesters have an important role in 

determining cavity availability for small secondary-cavity nesters in northern forests 

(Martin et al. 2004), in the south-temperate forest, primary-cavity nesters seem not to 

play an important role for small cavity nesters like Aphrastura.  

In old-growth and logged-forest plots, Aphrastura spinicauda selected large snags 

and large live Nothofagus nitida trees. In fragments, however, nest-trees used were not 

different in size from available trees and nests were found in several different tree 

species, including several species of the family Myrtaceae, which were not used as 

nesting sites in old-growth or logged-forest plots despite their presence in these forests. 
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This different pattern of nest-tree use could be attributed to differences in forest structure.  

However, logged-fragments and logged-forest plots had similar forest structure, in terms 

of density of snags and large trees (Chapter 2), but had different nest-tree use patterns. 

On the other hand, nest-site use patterns were similar between old-growth and logged-

forest plots despite their differences in forest structure. Therefore, the observed nest-tree 

use pattern in fragments is more likely a consequence of birds having to stay in fragments 

because of isolation (i.e. reduced connectivity), and not a consequence of differences in 

forest structure. 

 Contrary to the pattern observed for nest-trees, characteristics of territories were 

similar among the different forest types. In general, A.  spinicauda territories were 

characterized by areas with canopy gaps, with fewer small trees and more large trees and 

snags, and with a dense understory. Several lines of evidence in this study suggest that 

territory selection is relatively conserved. Nest-boxes used for nesting were in areas with 

habitat characteristics similar to those surrounding natural nests. Second, territory 

characteristics were similar regardless of the level of habitat degradation and connectivity 

of the forests (i.e., territory characteristics did not vary among the three forest types 

examined). Third, characteristics of habitat surrounding nest-boxes that were not used for 

nesting were very different, characterized by a secondary-forest type, with a closed 

canopy and very little understory vegetation. Territory characteristics are important for 

survival of adults and for success of breeding attempts by providing shelter and food 

resources. Insect biomass is usually higher in canopy gaps than in closed-canopy areas 

within forests in this study area (Chacón & Armesto 2006) and an open canopy also 

allows a dense understory to develop. Understory vegetation, which in this forest region 
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is characterized by the presence of a dense bamboo (Chusquea spp) layer, provides 

foraging substrate and shelter that is especially important for the post-fledgling period (as 

observed for other bird species in this region, Reid et al. 2004). A less variable territory 

selection pattern across the landscape may be due to the fact that selective logging and 

fragmentation (e.g., by producing more edge habitat) may actually provide open-gap 

conditions for A. spinicauda similar to those found in natural tree-fall gaps in old-growth 

forests. 

These results suggest that certain territory characteristics are required and, 

therefore, the presence of a good cavity by itself does not necessarily imply a suitable 

nesting site. As suggested by nest-tree and territory-use patterns in this study, the 

behavior for territory selection seems less variable than the behavior for nest-tree 

selection (i.e., with a higher level of plasticity). Moreover, whereas nest-tree selection is 

likely explained by a “predation-avoidance” model (e.g., Nilsson 1984), territory 

selection is more likely explained by a “food-based” model (e.g., Burke & Nol 1998). 

Studies that specifically test these hypotheses have not been carried out yet, and would be 

important to determine the relative importance of food and predators as limiting factors 

(Martin 1995).  

Successful and unsuccessful nest-sites: evidence for ongoing selection 

Nests in snags had a higher probability of survival than nests in live trees in the study 

area. Moreover, trees with little epiphyte cover were also safer nesting sites than trees 

covered by epiphytes. These two variables, however, are correlated because snags usually 

have little or no epiphyte cover, whereas live trees usually have a dense epiphyte cover 

(Muñoz et al. 2003). Small mammals are important nest predators in the south-temperate 
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rainforest (Willson et al. 2001) but no information is available about the specific identity 

of nest predators for Aphrastura. A small arboreal marsupial (Dromicipos gliroides), 

however, is among the most probable predators for Aphrastura spinicauda nests in the 

study region because other small rodents have poor climbing abilities (Gallardo-Santis et 

al. 2005) and snakes do not usually enter moist forest habitats in this region (Greene & 

Jaksic 1992).  Therefore, it is likely that a bare trunk provides a safer nest-site because it 

exposes nest-predators, like the small opossum, to their own predators. Nest-cavities also 

had very low vegetation concealment regardless of the tree type in which they were 

found, supporting this hypothesis. Other studies also have shown that successful nests of 

cavity nesters are usually those with low vegetation concealment because attending 

parents have a better view of predators approaching nests (Li & Martin 1991). Finally, 

nest success was not different among the three forest types studied, despite the fact that 

patterns of nest-site use were different in fragments as manifested by the use of smaller 

trees and a different set of tree species. This differential use, however, did not have 

consequences for nesting success, as initially predicted. 

Adaptive nest-tree preferences 

Support for an adaptive nest-site choice (Clark & Shutler 1999) in this study comes from 

two lines of evidence. First, nest trees in which nest success was high (i.e., snags) were 

used in a higher proportion than expected based on their availability and, secondly, 

fidelity was high in nest trees in which fitness was previously high.  

In old-growth and logged-forest plots, located in large and connected forests, 

snags were used more often than expected based on their availability suggesting that nest-

site choice is adaptive. Among live trees, A. spinicauda nested more often than expected 
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in Nothofagus nitida trees, based on their availability. Nothofagus are likely better trees 

for nesting because they have intermediate levels of epiphyte cover when compared to 

snags and other live trees. Other tree species, however, were used less than expected 

based on their availability. Although this also may be related to differences in epiphyte 

cover, it may reflect differences in tree-structure that influence the propensity to form 

cavities rather than an active avoidance of other trees. 

In fragments, where nest-site availability was reduced by selective logging and 

density of birds was higher than expected (Chapter 2), birds used nest-trees in direct 

proportion to their availability in relation to both size and species. This result could be 

interpreted as a lack of nest-site selection in fragments. On the other hand, an adaptive 

nest-site selection implies that fitness is higher in nest-sites preferred for nesting (Jones 

2001). Therefore, in old-growth forest, nest-sites not used for nesting are expected to be 

avoided because of the negative effects on fitness they may entail. In fragments, however, 

the use of nest-trees that were usually not used in old-growth forests had no consequences 

on nest success. Given that there was no cost to using different nest trees in fragments, at 

least at the level of nest success, it is possible that cavities are of higher quality in 

fragments.  

If processes triggered by habitat fragmentation influence quality of available 

cavities (e.g. through changes in predator densities, interacting species or microclimatic 

conditions), and if birds are able to assess these changes, observed nest-site use patterns 

could reflect behavioral adaptive plasticity in nest site selection (Forstmeier & Weiss 

2004). A few studies have suggested that birds are capable of assessing changes in habitat 

quality and adjust their nest-site choice accordingly (Forstmeier & Weiss 2004; Haemig 



Cintia Cornelius, 2006, Ph.D. Dissertation, p. 

   

112 

1999; Schmidt et al. 2006; Fontaine & Martin 2006b). Therefore, if fragmentation affects 

populations of nest-predators, then cavities that are usually of low quality in old-growth 

forest are safer nesting sites in fragments. For instance, the strength of top-down forces 

can vary across the landscape depending on the ecological responses of prey and predator 

populations to landscape changes (Patten & Bolger 2003). In fact, populations of the 

small arboreal marsupial have been shown to be affected by fragmentation in an area 

north of the site where this study was conducted (Saavedra & Simonetti 2005).  

Finally, re-use patterns of nest-sites were consistent with an adaptive response of 

nest-site choice. Nests that were reused had an overall higher daily nest survival than 

nests that were not reused. This suggests that successful nests were more likely to be 

reused than nests that failed in a previous nesting attempt. Furthermore, nests in snags 

had a higher nest success than nests in live trees and snags were reused more often than 

live trees. Nest reuse patterns were not influenced by nest-site availability or 

connectivity, showing a consistent pattern of reuse across the landscape.   

Concluding remarks 

Nest-site preferences are considered to be adaptive if habitat characteristics of sites used 

for nesting are different from available habitat, if variation in characteristics of successful 

and unsuccessful nests exists, and, finally, if an adaptive response of nest-site preference 

is demonstrated (Clark & Shutler 1999; Jones 2001). Results of this study not only show 

evidence for an adaptive nest-site preference in A. spinicauda  but also show that nest-site 

choices are spatially variable in response to ecological gradients produced by human- 

driven landscape changes.  
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In logged-fragments, individual birds are likely faced with a nest-site selection 

trade-off between dispersing to other sites in search of suitable cavities and nesting in a 

forest with reduced nest-site availability. Given that there was no cost to using different 

nest trees in fragments, an alternative explanation is that birds are able to assess changes 

in habitat quality (Forstmeier & Weiss 2004). As a consequence, birds may stay in 

fragments as long as suitable territories are available and not because of a cost associated 

with dispersal over open habitats. On the other hand, genetic data on A. spinicauda 

populations in this same fragmented landscape (Chapter 1) show that gene flow is 

reduced to a certain degree among fragments, and that small fragments account for most 

of the observed genetic structure among populations. Therefore, it is likely that nest-site 

selection patterns in fragments are a combination of a dispersal trade-off and the 

capability of individual birds to assess changes in habitat quality. In this human- 

dominated south-temperate forest system, populations of the cavity-nesting bird A. 

spinicauda, as also shown for ground cavity-nesting species of the family Rhinocryptidae 

(Willson et al. 2001; De Santo et al. 2002), are more likely to be limited by nest-site 

availability and the access to these nest sites than by nesting success.  
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Table 1. Summary of model selection to evaluate the effects of nest-tree characteristics, forest 

type and year on nest survival of A. spinicauda in the south-temperate rainforest in Chiloé (2003-

2005) based on 74 known-fate nests in natural cavities. K = number of parameters; models are 

ranked by ascending ∆AICc; wi is normalized model weight. 

 

Model K AICc ∆AICc wi Model 

Likelihood 

S (tree + epiphyte cover) 3 151.241 0.00 0.176 1.0000 

S (tree + epiphyte cover  + year) 4 151.277 0.04 0.173 0.982 

S (tree )  2 151.622 0.38 0.146 0.827 

S ( tree +  year)  3 151.970 0.73 0.123 0.695 

S (epiphyte cover) 2 152.239 1.00 0.107 0.607 

S (tree + epiphyte cover + forest) 4 153.176 1.94 0.067 0.380 

S (tree +forest) 3 153.528 2.29 0.056 0.319 

S (tree + forest + year) 4 153.548 2.31 0.056 0.316 

S (.) 1 153.742 2.50 0.051 0.286 

S (year)  2 154.989 3.75 0.027 0.154 

S (forest) 2 155.746 4.51 0.019 0.105 
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Table 2. Summary of model selection to evaluate reuse patterns in relation to nest-tree type, 

forest type and year on nest survival of A. spinicauda in the south-temperate rainforest in Chiloé 

(2003-2005) based on 56 known-fate nests in natural cavities. K = number of parameters; models 

are ranked by ascending ∆AICc; wi is normalized model weight. 

 

Model K AICc ∆AICc wi Model 

Likelihood 

S (reuse + tree) 3   96.676   0.00 0.26023 1.0000 

S (reuse ) 2   97.983   1.31 0.13537 0.5202 

S (reuse + tree + year) 4   98.229   1.55 0.11966 0.4598 

S (tree)  2   98.304   1.63 0.11526 0.4429 

S ( reuse + tree + forest) 4   98.331   1.66 0.11375 0.4371 

S (reuse + forest) 3   98.851   2.18 0.08768 0.3369 

S (reuse + year) 3   99.988   3.31 0.04966 0.1908 

S (.) 1 100.029   3.35 0.04867 0.1870 

S (reuse + year + forest) 4 100.859   4.18 0.03213 0.1235 

S (forest) 2 101.844   5.17 0.01964 0.0755 

S (yeart) 2 102.023   5.35 0.01796 0.0690 
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Figure 1. Study region (A) and study sites (B) in Isla Grande de Chiloé, southern Chile. The 

satellite image (Landsat 5-T 2001) shows the spatial pattern of forest fragments in the study area. 

Squares represent 10-ha study plots in each of three forest types (1 = old-growth forest, 2 = 

logged-forest, 3 = logged-fragments) 
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Figure 2. Size distribution and normal curve, as measured by diameter at breast height (dbh), of 

available trees and trees used for nesting by Aphrastura spinicauda  in Chiloé.  
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Figure 3. Mean size (± SE) as measured by diameter at breast height (dbh), of nest trees 

used by Aphrastura spinicauda and trees available in the three forest types in Chiloé. 

 

 

 

 

 

 

old-growth logged forest logged fragments

D
b

h
 (

c
m

)

40

50

60

70

80

90

100

110

Nest trees

Available trees



Cintia Cornelius, 2006, Ph.D. Dissertation, p.              

 

125 

 

 

 

 

 

Figure 4. Percentage of tree species and snags used for nesting by Aphrastura spinicauda in the 

three forest types in Chiloé. SNG = snag, COG = Coigüe (Nothofagus nitida), LUM = Luma 

(Amomyrtus luma), PET = Peta (Myrceugenia exsucca), TEP = Tepa (Laureliopsis philippiana), 

ARY = Arrayán (Luma apiculata), ULM = Ulmo (Eucryphia cordifolia). 
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Figure 5. Frequency of nest cavities with different levels of vegetation concealment in Chiloé 

forests based on 57 active nests.  
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Figure 6. Vegetation characteristics within a 20-m radius plot centered on a natural nest, a used 

nest box, and a non-used nest box (i.e. unused territory). Different letters denote significant 

differences at the P < 0.05 level within each vegetation variable (Tukey post-hoc test for multiple 

comparisons). 
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Figure 7. Canonical discriminant function of habitat characteristics around natural nests, used 

nest boxes, and unused nest boxes of Aphrastura spinicauda in Chiloé. 
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Figure 8. Daily nest survival (DNS) for Aphrastura spinicauda related to epiphyte cover of 

trees, based on 74 known-fate models of three breeding seasons (2003-2004) in Chiloé.  
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Figure 9. Comparison of proportions of trees available and trees used for nesting by Aphrastura 

spinicauda within three categories (snags, Nothofagus nitida trees and other tree species) among 

the three forest types in Chiloé.  
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