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Dissertation Abstract 

 
Over the last several decades, interest in quantifying immune function in comparative 

studies of wild animals has grown appreciably.  Now, the field of ecological immunology 

is undergoing a transition, and “second generation” studies are being designed and 

carried out.  With a greater appreciation of the complexity of immune systems, these 

second generation studies are commonly distinguished from their antecedents by 

making comparisons using multiple assays and including multiple species.  I worked to 

advance this transition by developing novel approaches to comparative immunology, 

exploring the interrelationships among indices of immune function, and applying multiple 

indices to a question of comparative avian evolution. 

 

First, I worked to develop individual methodologies that would be broadly applicable 

given the numerous limitations of field-based immunology.  I present methodological 

details on two assays—a hemolysis-hemagglutination assay and a bacteria killing assay, 

and I report on intra- and inter-specific comparisons using both.  Relatedly, using ten 

species of waterfowl, I examine how these and other indices correlate at both the 

individual and species levels.  

 

Next, with an interest in developing a better understanding of the evolutionary forces 

molding immune function, I set out to broadly compare immune function in 15 

phylogenetically matched pairs of bird populations from North America and from the 

islands of Hawaii, Bermuda, and the Galápagos.  If immune defenses were costly, 

populations from relatively disease-free, oceanic islands are expected to exhibit 

attenuated immune function in response to reduced pathogen and parasite pressure.  In 

fact, many island animals exhibit this postulated “island syndrome,” one facet of which is 
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increased susceptibility to disease.  After employing three protocols to measure eight 

indices of immune function, I found no support for my hypothesis.  Rather than evidence 

of depauperate parasite communities and inherent costs of immune defenses selecting 

for reduced immune function, I found that several indices were elevated in island birds.  I 

suggest that life on islands is accompanied by an apparent reorganization of the relative 

importance of various immune components. 

 

Finally, in collaborative efforts with investigators here and at other institutions, I apply the 

hemolysis-hemagglutination assay to address a variety of questions across three diverse 

avian study systems. 
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Chapter 1 

A hemolysis-hemagglutination assay for characterizing constitutive innate 

humoral immunity in wild and domestic birds. 

Published: K. D. Matson, R. E. Ricklefs & K. C. Klasing.  

Developmental and Comparative Immunology. 2005; 29:275-286. 

 

Summary: Methods to assess immunocompetence requiring only a single sample are 

useful in comparative studies where practical considerations prevent holding or 

recapturing individuals.  The assay for natural antibody (NAb)-mediated complement 

activation and red blood cell (RBC) agglutination described here, requiring ~100 µL of 

blood, is highly repeatable.  The effects of complement deactivation, 2-mercaptoethanol 

(2-ME), age, and lipopolysaccharide (LPS)-induced sickness response were examined 

to validate comparisons among diverse avian species.  Complement deactivation by 

heating significantly reduces lysis and treatment with 2-ME reduces both lysis and 

agglutination.  Lysis and agglutination both increase with age in chickens; LPS treatment 

does not influence these variables in 11-week-old chickens.   In a comparison of 11 

species, both lysis (0.0 to 5.3 titers) and agglutination (1.8 to 8.0 titers) vary significantly 

among species.  Accordingly, this assay can be used to compare constitutive innate 

humoral immunity among species and with respect to age, sex, and experimental 

treatments within populations. 
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1. Introduction 

A subset of immune defenses can be categorized as both constitutive and innate 

[1].  Constitutive innate immunity provides the first-line of protection against invading 

microbes.  Among these defenses are two interrelated humoral components: natural 

antibodies (NAbs) and complement.  On one hand, NAbs serve as a recognition 

molecule capable of opsonizing invading microorganisms and initiating the complement 

enzyme cascade, which ends in cell lysis [2].  On the other hand, levels of complement 

and the expression of its receptors by B cells are positively correlated with NAb diversity 

and B-1 cell number [2].  This interaction of NAbs and complement is an important link 

between innate and adaptive immunity [2-4]. 

Details of the role of complement have been elucidated through decades of 

research on the large group of proteins that make up the system.  Because complement 

deficiencies are associated with a range of infectious and non-infectious diseases, 

including lupus and arthritis, assessment of the complement system has become 

commonplace in humans [5], as well as in a range of domestic animals [6-8], including 

ducks [9], chickens [10, 11], and turkeys [12].   In non-domestic animals, hemolytic 

activity associated with complement has been identified in higher vertebrates [13] as well 

as lower vertebrates [including 3 species of fish, 14]. 

Natural antibodies are unique among immunoglobulin molecules because their 

presence does not require previous exposure to a particular antigen.  Circulating NAbs 

have been described in naïve animals, including those raised in germ-free environments 

[4, 15, 16].    Additionally, NAbs are encoded directly by the germ-line genome [15, 17, 

18] and do not require somatic hypermutation and recombination during ontogenesis as 

in the case of the adaptive antibody repertoire [19, 20]. 

Natural antibodies react with various affinities to a wide variety of epitopes on 

macromolecular and particulate antigens including foreign red blood cells (RBCs), 
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bacteria, viruses, and toxins [15, 21, 22].  In mammals, the main sources of NAbs are 

peritoneal CD5+ B-1 cells, a subset of the antibody-producing B cells [23].  Most NAb 

molecules are pentameric IgM, but some IgG (monomeric) and IgA (dimeric) forms have 

been reported [17]. A variety of functions have been proposed for NAbs, including 

directly controlling novel bacterial and viral disease challenges, enhancing antigen 

presentation and initiating specific responses of B and T cells, regulating self reactive B 

and T cells, and clearing damaged or transformed cells [4, 24]. 

Because a large fraction of all antibody-secreting B cells are located in gut-

associated lymphoid tissue [25], and many of these are peritoneal B-1 cells that 

constitutively secrete NAbs, these molecules may be important in clearing commensal 

microflora that leak across the gut epithelial barrier [26].  While NAbs also might play an 

immunoregulatory role, the “evolutionary important physiological role for enhancing 

survival of the host seems to be in early resistance against infection” [4].  For example, 

NAbs against the parasite Plasmodium lophurae have been identified in White Leghorn 

chickens (Gallus domesticus) [27].  Also, NAbs at naturally occurring concentrations 

have been shown to kill bacteria and spirochetes in vitro [15, 22] and to promote 

clearance of bacterial cell wall components (e.g., lipopolysaccharides) in vivo [26]. 

Assessment of immune function in free-living vertebrates is emerging as an 

important tool in evolutionary and ecological research. The types of assays that can be 

employed with wild animals, however, are constrained by the stress that results from 

capture and handling, the unreliability of recapturing animals, the prohibition of terminal 

studies, the lack of specialized reagents, and the small size of many study species. 

Conventional assays of B-cell function, such as lymphocyte phenotyping and specific 

antibody responses to vaccinations, are usually not possible.  The levels of NAbs and 

complement in small blood samples taken at single capture events may provide 

important information about immunocompetence.  The direct, genotype-dependent 
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expression of NAb genes makes the assessment of innate humoral immunity particularly 

appealing for addressing evolutionary questions.  As the first line of defense against 

initial infection, germ-line encoded NAb genes are subject to natural selection.  Indeed, 

NAb levels in chickens have responded over 20 generations of artificial selection on the 

primary antibody response [28].  Also, NAbs should be less sensitive than acquired 

antibody responses to short-term variations in environmental conditions, nutritional 

status, or stress levels [e.g. 29].  Moreover, NAb production appears to represent a 

functionally distinct [though genetically related 28] component of humoral immunity in 

which the cells producing NAbs are not influenced by experimental infection and 

initiation of a specific antibody response [30]. 

Here, we describe a highly repeatable assay for characterizing NAb-mediated 

complement activation and RBC agglutination titers that is useful for comparing innate 

humoral immunity among species and with respect to age, sex, and experimental 

treatments within populations. This assay uses a single small blood sample (roughly 100 

µL, which can be safely drawn from birds as small as 10 g) collected upon capture.  This 

uncomplicated sampling makes the method ideal for comparative immunological studies 

requiring numerous samples from small birds, and where recapture is difficult. 

2. Materials and Methods 

2.1. Subjects and Samples 

Plasma samples were collected from both captive and free-living birds.  The 

captive species were jungle fowl (Gallus gallus, ~3 years old, n=4, all males), Cobb 

broiler chicken (Gallus domesticus, four 2-week-old chicks and twenty 11-week-old 

chicks, all males), mallard duck (Anas platyrhynchos, ~6 months old, 2 females, 3 males, 

n=5), Japanese quail (Coturnix coturnix japonica, ~1 year old, all males, n=6), American 

kestrel (Falco sparverius, average 11 years old, sexes unknown, n=5), and zebra finch 

(Taeniopygia guttata, ages unknown, all female, n=4).  The wild species were mourning 
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dove (Zenaida macroura, ages and sexes unknown, n=4), house sparrow (Passer 

domesticus, ages and sexes unknown, n=4), common grackle (Quiscalus quiscula, ages 

and sexes unknown, n=6), gray catbird (Dumetella carolinensis, ages and sexes 

unknown, n=11), and waved albatross (Phoebastria irrorata, ages unknown, 7 males, 6 

females, 1 unknown sex, n=14).  Blood samples were collected using heparinized 

syringes or heparinized microcapillary tubes.  With one exception, blood samples were 

kept on ice for periods less than 1 hour until centrifugation, after which the plasma 

fraction was removed and frozen for future analysis.  Due to field constraints, the waved 

albatross blood samples remained un-centrifuged and at ambient temperatures for 

periods not exceeding 6 hours, at which point the plasma was collected and frozen. 

Blood collection protocols for all captive birds were approved by the UC Davis 

Campus Committee on Animal Care and Use.  The work with all wild birds was approved 

by the UM Saint Louis Institutional Animal Care and Use Committee. 

Plasma enriched in IgM for use as a positive control was collected from 3 adult 

Leghorn chickens.  Each chicken was subcutaneously injected with 50 µL of whole rabbit 

blood in Alsever’s solution (HemoStat Laboratories #RBA050, Dixon, CA) in 4 places in 

the pectoral region.  After approximately 90 hours, when specific IgM levels had 

increased but specific IgY levels had not, blood from each chicken was collected in 

heparinized syringes.  The blood was centrifuged, and plasma was collected, pooled, 

and frozen for later use.  Prior to freezing, a portion of the pooled plasma was heated to 

56°C in order to deactivate complement. 

2.2. General Hemolysis-Hemagglutination Assay 

The assay is carried out in 96-well (8 rows by 12 columns) round (U) bottom 

assay plates [Corning Costar #3795, see 31].  25 µL of eight plasma samples are 

pipetted into columns 1 and 2 of the plate and 25 µL of 0.01 M phosphate buffered saline 

(PBS; Sigma #P3813, St Louis, MO) are added to the columns 2 through 12.  Using a 
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multi-channel pipetter the contents of the column 2 wells are serially diluted (1:2) through 

column 11.  This results in dilutions ranging from 1 to 1/1024 and 25 µL in every well. 

The 25 µL of PBS only in column 12 serves as a negative control.  For the assay itself, 

25 µL of a 1% rabbit blood cell suspension is added to all wells, effectively halving all 

plasma dilutions.  Each plate is then sealed with ParafilmM (Pechiney Plastic Packaging, 

Neenah, WI) and covered with a polystyrene plate lid.  Plates are gently vortexed for 10 

seconds prior to incubation during which they are floated in a 37°C water bath for 90 

minutes. 

Upon completion of the incubation, the long axis of each plate is tilted to a 45° 

angle for 20 minutes at room temperature in order to enhance visualization of 

agglutination.  Plates are then scanned (full size image at 300 dpi) using the positive 

transparency (top-lit) setting of a flatbed scanner (Microtek Scanmaker 5900).  

Afterward, plates are kept at room temperature for an additional 70 minutes and 

scanned for a second time to record maximum lytic activity.  From the digitized images, 

lysis and agglutination are scored for each sample.  Lysis reflects the interaction of 

complement and NAbs, whereas agglutination results from NAbs only.  Both variables 

are recorded as the negative log2 of the last plasma dilution exhibiting each behavior, 

i.e., column 9 is a score of 9 [32] (see Fig. 1).  Half scores between two titers are 

recorded when the termination of lysis or agglutination is intermediate or is ambiguous 

[32]. 

2.3. Rabbit Blood Cell Suspension 

Because chickens exhibit high levels of natural hemagglutinins for rabbit RBCs 

compared to RBCs from 4 other mammals [33], this assay was developed to use a 

commercially available suspension of whole rabbit blood in Alsever’s solution (HemoStat 

Laboratories #RBA050, Dixon, CA; supplied as 50% whole blood, 50% Alsever’s). The 

RBCs were washed 4 times with PBS (ca. 275 x g for 5 minutes).  The hematocrit was 
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checked in duplicate using capillary tubes and the RBCs were adjusted to a final cell 

concentration of 1% in PBS.  At 25 µL per well, each assay plate requires 2.4 mL of the 

prepared 1% cell suspension.  To ensure that the 1% cell suspension remains well 

mixed, the suspensions were vortexed immediately prior to addition to the assay plate.  

Fresh cell suspensions were prepared daily. 

2.4. Plasma Treatments 

Two plasma treatments are referred to throughout this manuscript: heat and 2-

mercaptoethanol (2-ME).  Heat-treated plasma was de-complemented at 56°C for 30 

minutes [34].  2-ME-treated plasma had 2-ME added to a final concentration of 0.1 M in 

order to break up polymeric immunoglobulins (primarily IgM) [34].  2-ME-treated plasma 

samples were incubated at 37°C for 30 minutes [32]. 

2.5. Assay Repeatability, Rabbit Blood Age Effects, and Scorer Effects 

To examine assay repeatability, 16 assays using the Leghorn positive control 

plasma pool were run over a 2-day period when the rabbit blood was freshest (days 1 

and 2).  Two individuals (KM and A Scheuerlein) scored these assays to test for scorer 

effects on lysis and agglutination titers.  Further, to examine effects of storage time of 

the rabbit blood in Alsever’s solution, 4 additional assays were run on days 6, 10, and 15 

after receipt of the shipment of fresh blood.  Every assay plate contained 4 repeats of 

both unheated and heated plasma. 

 LPS-Induced Sickness Response 

Fifteen 11-week-old male Cobb broiler breeder chicks were injected 

subcutaneously with 1 mg lipopolysaccharide (LPS; Sigma #L7261, St Louis, MO) from 

Salmonella typhimurium per kilogram body mass.  At 4, 8, and 16 hours post injection, 

groups of 5 chickens were bled from the jugular vein.  One mL of blood was collected in 

heparinized microcentrifuge tubes from each chicken.  Control samples were collected in 

a similar manner from 5 non-injected 11-week-old male Cobb broiler breeder chicks. 
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2.7 Statistical Analyses 

Within- and among-assay variation was calculated from 4 repeats for each of two 

types of plasma (heated and unheated pooled chicken plasma) run in 16 different assay 

plates.  Within-assay variation is reported as the mean, minimum, and maximum values 

of the standard deviations (SD), standard errors (SE), and coefficients of variation (CV) 

(n=4 for each type of plasma on each plate) across the 16 plates, whereas among-assay 

variation is reported as the SD, SE, and CV of the 16 intra-plate means.  Variation due to 

rabbit blood storage time was tested using a linear regression on the 5 daily means for 

lysis and agglutination with unheated and heated plasma during the 15-day test period.  

A one-sample t-test was used to assess the difference between scorers. 

Variation in mean lysis and agglutination titers was tested independently using 

univariate general linear models (SPSS, Release 9.0.0, 1998).  To test the effect of 

species and plasma treatment, we used a GLM with species and plasma treatment as 

fixed factors, individual as a random factor, and the interaction between species and 

plasma treatment.  The effects of chick age and interval following LPS injection were 

analyzed separately for unheated and heated plasma using GLMs with only a single 

fixed factor.  Post-hoc multiple comparisons were made using Tukey’s test. 

3. Results and Discussion 

3.1. Assay Design: Repeatability, Scorer Effects, and Rabbit Blood Storage Effects 

Within- and among-assay variation was calculated for lysis and agglutination 

titers using both unheated and heated plasma pools.  Across all plates, the agglutination 

titer averaged 10.0 for unheated plasma and 9.8 for heated plasma and the lysis titer 

averaged 3.9 for unheated plasma.  Lysis was absent from the heated plasma.  The 

mean within-assay variation (SD) was ± 0.2 titers for agglutination and ± 0.1 titers for 

lysis (Table 1).  The mean among-assay variation (SD) was ± 0.4 titers for agglutination 

and ± 0.3 titers for lysis (Table 2).  The CV within and among assays is frequently 
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reported, but standard deviations are more meaningful when comparing values on a 

logarithmic scale because the mean value, by which the SD is divided to obtain the CV, 

is arbitrary and can be 0 or negative. 

The assay data revealed a small, but significant scorer effect.  Samples were 

scored blindly, and one individual recorded significantly lower values than the other. The 

mean difference was 0.2 titers (S.D. = 0.5; n = 128, p<0.001) for agglutination and 0.04 

titers (S.D. = 0.2; n = 128, p<0.001) for lysis.  The smaller difference between scorers for 

lysis is likely due to the fact that the endpoint for lysis is clearer than that of 

agglutination. 

The rabbit blood cells as packaged by the supplier are given an expiration date of 

2 weeks after collection and shipment.  The storage time of the blood cells (up to 15 

days) did not significantly affect the outcomes of the assays with either heated or 

unheated plasma (Table 3).  Thus, it appears that one batch of rabbit blood cells can be 

safely used until its expiration date. 

Due to concerns regarding the anti-complementary effects of heparin, lysis titers 

in plasma (collected in heparinized microcapillary tubes) and serum were compared in 3 

species.  No significant effects were found (unpublished data).  Further, to ensure lytic 

activity was not limited by the concomitant serial dilution of endogenous divalent cations, 

the effects on lysis of 2 different dilutants (the standard PBS dilutant and a dilutant with 

Mg+2 and Ca+2) were compared in 2 species.  Again, no significant effects of were found 

(unpublished data).  Across species, the functional importance of heparin interference 

and of endogenous cationic concentration on in vitro complement activation is not well 

understood, and, therefore, both warrant further investigation. 

3.2. Plasma Treatments 

The effects of heating plasma to deactivate complement and treating plasma with 

2-ME to disaggregate IgM were tested in 5 species: mourning dove, Japanese quail, 
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mallard duck, jungle fowl, and 11-week-old Cobb chicken.  Because the interaction 

between species and plasma treatment was significant for both lysis [F(8,38) = 48.3, 

p<0.001] and agglutination [F(8, 38) = 61.8, p<0.001], the effect of plasma treatment 

was examined independently for each species.  Thus, data for each species were 

analyzed using plasma treatment as a fixed factor and individual as a random factor in a 

repeated-measures GLM.  Simple contrasts were conducted to compare lysis and 

agglutination values for both heated plasma and 2-ME-treated plasma with values for 

untreated plasma. 

A significant decrease in agglutination titer was observed when plasma from 11-

week-old Cobb chicks was heated (p=0.001) or treated with 2-ME (p<0.001; Fig. 2).   

Significant reductions in agglutination were exhibited in jungle fowl (p<0.001), mallard 

ducks (p<0.001), and Japanese quail (p=0.001) only when the plasma was treated with 

2-ME (Fig. 2).  Neither heat nor 2-ME significantly reduced the low levels of agglutination 

observed in mourning doves (Fig. 2).  Lysis was significantly reduced in both heated and 

2-ME treated plasma in 11-week-old Cobb chickens, jungle fowl, mallard ducks, and 

Japanese quail (p<0.001 for both treatments for each species; Fig. 2).  Because lysis is 

absent from untreated mourning dove plasma, no comparisons were made. 

Plasma samples were heated to deactivate complement and then scored for lysis 

to ensure that complement, and not a heat stable serum factor (e.g. an acute phase 

protein), was responsible for the lysis titers that were determined in untreated plasma. 

Only a small (< 1 log2 unit) amount of lytic activity remained in heat-treated plasma from 

Cobb chickens and mallards and none occurred in most species. This indicates that all, 

or almost all, of the lysis observed with unheated plasma was due to complement. 

Additionally, the lysis titer was almost always below the agglutination titer, indicating that 

immunoglobulin was not limiting for measurement of complement levels. The exception 

was the common grackle, where the lysis and agglutination titers were similar. Thus, it is 
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not possible to determine whether the measured complement titer in this species was 

accurate because it may have been constrained by NAb levels.  One potential side effect 

of the heat inactivation of complement is a significant reduction in agglutination titers 

(e.g. 11-week-old Cobb chicken samples).  In this case, some NAb fraction appears to 

be denatured by the heat treatment. 

We added 2-ME to plasma samples to break polymeric NAbs into monomeric 

units, such that a common currency could be used to compare agglutination across 

species.  However, the ability of the immunoglobulin fragments to agglutinate is 

questionable [34], and the ME-resistant titers more likely represent IgY molecules that 

cross-react with rabbit RBCs.  Though 2-ME treatment reduces titers by one-half or 

more, the interspecific pattern of agglutination seen with 2-ME resistant antibodies 

parallels the pattern of agglutination with untreated plasma and provides little additional 

information.  One notable exception, jungle fowl plasma, exhibits a more severe 

reduction in agglutination titers.  This reduction suggests that jungle fowl may rely more 

on polymeric forms of natural antibodies than the other species.  In addition to reducing 

overall agglutination levels, 2-ME treatment totally eliminates all hemolytic activity.   This 

elimination of lysis could result from the destruction of disulfide bonds in complement 

components or from the inability of 2-ME-resistant antibodies to initiate the complement 

cascade. 

Many Passeriformes (songbirds) and Apodiformes (swifts and hummingbirds) are 

too small (<20 g) to collect sufficient blood to test all plasma treatments.  In such cases, 

untreated plasma should be the highest priority because it provides the most information 

(i.e., lysis and agglutination titers). 

3.3. Effects of Age in Young Birds 

With respect to lysis and agglutination in unheated and heated plasma, 11-week-

old Cobb broiler chicks exhibited significantly higher titers than 2-week-old chicks (Fig.3 
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2).  In unheated plasma, lysis titers increased from 0.3 ± 0.3 (SE) in 2-week-old birds to 

4.0 ± 0.3 in 11-week-old birds [F(1, 7) = 79.5, p<0.001] and agglutination titers increased 

from 1.5 ± 0.3 to 8.0 ± 0.3 [F(1, 7) = 219.1, p<0.001].  In heated plasma, lysis titers 

increased from 0.0 ± 0.0 in 2-week-old birds to 0.8 ± 0.2 in 11-week-old birds [F(1, 7) = 

12.4, p=0.010] and agglutination titers increased from 0.0 ± 0.0 to 7.0 ± 0.3 [F(1, 7) = 

381.1, p<0.001].  Seto and Henderson [33] found low levels of NAbs in embryos and in 

chicks up to 20 days of age. In their experiment, NAb levels increased rapidly during the 

next several weeks and reached a plateau at around 12 weeks of age.  The low level of 

agglutination by plasma from young chicks indicates that maternal IgY contributes little 

to the NAb titer as measured with RBC agglutination. The timing of the increase and 

plateau of NAbs follows a time course that is similar to that of plasma IgM levels, further 

implicating this form as the responsible Ig. 

Changes in immune function in developing birds are expected, but the generality 

of this result across species is unknown.  The rates of increase of circulating natural 

antibody levels likely depend on the development period and vary over the altricial-

precocial development spectrum.  For practical purposes, these results suggest the 

need to limit comparisons to birds of similar age groups (e.g. hatchling, fledgling, hatch 

year or older) whenever possible. 

3.4. Effects of LPS-induced Sickness Response 

Lysis and agglutination titers were not greatly affected by LPS injection in 11-

week-old Cobb chicks (Fig. 4).  Only in one case was a significant effect shown: lysis in 

heated plasma decreased from 0.8 ± 0.2 in the control birds to 0.0 ± 0.0 in the 4, 8, and 

16 hour birds [F(3, 16) = 16.0, p<0.001].  The nonsignificant decreasing trend in 

agglutination with time may, in fact, be the result of NAbs binding and clearing LPS, as 

suggested by Reid [26]. 
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Because some acute phase proteins are likely able to lyse RBCs in a 

complement-dependent manner, one might predict higher levels of lysis in birds 

undergoing an acute phase response.  On the other hand, the lack of substantial 

changes in lysis and agglutination titers after LPS injection may be less surprising in light 

of the finding of Baumgarth et al. [i.e. that infection does not affect NAb levels, 30] and 

our finding that vaccination with keyhole limpet hemocyanin has no effect on either titer 

(unpublished data).  Nevertheless, that the acute sickness response with its 

symptomatic anorexia, elevated acute phase proteins, and periodic hypo- and 

hyperthermia did not significantly affect lysis or agglutination is noteworthy, particularly in 

relation to the tradeoffs that are made between other physiological stresses and 

immunocompetence [e.g. 29].  Thus, with wild birds it can be assumed that short-term 

fluctuations in health status, which are difficult to determine when a bird is in hand, do 

not strongly affect these measures of innate immunity. 

3.5. Inter-Species Comparisons 

Because the interaction of species and heat treatment was significant in the case 

of lysis [F(10,61) = 37.7, p<0.001] and agglutination [F(10,61) = 2.5, p=0.012], and 

because the effects of heat treatment were documented in a subset of the species in this 

study, we examined the effect of species independently within each plasma treatment 

type.  The data for heated and unheated plasma were analyzed using a GLM with 

species as a fixed factor. 

Lysis titers in unheated plasma (Fig. 2A) ranged from 0.0 ± 0.0 (SE) in the 

mourning dove to 5.3 ± 0.3 in the common grackle [F(10,57) = 38.9, p<0.001].  

Agglutination titers for unheated plasma (Fig. 2A) ranged from 1.8 ± 0.7 in the mourning 

dove to 8.0 ± 0.3 in the 11-week-old Cobb chickens [F(10,57) =  8.4, p<0.001].  Lysis 

titers in heated plasma (Fig. 2B) ranged from 0.0 ± 0.0 in 9 different species to 0.8 ± 0.2 

in the 11-week-old Cobb chickens [F(10,57) = 10.8, p<0.001].  Agglutination titers for 
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heated plasma (Fig. 2B) ranged from 1.6 ± 1.0 in the mourning dove to 7.4 ± 0.4 in the 

jungle fowl [F(10,57) = 9.3, p<0.001]. 

With the range in agglutination titers observed in the 11 species, we conclude 

that different species rely on the constitutive innate humoral branch of the immune 

system to differing degrees.  The level of this reliance may reflect the underlying 

differences in the biology or life history of each species.  Furthermore, the differences 

across species may represent tradeoffs with other branches of the immune system, so 

that birds with high NAb levels may rely less on induced and/or specific responses.  

This, however, does not appear to be the case within the humoral branch.  Chickens 

artificially selected for high or low primary antibody responses exhibited parallel changes 

in NAb levels (and disease resistance) [28, 35, 36].  Thus, despite a functional 

partitioning, constitutive innate and induced specific humoral immunities appear to be 

genetically related to one another and to disease resistance within a species.  The 

extent of these relationships across bird species, such that NAb variables could be 

measured as a proxy for overall humoral immunity, remains to be examined. 

In addition to the variation in agglutination across species, the 11 study species 

also varied with respect to average lysis titers.  When the two variables are examined 

together, the species can be placed in three groups based on the amount of complement 

(lysis) relative to NAb (agglutination).  In the low group, lysis titers are less than 5% of 

total agglutination titers; in the medium group, they are 40 to 65%; and in the high group, 

greater than 95%.  Both overall agglutination and lysis titers could vary to balance the 

robustness of other branches of the immune system; the particular pattern of immune 

defenses might reflect differences in the life history and ecology of species, but resolving 

these relationships will require carefully designed experiments and broader comparative 

studies. 
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In birds, the total fitness costs of maintaining NAbs and complement are not well 

understood. In mammals, however, pathological autoimmunity appears to be related to 

anomalous NAb production in some cases [37-39].  Ultimately, the degree of investment 

in innate humoral immunity should reflect a number of factors, including life span and the 

need for long-term memory, exposure to pathogenic organisms in the environment, and 

the coevolutionary responses of pathogens to a host’s immune response. 

Use of the assay described in this paper for characterizing constitutive innate 

humoral immunity has clear advantages over several methods currently employed to 

assess immune function in comparative and experimental studies.  The most common 

assay of immune system function in the ecological literature, the swelling to a 

subcutaneous injection of phytohemagglutinin (PHA), quantifies nonspecific cellular 

immunity [40, 41].  This technique requires measurements over a 24-hour period.  

Moreover, the PHA response does not represent a single clearly definable immune 

phenomenon but a suite of responses that results in swelling.  A second technique, 

involving specific antibody responses following vaccinations by particular antigens [such 

as sheep RBCs, 42, and keyhole limpet hemocyanin, 43], measures specific, humoral 

immunity.  As this technique requires either recapturing individuals or holding individuals 

over periods of up to 30 days, the tests are logistically complicated and the results are 

confounded by other physiological phenomena such as stress responses or changes in 

breeding status. However, if the conjecture of Kohler et al. [44] that NAb levels against 

particular pathogens approximate the specific antibody response to those same 

pathogens is true across avian species, then minor modifications of our assay (i.e. 

replacement of RBCs with specific pathogens) could permit a comparative study of 

adaptive immunity. 

4. Conclusions 
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The hemolysis-hemagglutination assay described here can be effectively used to 

characterize and quantify constitutive innate humoral immunity in birds.  The assay is 

highly repeatable and the results are unambiguous.  Agglutination and lysis titers vary 

significantly between species.  In chickens, agglutination and lysis titers were affected by 

age, but were not affected by an LPS-induced sickness response.    When plasma 

sample volume is limited, we recommend untreated plasma for use in this assay, as this 

option is most informative. 
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Fig. 1.  An example scan. Scan shows results of the hemolysis-hemagglutination assay 

using serially diluted plasma from one 11-week-old Cobb broiler chicken (Gallus 

domesticus).  Titers 1 through 3, show hemolysis.  Titer 4 shows a tight or compact form 

of agglutination, while titers 5 through 9 show a more flocculent form of agglutination.   In 

addition to the negative control (PBS only), the clear dripping in titers 10 and 11 

demonstrate a lack of lysis and agglutination.  This example scan would be given a lysis 

score of 3 and an agglutination score of 9. 
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Fig 2.  Lysis and agglutination titers in unheated (A), heated (B), and 2-ME treated (C) 

plasma from 11 species of birds.  Filled bars represent lysis; open bars, agglutination.  

Error bars represent SE. Numbers in parentheses indicate number of individuals per 

species.  Due to plasma volume limitations, not all species were treated with 2-ME (no 

data, n.d.) 
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Fig 3.  Lysis and agglutination titers in unheated (A) and heated (B) plasma from four 2-

week-old and five 11-week-old Cobb broiler chickens (Gallus domesticus).  Filled bars 

represent lysis; open bars, agglutination.  Error bars represent SE. 
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Fig 4.  Lysis and agglutination titers in unheated (A) and heated (B) plasma from 11-

week-old Cobb broiler chickens (Gallus domesticus).  Each group was composed of 5 

different birds.  Filled bars represent lysis; open bars, agglutination.  Error bars represent 

SE. 
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      SD        SE        CV       
Plasma Treatment Variable  nsample Mean   Mean SD High Low   Mean SD High Low  Mean SD High Low 
Chicken Pos. Std., 
Unheated Agglutination  4 10.0  0.2 0.3 0.9 0.0  0.1 0.1 0.4 0.0  2.0 2.5 8.1 0.0 
Chicken Pos. Std., Heated Agglutination  4 9.8  0.2 0.2 0.5 0.0  0.1 0.1 0.3 0.0  2.1 2.2 5.7 0.0 
Chicken Pos. Std., 
Unheated Lysis  4 3.9  0.1 0.1 0.5 0.0  0.0 0.1 0.2 0.0  2.0 3.9 13.2 0.0 
Chicken Pos. Std., Heated Lysis  4 0.0   0.0 0.0 0.0 0.0   0.0 0.0 0.0 0.0  . . . . 

 

 

 

Table 1.  Within-assay variation reported as the mean, minimum, and maximum values of the standard deviations (SD), standard 

errors (SE), and coefficients of variation (CV). Across the 16 plates, n=4 for each type of plasma on each plate.
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Plasma Treatment Variable  nplate Mean  SD SE CV
Chicken Pos. Std., 
Unheated Agglutination  16 10.0 0.5 0.1 4.7
Chicken Pos. Std., Heated Agglutination  16 9.8 0.4 0.1 4.2
Chicken Pos. Std., 
Unheated Lysis  16 3.9 0.3 0.1 7.0
Chicken Pos. Std., Heated Lysis  16 0.0  0.0 0.0 .

 

 

 

Table 2.  Among-assay variation reported as the standard deviations (SD), standard 

errors (SE), and coefficients of variation (CV) of the 16 within-assay-plate means for 

each type of plasma. 
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Plasma Treatment Variable Beta d.f. t p 
Chicken Pos. Std., 
Unheated Agglutination

-
0.097 3

-
0.168 0.877 

Chicken Pos. Std., Heated Agglutination 0.521 3 1.058 0.368 
Chicken Pos. Std., 
Unheated Lysis 

-
0.719 3

-
1.793 0.171 

Chicken Pos. Std., Heated Lysis . . . . 
 

 

 

Table 3.  Results of linear regressions on the 5 daily means for lysis and agglutination 

with unheated and heated plasma during the 15-day test period.  The storage time of the 

blood cells did not significantly affect the outcomes of the assays with either heated or 

unheated plasma. 



Matson, Kevin, 2006, UMSL, p. 
 

 

34

Chapter 2 

Capture stress and the bactericidal competence of blood and plasma in five 

species of tropical birds. 

In press: K. D. Matson, B. I. Tieleman & K. C. Klasing.   

Physiological and Biochemical Zoology. 

 

Summary: In wild birds, relatively little is known about intra- or inter-specific variation in 

immunological capabilities and even less is known about the effects of stress on immune 

function.  Immunological assays adaptable to field settings and suitable for a wide 

variety of taxa will prove most useful for addressing these issues.  We describe a novel 

application of an in vitro technique that measures the intrinsic bacteria-killing abilities of 

blood.  We assessed the capacities of whole blood and plasma from free-living 

individuals of five tropical bird species to kill a non-pathogenic strain of E. coli before and 

after the birds experienced an acute stress.  Killing invasive bacteria is a fundamental 

immune function, and the bacteria-killing assay measures constitutive, innate immunity 

integrated across circulating cell and protein components.  Killing ability varied 

significantly across species, with common ground doves exhibiting the lowest levels and 

blue-crowned motmots, the highest levels.  Across species, plasma killed bacteria as 

effectively as whole blood, and higher concentrations of plasma killed significantly better.  

One hour of acute stress reduced killing ability by up to 40%.  This assay is expected to 

be useful in evolutionary and ecological studies dealing with physiological and 

immunological differences in birds. 
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Introduction 

Relatively little is known about the immunological capabilities of free-living birds, and 

even less is known about how stress impacts immune system function across species.   

Furthermore, the immune assays most commonly applied to comparative ecological and 

evolutionary questions are fraught with limitations relating to methodology and 

interpretation.  Thus, with a growing interest in comparative studies of immune function, 

new assays free of these restrictions are needed.  We propose that measuring the in 

vitro bacteria-killing ability of whole blood and blood plasma represents a novel method 

for quantifying and comparing immune function when addressing questions of ecology 

and evolution.  This assay measures the integrated effects of multiple components of 

innate immunity.  As such, the bacteria-killing assay overcomes many of the limitations 

commonly associated with measuring immune function.  In particular, unlike some other 

assays, the results are easily interpretable: a higher in vitro bacteria-killing ability 

equates with a greater capacity of the subject to limit infection by the particular species 

or strain used in the assay.  Furthermore, the assay does not require species-specific 

reagents, and, because the assay measures the constitutive, or standing, ability of an 

individual to kill bacteria, handling time is minimized and stress effects are controlled.  

We measured the bacteria-killing abilities of 5 species of tropical birds found in open and 

edge habitats.  Additionally, we conducted an experiment to determine the immediate 

effects of acute stress from capture, handling, and restraint on bacteria-killing ability. 

Immunological assays developed for particular model species (e.g. chickens) are 

often of little use for comparative studies as a result of the need for species-specific 

reagents.  Prohibitions on terminal studies and limitations because of the small body size 

of many birds further restrict comparative studies of avian immune function.  Despite 

these impediments, a diverse set of studies spanning disciplines (e.g. behavioral 
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ecology (Kilpimaa et al. 2004) and life history evolution (Tella et al. 2002)) compare 

immunological capacities both within and among species.   

Researchers most commonly rely on two methods to assess immune function.  

The first method uses color change (ELISA) or agglutination to quantify specific 

antibodies produced following vaccination with a novel, noninfectious antigen (e.g. KLH 

(Hasselquist et al. 1999)).  Measurement of specific antibody titers quantifies a well-

defined branch of the immune system: inducible, adaptive, humoral immunity.  Often 

considered to evaluate “cell-mediated immunity,” the second method measures swelling 

following a subcutaneous injection of phytohemagglutinin (PHA) (Stadecker et al. 1977; 

Goto et al. 1978).  Triggering a broad suite of non-specific reactions, injection of PHA 

integrates widely over numerous immune components.  Widely integrative assays are 

advantageous in some situations, particularly in comparative studies where 

measurement of multiple individual components are constrained logistically, but because 

the relationship between PHA-induced swelling and fundamental immune functions (i.e. 

preventing infection) is unclear, the interpretation of the PHA-swelling results can be 

challenging.  Further, the induced nature of both measures necessitates repeated 

sampling (over 24 hr for PHA and over several days for specific antibodies).   Associated 

with this repeated sampling are the often-overlooked effects of stress associated with 

repeated capture (or captivity) and handling.  Difficult to control, these stresses likely 

confound outcomes and may account for the conflicting results reported within and 

between studies (e.g. (Deerenberg et al. 1997; Ilmonen et al. 2003)).    

Chronic stress is generally considered immunosuppressive (Raberg et al. 1998).  

Circulating stress hormones elicit a wide variety of responses from the immune system.  

Empirical data and experimental results suggest that the functional effects of stress 

depend on a number of factors that vary among study organism (e.g., birds (Gross and 

Siegel 1973; Regnier et al. 1980; Gross and Siegel 1983; Ilmonen et al. 2003; Kushima 
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et al. 2003), mammals (Keller et al. 1983; Endresen et al. 1991) and fish (Peters et al. 

1991; Demers and Bayne 1997)).  Within birds, stress effects depend on the branch of 

the immune system and the type of defense measured (e.g., white blood cell profiles 

(Gross and Siegel 1983; Ilmonen et al. 2003; Kushima et al. 2003), specific antibody 

responses (Gross and Siegel 1973; Regnier et al. 1980; Ilmonen et al. 2003), and 

hypersensitivities (Ilmonen et al. 2003)).  The nature of the applied stressor (e.g., 

nutritional (Klasing 1988), thermal (Regnier et al. 1980), reproductive (Deerenberg et al. 

1997; Ilmonen et al. 2003), or psychological (Gross and Siegel 1973; Endresen et al. 

1991; Kushima et al. 2003)) and any modifiers (e.g., duration (Dhabhar and McEwen 

1997), severity and novelty) also influence the effects of stress on immune function 

(Dohms and Metz 1991).  While widely viewed as immunosuppressive, in some 

instances stress can also enhance immunity (Endresen et al. 1991; Dhabhar and 

McEwen 1996; Demers and Bayne 1997).     

The immune system is complex, and the relative contribution of different 

components (e.g. cellular versus humoral) to different species during periods of 

homeostasis and stress is unclear.  Nonetheless, the recognition and destruction of 

invading bacteria are clearly fundamental functions of organisms’ immune systems, but 

due to the diversity of immune response mechanisms, species may accomplish this 

function by different means (Roitt 1997).  The assay we describe here assesses 

constitutive innate immune function.  Because this form of immunity, which includes 

standing anatomical, physiological, phagocytic, and inflammatory barriers, depends 

neither on an individual’s history of exposure to pathogens nor on the somatic 

rearrangement of the genes that encode antibodies (as with adaptive immunity) (Roitt 

1997), the evolved response of a population to pathogens should be more directly 

revealed by innate immune mechanisms.  Making inter-specific predictions that relate 



Matson, Kevin, 2006, UMSL, p. 
 

 

38

particular immune functions to other parameters (e.g. life history variables), however, is 

not easy given the paucity of data. 

As a measure of innate immunity, bacteria killing integrates cytological (Keusch 

et al. 1975) and serological (Merchant et al. 2003) immune components.  While avian 

nonlymphoid cells exhibit varying abilities to phagocytize pathogens, phagocytosis by 

heterophils (Harmon 1998) and macrophages (Qureshi 1998) is particularly important for 

defense against infection by bacteria.  In the blood plasma, a number of soluble proteins 

also play key roles in limiting infection.  Natural antibodies serve as non-specific 

recognition molecules with the ability to limit early microbial infection (Ochsenbein et al. 

1999).   The complement enzyme cascade can lyse targeted cells by way of a 

membrane-attack complex endproduct (Esser 1994) or through protein byproducts 

(Nordahl et al. 2004).  Lysozyme, another plasma component, exhibits bactericidal 

capacity through an enzymatic digestion of cell-wall structural carbohydrates (Selsted 

and Martinez 1978).  Also, though generally considered an induced response, some 

acute phase proteins, such a mannose-binding protein, may be constitutively produced 

at concentrations high enough to enhance (via complement fixation or opsonization) the 

capacity of blood to kill bacteria (Roitt 1997).  Thus, to fully address questions of 

comparative biology, this multi-faceted nature of immune defenses combined with 

intrinsic and extrinsic differences among study populations or species may necessitate 

the use of multiple species or strains of microorganisms or require other methodological 

considerations. 

Materials and Methods 

Subjects and Samples 

Between 26 March 2004 and 28 April 2004, we captured blue-crowned motmots 

(BCMM, Momotus momota, n=6), blue-gray tanagers (BGTA, Thraupis episcopus, 

n=13), crimson-backed tanagers (CBTA, Ramphocelus dimidiatus, n=9), clay-colored 
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robins (CCRO, Turdus grayi, n=24), and ruddy ground-doves (RUGD, Columbina 

talpacoti, n=14) in mist nets in Gamboa, Panama.  We bled birds sterilely from a wing 

vein two times: once within 3 minutes of the subject’s first striking the net (t0) and once 

60 minutes later (t60).  During the 60-minute period between bleeds, we held all birds in 

small fabric bags in an air-conditioned room (~21 oC).  Plasma samples collected within 

3 minutes reflect baseline levels of the stress hormone corticosterone, while samples 

collected after one hour typically show significantly increased levels (Wingfield et al. 

1982).  The volume of the two blood draws never exceeded 1.0% of a bird’s body mass.  

After creating a sterile zone around the wing vein by saturating the area with 70% ETOH 

and allowing it to air-dry for approximately 20 seconds, we collected blood into sterile 

heparinized capillary tubes before it had a chance to escape the sterilized area.  We 

used sterilized clay cards to plug all capillary tubes and airtight plastic containers for 

transporting the cards and tubes back to the lab.  For use in parametizing assay 

variables, we also collected blood from 3-week-old Cobb chicks (Gallus domesticus) 

utilizing similar sterile techniques.  All protocols were approved by the animal care 

committees at UC Davis or UM Saint Louis. 

Bacteria-killing Assay 

The use of fresh whole blood and plasma necessitated that we initiate assays 

immediately after sample collection over the same 34-day period of bird capture.  In 

sterile 1.5 mL tubes, we diluted plasma (10 µL and 20 µL) and whole blood (20 µL) from 

each individual at both time points to a final volume of 200 µL using CO2 independent 

media (#18045; Gibco-Invitrogen, Carlsbad, CA) plus 4mM L-Glutamine and 5% heat-

inactivated fetal calf serum.    To each diluted plasma and blood sample, we added a 20-

µL aliquot containing about 600 colony-forming units (CFUs) from an Escherichia coli 

working culture.  This E. coli (ATCC # 8739) culture was prepared from lyophilized 

pellets (3.1x107 CFUs per pellet; Epower Microorganisms #0483E7; Microbiologics, St 
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Cloud, MN), which were reconstituted according to the instructions provided by the 

manufacturers.  In order to ensure all cultures contained the correct number of CFUs, we 

regularly plated sub-samples on tryptic-soy agar plates and counted the resulting 

colonies.   

The final suspensions (220 µL total; diluted whole blood or plasma plus bacteria) 

were incubated at 41oC for 30 minutes during which the processes of the bacterial 

culture (growth and division) and immune components (stasis and killing) were allowed 

to interact.  After incubation, we removed and briefly (~5 s) vortexed the samples.   In 

duplicate, we pipetted 75-µL aliquots onto two agar plates and spread the mixture evenly 

over the surface of the agar.  Following a brief drying period (~20 minutes), we covered 

and inverted the plates and incubated them overnight at ambient temperature (~27oC). 

The next day we counted the number of viable colonies and determined the proportion of 

colonies killed by comparison to control plates, which were made by diluting bacteria in 

media alone.  To avoid contamination, we made use of a portable laminar flow hood 

(Airclean 600, Airclean Systems, Raleigh, NC) at all stages requiring a sterile 

environment.   

In conjunction with the development of this protocol, we also measured the effect 

of whole blood concentration on bacteria killing using samples collected from chickens. 

A 1:4 dilution was made in addition to 1:10 and 1:20 dilutions as above.  Additionally, we 

heat de-complemented subsamples of chicken plasma (Delhanty and Solomon 1966).  

Killing abilities of heated and unheated plasma samples were compared in order to 

quantify the contribution of complement and other heat-labile proteins. 

Statistical Analyses 

The differences in the number of viable bacteria after incubation and the number in the 

initial inoculums are expressed as the proportion killed.  After first rounding up all 

negative proportions to zero, we arcsine transformed [arcsine (square root (proportion 
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killed))] all data prior to statistical analysis (Sokal and Rohlf 1998).  To facilitate 

interpretation, however, we present some data as untransformed percentages.   

To analyze the variation in the transformed data set, we estimated a repeated-

measures general linear model (SAS 9.0) with species (5 sp), sample type (3 types: 10 

µL plasma, 20 µL plasma, 20 µL blood), and stress time point (0, 60 minutes) as 

independent variables.  We included in the analysis only individuals for which all 6 

values (3 sample types at 2 stress time points) had been measured (BCMM, n=4; BGTA, 

n=10; CBTA, n=6; CCRO, n=14; and RUGD, n=8).  This criterion only minimally 

impacted sample size; but when a particular, more focused analysis resulted in an 

increased sample size and a change in the significance level, we report both results. 

Results 

Among Species Comparisons 

Bacteria-killing ability varied widely among our 5 study species and depended on sample 

type (Figure 1). Because 2-way and 3-way interactions between species, sample type, 

and stress time point (all p<0.011) had significant effects on transformed proportion of 

bacteria killed, we examined the effect of species within each plasma treatment type 

separately at t0.  The transformed proportion of bacteria killed using 10 µL plasma, 20 µL 

plasma, and 20 µL blood was analyzed using a univariate GLM with species as a fixed 

factor.  In all cases the variation among species was significant.  Using 10 µL plasma, 

the percentage of bacteria killed ranged from 4.9% ± 0.5% (SE) in the RUGD to 99.1% ± 

0.0% in the BCMM [F(4,37) = 15.7 p<0.0001].  Using 20 µL plasma, the percentage of 

bacteria killed ranged from 64.3% ± 2.7% in the RUGD to 99.6% ± 0.1% in the BCMM 

[F(4,37) = 3.8 p=0.011].  Using 20 µL whole blood, the percentage of bacteria killed 

ranged from 7.7% ± 1.2% in the BGTA to 99.2% ± 0.1% in the BCMM [F(4,37) = 15.9 

p<0.0001, Figure 1].  
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Sample Type Comparisons 

Bacteria killing varied more among sample types in some species than in others (Figure 

1).  Again, because of the significant 2- and 3-way interactions identified above, this 

variation among sample types was examined independently for each species at t0.  The 

transformed proportion of bacteria killed by each sample type within a species was 

analyzed using a repeated-measures GLM.  The bactericidal ability of the 3 sample 

types varied significantly in all species (BGTA [F(2,18) = 43.2 p<0.0001], CBTA [F(2,10) 

= 18.5 p<0.001], CCRO [F(2,26) = 9.2 p=0.001], and RUGD  [F(2,14) = 23.2 p<0.0001]), 

except the BCMM [F(2,6) = 1.0 p=0.432, Figure 1]).   

Post-hoc comparisons revealed that within-species differences among sample 

types are driven by differences in plasma concentration, but not by the addition of the 

cellular component.  Pair-wise tests of the killing ability of 10 µL plasma and 20 µL blood 

showed no significant effects in any species.   When comparing 10- and 20-µL plasma 

samples the same tests revealed significant differences in all species (BGTA [F(1,9) = 

61.3 p<0.0001], CBTA [F(1,5) = 44.9 p=0.001], CCRO F(1,13) = 16.6 p=0.001], and 

RUGD [F(1,7) = 25.4 p=0.002]), except the BCMM [F(1,3) = 5.8 p=0.095]. 

Effects of Stress 

The magnitudes of the observed stress effects vary by species and by sample type.  

Therefore, the effect of holding time on transformed proportion of bacteria killed was 

analyzed using a repeated-measures GLM within each sample type and independently 

for each species.  In 3 of the 5 species, the stress of capture and handling had 

significant negative impacts in one or more sample type (Figure 2A).  No significant 

effects were seen in the BCMM or in the CCRO. 

In the CBTA, stress from capture resulted in significant reductions in the 

bactericidal abilities of 10 µL plasma [F(1,5) = 12.8 p=0.016], 20 µL plasma [F(1,5) = 8.1 

p=0.036], and 20 µL blood [F(1,5) = 13.6 p=0.014].  With 20 µL blood, however, the 
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stress effect on bacteria killing became marginally insignificant when one individual, 

originally excluded from the main analysis due to incomplete sampling, was included in a 

one-way analysis [F(1,6) = 5.1 p=0.065].  

The BGTA showed a significant decline in killing ability due to capture stress only in the 

20-µL plasma sample [F(1,9) = 29.2 p<0.001].  The decrease in the bactericidal abilities 

of the RUGD were marginally insignificant for 20 µL plasma [F(1,7) = 5.3 p=0.054] and 

20 µL blood [F(1,7) = 4.8 p=0.065].  In the case of 20 µL plasma, the stress effect on 

bacteria killing became significant when four individuals, originally excluded from the 

main analysis due to incomplete sampling, were included in a one-way analysis [F(1,11) 

= 8.5 p=0.014]. 

Other Methodological Considerations 

Varying assay parameters resulted in direct and predictable changes in the outcome of 

the assay.  Increasing the concentration of chicken whole blood increases the proportion 

of the bacteria killed.  With a 30-minute incubation, a 1:4 dilution killed 98.0% (±1.1% 

SD, n=3); a 1:10 dilution, 92.1% (±1.4% SD, n=3); and a 1:20 dilution, 83.9% (±2.5% 

SD, n=3).  Additionally, complement and other heat-labile proteins appear to account for 

much of the killing abilities of plasma.   Following a 15-minute incubation, heat de-

complemented chicken plasma killed only 12.6% (±5.6% SD, n=3) of bacteria, while 

intact untreated plasma killed 64.6% (±4.0% SD, n=3). 

Discussion 

Among Species Differences 

Our results show substantial and significant variation in the ability of 5 bird species to kill 

a single strain of bacteria.  Similar work has demonstrated striking differences in the 

capacity of human and alligator (Alligator mississippiensis) serum to control E. coli 

(Merchant et al. 2003).  This variation suggests that different species employ this 

particular branch of the immune system to differing degrees for preventing and 
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controlling E. coli infections.  Because of the observed inter-specific variation, the 

bacteria-killing assay is expected to be well suited for comparative studies of ecology 

and evolution.  Though, depending on the study design, inclusion of multiple species or 

strains of microorganisms may be required to fully characterize innate immunity.   

Within birds, for example, bacteria-killing ability is predicted to relate to where a 

particular species falls on the slow-fast continuum of life-history variation and correlate 

with other variables like rates of reproduction and development (Ricklefs and Wikelski 

2002).  While our small sample size precludes a proper analysis, it does appear as if this 

immune measure relates to generalized life-history syndromes.  Specifically, at the fast 

end of the spectrum the ruddy ground-dove fledges at about 12 days (Skutch 1983) and 

has the lowest bacteria-killing ability, whereas at the slow end of the spectrum the blue-

crowned motmot fledges at about 31 days (Skutch 1983) and exhibits the highest 

bacteria-killing ability.  Furthermore, a follow-up study that increases the number of 

species (but measures bacteria-killing using whole blood only) demonstrates bacteria 

killing and mass-corrected basal metabolic rates are inversely related, again suggesting 

slow pace of life is associated with high bacteria-killing abilities. (Tieleman et al. 2005). 

 Exposure is another factor that could affect bacteria-killing abilities.  Acquired 

immunity and the production of specific IgY would result from previous exposure to the 

exact strain used in this assay (Roitt 1997) and would likely increase killing ability.  

Alternatively, exposure to other strains of E. coli (and even to other enteric bacteria 

species) generates and maintains circulating levels of cross-reactive nonspecific (or 

natural) antibodies in the form of IgM (Reid et al. 1997).  If prior exposure is anticipated 

to be a problem, then birds with specific IgY could be indentified by deactivating the 

background IgM with mercaptoethanol (Delhanty and Solomon 1966; Van Der Zijpp and 

Leenstra 1980) before use in the assay.  All birds are commonly exposed to many 

different strains of E. coli (e.g. in their commensal microflora and diet), but the specific 
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strain used in this assay has evidently not been previously isolated from birds (Biosis 

database search, June 2005).     

Condition-dependent fluctuations in bacteria-killing abilities brings to light the 

benefits of applying this assay to the same individuals over time.  Adding this 

longitudinal aspect to the experimental design would contribute to the overall 

understanding of this measure but would not entirely allow differentiation between 

maximum capacity and current response, a problem common to all functional assays. 

Though subject to logistical constraints (e.g. blood draw volume limitations, 

physiological effects of multiple captures, etc), using the sum of these techniques to 

measure the abilities of birds to kill a range of microorganisms (e.g. different strains of E. 

coli, Staphylococcus spp. and Saccharomyces spp.) will result in the most complete 

picture of this functional response.  Resulting from inter-specific differences in both host 

immune strategies and microorganism defense strategies, complete correlation among 

all measures is not expected. 

Sample Type Differences 

In this experiment, 10 µL plasma was equally effective as 20 µL whole blood at killing 

this particular strain of E. coli.  Within a subset of the study subjects, the hematocrit 

averaged 50.6% (±6.1% SD, n=42). Thus, 20 µL whole blood contains approximately 10 

µL plasma.     Across all 5 species, a linear regression showed that the killing ability of 

10 µL plasma significantly explained 77% of the variation in the killing ability of 20 µL 

whole blood [R2=0.772; F(1,40) = 135.5 p<0.0001] (Figure 3).  In the resulting model, the 

slope did not differ significantly from 1.0 and the intercept did not differ significantly from 

0.0. Thus, it is plasma and its protein constituents that are apparently responsible for the 

killing capacity measured when using whole blood.  Moreover, the analysis of the 

chicken plasma samples point specifically to heat-labile proteins and suggest that one or 

more components of complement may be responsible for lysing the bacteria.  Similarly, 
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because the bacteria-killing ability is inhibited by both heating and preincubating with 

proteolytic enzymes, complement-like proteins are thought to contribute to the 

antibacterial capacities of alligator serum (Merchant et al. 2003).   

In some cases, cellular effects have been shown to be critical for innate bacterial 

resistance and for the bactericidal activity of blood (Davies et al. 1981; Hanski et al. 

1991). This difference in cellular effects might be related to the pathogenicity of the 

assay microorganism. Studies involving a range of bacteria (including E. coli) and study 

species (including mammals, birds, and fish) reveal an inverse association between 

microbial pathogenicity and serum resistance (Joens and Nuessen 1986; Magarinos et 

al. 1994; Mellata et al. 2003).  Thus, the lack of a cellular contribution to killing likely 

stems from using a non-pathogenic strain of E. coli.  It is expected use of pathogenic 

strains would result in the cellular component contributing more to overall killing ability.  

An equivalent assay developed for clinical application illustrates that leukocyte 

bactericidal activity can be quantified when the bacteria used are limited to serum-

resistant strains (Keusch et al. 1975).  However, that plasma exhibits bactericidal 

qualities means the assay as presently described is freed of even the most basic 

limitations imposed by cell culture (e.g. maintaining viable leukocytes), which is 

beneficial when conducting field-based studies. 

Plasma concentration also affected killing capacity; 20 µL plasma resulted in 

substantially better killing than 10 µL, except in the BCMM where 10 µL plasma was 

sufficient to kill virtually all bacteria.   The increase in killing ability that results from 

doubling plasma concentration is significantly and inversely correlated with the 

transformed proportion of bacteria killed by 10 µL plasma [R2=0.945; F(1,3) = 51.8 

p=0.0055] (Figure 4).  Analysis of the chicken whole-blood samples reveals a similar 

result; the bacteria-killing abilities increase in conjunction with a 5-fold increase in 
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concentration.  Concentration-dependent effects have also been shown in the 

antimicrobial capacity of alligator serum (Merchant et al. 2003).        

With the 5 tropical bird species, the differences between 10- and 20-µL samples 

highlight important differences related to where each species falls on a saturation curve.  

The killing abilities of high responders, in this case the BCMM, have reached a plateau, 

killing practically 100% with only 10 µL plasma. In contrast, the killing abilities of low and 

medium responders are on the increasing part of the curve and, as such, rise 

significantly.  As a result of this pattern, in comparative studies, the use of multiple 

plasma concentrations might be required for identifying differences between species.  In 

fact, when blood-draw volume is not limiting, the bacteria-killing assay can be easily 

extended to include a series of dilutions of whole blood and plasma (or even a series of 

incubation periods) to tease apart subtle differences.  With immunologically complex 

systems (e.g. blood), though, quantification of bacteria killing using a serial dilution 

technique will reflect the limiting component, be it complement, antibody or 

phagocytosis. 

Effects of Stress 

Significant stress effects were seen in 3 of the 5 species and found across all 3 sample 

types (Figure 2A).  When we examined each sample type individually, we found that 

bacteria killing at t0 affected the amount of stress-induced difference (t60 - t0) in bacteria 

killing.  If 10 µL plasma killing is used as an example, one can see maximized stress 

effects when t0 bacteria killing falls in the middle of the response range (e.g. CBTA, 

Figure 2B).  Similar relationships are seen with the other two sample types.  As with the 

concentration effects, the magnitude of the stress effects depend on a species’ position 

on a conceptual curve.  Stress appears to reduce the effective plasma concentration of 

bacteria-killing components, and taken together, concentration and stress effects 

suggest an S-shaped dose-response curve.  At one end of the spectrum, the low 
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responders (RUGD, and to a lesser extent, BGTA) are so poor at killing bacteria that 

little room exists for stress effects of any consequence.  At the other end of the 

spectrum, the high responders (BCMM and, to a lesser extent, CCRO) kill with such 

efficacy that the effects of stress are slight and insignificant, as measured by the present 

assay.  As a result, with 10 µL plasma we found a significant difference in only one 

species, CBTA, which kills about half of the bacteria culture using the t0 sample.  Thus, it 

appears that when addressing questions of intra-specific variation, a modification of the 

assay so the final dilution kills approximately 50% of the bacteria will offer the greatest 

sensitivity. 

A number of factors could explain effects of acute stress on plasma-dependent 

bacteria killing.  Stress can induce leakage of gut-associated bacteria across the gut 

epithelium (Saunders et al. 1994).  If plasma proteins important for bacteria lysis also 

work to opsonize and facilitate the clearance of invasive enteric bacteria (e.g. natural 

antibodies; (Reid et al. 1997)), then a reduction in circulating levels of unbound proteins 

would likely result.  In addition, the physical stress from capture and the initial bleed 

might cause tissue trauma and hemolysis.  Clearance of these damaged cells involves 

the same plasma constituents and would again lower the levels available to prevent 

infection in vivo and kill bacteria in vitro.  By adding biologically relevant concentrations 

of lysed endogenous red blood cells to the reaction mixtures prior to incubation or by 

using different individuals for t0 and t60 sample collections, the contribution of this 

mechanism could be tested.  Regardless of cause, the apparent result is a reallocation 

of plasma proteins important for bacteria lysis from the circulatory system to the 

interstitial fluid and lymph system.  The observed stress-induced decrease in plasma-

mediated innate constitutive immunity has important health implications.  One or more 

acute stresses could immunocompromise an individual, and microbes that are ordinarily 
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non-pathogenic could result in an infection and elicit a more energetically costly immune 

response (e.g. the acute phase response).  

Conclusions 

Avian blood and plasma can both be effectively used in a functional assay that quantifies 

bacteria-killing capacities in vitro.  Using the assay as described, we found significant 

differences between species, significant decreases in some species following acute 

stress, and no differences between equivalent concentrations of plasma and whole 

blood.  By using additional species or strains of microorganisms, eliminating nonspecific 

antibodies, varying incubation period, or extending the range of dilutions, this assay 

could be optimized for use in a wide variety of intra- and inter-specific studies where 

quantification of immune function is required.  
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Figure 1 

Box plots show among species and among sample-type variation in the bacteria-killing 

abilities (untransformed percentages) of 5 species of birds (BCMM = blue-crowned 

motmot, Momotus momota; BGTA = blue-gray tanager, Thraupis episcopus; CBTA = 

crimson-backed tanager, Ramphocelus dimidiatus; CCRO = clay-colored robin, Turdus 

grayi; and RUGD = ruddy ground-dove, Columbina talpacoti).  The low end of the range 

identifies the 25th percentile; the high end, the 75th percentile; and the intermediate point, 

the median.  The numbers in parentheses indicate the sample sizes
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Figure 2 

Stress from capture and holding generally results in subtly reduced in vitro bacteria-killing abilities.  The magnitude of the observed 

stress-effects depends on species and sample type (A) and on pre-stress ability to kill bacteria (B).  In both (A) and (B), the y-axes 

represent the differences in the pre- and post-stress bacteria-killing abilities (transformed proportions) and the error bars indicate 

95% confidence intervals.  Those with error bars that do not cross the horizontal at 0 show significant depressive effects of acute 

stress on immune function.
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Figure 3 

A linear regression with 95% confidence intervals shows a 1:1 relationship between the 

killing abilities (transformed proportions) of 10 µL plasma and 20 µL whole blood.  

Symbols represent individual birds of the five species included in the study. 
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Figure 4 

Doubling the amount of plasma used in the bacteria-killing assay to 20 µL results in an 

increase in killing ability (y-axis, transformed proportions) that is indirectly related to 

killing ability of 10 µL plasma (x-axis, transformed proportions).  This relationship shows 

that each of the 5 study species has a unique saturation curve, which is defined by the 

intrinsic capacity of a species’ plasma to kill bacteria. 
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Chapter 3 

No simple answers for ecological immunology: relationships among immune 

indices at the individual level break down at the species level in waterfowl. 

In press: K. D. Matson, A. A. Cohen, K. C. Klasing, R. E. Ricklefs & A. Scheuerlein.  

Proceedings of the Royal Society of London - Series B: Biological Sciences. 

 

Summary: Understanding immune function in the context other life history traits is 

crucial to understanding the evolution of life histories, at both the individual and species 

levels.  As the interest in assessing immune function for these comparative purposes 

grows, an important question remains unanswered: can immune function be broadly 

characterized using one or two simple measures? Often, interpretation of individual 

assays is ambiguous and relationships among different measures of immune function 

remain poorly understood.  Thus, we employed five protocols to measure 13 variables of 

immune function in ten species of waterfowl (Anseriformes).  All assays were based on a 

single blood sample subdivided into leukocyte (blood smear) and plasma (frozen until 

analysis) components.  All assays were run using samples from every individual, and a 

nested analysis was used to partition variation/covariation at the levels of species and 

individuals within species.  We detected positive correlations between functionally 

related measures of immunity within species, but these were absent from comparisons 

between species.  A canonical correlation analysis revealed no significant relationships 

between the plasma and leukocyte assays at the levels of both individual and species, 

suggesting that these measures of immunity are neither competitive nor synergistic.  We 

conclude that one measure of each assay type may be required to maximally 

characterize immune function in studies of a single species, while the same is not true in 

studies among species.
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Introduction 

Whether comparing physiological or life history parameters within or among species, 

comparative biologists have measured immune function to test ideas about the evolution 

of immune responses to disease-causing organisms. Assuming that higher 

immunological responses better mitigate the effects of pathogens, but also impose 

greater costs (i.e. energetically, autoimmunologically, etc.), the evolved magnitude and 

variability of responses will depend on the balance between the disease environment 

and the costs of development, maintenance, and use of immunological defense 

mechanisms, perhaps also taking into consideration expected life span.   

The immune system is complex, comprising numerous distinct, but interacting 

components; thus, immune function can be quantified in many ways.  On one hand, this 

complexity impedes attempts to comprehensively characterize immune function and 

understand its evolution and development; on the other hand, it has given rise to a wide 

variety of immunological measures applied to individuals in natural populations.  Among 

these are assays designed to measure specific (Hasselquist et al. 1999) and non-

specific (Matson et al. 2005) antibody titers, mitogen-driven lymphocyte proliferation 

(Leshchinsky & Klasing 2001a), PHA-induced swelling (Stadecker et al. 1977), and 

bacteria killing (Matson et al. in press; Tieleman et al. 2005). 

Despite the desire to measure immunity as a trait of an individual, and the 

apparent availability of the tools to do so, the value of any particular assay is ambiguous.  

Immune responses depend on the type of disease organism (virus, bacteria, multi-

cellular parasite, cancer, etc.) and other modifiers (dose/intensity, virulence, route, prior 

exposure) (Goldsby et al. 2000; Power et al. 1998), and correlations between various 

indices of immune function and resistance to specific diseases appear to be generally 

pathogen-dependent (Adamo 2004).  Moreover, small reductions of some aspects of 

immune function can lead to significant increases in disease susceptibility, while larger 
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reductions in other aspects of immune function seem to have little effect (Keil et al. 

2001).  Thus, a strong argument for simultaneous measurement of multiple immune 

parameters has been put forward (Adamo 2004; Keil et al. 2001).  Of course, most 

comparative studies of immune function are subject to numerous logistical limitations.  

For example, studies quantifying immune function in free-living birds are constrained by 

the stress that results from capture and handling, the unreliability of recapture, 

prohibitions on terminal studies, the lack of specialized (species-specific) reagents, the 

small body size of many study species, and the confounding effects that can result from 

repeated immunological challenges within individuals.  Even so, in most studies, multiple 

measures of immune function can be made.  

Measuring many parts of the immune system simultaneously allows one to 

determine whether immune responsiveness can be treated as a single variable 

comprising correlated responses of many components. Alternatively, different parts of 

the immune system may have been subject to diverging selection and, therefore, have to 

be evaluated separately.  In general, the relationships underlying multiple measures of 

immune function are poorly understood, especially when working with species not 

normally used as biomedical models.  Studies measuring multiple immune variables 

tend to focus on individual species (e.g. (Keil et al. 2001; Leshchinsky & Klasing 2001b; 

Luster et al. 1992)); including many species in an analysis would permit exploration of 

relationships among immune variables at both the species and individual levels.  

We employed five protocols to measure the constitutive levels of 13 variables of 

immune function in ten species of waterfowl (Anseriformes).  Our study was conducted 

using captive animals; however, we worked within the typical constraints of field-based 

comparative immunology: all assays were completed using a single blood sample 

collected upon capture (because repeated sampling is often impossible) and reagents 

that are not species specific.  All assays and analyses were based on the single blood 



Matson, Kevin, 2006, UMSL, p. 
 

 

62

sample being subdivided into leukocyte (blood smear) and plasma (frozen until analysis) 

components.  This distinction between leukocyte and plasma samples, which is 

employed from this point forward, is a division based on sample types and statistical 

constraints, not traditional immunological terminology (i.e. cell-mediated and humoral 

immunity). 

The order Anseriformes is globally distributed and comprises about 150 species.  

As a group, waterfowl are relatively uniform with respect to anatomy and physiology. 

Nonetheless, our sample of goose and duck species varies considerably with respect to 

distributional range (from tiny islands to entire continents) and habitat (freshwater, 

marine, and terra firma) (Lack 1974).  Because these birds naturally occupy such a wide 

variety of environments (in the sense of geography and, presumably, pathogen 

exposure), we expected waterfowl to exhibit enough variation in immune function to 

make analyses of correlations among different functions feasible.  

We compared measures of plasma and leukocyte immunity on two levels—

among species and among individuals within species—to determine whether 

interspecific patterns of variation, presumably representing evolved differences, parallel 

or can be extrapolated from intraspecific patterns.  To avoid confounding factors such as 

variable environmental conditions the samples were all collected from captive individuals 

housed in one location at a single point in time.    All birds were fed species-appropriate 

diets ad libitum; all were housed in shared open-air facilities; and all were exposed to the 

same ambient temperatures, light:dark cycles, and pathogen and parasite milieu. 

2. Materials and Methods 

2.1. Subjects and Samples 

Between the 16th and 20th of September 2003, blood samples (~1 mL) were drawn from 

the medial metatarsal veins of 61 birds representing 10 species in 4 genera (Anas 

rubripes, North American black duck, NABD; Anas laysanensis, Laysan teal, LATE; 
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Anas georgica spinicauda, Chilean pintail, CHPT; Anas georgica georgica, South 

Georgia pintail, SGPT; Branta canadensis leucopareia, Aleutian Canada goose, ALCG; 

Branta sandvicensis, Nene or Hawaiian goose, NENE; Cairina moschata, Muscovy 

duck, MUSC; Cairina scutulata, White-winged wood duck, WWWD; Dendrocygna 

autumnalis, Black-bellied tree duck, BBTD; Dendrocygna arborea, Cuban tree duck, 

CUTD).  All birds were housed in mixed species aviaries in Scotland Neck, NC, USA 

(36.1oN, -77.42oW).  All birds were at least 6 months of age with the majority being 

adults (48 after-hatch year, 5 hatch-year, and 8 unknown age).  Not all birds were 

definitively sexed, but within a subset of individuals, sex ratios were comparable among 

species. 

At collection, several drops of blood were used to make smears for leukocyte 

enumeration.  The remaining blood was centrifuged and the plasma collected; in total, 

the plasma assays require ~135uL of plasma.  All samples were provided by Sylvan 

Heights Waterfowl and all work was approved by the animal care committees at UC 

Davis and UM Saint Louis. 

2.2. Blood Smear Evaluation 

A single blood smear from each individual was evaluated by conducting differential 

counts and estimating the overall white blood cell (WBC) concentration (Feldman et al. 

2000).  From these data, concentrations (#/µL) of heterophils, lymphocytes, monocytes, 

eosinophils, and basophils were estimated (Feldman et al. 2000).  All blood smears were 

evaluated blind to species by a single veterinary diagnostic laboratory technician (AVL 

Veterinary Clinical Laboratory; St Louis, MO). 

2.3. Plasma Sample Analyses 

Hemolysis/Hemagglutination Titers 

We assessed innate humoral immunity by using a hemolysis-hemagglutination (HL-HA) 

assay to characterize natural antibody- (NAb-) mediated agglutination and lysis of 
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exogenous red blood cells (RBCs) as described by Matson et al. (2005).  Both lysis and 

agglutination are recorded as the negative log2 of the last plasma dilution exhibiting each 

function (i.e. a dilution of 1:8 is scored as 3).  Lysis reflects the interaction of NAbs and 

lytic enzymes (e.g. complement); agglutination results only from NAb activity.  Because 

the effect of RBC source is unknown, we assayed all samples using exogenous RBCs 

from two sources: 1) pooled rabbit RBCs (as in (Matson et al. 2005), #RBA050; 

HemoStat Laboratories; Dixon, CA) and 2) RBCs from a single Rainbow trout 

(Oncorhynchus mykiss; #9999; BioSure; Grass Valley, CA). 

Bactericidal Competence 

We assessed anti-microbial activity of plasma in a bacteria-killing assay similar to one 

previously described (Matson et al. in press).  Because different strains vary in their 

susceptibility to killing by plasma, we used two bacterial strains: Escherichia coli (ATCC 

# 8739) and Staphylococcus aureus (ATCC # 6538).  The final suspensions (220 µL 

total composed of 190 µL CO2-independent media (#18045; Gibco-Invitrogen; Carlsbad, 

CA), 10 µL plasma, and 20 µL bacteria) were incubated at 41oC for 30 minutes during 

which the processes of the bacterial culture (growth and division) and immune 

components (stasis and killing) were allowed to interact.  Afterwards, we briefly vortexed 

the suspensions, and we pipetted and spread 75-µL aliquots onto two agar plates.  

Plates were incubated overnight at room temperature (~25oC). The next day we counted 

the number of viable colonies and determined the percentage of colonies in these 

experimental plates compared to control plates, which were made by diluting bacteria in 

media alone. 

Acute Phase Protein Concentration 

Haptoglobin (Hp) is an acute phase protein found in a wide range of species including 

birds (Delers et al. 1988). Under normal conditions Hp circulates at low level, but 

concentrations increase with inflammatory responses, which result from infection or 
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trauma.  Hp complexes and removes heme, thereby preventing the heme from serving 

as a nutrient for pathogens and from initiating deleterious oxidation reactions 

(Dobryszycka 1997).  We followed the “manual method” instructions provided with a 

commercially available assay kit (#TP801; Tri-Delta Diagnostics, Inc.; Morris Plains, NJ) 

to quantify the concentration (mg/mL) of Hp in all plasma samples.     

Antioxidant Capacity 

Antioxidants are an important physiological mechanism for protection against free radical 

damage, and, as such, are related to immune function.  Specifically, antioxidants quench 

free radicals that originate from the respiratory burst of phagocytes during an 

inflammatory response (Mates & Sanchez-Jimenez 1999).  We used a modified version 

of the TEAC (Trolox Equivalent Antioxidant Capacity) assay to measure antioxidant 

capacity in all plasma samples (Miller et al. 1993).  This technique works by measuring 

spectrophotometrically the change in quantity of a standard free radical, 2,2’-azinobis-(3-

ethylbenzothiazoline-6-sulphonic acid) (ABTS), in the presence of a sample of unknown 

antioxidant capacity.  The change in absorbance over time is standardized relative to a 

positive standard (Trolox, a water-soluble vitamin E analog) and a negative control, 

which are then used to calculate antioxidant levels in units of mmol/L Trolox equivalents.   

2.4. Statistical Analyses  

A general linear model (PROC GLM; SAS 9.1 2002-2003; Cary, NC) was used to test for 

the effect of species on variation in each of the measures of the immune system (Table 

1).  Furthermore, we calculated the variance/covariance matrix among species and 

among individuals within species (PROC NESTED; SAS).  To gain insight into the 

underlying structure and relationships within both branches of the immune system and at 

both the individual and the species levels, we extracted the principal components (PCs, 

PROC FACTOR; SAS) separately for both plasma and leukocyte measures using 

correlation matrices generated from the nested analysis output.  We used varimax 
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rotation to maximize the contrasts of the variable loadings between the factors, 

restricting further analysis to factors with eigenvalues > 1 (Kaiser 1960).  Finally, we 

scored (PROC SCORE) independently the plasma and leukocyte principal components 

at both the species and individual levels.  We performed a canonical correlation analysis 

(PROC CANCORR) using these new scored-factor data sets to explore how the plasma 

and leukocyte variables relate to each other. 

3. Results 

3.1. Species Means 

All eight measures of plasma immunity varied significantly among species (Table 

1).  Four species consistently held the highest rank in one or more variables (LATE: 

Trout-Lysis, Hp, TEAC; CUTD: Trout-Agglutination, Rabbit-Lysis, Rabbit-Agglutination; 

ALCG: S. aureus; MUSC: E. coli).  Similarly, four species held the lowest rank in one or 

more variables (BBTD; Rabbit-Lysis, S. aureus, E. coli, TEAC; SGPT: Trout-

Agglutination, Rabbit-Agglutination; ALCG: Trout-Lysis; NABD: Hp).    

Of the five leukocyte types, only lymphocytes varied significantly among species 

(df=9, F=5.19, P<0.0001; Table 1).  Lymphocyte concentration varied from 2336/µL in 

CUTD to 10391/µL in NENE.  Interestingly, the single CUTD also had the lowest 

concentrations of heterophils, eosinophils (tied with SGPT and BBTD), and basophils 

(tied with NABD, SGPT, ALCG, NENE, and BBTD). 

3.2. Principal Component Analysis  

Individual-level analysis 

With the individual-level analysis of plasma variables, we identified 4 PCs with 

eigenvalues >1 that cumulatively account for 75% of the total variation.  The patterns of 

loadings on these PCs after a varimax rotation revealed that these axes parallel the four 

plasma assay classes: PC1 represents HL-HA; PC2, bacteria-killing; PC3, TEAC; and 

PC4, Hp (Table 2A).  The HL-HA axis accounts for 32% of the total variation, the most of 
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any axis.  Analysis of leukocyte variables at the individual level resulted in 3 PCs with 

eigenvalues > 1 that cumulatively account for 79% of the total variation (Table 2B).  PC1, 

the eosinophil/heterophil axis, accounts for 32%; PC2, the monocyte axis, 25%; and 

PC3, the lymphocyte/basophil axis, 22%. 

Species-level analysis 

We identified 3 PCs with eigenvalues >1 among plasma immunological assays at the 

species level (Table 3A), but the loading patterns are less clear-cut and do not parallel 

the assay classes as with the individual level analysis.  PC1 correlates positively with 

trout lysis, S. aureus killing, and TEAC, but negatively with E. coli killing.  PC3 correlates 

positively with rabbit lysis (and to a lesser extant Hp); but negatively with S. aureus 

killing.  Hp loads strongest on PC3, but its variation is dispersed over all 3 PCs, and it 

does not meet the saliency criteria (Cliff & Hamburger 1967; Pennell 1968) for any single 

PC.  Notably, both rabbit and trout agglutination load exclusively on PC2.  In total, the 

three PCs account for 77% of the total variation.  Analysis of leukocyte variables at the 

level of species results in 3 PCs that cumulatively account for 84% of the total variation 

(Table 3B).  Accounting for 40% of the variation, PC1 correlates positively to eosinophil 

and heterophil concentrations and negatively to lymphocyte concentration.  PC2, the 

monocyte axis, and PC3, the basophil axis, account for 24% and 20% of the variation, 

respectively. 

3.3. Canonical Correlation Analysis 

The canonical correlations did not detect any significant relationships between the 

plasma and leukocyte immune measures at either the species or individual level.  The 

first canonical correlation at the level of individuals nested within species was 0.178, 

which did not differ significantly from zero (F=1.31, P=0.22) using Wilk’s Lambda test.  

The first canonical correlation at the level of species is also not significantly different 

from zero regardless of whether an unweighted model (1.095; F=0.67, P=0.72) or a 
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model weighted for the number of individuals per species (1.286; F=0.87, P=0.59) is 

used.  However, at the level of individuals nested within species, we detected a positive 

correlation between monocyte concentration (leukocyte PC2) and TEAC (plasma PC3) 

(r=0.25, P=0.05, see Figure 1A).  At the level of species, no bivariate correlations are 

significant; the first PCs of the leukocyte (+heterophil/+eosinophil/-lymphocyte) and 

plasma (+trout lysis/+TEAC/+S. aureus /-E. coli) analyses are positively, but not 

significantly, correlated (r=0.57, P=0.09, see Figure 1B). 

4. Discussion 

4.1. Differences Among Species 

The immune system defends against pathogens and is essential for life; mounting an 

immune response, however, can divert host resources from other important activities like 

reproduction.  Each component of the immune system has its own inherent costs and 

protective value, and the final mix of components is likely to be related to an animal’s life 

history. In this study, 13 indices of immunity were selected to probe a wide variety of 

protective functions that have a range of costs of use. Heterophils and monocytes 

mediate innate immunity—the primary defense against novel pathogens.  Lymphocytes 

mediate the adaptive-antibody and the cell-mediated responses, which are pathogen 

specific but have little value in the early defense against novel pathogens.  Agglutination 

titers of exogenous RBCs are indicative of levels of natural antibodies, which facilitate 

initial pathogen recognition and initiate adaptive immune responses, while lysis titers are 

indicative of the level of complement and other circulating lytic enzymes.  Bacterial killing 

activity of plasma results from the integrated activities of antibodies and accessory 

proteins like complement.  Haptoglobin and antioxidants (TEAC) offer protection against 

harmful end products of the immune response, namely heme from damaged host cells 

and free radicals from phagocytes. 
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Comparisons of species means revealed a significant effect of species in nine of 

the 13 variables.  In general, plasma measures had lower coefficients of variation (CV) 

than leukocyte measures. Correspondingly, all eight plasma variables, but only one 

leukocyte type, varied significantly among species.  Across species, the four HL-HA 

variables had consistently low intra-specific CV, which averaged 16%, the lowest of any 

assay class.  The mean intra-specific CV for the bacteria killing was 53%, but this 

differed greatly between bacterial strains (E. coli, 91%; S. aureus, 14%).  Intra-specific 

CV of Hp and TEAC averaged 36% and 34%, respectively.  Lymphocyte concentration, 

the only WBC type to vary significantly among species, had the lowest mean intra-

specific CV (32%) of the five types (the other four types averaged 120%).  We 

hypothesize that the measures of immune function with the lowest CV (all HL-HA 

variables and S. aureus killing) are under strong genotypic influence reflecting strong 

stabilizing selection.  In contrast, high intra-specific CVs are indicative of more important 

phenotypic effects, broad reaction norms, and temporal variability in individual condition 

(e.g. current health status). 

4.2. Relationships Among Immune Variables  

When considering the species that rank highest or lowest for measures of plasma 

immunity, it becomes apparent that extreme (high or low) responses of species may be 

limited to a single assay class (high, CUTD; low, SGPT) or may comprise different assay 

classes (high, LATE; low, BBTD).  The principal components analyses help us 

understand these inter-variable relationships while concurrently partitioning variation at 

the individual/species level and reducing the number of variables for subsequent 

analyses.  Compared to the analysis at the individual level, which results in PCs that 

mirror the plasma-assay classes, the principal component analysis of plasma variables 

at the species level reveals a more complex picture.  Specifically, the highest loadings of 

variables within assay types are distributed across PCs, and, in some cases, PCs 
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cannot be easily described by a single assay type.  Comparisons made at higher 

taxonomic levels (e.g. family or order) will probably reveal different relationships among 

immune variables yet again. 

The more complex pattern of correlations among indices of immune function at 

the level of species may be a sign of overlap and redundancy in different functional 

components of the immune system, but further studies specifically designed to address 

this point are required.  It is likely that evolutionary pressures from pathogens have 

driven the immune systems of different species in many different directions and that 

similar levels of protection against pathogens can be accomplished by different 

combinations of protective systems, thereby providing a degree of unpredictability from 

the pathogen perspective. 

4.3. Competition or synergism between plasma and leukocyte immunity? 

While the canonical correlation analysis did not identify a significant relationship between 

the plasma and leukocyte data sets at either the individual or the species levels, the 

dominant correlations between the leukocyte and plasma PCs are positive (Fig. 1).   

Across individuals, we identified a positive trend between monocyte 

concentration (leukocyte PC2) and TEAC (plasma PC3; r=0.25, P=0.05).    Monocytes 

are phagocytic cells that produce free radicals and are associated with inflammation 

(Mates & Sanchez-Jimenez 1999).  Thus, it is not surprising that the concentrations of 

these two inducible factors should correlate at the level of individual.  Incongruously, 

concentrations of other nonlymphoid phagocytic cells (e.g. heterophils) do not correlate 

with TEAC. 

Across species, leukocyte PC1 (+heterophil/+eosinophil/-lymphocyte) correlates 

positively, but not significantly, with plasma PC1 (+trout lysis/+TEAC/+S. aureus /-E. coli; 

r=0.57, P=0.09).  The complex natures of both PC axes, however, obscure this 

relationship.  Of the nine bivariate correlations between the three leukocyte and three 
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plasma PCs, there are no significant negative correlations (all r<0.2), and, therefore, no 

evidence that these immune functions are competitive.  The positive correlation between 

first PCs of the leukocyte and plasma analyses is driven by the low and high values for 

leukocyte PC1; where leukocyte PC1 equals zero, a diverse group of species 

(representing three of the four genera), span an even greater range for plasma PC1. 

While these two apparent relationships between leukocyte PC1 and plasma PC1 further 

suggest uncoupling between these components of immune function, interestingly, no 

single species combines high leukocyte with low plasma abilities or vice versa. 

4.4. Conclusions 

When exploring a wide variety of protective functions, the complexity of immune systems 

becomes evident.  The magnitude, breadth, and consistency of responses across 

assays vary among species.  The relationships of different measures among individuals 

within species co-vary in a manner that reflects assay types, but these correlations break 

down at the level of species.   

Thus, two striking negative results of this study are the lack of correlation 

between variables arising from different assays, even at the individual level, and the lack 

of correlation among variables even of the same assay-type at the species level.  The 

former suggests that there are no strong constraints, synergisms, or trade-offs of the 

systems being measured by these assays; the latter indicates that not only is the 

immune system as a whole highly complex, but the sub-systems measured by these 

assays are also complex and not always subject to simple interpretation.  Furthermore, 

the absence of correlations between the plasma and leukocyte data at both the 

individual and species levels also implies a lack of constraints, synergisms, or trade-offs. 

These findings can help direct future studies.  Some studies may benefit from a 

broad quantification of immune function.  In these cases, one measure of each plasma 

assay type (e.g. trout lysis, E. coli killing, haptoglobin, TEAC) along with quantification of 
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WBC concentrations could be used to maximally characterize immune function in 

studies of a single species. This is not the case in studies among species, but here 

inclusion of plasma measures and leukocyte concentrations will add robustness.  In 

other cases, maximum characterization of immune function may not be possible or of 

interest.  For example, when studying energetic trade-offs a “costly” immune response 

may be more appropriate to measure than a “cheap” response.  Regardless of whether 

the result of uncontrollable logistical constraints or intentional experimental design, 

however, researchers measuring only one parameter of immune function should be 

careful not to overstate the broader immunological implications of their measurements.  

The lack of correspondence between individual-level and species-level variation, 

even among variables like HL-HA, which apparently have a large genotypic component, 

suggests that on an evolutionary time scale selection on these immune measures may 

not be straightforward directional selection on widespread variation already existing in 

populations, and that more complex interactions may be involved.  If this is the case, 

attempts to understand evolutionary variation in immune function may need to wait for 

better elucidation of how these immune variables respond to selection.  

While all measures of immune function in this study were made using samples 

collected during a single capture event, inclusion of experimentally induced immune 

responses would potentially add a new dimension to a similar study.  Though not 

possible in the current study, incorporation of a disease resistance facet (e.g. through 

artificial infection) could help begin to unravel the connections between a broad slate of 

immune parameters and immune system functionality across species.  Nonetheless, the 

current study highlights the complexity of immune systems and the uncoupled nature of 

many measures of immune function. 

Ecological immunology is still a young field, but the toolbox of the field-based 

comparative immunologist is bigger and more diverse than ever.  While the field is no 
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longer in its infancy, the need is real for more basic research that examines intra- and 

inter-specific variation and that incorporates more species and more variables.  More 

research on these fundamentals will promote efforts to delve deeper into questions of 

comparative immunology in general and evolution of immune function in specific. 
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  NABD (6) LATE (8) CHPT (8) SGPT (8) ALCG (7) NENE (8) 
  Variable  Mean  SD Mean  SD Mean  SD Mean  SD Mean  SD Mean  SD 
Plasma Trout: lysis (titers) 3.2 0.8 3.3 0.7 2.9 0.7 2.6 0.5 2.1 0.4 2.3 0.5 
Plasma Trout: agglut (titers) 4.3 1.0 5.4 0.9 4.2 0.5 3.9 0.4 5.2 0.6 4.5 1.2 
Plasma Rabbit: lysis (titers) 4.8 0.4 4.8 0.5 4.8 0.5 4.0 0.5 4.0 0.6 4.5 0.5 
Plasma Rabbit: agglut (titers) 7.7 1.0 10.0 0.8 7.8 1.3 6.1 0.5 8.2 0.8 7.1 1.2 
Plasma E. coli (% control) 51.7 88.4 18.5 12.0 47.9 44.3 48.7 57.2 49.8 35.6 130.8 125.1 
Plasma S. aureus (% control) 110.7 22.0 125.3 21.3 114.2 15.6 121.0 15.6 106.8 9.5 111.2 10.1 
Plasma Haptaglobin (mg/mL) 0.0813 0.0161 0.1770 0.0869 0.1127 0.0356 0.1128 0.0388 0.1271 0.0650 0.0992 0.0493 
Plasma TEAC (mmol/L Trolox equiv.) 0.5899 0.2670 0.6796 0.2185 0.3419 0.1485 0.5317 0.0721 0.4342 0.1704 0.5354 0.0975 
Leukocyte Lymphocyte (#/µL) 6595 1901 7154 2476 3310 1163 3122 701 6826 1192 10391 6157 
Leukocyte Heterophil (#/µL) 4139 6051 2467 1189 2943 2407 3927 2055 1195 398 1644 728 
Leukocyte Monocyte (#/µL) 389 188 307 342 86 77 88 145 228 137 144 169 
Leukocyte Eosinophil (#/µL) 111 271 69 128 97 171 0 0 23 60 21 60 
Leukocyte Basophil (#/µL) 0 0 116 230 16 45 0 0 0 0 0 0 
                            
  MUSC (5) WWWD (8) BBTD (2) CUTD (1)  Effect of Species (df=9) 
  Variable  Mean  SD Mean  SD Mean  SD Mean  SD   F P R2 
Plasma Trout: lysis (titers) 2.4 0.5 2.8 0.8 2.5 0.7 3.0 .  2.69 0.012 0.322 
Plasma Trout: agglut (titers) 4.9 0.2 5.9 1.3 4.5 0.7 8.0 .  5.64 <0.0001 0.499 
Plasma Rabbit: lysis (titers) 4.0 0.7 3.8 0.9 3.5 0.7 5.0 .  3.41 0.0024 0.376 
Plasma Rabbit: agglut (titers) 9.3 0.8 8.3 1.2 9.0 1.4 11.0 .  9.78 <0.0001 0.633 
Plasma E. coli (% control) 12.4 8.2 131.0 123.8 190.3 80.5 26.0 .  2.58 0.016 0.313 
Plasma S. aureus (% control) 130.1 25.8 123.2 9.4 168.3 34.7 112.4 .  3.13 0.0045 0.356 
Plasma Haptaglobin (mg/mL) 0.1126 0.0464 0.0849 0.0214 0.0973 0.0610 0.0826 .  2.13 0.044 0.273 
Plasma TEAC (mmol/L Trolox equiv.) 0.6717 0.5755 0.3104 0.0771 0.2962 0.0402 0.3897 .  2.46 0.021 0.303 
Leukocyte Lymphocyte (#/µL) 4158 1019 4661 2089 3102 653 2336 .  5.19 <0.0001 0.478 
Leukocyte Heterophil (#/µL) 5756 4215 2526 973 2112 933 704 .  1.64 0.13 0.224 
Leukocyte Monocyte (#/µL) 195 229 133 185 286 31 160 .  1.72 0.11 0.233 
Leukocyte Eosinophil (#/µL) 276 319 92 107 0 0 0 .  1.48 0.18 0.207 
Leukocyte Basophil (#/µL) 36 80 114 123 0 0 0 .   1.58 0.15 0.218 
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Table 1: Species samples sizes, means, standard deviations, and the results of a GLM testing for an effect of species on the 13 variables.  

Species are abbreviated as follows: NABD, North American black duck, Anas rubripes;  LATE, Laysan teal, Anas laysanensis;  CHPT, Chilean 

pintail Anas georgica spinicauda;  SGPT, South Georgia pintail, Anas georgica georgica;  ALCG, Aleutian Canada goose, Branta canadensis 

leucopareia;  NENE, Nene or Hawaiian goose, Branta sandvicensis;   MUSC, Muscovy duck, Cairina moschata;  WWWD,  White-winged wood 

duck, Cairina scutulata;  BBTD, Black-bellied tree duck, Dendrocygna autumnalis;  CUTD, Cuban tree duck, Dendrocygna arborea. 
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A)      
              
PLASMA Assay Variable PC1 PC2 PC3 PC4
 HL-HA  Trout: lysis 0.89 -0.09 0.03 -0.13
  Trout: agglut 0.77 -0.17 0.15 -0.24
  Rabbit: lysis 0.64 -0.19 -0.10 0.37
  Rabbit: agglut 0.76 0.19 -0.08 0.18
 Bacteria killing S. aureus 0.29 0.60 0.53 0.02
  E. coli -0.25 0.87 -0.15 -0.01
 Acute phase protein Haptoglobin -0.08 -0.08 0.90 0.03
 Antioxidant TEAC -0.02 0.01 0.05 0.93
       
    % variance 32.1 16.0 14.0 12.9
       
B)       
              
LEUKOCYTE   Cell type PC1 PC2 PC3   
  Eosinophil 0.89 -0.15 0.07  
  Heterophil 0.77 0.50 -0.10  
  Monocyte 0.01 0.90 0.05  
  Lymphocyte -0.23 0.28 0.78  
  Basophil 0.33 -0.30 0.70  
      
    % variance 31.6 24.6 22.3   

 
Table 2: Individual level principal components retained according to the Kaiser criterion for plasma (A) 

and leukocyte (B) data sets.  Underlined factor loadings meet the saliency criterion.   Bold-faced factor 

loadings are the highest loading for each variable across PCs. 



Matson, Kevin, 2006, UMSL, p. 
 

 

77

A)      
            
PLASMA Assay Variable PC1 PC2 PC3
 HL-HA  Trout: lysis 0.60 0.42 0.13
  Trout: agglut -0.19 0.95 -0.11
  Rabbit: lysis 0.23 0.06 0.88
  Rabbit: agglut 0.32 0.87 0.22
 Bacteria killing E. coli -0.81 -0.06 -0.17
  S. aureus 0.62 0.36 -0.61
 Acute phase protein Haptoglobin 0.45 0.26 0.50
 Antioxidant TEAC 0.88 -0.18 0.15
      
    % variance 38.8 22.2 16.4
      
B)      
            
LEUKOCYTE   Cell type PC1 PC2 PC3
  Eosinophil 0.85 0.22 0.00
  Heterophil 0.89 -0.13 -0.13
  Monocyte 0.10 0.91 0.11
  Lymphocyte -0.62 0.59 -0.20
  Basophil -0.05 0.05 0.98
      
    % variance 39.7 23.9 20.4

 
Table 3: Species level principal components retained according to the Kaiser criterion for plasma (A) and 

leukocyte (B) data sets.  Underlined factor loadings meet the saliency criterion.   Bold-faced factor 

loadings are the highest loading for each variable across PCs. 
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Figure 1: Dominant correlations between plasma and leukocyte PCs at the individual (A) and species (B) level.
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Chapter 4 

Immune function in continental and insular birds: is there an “island syndrome”? 

Submitted: K. D. Matson 

Proceedings of the Royal Society of London - Series B: Biological Sciences. 
 
 

Summary: If immune defenses were costly, populations from relatively disease-free, 

oceanic islands would exhibit attenuated immune function in response to reduced 

pathogen and parasite pressure.  Many insular animals exhibit a postulated “island 

syndrome,” which includes increased susceptibility to disease.  In some cases, insular 

populations have declined when they failed to resist infection by introduced pathogens.  I 

measured several indices of immune function in 15 phylogenetically matched pairs of 

bird populations from North America and from the islands of Hawaii, Bermuda, and the 

Galápagos.  The insular populations included endemics, natives, and recent 

introductions.  I employed three protocols to measure eight indices of immune function: 

hemolysis, hemagglutination, concentration of haptoglobin, and concentration of five 

leukocyte types.  Immune responses were not attenuated in insular birds, and several 

indices, including the concentration of plasma haptoglobin, were elevated.  Thus, I find 

no support for the hypothesis that depauperate parasite communities and the inherent 

costs of immune defenses select for reduced immune function.  Instead, I suggest that 

life on islands leads to an apparent reorganization of immune function, which is defined 

by increases in defenses that are innate and inducible. 
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1. Introduction 

Biologists widely believe that insular avifaunas are particularly vulnerable to introduced 

diseases, and numerous examples of increased susceptibility to specific diseases exist 

in both wild and captive populations of insular animals (Jarvi et al. 2001; Van Riper III & 

Scott 2001; Wikelski et al. 2004).  In the Hawaiian Islands, for example, populations of 

many native bird species have declined, in some cases to extinction, owing to 

introductions of two pathogens (avian pox virus, Avipoxvirus spp., and the malaria 

parasite Plasmodium relictum) and a vector (southern house mosquito, Culex 

quinquefasciatus) (Jarvi et al. 2001; Van Riper III & Scott 2001).   Recent reports from 

the Galápagos Archipelago documenting the establishment of C. quinquefasciatus 

(Whiteman et al. 2005) and characterizing avian pox there (Thiel et al. 2005), raise 

concerns that the Galápagos avifauna could meet a similar fate (Wikelski et al. 2004).  

The immunological and evolutionary foundations of reduced resistance and 

increased susceptibility in insular populations are poorly understood and have only 

recently begun to be investigated (e.g. (Jarvi et al. 2001)).  Ostensibly, these changes 

represent one aspect of an “island syndrome” of reduced interspecific (in this case, host-

parasite) interactions in the simplified ecological communities of islands (Blumstein & 

Daniel 2005; Hochberg & Moller 2001).  Attenuated parasite and pathogen pressure on 

islands might weaken selective pressures that maintain immune system function 

(Frankham 1997; Jarvi et al. 2001; Van Riper III & Scott 2001), leading to diminished 

immune function as an evolutionary response to the energetic (Martin et al. 2002), 

autoimmunological (Råberg et al. 1998), and survival (Hanssen et al. 2005) costs of 

immune system development, maintenance, and use.  Even without these fitness costs, 

reduced benefits of immunologically-relevant genetic diversity might result in the loss of 

this genetic diversity through mutation or drift in small insular populations (Frankham 

1997). 
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Some studies suggest that parasite communities on small, isolated islands are 

depauperate (Wikelski et al. 2004), although the extent of this phenomenon is unclear.  

Positive taxa-area relationships have been found in microbial communities (Bell et al. 

2005; Horner-Devine et al. 2004), and avian blood parasites are reduced on, or even 

absent from, some islands (Steadman et al. 1990; Super & van Riper III 1995).  In any 

case, on distant islands small populations of potential hosts could suffer immunological 

consequences of founder effects and inbreeding depression independently of disease 

threats and immune system costs (Frankham 1997). 

The immune system has many components, each with its own inherent costs and 

protective value. The mix of components likely reflects an array of factors including the 

nature of the disease threat (e.g. epidemic interval, (Harding et al. 2005)).  For instance, 

frequent and repeated exposure to several common antigens might favor highly specific 

immunological strategies that maximize pathogen control and minimize collateral 

damage (Segel & Bar-Or 1999).  Conversely, infrequent exposure to a broader range of 

rarer antigens might favor responses that maximize the speed of the initial response.  

Thus, the equilibrium between costs and benefits of immune responses should produce 

varied immunological strategies both within and among species.  Indeed, numerous 

indices of immune function have been shown to vary among individuals of the same 

species (e.g., with stress: (Råberg et al. 1998)) and among species (Matson et al. In 

press; Matson et al. 2005; Mendes et al. In press; Tieleman et al. 2005).  Moreover, in 

waterfowl, a multivariate analysis of immune function revealed that the measured indices 

vary independently and inconsistently among species (Matson et al. In press).  Such 

variation likely reflects some level of environmental optimization via phenotypic plasticity 

(Ricklefs & Wikelski 2002), but the common garden design in Matson et al. (In press) 

suggests evolutionary differences due to genotype-environment interactions are 

seemingly important as well.  To date, few comparative studies have investigated 
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environmental effects on immune responses in free-living vertebrates (cf. (Mendes et al. 

In press)).  Such studies would provide insights into the cost-benefit balance of immune 

function if individual responses varied consistently in relation to disease threat. 

In this study, comparisons were made between 15 phylogenetically matched 

pairs contrasting birds in North America with close relatives in Hawaii, Bermuda, and the 

Galápagos Islands.  The insular taxa included endemics, natives, and recent 

introductions.  Blood plasma was used in two assays to measure agglutination and lysis 

of rabbit red blood cells and baseline concentrations of the acute phase protein 

haptoglobin (Hp).  Blood smears were used to estimate concentrations of five types of 

leukocytes.  These indices were selected to probe a variety of protective functions that 

have a range of costs of use.  Agglutination titers are indicative of levels of natural 

antibodies (NAbs), which facilitate initial pathogen recognition and initiate acquired 

immune responses.  Lysis titers are indicative of complement and other circulating lytic 

enzymes.  Hp offers protection against harmful end products of the immune response, 

namely heme from damaged host cells and free radicals from phagocytes.  Among 

leukocytes, lymphocytes mediate the acquired antibody and the cell-mediated 

responses, which are pathogen-specific but of little value in early defense against novel 

pathogens; the other cell types mediate innate immunity, the primary defense against 

novel pathogens. 

I sought to use these indices to examine how life on distant, oceanic islands has 

molded the evolution of immune defenses.  Assuming that immune defenses incur costs, 

birds with evolutionary histories on oceanic islands would exhibit reduced immune 

function if the relative threats of disease-causing microorganisms were reduced.  

Accordingly, compared to continental populations, insular populations would exhibit 

reduced hemolysis and hemagglutination titers, lower plasma concentrations of Hp, and 

depressed circulating concentrations of leukocytes.  However, because the relationships 
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among different measures of immune function are complex and poorly understood 

(Matson et. al. in press PRSLB), measurable reductions might be limited to indices of 

functions that are costly or under strong genetic influence, and hence, those that are 

most responsive to selection or other evolutionary forces, such as mutation and drift. 

2. Materials and Methods 

2.1. Subjects and Samples 

I collected small blood samples from 516 individual birds representing 25 species in 17 

genera (Appendix, Table 1).  In some cases, samples from multiple populations (e.g. on 

different islands or from different seasons) were collected within species (Appendix, 

Table 1). 

After using a needle to puncture the brachial vein, blood was drawn into 

heparinized microcapillary tubes.  At collection, I used several drops of blood to make 

smears for leukocyte enumeration.  The remaining blood was centrifuged and the 

plasma collected.  After centrifugation, plasma samples were frozen at -20ºC or below 

until analysis.  All work was approved by the animal care committee at the University of 

Missouri-Saint Louis (#W01-12). 

2.2. Immune Assays 

Innate humoral immunity was assessed by using a hemolysis-hemagglutination (HL-HA) 

assay to characterize NAb-mediated agglutination and lysis of exogenous red blood cells 

(RBCs) as described by Matson et al. (2005).  Both lysis and agglutination are recorded 

as the negative log2 of the last plasma dilution exhibiting each function (i.e., a dilution of 

1:8 is scored as 3).  Hp, an acute phase protein found in a wide range of taxa including 

birds (Delers et al. 1988), was quantified (mg/mL) by following the “manual method” 

instructions provided with a commercially available assay kit (#TP801; Tri-Delta 

Diagnostics, Inc.; Morris Plains, NJ).  A single blood smear from each individual was 

evaluated blindly to species by a single veterinary diagnostic laboratory technician (AVL 
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Veterinary Clinical Laboratory; St Louis, MO). From differential counts (percentage of 

heterophils, lymphocytes, monocytes, eosinophils, and basophils) and estimations of 

overall leukocyte concentration (Feldman et al. 2000), concentrations of each leukocyte 

type were estimated.  In addition to the original methodological publications, all assays 

used in the present study have been summarized previously (Matson et al. In press) and 

extended methodologies are appended. 

2.3. Statistical Analyses  

I summarized the raw data for each immune variable by calculating means and standard 

deviations for each population and used both univariate parametric (general linear 

model, GLM) and non-parametric (Kruskal-Wallis, KW) tests (SPSS v13.0) to investigate 

the effects of population (samples collected from a species in a specific place and at a 

specific time) within each genus.  All GLMs identifying a significant effect of population 

were followed with Tukey's post hoc tests to identify homogenous subsets (SPSS v13.0). 

Separately within each genus, I calculated means of insular and continental 

populations.  This process resulted in single insular and continental units, eliminated 

pseudo-replication, and provided a conservative estimation of island-continent 

differences.  Simple means and means weighted by the square root of the sample size 

(i.e. the number of individuals sampled per population) were generated.  These means 

were used to test by pair-wise comparisons (paired samples T-test and Wilcoxon signed 

ranks test) the effect of island-status on immune function.  Coefficients of variation (CVs) 

were used to summarize variation among populations and genera; all CVs were 

corrected for sample size  (Sokal & Rohlf 1995). 

3. Results 

3.1. Hemagglutination/Hemolysis 

I measured agglutination and lysis titers in all 516 individuals, which belonged to 59 

populations (mean = 8.7 indiv/pop, s.d. = 5.8) representing species, island-continent 
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status, location and time (month/breeding stage) of sample collection, and captivity 

status of the individuals (Appendix, Tables 1, 2A, and 2B).  Comparisons were made 

within and among genera.  No significant effects of season were detected in 

agglutination or lysis in the four genera that were sampled during different seasons 

(continental Cardinalis, Dumetella, Vireo, Zenaida).  Similarly, no effects of captivity 

were seen in the two genera for which samples were collected from both wild and 

captive individuals (continental Cardinalis and Dumetella).  Overall, univariate tests 

identified significant effects of population on agglutination in four genera (Anas, Buteo, 

Columba, and Sturnus, Appendix, Table 2A) and on lysis in seven genera (Anas, Branta, 

Dendroica, Passer, Sialia, Sturnus, and Vireo, Appendix, Table 2B).  With the exceptions 

of Sturnus agglutination and Vireo lysis, the results of the GLM and KW tests were 

similar.  These effects of population suggested the need to use weighted means when 

collapsing populations within each genus; however, in all cases weighted and 

unweighted means were highly correlated (all r > 0.95) and did not differ significantly (all 

p > 0.5).  Nonetheless, I use weighted means in further analyses.   

When all populations and all genera were included, pair-wise tests indicated no 

significant difference in agglutination (paired samples T-test, t = 1.4, df = 14, p = 0.2; 

Wilcoxon signed ranks test p = 0.1) or lysis (paired samples T-test, t = -0.4, df = 14, p = 

0.7; Wilcoxon signed ranks test p = 0.8) between insular and continental forms (Table 1).  

Limiting the assessment to comparisons between in situ native continental populations 

and in situ native or endemic insular populations did not change this result for 

agglutination (paired samples T-test, t = 0.6, df = 8, p = 0.6; Wilcoxon signed ranks test p 

= 0.5) or lysis (paired samples T-test, t = 0.0, df = 8, p = 1; Wilcoxon signed ranks test p 

= 0.9). 

3.2. Haptoglobin 
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I measured Hp concentration in 209 individuals, which were divided, in a similar manner 

as above, into 33 populations (mean = 6.3 indiv/pop, s.d. = 4.8; Appendix, Tables 1 and 

3).  Within genera among continental populations, effects of captivity and season were 

examined.  No effects of captivity were seen in Cardinalis, but captive Dumetella had 

higher plasma Hp concentrations than free-living ones (p < 0.05).  In Zenaida, no effects 

of season were observed.  Overall, univariate tests identified significant effects of 

population on Hp concentration in four genera (Anas, Columbina, Dendroica, and 

Dumetella; Appendix, Table 3).  With Anas and Columbina, the results of the GLM and 

KW tests were similar; with Dendroica and Dumetella only the GLM identified significant 

effects (both p < 0.04).   

As with the agglutination and lysis variables, I conducted pair-wise analyses 

using the weighted means.  When all populations and all genera were included, pair-

wise tests revealed significantly higher plasma Hp concentrations in insular forms 

(paired samples T-test, t = 5.7, df = 8, p < 0.0005; Wilcoxon signed ranks test p = 0.007, 

Table 1).  Limiting this analysis to comparisons between in situ native continental 

populations and in situ native or endemic insular populations did not change this result 

(paired samples T-test, t = 7.2, df = 4, p = 0.002; Wilcoxon signed ranks test p = 0.04). 

3.3. Leukocyte Concentrations 

Concentrations of five leukocyte types were estimated from 107 blood smears from 

individuals in three genera, which were subdivided into 14 populations (mean = 7.6 

indiv/pop, s.d. = 6.5, Appendix, Tables 1 and 4).  About 40% of the smears (n = 44) were 

reported to have some smudged cells.  Smudged cells can affect the estimation of 

leukocyte concentrations; however, because the presence of smudge cells did not 

significantly affect overall leukocyte concentration (Cardinalis , F(1, 35) = 0.7, p = 0.42; 

Dumetella, F(1, 33) = 2.2, p = 0.15; Zenaida, F(1, 14) = 1.8, p = 0.21) or create a 

significant interaction between smudge status and population (Cardinalis , F(4, 35) = 0.2, 
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p = 0.96; Dumetella, F(2, 33) = 2.4, p = 0.11; Zenaida, F(2, 14) = 0.9, p = 0.42), data 

from all smears were included in the analysis. 

No significant effects of population were detected for any of the five types of 

leukocytes in Zenaida doves. In Cardinalis, a significant effect of population was found in 

heterophil concentration using both GLM and KW (both p < 0.02). A Tukey’s post-hoc 

test revealed that this effect was driven by island-continent status rather than captivity 

status or seasonal differences.  Among Dumetella populations, significant effects of 

population appeared in concentrations of heterophils, lymphocytes, and monocytes, with 

GLM and KW tests agreeing in the cases of lymphocytes and monocytes (all p < 0.04).  

With heterophils and monocytes, the highest concentrations were in the Bermuda and 

captive St. Louis populations; with lymphocytes, the highest concentration was in the 

wild, autumn St. Louis population. 

As in the case of the other measures, weighted and unweighted means of 

cellular concentrations were similar for insular and continental populations within each 

genus, but significant effects of population necessitated the use of weighted means 

when pooling samples for the overall island-continent comparisons, which revealed no 

significant pattern in any of the five leukocyte types (Table 2).   Despite the lack of 

significance, consistently across all three genera of birds surveyed for leukocytes, 

insular populations had higher circulating concentrations of heterophils (by an average of 

50%) and eosinophils (by an average of 114%) than continental populations.  On 

average, monocyte and basophil concentrations were also higher in insular populations, 

but elevatations were only observed in Cardinalis and Dumetella.  Overall lymphocyte 

concentration averaged 5% lower in insular populations, with only Cardinalis exhibiting a 

higher concentration. 

4. Discussion 
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The hypothesis that immune function might be attenuated in insular faunas is rooted in 

the ideas that islands have impoverished parasite communities and that immune 

functions incur physiological costs.  The results of this study do not point to any overall 

attenuation in immune responses associated with island life.  Instead, the results identify 

significantly higher concentrations of plasma Hp and suggest elevations in two leukocyte 

types in insular birds.  In some cases, the absence of consistent differences between 

islands and continents reveal more about the indices themselves than about broader 

patterns associated with island life.  Nonetheless, the observed patterns provide novel 

perspectives on, and raise new questions about, the evolutionary lability of immune 

function. 

4.1. Evidence of Reduced Genetic Variability? 

NAbs react with various affinities to a wide variety of epitopes on bacteria, viruses, and 

toxins (Ochsenbein & Zinkernagel 2000).  Evolutionarily, NAbs are encoded directly by 

the germ line genome (Ochsenbein & Zinkernagel 2000) and respond to selection 

(Parmentier et al. 2004).  Developmentally, the presence of NAbs does not require 

previous antigenic exposure and they have been described in naïve (antigen- and germ-

free) animals.  An important role of these molecules is early resistance against infection 

(Ochsenbein & Zinkernagel 2000).  (In contrast, acquired antibodies are highly specific, 

require antigenic stimulation, and depend on somatic gene rearrangement.)    

Hemagglutination and hemolysis revealed no overall differences between insular and 

continental birds.  The absence of a reduction in these indices in insular birds suggests 

that the broad benefits of NAbs and lytic enzymes, regardless of parasite environment, 

outweigh the costs of maintenance.  This absence could also suggest no overarching 

differences exist between the parasite communities of islands and continents.  

Hemagglutination and hemolysis titers appear to be relatively stable within 

species, regardless of short-term health status (Matson et al. 2005).  The titers, 
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however, are far from invariant—differing significantly among bird species (Matson et al. 

In press; Matson et al. 2005) and in some cases significantly (e.g. up to 2.4 log2 units in 

Columba, see Appendix, Table 2A) within individual island-continent pairs.  Compared to 

continental titers, insular agglutination titers were higher in some comparisons and lower 

in others.  The lack of a consistent result suggests that within-pair differences result from 

population-specific genetic differences (e.g., lack of diversity from founder effects, 

inbreeding, or drift in insular populations; (Frankham 1997)) rather than weakened 

natural selection, physiological costs of immune function, or simplified insular pathogen 

communities.  Hemagglutination titers have been shown to differ significantly, but not 

predictably, among populations of a naturally inbred species of bird exhibiting different 

levels of heterozygosity (Whiteman et al. In press).  Additionally, on average, more-

inbred populations show less within-population variability in agglutination than less-

inbred populations (Whiteman et al. In press).  Similarly, on average and compared to 

continental populations, insular populations show lower within-population CVs for both 

agglutination (island = 34%; continent = 43%) and lysis (island = 68%; continent = 86%). 

4.2. A shift in the balance of immune function? 

Interactions between the innate and acquired branches of the immune system can affect 

the evolution of immune function.  Models of the evolution of interacting immune 

responses suggest acquired immunity (i.e. specific antibodies to a disease) can reduce 

selection pressure on the evolution of innate resistance traits (Harding et al. 2005).  

Consequently, where the loss of genetic variability impairs one or more components of 

immunity, a shift in the functional balance could result in greater reliance on other 

components. 

In the case of Hp, the island-continent analysis showed significantly higher levels 

in insular populations.  Hp works to complex and remove heme, thereby preventing the 

heme from serving as a nutrient for pathogens and from initiating deleterious oxidation 
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reactions (Dobryszycka 1997).  Hp normally circulates at low levels, but concentrations 

increase during inflammatory responses, which result from infection or trauma.  

Increased Hp means that insular populations have 1) higher baseline levels, 2) higher 

response levels, or 3) larger proportions of individuals responding to challenges at any 

one time.  Although all three options suggest a more intense or more prominent acute 

phase response (APR) in insular populations, with non-repeated measurements the 

cause cannot be distinguished definitively.  However, because the first and third causes 

both result in decreased variation, the slightly higher mean within-population CV of Hp in 

islands (island = 49%; continent = 45%) suggests that higher response levels are, at 

least in part, the cause. 

Given the energetic costs of APRs (e.g. anorexia and hyperthermia, but also 

increased resting metabolic rates, cf. (Martin et al. 2002)) and the direct relationship 

between energetic and fitness costs (Deerenberg & Overkamp 1999), an intensification 

would be unusual, but elevated Hp could signify an impairment of other components and 

an associated shift in immune defense strategy.  Indeed, Hp appears to have a 

modulatory role in the T-helper-1 (generally cell-mediated immunity) and T-helper-2 

(generally humoral immunity) balance (Arredouani et al. 2003).  With this hypothesized 

shift, tradeoffs between increases in one component and decreases in another are 

expected; however, island-continent differences in Hp and differences in agglutination or 

lysis were not correlated (both p > 0.3).  Comparing additional measures, such as 

cytotoxic lymphocyte responses and antibody or MHC diversity, between insular and 

continental populations might reveal such tradeoffs. 

The island-continent analysis also revealed that concentrations of heterophils 

and eosinophils were consistently elevated in insular birds.  Both leukocyte types are 

involved in innate immunity.  Heterophils are phagocytes that are important in early 

control of bacterial infection; eosinophils, though poorly undertood, are thought to be 
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involved with both parasitic infection and allergic reaction.  Conversely, concentrations of 

lymphocytes—leukocytes mainly involved with acquired humoral immunity— were 

elevated on islands in only one of the three genera (Cardinalis) and were reduced on 

average in insular populations.  While no significant island-continent patterns were 

identified, a statistically more powerful design incorporating additional comparisons 

should be pursued. 

As with Hp, the causes of leukocyte elevation are unknown, but these increases 

similarly suggest a shift in immune defense strategy, seemingly favoring innate as 

opposed to acquired responses.  Innate responses might dominate if systems of 

acquired humoral immunity and immunological memory are less important (e.g. due to 

epidemiological properties of islands) or dysfunctional.  Insular populations might be 

compensating for some aspects of reduced genetic diversity or immune system quality 

through the upregulation of these innate non-lymphoid cells.  Alternatively, elevated non-

lymphoid cell (and Hp) concentrations raise the possibility that islands have intensified, 

rather than reduced, disease risks. 

4.3. Islands: different from continents? 

With evidence of an apparent shift in the mix of immune function towards components 

that are innate and inducible, this study of phylogenetically matched pairs of bird 

populations from North America and from oceanic islands documents systematic 

differences in immune function.  The significantly higher concentrations of plasma Hp 

and the elevated levels of heterophils and eosinophils in insular populations, however, 

provide no obvious support for the notion that islands have impoverished parasite 

communities, an idea that is fundamental to the hypothesis of immune function 

attenuation.  The precise causes of the observed immunological shift are unknown and 

require further investigation.  Moreover, a number of other wide-ranging questions 

remain unanswered as well.  For example, do generalizable differences in disease 
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susceptibility between continental and insular faunas exist and can these differences be 

measured?  Or is each insular population uniquely defended against disease threats as 

a result of genetic and stochastic processes related to small population sizes and limited 

geographic ranges? 

The extent to which insular taxa, as a whole, exhibit increased disease 

susceptibility compared to continental taxa is uncertain.  Sustaining longer lasting and 

more lethal infections, various native Hawaiian birds are particularly susceptible to 

malaria (Jarvi et al. 2001; Van Riper III & Scott 2001).  However, at least one Hawaiian 

native species—the thrush (Myadestes obscurus)—is able to produce antibodies against 

and survive Plasmodium infection (Atkinson et al. 2001).  Conversely, continental taxa 

can also suffer the effects of introduced or newly emergent diseases.  For example, 

following the 1999 arrival of West Nile Virus to North America, some corvid and owl 

populations declined as the result of their high susceptibility, the causes of which are 

poorly understood (Gancz et al. 2004).  Of 30 emergent infectious diseases affecting 

wildlife, all but one (avian malaria in Hawaii) primarily affect continental areas, and the 

three diseases found in continental birds are associated with high mortality (Daszak et 

al. 2000). 

4.4. Future Directions 

Methodologically, the protocols used in this analysis have clear advantages over other 

commonly employed immune indices.  In particular, nonspecific cellular response to 

phytohemagglutinin (e.g. (Martin et al. 2002)) or specific antibody response to 

vaccination (e.g. (Hasselquist et al. 1999)) require repeated capture or holding of birds 

over periods ranging from one to 30+ days, raising the possibility of confounding effects 

from stress responses and other physiological consequences of captivity.  The 

measurements used here require only a single blood sample collected upon capture.  

While this approach is ideal for comparative immunological studies where large sample 
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sizes are needed, measurements made before and after immunological challenges are 

required to completely characterize immune systems and, accordingly, to identify any 

changes in immune functions associated with island life, particularly if these changes 

involve the innate/acquired balance. 

The specificity of acquired humoral responses to vaccination complicates broad 

characterization of island-continent differences.  Circumventing this specificity by instead 

characterizing the acute phase response through measurement of changes in acute 

phase protein concentrations, basal metabolic rates (BMR), and behavior represents 

one alternative.  Macromolecular or particulate antigens with abundant epitopes (e.g. 

whole killed bacteria) can trigger acute phase responses, which are energetically costly 

(Martin et al. 2002), ensuring significant impacts on fitness.  Measuring the in vitro ability 

of blood to kill a range of microorganisms is another alternative, given this index’s broad 

relevancy to innate immunity, simple interpretation, and known associations with 

metabolism (Tieleman et al. 2005).   

In addition to comparative immunology, a broad understanding of parasite-driven 

evolution of immune function will also require investigations in population genetics and 

immunogenetics.  A better characterization of communities of disease-causing 

organisms, including the diversity and abundance of unicellular and multicellular 

pathogens and parasites, among different environments is also essential. 
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 Agglutination  Lysis  [Haptoglobin] 
 (titers)  (titers)  (mg/mL) 
Genus Isl Cont   Isl Cont   Isl Cont 
Anas 8.1 7.7  4.4 4.8  0.23 0.15 
Branta3 7.5 7.4  4.2 4.9  . . 
Buteo2 8.7 7.6  0.3 0.1  . . 
Cardinalis 6.4 6.5  0.8 0.3  0.23 0.19 
Carpodacus/Hemignathus3 3.4 3.3  0.0 0.0  0.12 0.07 
Columba 6.5 4.1  0.0 0.0  . . 
Columbina 4.9 4.1  0.0 0.0  0.13 0.04 
Dendroica2 4.3 3.7  0.0 0.6  0.17 0.11 
Dumetella1 4.6 4.4  3.3 3.1  0.45 0.42 
Mimus/Nesomimus2 5.0 4.7  1.6 1.0  . . 
Passer 6.4 5.7  0.7 0.0  0.09 0.08 
Sialia1 3.4 4.2  0.0 1.2  0.16 0.12 
Sturnus 3.9 5.1  0.4 3.1  . . 
Vireo2 5.7 5.8  2.5 0.6  . . 
Zenaida3 4.8 4.8   0.0 0.0   0.12 0.079 

Mean 5.6 5.3  1.2 1.3  0.19 0.14 
SD 1.7 1.5  1.6 1.8  0.11 0.11 

t 1.4  -0.4  5.7 
df 14  14  8 
p 0.2   0.7   <0.0005 

         
1 Native to islands; included in analysis limited to in situ island natives/endemics. 
2 Endemic to islands; included in analysis limited to in situ island natives/endemics. 

 
 
 

3 Some populations endemic to islands; included in analysis limited to in situ island 
natives/endemics the weighted means of only those populations: Agglutination, Branta = 7.3, 
Hemignathus = 4.8, Zenaida = 3.6; Lysis, Branta = 3.9; Haptoglobin, Hemignathus = 0.12, 
Zenaida = 0.12. 

 
 

Table 1: Paired t-tests of the effect of island-continent status on three indices of immune 

function: agglutination titer, lysis titer, and haptoglobin concentration.  Mean values for 

each location within each genus are weighted by the square root of the sampled 

population sizes. 
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 [Heterophil]  [Lymphocyte]  [Monocyte]  [Eosinophil]  [Basophil]  [Total Leukocyte] 
 (no.*103/uL)  (no.*103/uL)  (no.*103/uL)  (no.*103/uL)  (no.*103/uL)  (no.*103/uL) 
Genus Isl Cont   Isl Cont   Isl Cont   Isl Cont   Isl Cont   Isl Cont 
Cardinalis 3.10 0.95  4.70 3.64  0.55 0.27  0.037 0.027  0.005 0.000  8.39 4.92 
Dumetella 2.48 1.93  3.32 4.25  0.52 0.29  0.125 0.083  0.034 0.006  6.49 6.55 
Zenaida 2.63 2.59   4.16 4.97   0.27 0.30   0.073 0.000   0.000 0.000   7.12 7.85 

Mean 2.74 1.82  4.06 4.29  0.45 0.29  0.078 0.037  0.013 0.002  7.33 6.44 
SD 0.32 0.83  0.70 0.67  0.15 0.02  0.044 0.042  0.018 0.003  0.97 1.47 

t 1.4  -0.4  1.7  2.3  1.3  0.7 
df 2  2  2  2  2  2 
p 0.3   0.8   0.2   0.1   0.3   0.6 

 

Table 2: Paired t-tests of the effect of island-continent status on heterophil, lymphocyte, monocyte, eosinophil, basophil, and total 

leukocyte concentration.  Mean values for each location within each genus are weighted by the square root of the sampled 

population sizes. 
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Expanded Materials and Methods 

Hemagglutination/Hemolysis Analysis 

I assessed innate humoral immunity by using a hemolysis-hemagglutination (HL-HA) 

assay to characterize natural antibody (NAb)-mediated agglutination and lysis of 

exogenous red blood cells (RBCs) as described by Matson et al. (2005).  This HL-HA 

assay requires a 50-µL sample of blood plasma per individual, which is serially diluted 

along the long axis of a 96-well microtiter plate.  Diluted plasma samples are incubated 

with exogenous RBCs.  Assays were randomized and run blindly with respect to sample; 

digitized images produced by scanning plates at assay completion were randomized 

with respect to plate, plate location, and sample, and were scored blindly for both 

maximum lytic activity and agglutination.  Both lysis and agglutination are recorded as 

the negative log2 of the last plasma dilution exhibiting each function (i.e., a dilution of 1:8 

is scored as 3).  Lysis reflects the interaction of NAbs and lytic enzymes (e.g., 

complement); agglutination results only from NAb activity.  

To the protocol described by Matson et al. (2005), I made two minor 

modifications.  First, I used plates processed for improved hydrophilic qualities (Corning 

Costar #3798, instead of #3795).  Second, for all steps requiring phosphate buffered 

saline (PBS), I used Dulbecco’s PBS (#D8662; Sigma; St Louis, MO). Because this 

formulation includes MgCl2*6H2O and CaCl2*2H2O in addition to the basic ingredients, its 

use counteracts any effects of plasma serial dilution on endogenous divalent cation 

concentration.  The sources of the exongenous RBCs were farm-raised rabbits; whole 

blood was collected on heparin as a byproduct for purposes of biological research 

(#RBA050; HemoStat Laboratories; Dixon, CA). 

Haptoglobin Quantification 

Haptoglobin (Hp) is an acute phase protein found in a wide range of taxa including birds 

(Delers et al. 1988).  I followed the “manual method” instructions provided with a 
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commercially available assay kit (#TP801; Tri-Delta Diagnostics, Inc.; Morris Plains, NJ) 

to quantify the concentration (mg/mL) of Hp in all plasma samples.  This colorimetric 

assay is based on the binding properties of Hp and haemoglobin and the peroxidase 

activity of free haemoglobin.  I performed the assay at room temperature in 96-well 

microtiter plates using 7.5 µL of plasma.  Absorbance was recorded at 630 nm five 

minutes after reaction initiation using a microplate reader (VERSAmax; Molecular 

Devices; Sunnyvale, CA).  I serially diluted the calibrator (provided at a known 

concentration of 2.0 mg/mL) with diluent to generate a standard curve for use in 

calculating concentrations from absorbance values.  A positive control (pooled plasma 

samples from house sparrows, Passer domesticus) was run in duplicate in every plate, 

and Hp concentrations were standardized among plates based on the mean with-plate 

positive control value. 

Blood Smear Evaluation 

A single blood smear from each individual was evaluated by conducting differential 

counts and estimating the overall leukocyte concentration (Feldman et al. 2000).  

Differentials were determined by counting individual cell types until a cumulative total of 

100 leukocytes was reached.  Total leukocyte concentrations were estimated by 

averaging the number of leukocytes in ten microscope fields at high power and 

multiplying this mean value by 2000 to approximate the number per uL (Feldman et al. 

2000).  From these data, concentrations (#/µL) of heterophils, lymphocytes, monocytes, 

eosinophils, and basophils were estimated (Feldman et al. 2000).  All blood smears were 

evaluated blind to species by a single veterinary diagnostic laboratory technician (AVL 

Veterinary Clinical Laboratory; St Louis, MO). 



Matson, Kevin, 2006, UMSL, p. 

 

107

References 

Delers, F., Strecker, G. & Engler, R. 1988 Glycosylation of chicken haptoglobin: isolation 

and characterization of three molecular variants and studies of their distribution in 

hen plasma before and after turpentine-induced inflammation. Biochemistry & 

Cell Biology 66, 208-17. 

Feldman, B. F., Zinkl, J. G. & Jain, N. C. (ed.) 2000 Schalm's veterinary hematology. 

Philadelphia: Lippincott Williams & Wilkins. 

Matson, K. D., Ricklefs, R. E. & Klasing, K. C. 2005 A hemolysis-hemagglutination assay 

for characterizing constitutive innate humoral immunity in wild and domestic 

birds. Developmental & Comparative Immunology 29, 275-86. 



Matson, Kevin, 2006, UMSL, p. 

 

108

Appendix Tables 1 – 4 

Table 1 provides information relevant to the species origins and sample sources for the 

59 populations that were sampled for this study, and each population is assigned an 

ascension number.  Referenced by these ascension numbers, population sample sizes, 

means, standard deviations, standard errors, general linear model and Kruskal-Wallis 

statistics, Tukey’s homogeneous subsets, and insular and continental means and 

weighted means are included in Tables 2A (agglutination), 2B (lysis), 3 (haptoglobin), 

and 4 (leukocytes). 
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Appendix, Table 1 

  Origin   Sample Source    
Pop. 

# Genus Species  Isl/Cont Loc 
Native, Intro, 
Endem 

In/Ex 
situ Loc Captive/Wild 

Sample 
Mo 

Breeding 
Season 

01 Anas georgica1 Island South Georgia Island Endemic (subsp) Ex North Carolina Captive 9 Post-Breed 
02 Anas laysanensis Island Laysan Island Endemic (sp) Ex North Carolina Captive 9 Post-Breed 

03 Anas georgica1 Cont South America Native Ex North Carolina Captive 9 Post-Breed 
04 Anas rubripes Cont North America Native Ex North Carolina Captive 9 Post-Breed 
05 Branta sandvicensis Island Hawaii (Hawaii) Native In Hawaii Captive 6 Post-Breed 
06 Branta sandvicensis Island Hawaii Native Ex North Carolina Captive 9 Post-Breed 

07 Branta hutchinsii1  Island Aleutian Islands, Alaska Endemic (subsp) Ex North Carolina Captive 9 Post-Breed 
08 Branta canadensis  Cont Illinois Native In Illinois Wild 6 Post-Breed 
09 Buteo galapagoensis Island Galapagos (Espanola) Endemic (sp) In Espanola Wild 5-6-7-8 Breed 
10 Buteo galapagoensis Island Galapagos (Fernandina) Endemic (sp) In Fernandina Wild 5-6-7 Breed 
11 Buteo galapagoensis Island Galapagos (Isabela) Endemic (sp) In Isabela Wild 5-6-7-8 Breed 
12 Buteo galapagoensis Island Galapagos (Marchena) Endemic (sp) In Marchena Wild 5-6-7-8 Breed 
13 Buteo galapagoensis Island Galapagos (Pinta) Endemic (sp) In Pinta Wild 5-6-7 Breed 
14 Buteo galapagoensis Island Galapagos (Santiago) Endemic (sp) In Santiago Wild 5-6-7 Breed 
15 Buteo galapagoensis Island Galapagos (Santa Fe) Endemic (sp) In Santa Fe Wild 5-6-7-8 Breed 
16 Buteo solitarius Island Hawaii (Hawaii) Endemic (sp) In Hawaii Captive (Rehab) 6 Breed 
17 Buteo swainsoni Cont Idaho Native In Idaho Wild 7-8 Breed 

18 Cardinalis cardinalis Island Bermuda Introduced In Bermuda Wild 5-6 Breed 
19 Cardinalis cardinalis Island Hawaii (Hawaii) Introduced In Hawaii Wild 6 Breed 
20 Cardinalis cardinalis Island Hawaii (Oahu) Introduced In Oahu Wild 6 Breed 
21 Cardinalis cardinalis Cont Missouri Native  In Missouri Wild 2 Winter 
22 Cardinalis cardinalis Cont Missouri Native  In Missouri Wild 4-5 Breed 
23 Cardinalis cardinalis Cont Missouri Native  In Missouri Wild 8-9-10 Post-Breed 
24 Cardinalis cardinalis Cont Missouri Native  In Missouri Captive (Rehab) 8-9-10 Post-Breed 

25 Columba livia Island Bermuda Introduced In Bermuda Wild 5-6 Breed 
26 Columba livia Island Galapagos (Isabela) Introduced In Isabela Wild 7 Breed 
27 Columba livia Cont Missouri Introduced In Missouri Captive (Rehab) 9 Post-Breed 

28 Columbina passerina  Island Bermuda Non-Native In Bermuda Wild 5-6 Breed 
29 Columbina Talpacoti  Cont Panama Native In Panama Wild 3-4 Breed 
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30 Dendroica  petechia1 Island Galapagos (Isabela) Endemic (subsp) In Isabela Wild 7 Post-Breed 

31 Dendroica  petechia1 Island Galapagos (Santa Cruz) Endemic (subsp) In Santa Cruz Wild 7 Post-Breed 
32 Dendroica  petechia  Cont Michigan Native In Michigan Wild 7 Breed 

33 Dumetella  carolinensis  Island Bermuda Native In Bermuda Wild 5-6 Breed 
34 Dumetella  carolinensis  Cont Missouri Native In Missouri Wild 4-5 Breed 
35 Dumetella  carolinensis  Cont Missouri Native In Missouri Wild 8-9 Post-Breed 
36 Dumetella  carolinensis  Cont Missouri Native In Missouri Captive (Rehab) 8-9 Post-Breed 

37 Hemignathus virens  Island Hawaii (Hawaii) Endemic (gen) In Hawaii Wild 6 Breed 
38 Carpodacus mexicanus Island Hawaii (Hawaii) Introduced In Hawaii Wild 6 Breed 
39 Carpodacus mexicanus Island Hawaii (Oahu) Introduced In Oahu Wild 6 Breed 
40 Carpodacus mexicanus Cont New Jersey Native In New Jersey Wild 3 Pre-Breed 
41 Nesomimus parvulus Island Galapagos (Genovesa) Endemic (gen) In Galapagos Wild 7 Post-Breed 
42 Mimus polyglottos  Cont Missouri Native In Missouri Captive (Rehab) 9 Post-Breed 

43 Passer domesticus Island Bermuda Introduced In Bermuda Wild 5-6 Breed 
44 Passer domesticus Island Hawaii (Hawaii) Introduced In Hawaii Wild 6 Breed 
45 Passer domesticus Island Hawaii (Oahu) Introduced In Oahu Wild 6 Breed 
46 Passer domesticus Cont Missouri Introduced In Missouri Wild 5-6-7 Breed 

47 Sialia sialis Island Bermuda Native In Bermuda Wild 5-6 Breed 
48 Sialia sialis Cont Illinois Native In Illinois Wild 5 Breed 
49 Sturnus vulgaris  Island Bermuda Introduced In Bermuda Wild 5-6 Breed 
50 Sturnus vulgaris  Cont Missouri Introduced In Missouri Wild 4-5 Breed 

51 Vireo griseus1 Island Bermuda Endemic (subsp) In Bermuda Wild 5-6 Breed 
52 Vireo griseus  Cont Missouri Native In Missouri Wild 4-5 Breed 
53 Vireo griseus  Cont Missouri Native In Missouri Wild 8-9 Post-Breed 

54 Zenaida  macroura  Island Bermuda Introduced In Bermuda Wild 5-6 Breed 
55 Zenaida  galapagoensis Island Galapagos (Genovesa) Endemic (sp) In Genovesa Wild 7 Post-Breed 
56 Zenaida  galapagoensis Island Galapagos (Santa Cruz) Endemic (sp) In Santa Cruz Wild 7 Post-Breed 
57 Zenaida  macroura  Cont Missouri Native In Missouri Wild 1 Winter 
58 Zenaida  macroura  Cont Missouri Native In Missouri Wild 4 Breed 
59 Zenaida  macroura  Cont Missouri Native In Missouri Wild 6 Breed 

           
1 Endemic subspecies:  #01 A. g. georgica, #03 A. g. spinicauda, #07 B. h. leucopareia, #30 and #31 D. p. aureolla, #51 V. g. bermudianus. 
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Appendix, Table 2A 

AGGLUTINATION 
(titers) Origin       ANOVA   Mean Weighted  

Pop. # Genus Isl/Cont N Mean SD SE df 
K-W 
Chi2 Sig F Sig Tukey (Indiv) Mean Isl/Cont 

01 Anas Island 8 6.1250 0.5175 0.1830      a    
02 Anas Island 8 10.0000 0.8018 0.2835      c 8.1 8.1 I 
03 Anas Cont 8 7.8125 1.3076 0.4623      b    
04 Anas Cont 6 7.6667 0.9832 0.4014 3 21.028 0.000 22.759 0.000 b 7.8 7.7 C 
05 Branta Island 5 7.3000 1.3964 0.6245          
06 Branta Island 8 7.0625 1.2082 0.4272          
07 Branta Island 7 8.2143 0.7559 0.2857       7.5 7.5 I 
08 Branta Cont 26 7.4038 1.2886 0.2527 3 4.450 0.217 1.213 0.317   7.4 7.4 C 
09 Buteo Island 3 6.9167 1.0104 0.5833      a    
10 Buteo Island 15 9.3333 1.6165 0.4174      a    
11 Buteo Island 3 9.5833 1.4216 0.8207      a    
12 Buteo Island 5 10.3500 0.8588 0.3841      a    
13 Buteo Island 7 8.6429 1.5736 0.5948      a    
14 Buteo Island 8 9.0625 1.6298 0.5762      a    
15 Buteo Island 5 7.1500 0.7826 0.3500      a    
16 Buteo Island 5 8.1000 2.9026 1.2981      a 8.8 8.7 I 
17 Buteo Cont 21 7.5952 2.4628 0.5374 8 19.409 0.013 2.274 0.033 a 7.6 7.6 C 
18 Cardinalis Island 2 7.7500 0.0000 0.0000          
19 Cardinalis Island 22 6.5000 1.3093 0.2791          
20 Cardinalis Island 5 5.2500 1.7766 0.7945       6.4 6.4 I 
21 Cardinalis Cont 9 6.8333 0.7395 0.2465          
22 Cardinalis Cont 11 6.3182 1.3652 0.4116          
23 Cardinalis Cont 10 6.5500 0.8563 0.2708          
24 Cardinalis Cont 3 6.0000 1.7321 1.0000 6 9.689 0.138 1.398 0.232   6.5 6.5 C 
25 Columba Island 8 5.5313 1.8049 0.6381      ab    
26 Columba Island 5 7.8000 0.5701 0.2550      b 6.4 6.5 I 
27 Columba Cont 7 4.0714 3.2968 1.2461 2 6.032 0.049 3.863 0.041 a 4.1 4.1 C 
28 Columbina Island 15 4.8667 2.4014 0.6200       4.9 4.9 I 
29 Columbina Cont 6 4.1250 2.4622 1.0052 1 0.125 0.724 0.403 0.533   4.1 4.1 C 
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30 Dendroica  Island 8 4.0000 0.4629 0.1637          
31 Dendroica  Island 8 4.5625 1.5910 0.5625       4.3 4.3 I 
32 Dendroica  Cont 5 3.7000 2.2804 1.0198 2 2.153 0.341 0.574 0.573   3.7 3.7 C 
33 Dumetella  Island 13 4.5769 2.0901 0.5797       4.6 4.6 I 
34 Dumetella  Cont 17 4.4706 1.9880 0.4822          
35 Dumetella  Cont 19 4.7368 2.1945 0.5035          
36 Dumetella  Cont 2 3.5000 3.5355 2.5000 3 0.812 0.847 0.217 0.884   4.6 4.4 C 
37 Hemignathus Island 2 4.7500 0.3536 0.2500          
38 Carpodacus Island 16 3.5938 1.1138 0.2785          
39 Carpodacus Island 16 2.8438 1.4913 0.3728       3.3 3.4 I 
40 Carpodacus Cont 4 3.2500 0.8660 0.4330 3 6.721 0.081 1.862 0.155   3.3 3.3 C 
41 Nesomimus Island 8 5.0000 2.0000 0.7071       5.0 5.0 I 
42 Mimus Cont 8 4.6875 1.0670 0.3772 1 0.102 0.750 0.152 0.702   4.7 4.7 C 
43 Passer Island 26 6.3654 1.3119 0.2573          
44 Passer Island 13 6.5769 1.6627 0.4611          
45 Passer Island 6 6.1250 1.4296 0.5836       6.4 6.4 I 
46 Passer Cont 12 5.6875 1.7027 0.4915 3 2.486 0.478 0.840 0.478   5.7 5.7 C 
47 Sialia Island 7 3.3571 1.7491 0.6611       3.4 3.4 I 
48 Sialia Cont 11 4.1818 1.8203 0.5489 1 0.305 0.581 0.904 0.356   4.2 4.2 C 
49 Sturnus Island 10 3.8500 1.1797 0.3731       3.9 3.9 I 
50 Sturnus Cont 7 5.0714 1.5392 0.5818 1 4.113 0.043 3.446 0.083   5.1 5.1 C 
51 Vireo Island 13 5.6538 3.6764 1.0197       5.7 5.7 I 
52 Vireo Cont 5 4.4000 4.0373 1.8055          
53 Vireo Cont 3 7.6667 5.7735 3.3333 2 1.531 0.465 0.613 0.553   5.6 5.8 C 
54 Zenaida  Island 10 6.0500 2.6609 0.8415          
55 Zenaida  Island 5 3.2000 1.6047 0.7176          
56 Zenaida  Island 1 4.5000 . .       5.1 4.8 I 
57 Zenaida  Cont 3 5.6667 2.2546 1.3017          
58 Zenaida  Cont 1 3.0000 . .          
59 Zenaida  Cont 6 4.9583 2.0762 0.8476 5 5.705 0.336 1.241 0.327   5.0 4.8 C 
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Appendix, Table 2B 

LYSIS 
(titers)  Origin       ANOVA   Mean Weighted  

Pop. # Genus Isl/Cont n Mean SD SE df 
K-W 
Chi2 Sig F Sig Tukey (Indiv) Mean Isl/Cont 

01 Anas Island 8 4.0000 0.5345 0.1890      a    
02 Anas Island 8 4.7500 0.4629 0.1637      b 4.4 4.4 I 
03 Anas Cont 8 4.7500 0.4629 0.1637      b    
04 Anas Cont 6 4.7500 0.4183 0.1708 3 9.954 0.019 4.868 0.008 b 4.8 4.8 C 
05 Branta Island 5 3.9000 0.7416 0.3317      a    
06 Branta Island 8 4.5000 0.5345 0.1890      ab    
07 Branta Island 7 4.0000 0.5774 0.2182      a 4.2 4.2 I 
08 Branta Cont 26 4.8846 0.4540 0.0890 3 16.197 0.001 8.792 0.000 b 4.9 4.9 C 
09 Buteo Island 3 0.0000 0.0000 0.0000          
10 Buteo Island 15 0.3833 0.8497 0.2194          
11 Buteo Island 3 0.0000 0.0000 0.0000          
12 Buteo Island 5 0.4000 0.8944 0.4000          
13 Buteo Island 7 0.2857 0.7559 0.2857          
14 Buteo Island 8 0.6250 1.4079 0.4978          
15 Buteo Island 5 0.0000 0.0000 0.0000          
16 Buteo Island 5 0.2000 0.4472 0.2000       0.3 0.3 I 
17 Buteo Cont 21 0.0714 0.3273 0.0714 8 6.202 0.625 0.675 0.712   0.1 0.1 C 
18 Cardinalis Island 2 0.0000 0.0000 0.0000          
19 Cardinalis Island 22 1.0455 1.4712 0.3137          
20 Cardinalis Island 5 0.9000 1.7464 0.7810       0.9 0.8 I 
21 Cardinalis Cont 9 0.0000 0.0000 0.0000          
22 Cardinalis Cont 11 0.0000 0.0000 0.0000          
23 Cardinalis Cont 10 0.5000 1.0801 0.3416          
24 Cardinalis Cont 3 1.3333 2.3094 1.3333 6 10.231 0.115 1.679 0.143   0.3 0.3 C 
25 Columba Island 8 0.0000 0.0000 0.0000          
26 Columba Island 5 0.0000 0.0000 0.0000       0.0 0.0 I 
27 Columba Cont 7 0.0000 0.0000 0.0000 2 1.000 0.000 . .   0.0 0.0 C 
28 Columbina Island 15 0.0000 0.0000 0.0000       0.0 0.0 I 
29 Columbina Cont 6 0.0000 0.0000 0.0000 1 1.000 0.000 . .   0.0 0.0 C 
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30 Dendroica  Island 8 0.0000 0.0000 0.0000      a    
31 Dendroica  Island 8 0.0000 0.0000 0.0000      a 0.0 0.0 I 
32 Dendroica  Cont 5 0.6000 0.8216 0.3674 2 6.737 0.034 4.571 0.025 b 0.6 0.6 C 
33 Dumetella  Island 13 3.2692 1.1835 0.3282       3.3 3.3 I 
34 Dumetella  Cont 17 2.9412 1.6191 0.3927          
35 Dumetella  Cont 19 3.7105 1.1939 0.2739          
36 Dumetella  Cont 2 2.0000 2.8284 2.0000 3 3.863 0.277 1.483 0.231   3.3 3.1 C 
37 Hemignathus Island 2 0.0000 0.0000 0.0000          
38 Carpodacus Island 16 0.0000 0.0000 0.0000          
39 Carpodacus Island 16 0.0000 0.0000 0.0000       0.0 0.0 I 
40 Carpodacus Cont 4 0.0000 0.0000 0.0000 3 1.000 0.000 . .   0.0 0.0 C 
41 Nesomimus Island 8 1.5625 1.4985 0.5298       1.6 1.6 I 
42 Mimus Cont 8 1.0000 1.3093 0.4629 1 0.974 0.324 0.639 0.437   1.0 1.0 C 
43 Passer Island 26 0.3654 0.8192 0.1607      a    
44 Passer Island 13 0.6154 1.1022 0.3057      ab    
45 Passer Island 6 1.5833 1.9600 0.8002      b 0.6 0.7 I 
46 Passer Cont 12 0.0000 0.0000 0.0000 3 7.325 0.062 3.720 0.017 a 0.0 0.0 C 
47 Sialia Island 7 0.0000 0.0000 0.0000      a 0.0 0.0 I 
48 Sialia Cont 11 1.2273 1.4554 0.4388 1 5.139 0.023 4.867 0.042 b 1.2 1.2 C 
49 Sturnus Island 10 0.3500 0.9443 0.2986      a 0.4 0.4 I 
50 Sturnus Cont 7 3.0714 1.4268 0.5393 1 8.856 0.003 22.602 0.000 b 3.1 3.1 C 
51 Vireo Island 13 2.5000 1.9149 0.5311      a 2.5 2.5 I 
52 Vireo Cont 5 0.1000 0.2236 0.1000      a    
53 Vireo Cont 3 1.1667 2.0207 1.1667 2 4.826 0.090 3.771 0.043 a 0.5 0.6 C 
54 Zenaida  Island 10 0.0000 0.0000 0.0000          
55 Zenaida  Island 5 0.0000 0.0000 0.0000          
56 Zenaida  Island 1 0.0000 . .       0.0 0.0 I 
57 Zenaida  Cont 3 0.0000 0.0000 0.0000          
58 Zenaida  Cont 1 0.0000 . .          
59 Zenaida  Cont 6 0.0000 0.0000 0.0000 5 1.000 0.000 . .   0.0 0.0 C 
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Appendix, Table 3 

[HAPTOGLOBIN] 
(mg/mL) Origin       ANOVA   Mean Weighted  

Pop. # Genus Isl/Cont N Mean SD SE df 
K-W 
Chi2 Sig F Sig Tukey (Indiv) Mean Isl/Cont 

01 Anas Island 8 0.1838 0.0635 0.0224      ab    
02 Anas Island 8 0.2838 0.1373 0.0485      b 0.234 0.234 I 
03 Anas Cont 8 0.1725 0.0602 0.0213      ab    
04 Anas Cont 6 0.1300 0.0283 0.0115 3 8.330 0.040 4.268 0.014 a 0.154 0.153 C 
18 Cardinalis Island 2 0.1800 0.0141 0.0100          
19 Cardinalis Island 22 0.2659 0.2462 0.0525          
20 Cardinalis Island 5 0.2000 0.0985 0.0440       0.249 0.234 I 
23 Cardinalis Cont 11 0.1582 0.0502 0.0151          
24 Cardinalis Cont 3 0.2600 0.1997 0.1153 4 4.136 0.388 0.649 0.631   0.180 0.193 C 
28 Columbina Island 7 0.1286 0.0219 0.0083      b 0.129 0.129 I 
29 Columbina Cont 6 0.0383 0.0147 0.0060 1 9.176 0.002 72.911 0.000 a 0.038 0.038 C 
30 Dendroica  Island 4 0.2425 0.1053 0.0527      b    
31 Dendroica  Island 4 0.1050 0.0624 0.0312      a 0.174 0.174 I 
32 Dendroica  Cont 6 0.1100 0.0569 0.0232 2 5.253 0.072 4.652 0.034 ab 0.110 0.110 C 
33 Dumetella  Island 13 0.4454 0.1583 0.0439      ab 0.445 0.445 I 
35 Dumetella  Cont 20 0.3390 0.1478 0.0838      a    
36 Dumetella  Cont 2 0.6650 0.3748 0.2650 2 5.352 0.069 4.511 0.019 b 0.369 0.417 C 
37 Hemignathus Island 2 0.1200 0.0424 0.0300          
38 Carpodacus Island 4 0.1150 0.0603 0.0301          
39 Carpodacus Island 4 0.1275 0.0386 0.0193       0.121 0.121 I 
40 Carpodacus Cont 4 0.0725 0.0150 0.0075 3 4.322 0.229 1.314 0.324   0.073 0.073 C 
43 Passer Island 6 0.0650 0.0451 0.0184          
44 Passer Island 2 0.0700 0.0283 0.0200          
45 Passer Island 4 0.1375 0.0556 0.0278       0.090 0.091 I 
46 Passer Cont 9 0.0833 0.0472 0.0157 3 4.464 0.216 2.057 0.144   0.083 0.083 C 
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47 Sialia Island 7 0.1643 0.0877 0.0332       0.164 0.164 I 
48 Sialia Cont 7 0.1229 0.0647 0.0245 1 1.209 0.272 1.011 0.335   0.123 0.123 C 
54 Zenaida  Island 10 0.1220 0.0781 0.0247          
55 Zenaida  Island 5 0.1180 0.0726 0.0325          
56 Zenaida  Island 1 0.1100 . .       0.120 0.119 I 
57 Zenaida  Cont 2 0.0477 0.0039 0.0325          
58 Zenaida  Cont 1 0.0596 . .          
59 Zenaida  Cont 6 0.1050 0.0704 0.0287 5 3.210 0.668 0.458 0.803   0.087 0.079 C 
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Appendix, Table 4 

[HETEROPHIL] 
(no.*103/uL) Origin       ANOVA   Mean Weighted  

Pop. # Genus Isl/Cont n Mean SD SE df 
K-W 
Chi2 Sig. F Sig. Tukey (Indiv) Mean Isl/Cont 

18 Cardinalis Isl  2 7.1300 4.6810 3.3100      b    
19 Cardinalis Isl  22 2.0418 1.8308 0.3903      a    
20 Cardinalis Isl  5 2.7720 2.4757 1.1072      a 2.52 3.10 I  
22 Cardinalis Cont 3 0.7300 0.2166 0.1250      a    
23 Cardinalis Cont 11 1.1136 0.6449 0.1944      a    
24 Cardinalis Cont 3 0.8633 0.8223 0.4748 5 14.027 0.015 4.766 0.002 a 1.00 0.95 C 
33 Dumetella  Isl 10 2.4810 1.6264 0.5143      ab 2.48 2.48 I 
34 Dumetella  Cont 8 1.4138 0.6344 0.2243      a    
35 Dumetella  Cont 20 1.5600 1.0213 0.2284      a    
36 Dumetella  Cont 2 4.1500 3.8467 2.7200 3 3.847 0.278 3.469 0.026 b 1.69 1.93 C 
54 Zenaida  Isl 9 3.4589 1.8162 0.6054          
55 Zenaida  Isl 5 1.9000 1.1594 0.5185          
56 Zenaida  Isl 1 1.7600 . .       2.83 2.63 I 
59 Zenaida  Cont 6 2.5850 1.4507 0.5923 3 2.976 0.395 1.243 0.325   2.59 2.59 C 
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[LYMPHOCYTE] 
(no.*103/uL) Origin       ANOVA   Mean Weighted  

Pop. # Genus Isl/Cont n Mean SD SE df 
K-W 
Chi2 Sig. F Sig. Tukey (Indiv) Mean Isl/Cont 

18 Cardinalis Isl  2 5.405 1.775 1.2550          
19 Cardinalis Isl  22 4.793 4.520 0.9636          
20 Cardinalis Isl  5 4.056 1.940 0.8677       4.71 4.70 I  
22 Cardinalis Cont 3 2.450 0.611 0.3528          
23 Cardinalis Cont 11 4.334 1.193 0.3598          
24 Cardinalis Cont 3 3.513 0.782 0.4517 5 7.807 0.167 0.342 0.884   3.86 3.64 C 
33 Dumetella  Isl 10 3.3240 1.8735 0.5924      a 3.32 3.32 I 
34 Dumetella  Cont 8 3.1350 1.1650 0.4119      a    
35 Dumetella  Cont 20 5.0200 1.8285 0.4089      a    
36 Dumetella  Cont 2 4.0400 1.0889 0.7700 3 9.995 0.019 3.427 0.027 a 4.45 4.25 C 
54 Zenaida  Isl 9 4.6544 1.3958 0.4653          
55 Zenaida  Isl 5 4.0800 1.5881 0.7102          
56 Zenaida  Isl 1 2.8400 . .       4.34 4.16 I 
59 Zenaida  Cont 6 4.9717 2.9316 1.1968 3 1.372 0.712 0.427 0.736   4.97 4.97 C 
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[MONOCYTE] 
(no.*103/uL) Origin       ANOVA   Mean Weighted  

Pop. # Genus Isl/Cont n Mean SD SE df 
K-W 
Chi2 Sig. F Sig. Tukey (Indiv) Mean Isl/Cont 

18 Cardinalis Isl  2 0.6150 0.4031 0.2850          
19 Cardinalis Isl  22 0.6650 1.0278 0.2191          
20 Cardinalis Isl  5 0.2540 0.0750 0.0336       0.59 0.55 I  
22 Cardinalis Cont 3 0.0700 0.1212 0.0700          
23 Cardinalis Cont 11 0.3873 0.2576 0.0777          
24 Cardinalis Cont 3 0.2367 0.1721 0.0994 5 8.394 0.136 0.630 0.678   0.30 0.27 C 
33 Dumetella  Isl 10 0.5150 0.4217 0.1334      a 0.52 0.52 I 
34 Dumetella  Cont 8 0.1075 0.1156 0.0409      a    
35 Dumetella  Cont 20 0.3480 0.2320 0.0519      a    
36 Dumetella  Cont 2 0.4450 0.4455 0.3150 3 8.579 0.035 3.130 0.037 a 0.29 0.29 C 
54 Zenaida  Isl 9 0.2444 0.3091 0.1030          
55 Zenaida  Isl 5 0.3060 0.1585 0.0709          
56 Zenaida  Isl 1 0.2500 . .       0.27 0.27 I 
59 Zenaida  Cont 6 0.2950 0.3190 0.1302 3 0.632 0.889 0.067 0.977   0.30 0.30 C 
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[EOSINOPHIL] 
(no.*103/uL) Origin       ANOVA   Mean Weighted  

Pop. # Genus Isl/Cont n Mean SD SE df 
K-W 
Chi2 Sig. F Sig. Tukey (Indiv) Mean Isl/Cont 

18 Cardinalis Isl  2 0.0000 0.0000 0.0000          
19 Cardinalis Isl  22 0.0382 0.0844 0.0180          
20 Cardinalis Isl  5 0.0580 0.1297 0.0580       0.039 0.037 I  
22 Cardinalis Cont 3 0.0533 0.0924 0.0533          
23 Cardinalis Cont 11 0.0155 0.0513 0.0155          
24 Cardinalis Cont 3 0.0233 0.0404 0.0233 5 1.813 0.874 0.328 0.893   0.024 0.027 C 
33 Dumetella  Isl 10 0.1250 0.1822 0.0576       0.125 0.125 I 
34 Dumetella  Cont 8 0.1725 0.2159 0.0763          
35 Dumetella  Cont 20 0.0325 0.0675 0.0151          
36 Dumetella  Cont 2 0.0650 0.0919 0.0650 3 3.612 0.307 2.220 0.103   0.072 0.083 C 
54 Zenaida  Isl 9 0.1089 0.2011 0.0670          
55 Zenaida  Isl 5 0.0340 0.0760 0.0340          
56 Zenaida  Isl 1 0.0500 . .       0.080 0.073 I 
59 Zenaida  Cont 6 0.0000 0.0000 0.0000 3 4.081 0.253 0.759 0.532   0.000 0.000 C 
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[BASOPHIL] 
(no.*103/uL) Origin       ANOVA   Mean Weighted  

Pop. # Genus Isl/Cont n Mean SD SE df 
K-W 
Chi2 Sig. F Sig. Tukey (Indiv) Mean Isl/Cont 

18 Cardinalis Isl  2 0.0000 0.0000 0.0000          
19 Cardinalis Isl  22 0.0087 0.0297 0.0063          
20 Cardinalis Isl  5 0.0000 0.0000 0.0000       0.007 0.005 I  
22 Cardinalis Cont 3 0.0000 0.0000 0.0000          
23 Cardinalis Cont 11 0.0000 0.0000 0.0000          
24 Cardinalis Cont 3 0.0000 0.0000 0.0000 5 2.230 0.816 0.377 0.862   0.000 0.000 C 
33 Dumetella  Isl 10 0.0340 0.0943 0.0298       0.034 0.034 I 
34 Dumetella  Cont 8 0.0000 0.0000 0.0000          
35 Dumetella  Cont 20 0.0120 0.0537 0.0120          
36 Dumetella  Cont 2 0.0000 0.0000 0.0000 3 3.156 0.368 0.537 0.660   0.008 0.006 C 
54 Zenaida  Isl 9 0.0000 0.0000 0.0000          
55 Zenaida  Isl 5 0.0000 0.0000 0.0000          
56 Zenaida  Isl 1 0.0000 . .       0.000 0.000 I 
59 Zenaida  Cont 6 0.0000 0.0000 0.0000 3 0.000 1.000 . .   0.000 0.000 C 
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[TOTAL 
LEUKOCYTE] 
(no.*103/uL) Origin       ANOVA   Mean Weighted  

Pop. # Genus Isl/Cont n Mean SD SE df 
K-W 
Chi2 Sig. F Sig. Tukey (Indiv) Mean Isl/Cont 

18 Cardinalis Isl  2 13.1500 6.8589 4.8500          
19 Cardinalis Isl  22 7.5455 7.2152 1.5383          
20 Cardinalis Isl  5 7.1400 4.2741 1.9114       7.86 8.39 I  
22 Cardinalis Cont 3 3.4333 0.5132 0.2963          
23 Cardinalis Cont 11 5.8455 1.2817 0.3864          
24 Cardinalis Cont 3 4.6333 1.4640 0.8452 5 10.841 0.055 0.980 0.442   5.21 4.92 C 
33 Dumetella  Isl 10 6.4900 3.2220 1.0189       6.49 6.49 I 
34 Dumetella  Cont 8 4.8250 1.8242 0.6450          
35 Dumetella  Cont 20 6.9700 2.5567 0.5717          
36 Dumetella  Cont 2 8.7000 3.1113 2.2000 3 5.410 0.144 1.750 0.174   6.51 6.55 C 
54 Zenaida  Isl 9 8.4667 3.0830 1.0277          
55 Zenaida  Isl 5 6.3200 2.2073 0.9871          
56 Zenaida  Isl 1 4.9000 . .       7.51 7.12 I 
59 Zenaida  Cont 6 7.8500 4.3029 1.7567 3 2.313 0.510 0.681 0.576   7.85 7.85 C 
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Chapter 5 

Disease ecology in the Galápagos Hawk (Buteo galapagoensis): host genetic 

diversity, parasite load and natural antibodies. 

In press: N. K. Whiteman, K. D. Matson, J. L. Bollmer & P. G. Parker. 

Proceedings of the Royal Society of London - Series B: Biological Sciences. 

 

Summary: An increased susceptibility to disease is one hypothesis explaining how 

inbreeding hastens extinction in island endemics and threatened species.  Experimental 

studies show that disease resistance declines as inbreeding increases, but data from in 

situ wildlife systems are scarce.  Genetic diversity increases with island size across the 

entire range of an extremely inbred Galápagos endemic bird, providing the context for a 

natural experiment examining the effects of inbreeding on disease susceptibility.  

Extremely inbred populations of Galápagos hawks had higher parasite abundances than 

relatively outbred populations.  We found a significant island effect on constitutively 

produced natural antibody (NAb) levels and inbred populations generally harboured 

lower average and less variable NAb levels than relatively outbred populations.  

Furthermore, NAb levels explained abundance of amblyceran lice, which encounter the 

host immune system.  This is the first study linking inbreeding, innate immunity and 

parasite load in an endemic, in situ wildlife population and provides a clear framework for 

assessment of disease risk in a Galápagos endemic. 
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1. INTRODUCTION 

Extinctions of island endemics account for 75% of animal extinctions and 90% of 

bird extinctions (Myers 1979; Reid & Miller 1989).  Several synergistic key factors may 

be responsible for this high extinction rate, including introduction of exotic animal and 

human predators (Blackburn et al. 2004), habitat destruction (Rolett & Diamond 2004), 

demographic stochasticity (Drake 2005), and inbreeding in island endemics and 

threatened species (Frankham 1998; Spielman et al. 2004a). 

The interaction of disease agents with genetically depauperate (Pearman & 

Garner 2005) and isolated populations is one hypothesis explaining how inbreeding 

facilitates extinction in small populations (de Castro & Bolker 2005).  Parasites evolve 

more quickly than hosts, so host antiparasite adaptations are perpetually obsolete 

(Hamilton et al. 1990; Lively & Apanius 1995).  Consequently, genetically uniform host 

individuals (Acevedo-Whitehouse et al. 2003) and populations (Spielman et al. 2004b) 

are more susceptible to parasitism than genetically diverse hosts.  Studies of model 

laboratory systems (Arkush et al. 2002), captive wildlife (Cassinello et al. 2001), and 

free-ranging domesticated animal populations (Coltman et al. 1999) support this claim, 

although other studies do not (Trouvé et al. 2003).  Scant evidence of this phenomenon 

exists from in situ native wildlife populations (Meagher 1999), and no study has 

examined the effects of inbreeding on parasite load and innate, humoral immunity 

across bird populations in the wild (Keller & Waller 2002).  The intact endemic avifauna 

of the Galápagos Islands provides a unique opportunity to examine disease ecology and 

will provide insight into the impact of invasive disease agents that may enter the 

ecosystem (Lindström et al. 2004; Thiel et al. 2005). 

The Galápagos hawk (Buteo galapagoensis), an endemic raptor threatened with 

extinction (2004 IUCN Red List), breeds on eight islands within the Galápagos National 

Park, and has been extirpated from several others (Fig. 1).  Island size and genetic 
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diversity are positively related and between-island population structure is high, rendering 

it an appealing model system in which to examine the effects of inbreeding on disease 

severity (Bollmer et al. 2005).  The basic biology of its two chewing louse species 

(Insecta:  Phthiraptera), an amblyceran (Colpocephalum turbinatum) and an ischnoceran 

(Degeeriella regalis), has been described (Whiteman & Parker 2004a, b).  Thus, we 

examined the response of each parasite lineage to variance in host inbreeding, using 

population-level heterozygosity values from the eight island populations of B. 

galapagoensis and one population of the sister species (B. swainsoni; Reising et al. 

2003). 

We also examined the relationship between immunological host defences, 

island-level inbreeding effects, and parasite abundance.  To assess immunological host 

defences, we quantified non-specific natural antibody (NAb) titres within seven 

populations of B. galapagoensis. Quantification of NAbs has several conceptual and 

methodological advantages over other methods used to assess immune response of 

wild vertebrates (Matson et al. 2005).  NAbs are a product of the innate, humoral 

immune system and their production is constitutive (stable over time and generally not 

induced by external antigenic stimulation).  Encoded by the germ-line genome, NAbs are 

present in antigenically naïve vertebrates (; Ochsenbein & Zinkernagel 2000), form a 

large percentage of the serum immunoglobulin (Kohler et al. 2003), are capable of 

recognizing any antigen, and prime the adaptive immune response (Adelman et al. 

2004).  In chickens, NAbs reacting to ectoparasite-derived antigens have been identified 

(Wikel et al. 1989) and in lines artificially selected for either high or low levels of specific 

antibodies, specific and natural antibody levels covary (Parmentier et al. 2004).  NAb 

response is hypothesized to predict the strength of the adaptive immune response 

(Kohler et al. 2003). Thus, NAbs form a functional link between the innate and acquired 

parts of the humoral immune system (Lammers et al. 2004).   
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Inbreeding may negatively impact phytohemagglutinin (PHA) induced swelling 

within wild bird populations (Reid et al. 2003), and reductions in population size reduce 

overall within-population genetic variation, including variation at loci of immunological 

import in vertebrates (Miller & Lambert 2004).  Since variation in NAb levels responds to 

artificial selection in chickens (Parmentier et al. 2004), it is reasonable to predict that 

variation in NAb levels will covary with variation in wild bird population genetic diversity.  

However, the impact of natural microevolutionary processes on circulating levels of 

NAbs is unknown in wild vertebrates.   

Amblyceran lice (e.g., C. turbinatum) directly encounter host immune defences 

because they feed on blood and living skin (Marshall 1981).  Conversely, bird 

ischnocerans (e.g., D. regalis) generally feed on the keratin of feathers and dead skin 

(Marshall 1981) and mainly encounter the mechanical host defences (e.g., preening).  

Feeding by ectoparasites on skin and blood elicits immune responses (Wikel 1982) that 

vary from cell-mediated (Prelezov et al. 2002) to humoral (i.e., antibodies; Pfeffer et al. 

1997) and from innate (Wikel et al. 1989) to acquired (Ben-yakir et al. 1994).  Host 

antibodies reduce louse fecundity and survivorship, and regulate population growth rate 

(Ben-yakir et al. 1994).  Across bird species, variation in PHA-induced swelling was 

directly related to amblyceran but not ischnoceran species richness (Møller & Rózsa 

2005).  However, whether NAbs regulate ectoparasite populations, and louse 

populations in particular, is unknown. 

We measured host inbreeding, parasite abundance and NAb response, and 

made three predictions:  (1) at the island-level, higher inbreeding results in lower 

average humoral immune response relative to outbred populations; (2) also at the 

island-level, higher inbreeding results in reduced variation in humoral immune response 

relative to outbred populations; and (3) birds with high humoral immune responses 

harbour fewer parasites (amblyceran lice) relative to birds with lower immune responses. 
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2.  METHODS 

(a) Host sampling 

We live-captured a total of 211 Buteo hawk individuals on eight of the Galápagos 

Islands (n =202 B. galapagoensis; Fig. 1) and near Las Varillas, Córdoba, Argentina (n 

=9 B. swainsoni; Whiteman & Parker 2004a), from May-August 2001 (Islas Española, n 

=8; Isabela, n =25; Marchena, n =26; Santa Fe, n =13), May-July 2002 (Isla Santiago, n 

=58), January 2003 (Argentina, n =9), and May-July 2003 (Islas Fernandina, n =28; 

Pinta, n =31; Pinzón, n =10).  Birds were sampled following Bollmer et al. (2005) from 

multiple locations throughout each island.  The University of Missouri-St. Louis Animal 

Care Committee and the appropriate governmental authorities approved all procedures 

and permits. 

(b) Parasite sampling 

We quantitatively sampled parasites from birds via dust ruffling with pyrethroid 

insecticide (non-toxic to birds; Zema® Z3 Flea and Tick Powder for Dogs, St. John 

Laboratories, Harbor City, California; Whiteman & Parker 2004a, b).  Dust-ruffling 

provides excellent measures of relative louse intensity (Clayton & Drown 2001).   

© Blood Collection 

From each bird, we collected two 50 µl blood samples via venipuncture of the 

brachial vein for genetic analyses.  Samples were immediately stored in 500 µl of lysis 

buffer (Longmire et al. 1988).  For immune assay, whole blood samples were collected 

from a subsample of birds (n = 46) in heparinized tubes, centrifuged in the field and 

plasma was stored in liquid nitrogen.  Due to logistical constraints, no plasma was 

collected from the Pinzón population of B. galapagoensis or from B. swainsoni. 

(d) Innate humoral immunity 
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We used the general hemolysis-hemagglutination assay protocol (Matson et al. 

2005) with two minor modifications (we used plates from Corning Costar #3798, instead 

of #3795 and Dulbecco’s PBS, #D8662, Sigma, St Louis, MO).  Sample sizes from 

Galápagos hawk island populations were as follows:  Española, n =3; Fernandina, n 

=15; Isabela, n =3; Marchena, n =5; Pinta, n =7; Santa Fe, n =5; Santiago, n =8.  In each 

plate, we ran the assay on six hawk samples and two positive controls (pooled chicken 

plasma, #ES1032P, Biomeda, Foster City, CA).  Using digitized images of the assay 

plates, all samples were blindly scored twice to individual, plate number and position.  To 

demonstrate positive standard reliability, assay variation never exceeded 6.8% and 5.6% 

coefficient of variation (in all cases, CV was calculated using the sample size correction; 

Sokal & Rohlf 1995) for agglutination titres among and within plates, respectively.  Mean 

NAb agglutination titres and CV were then calculated for each island population from 

which plasma was collected.  CV is a useful measure in studies such as these, since 

island population means varied widely and CV is dimensionless and relatively stable 

compared to standard deviation (Snedecor & Cochran 1989).   

(e) DNA fingerprinting  

To determine island-level population genetic diversity, we performed phenol-

chloroform DNA extraction on a subset of hawks from each population comprising a total 

of 118 individuals (Galápagos hawks:  Española, n =7; Fernandina, n =20; Isabela, n 

=10; Marchena, n =20; Pinta, n =10; Pinzón, n =10; Santa Fe, n =10; Santiago, n =23; 

Swainson’s hawks:  n =8), followed by multi-locus minisatellite (VNTR) fingerprinting 

using the restriction endonuclease Hae III and Jeffreys’ probe 33.15 (Jeffreys et al. 

1985) and following procedures described elsewhere for birds generally (Parker et al. 

1995) and Galápagos hawks (Bollmer et al. 2005).  Estimates of island-level population 

genetic diversity were obtained by calculating multilocus VNTR heterozygosity values 

(referred to as H; Stephens et al. 1992) for each island population and for the population 
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of Swainson’s hawks using GELSTATS v.2.6 (Rogstad & Pelikan 1996).  These markers 

yield an excellent measure of relative genetic diversity in small, isolated vertebrate 

populations (Gilbert et al. 1990; Stephens et al. 1992; Parker et al. 1998; Bollmer et al. 

2005) but do not measure individual heterozygosity values. 

A large study on Galápagos hawk population genetics (Bollmer et al. 2005) used 

the same multilocus minisatellite markers to estimate population genetic diversity (and 

included all of the individuals genotyped here).  Bollmer et al. (2005) strongly supports 

the pattern of genetic diversity that we found among these hawk populations.  Nearly 

90% of the variation in hawk population genetic diversity was explained by island area, 

and the latter correlates with hawk population size (Bollmer et al. 2005).  The four 

smallest islands with hawk populations had the highest reported levels of minisatellite 

uniformity of any wild, relatively unperturbed bird species.   

As in Bollmer et al. (2005), we randomly selected individuals sampled within 

each population to assess the relative amount of genetic diversity within each 

population.  We prioritized samples from adults in territorial breeding groups (groups are 

comprised of unrelated adults; Faaborg et al. 1995).  On Isla Pinzón, we sampled only 

from non-territorial birds from multiple geographic locales because we were unable to 

capture adults there.  However, these birds were likely offspring of multiple breeding 

groups given that many were of the same age cohort (based on plumage 

characteristics), and that hawks usually produce only one offspring per breeding attempt.  

Moreover, marked, non-territorial birds disperse from the natal territory following fledging 

and roam over their entire natal islands (de Vries 1975; Faaborg 1986; Bollmer et al. 

2005).  To ensure that our sampling of birds was not biased by the possible presence of 

within-island population genetic structure, we sampled and multilocus genotyped birds 

from multiple geographic locales.  For example, on Islas Española and Santiago (which 

harbour hawk populations with among the lowest and highest genetic diversity, 
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respectively), we sampled territorial birds from the extreme eastern and western portions 

of the islands (Fig. 1).  On the smaller islands, we sampled birds from a greater 

proportion of island area than on the larger islands (Fig. 1).  Due to the low genetic 

diversity within the four smallest hawk populations (Española, Santa Fe, Pinzón, and 

Marchena), sampling from relatively fewer individuals on the smallest islands was 

sufficient to characterize their population genetic diversity (Bollmer et al. 2005).  Bollmer 

et al. (2005) found only four multilocus genotypes within Isla Santa Fe in the 15 birds 

sampled from both multiple years and geographic locations throughout the island (the 

entire population of hawks on Santa Fe is likely to be ~30 birds).  Bollmer et al. (2005) 

further found that populations from Islas Santa Fe, Española, Pinzón, and Marchena 

were all relatively inbred compared to more variable (but still inbred) populations from 

Islas Pinta, Fernandina, Isabela and Santiago.  Our samples from Swainson’s hawks (n 

=8) and from Isla Isabela (n =10) were small relative to the larger Galápagos hawk 

population sample sizes, yet both were relatively outbred based on H estimated from the 

minisatellites.  Given this, our estimation of relative genetic diversity within each hawk 

population sampled is representative of the standing genetic diversity within each 

population and is not an artifact of sampling bias or within-population genetic structure. 

(f) Statistical analyses 

For all statistical analyses except the overall comparison of prevalence between 

louse species which utilized Quantitative Parasitology v.2.0 (Reiczigel & Rózsa 2001), 

louse abundance data were ln + 1 transformed and Stephen’s heterozygosity values 

were arcsine square root transformed to meet assumptions of normality.   

We performed a Pearson’s correlation analysis in SPSS v.11.0 (2004) to assess 

the strength of the relationship between host population genetic diversity (H) and 

average host population parasite abundance from nine hawk populations (eight B. 

galapagoensis and one B. swainsoni).  The correlation analyses were one-tailed given 
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our a priori predictions about the direction of the relationship between the variables.  We 

then examined the relationship between average louse abundance and H for the eight 

Galápagos hawk populations to determine if the relationship was being driven by the 

relatively outbred Swainson’s hawks. 

Next, we examined the relationship between innate humoral immunity (NAb 

agglutination titres) and H on the entire subset of individuals (n =46) for which plasma 

was collected.  The relationship between average island NAb agglutination titres and H 

was not linear.  Thus, we used the GLM procedure in SPSS to determine if there was a 

significant effect of island-level H (a fixed factor) on NAb agglutination titres (the 

dependent variable) instead (Española, n =3; Fernandina, n =15; Isabela, n =3; 

Marchena, n =5; Pinta, n =7; Santa Fe, n =5; Santiago, n =8). 

Finally, we performed a GLM analysis in SPSS using a subset of data that 

included all 43 birds sampled for both plasma and parasites to determine if antibodies 

and louse abundances were correlated.  In order to control for the effect of island 

inbreeding we used the GLM procedure as in the preceding analysis (NAb agglutination 

titres of the 43 hawks dependent on island as a fixed factor) except that louse 

abundance for each of the 43 individuals was included as a covariate in the model 

(Española n =3; Fernandina n =14; Isabela n =3; Marchena n =5; Pinta n =7; Santa Fe n 

=4; Santiago n =7).  One analysis was performed for each louse species.  A scatterplot 

of the louse abundance data and NAb agglutination titres was created to show the 

relationships between the two variables before the analyses and individuals were 

labeled as either inhabiting a relatively inbred (Española, Marchena or Santa Fe) or 

outbred (Fernandina, Isabela, Pinta or Santiago) island (Fig. 3). 

3. RESULTS 

(a) Parasite collections 
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 We collected a total of 14,843 individuals of the louse C. turbinatum and 2,858 

individuals of the louse D. regalis from 199 Galápagos hawks sampled for lice.  These 

lice typically occur on no other birds in the Galápagos, but have been reported from 

mainland Buteo swainsoni (Whiteman & Parker 2004a).  Overall prevalence (across 

islands) of C. turbinatum (97.5%) was higher than that of D. regalis (85.4%; Fisher’s 

exact test, p < 0.001); both louse species occurred in all 8 host populations.   

We collected a total of 17 individuals of C. turbinatum, 22 individuals of 

Laemobothrion maximum and 11 individuals of a Kurodaia sp. from the nine Swainson’s 

hawks.  These three species abundances were pooled and constitute the amblyceran 

lice from Swainson’s hawks; C. turbinatum was the only amblyceran collected from 

Galápagos hawks.  No Degeeriella were collected from the nine Swainson’s hawks. 

(b) Assessment of population genetic diversity 

Untransformed values of H for each host population are shown in Figure 1.  

Individuals from the smallest island-populations of the Galápagos hawk had the highest 

reported levels of minisatellite uniformity of any wild, unperturbed bird species and these 

results are consistent with those of Bollmer et al. (2005). As in Bollmer et al. (2005), we 

found >50% of all bands were fixed within these populations (Santa Fe, 13/16 bands 

fixed; Española, 10/16 bands fixed; Pinzón, 11/20 bands fixed; Marchena, 11/18 bands 

fixed).  The four most inbred populations contained multiple individuals or sets of 

individuals that were genetically identical at all loci, whereas no identical individuals were 

found within the four larger islands populations or within Swainson’s hawks (Bollmer et 

al. 2005).   

© Effects of genetic diversity and other host factors on parasite load 

Among Buteo populations (n =208 total individuals sampled for lice by 

population:  Española, n =8; Fernandina, n =28; Isabela, n =25; Marchena, n =26; Pinta, 

n =31; Pinzón, n =10; Santa Fe, n =13; Santiago, n =58; Swainson’s hawks n =9), 
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average amblyceran louse abundance within populations and H were significantly and 

negatively related across populations (Fig. 2A; C. turbinatum; Pearson’s r = –0.949, n 

=9, p < 0.0001; D. regalis; r = –0.854, n =9, p < 0.01).  When limited to the eight 

Galápagos hawk island populations only, similar negative relationships were found:  C. 

turbinatum (r = –0.875, n =8, p < 0.01) and D. regalis (r = –0.69, n =8, p < 0.05).  

(d) Innate antibody levels, genetic diversity and parasite load 

 We found a significant (and non-linear) effect of island on average NAb 

agglutination titres (Fig. 2B; one-way ANOVA; n =46, F6, 39 = 3.41, p < 0.01).  The 

Marchena population, the third most inbred population, exhibited the highest average 

titre and Española and Santa Fe, the most inbred populations, exhibited the lowest (Fig. 

2B).  The more outbred island populations had intermediate NAb titres.  The variance in 

NAb titres was lower within the inbred populations than the more outbred populations 

(Fig. 2B).  The CV of the inbred populations (Santa Fe, Española, Marchena) was 12% 

within and 25.5% among islands, whereas the CV of the more outbred islands 

(Fernandina, Isabela, Pinta, Santiago) was 17.8% within and 4.7% among islands. 

Furthermore, C. turbinatum abundance was negatively related to NAb agglutination titres 

(marginally significant) when individual birds were considered (controlling for the effects 

of island in a GLM; corrected model F7, 35 = 4.05, p < 0.01; island effect F = 2.50, p < 

0.05, C. turbinatum abundance parameter estimate β = –0.342, F = 4.10, p = 0.05; Fig. 

3).  The scatterplot yielded a triangular pattern whereby birds with low NAb titres 

consistently harboured high C. turbinatum abundances, but birds with high NAb titres 

harboured both low and high louse abundances.  As predicted, no significant relationship 

was found between the ischnoceran, feather-feeding D. regalis and NAb agglutination 

titres (controlling for the effects of island in a GLM; corrected model F7, 35 = 3.01, p < 
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0.05; island effect F = 2.60, p < 0.05, D. regalis abundance parameter estimate β = –

0.259, F = 1.68, p > 0.05).  

4. DISCUSSION   

 We have shown that variation in host population genetic diversity is correlated 

negatively with average parasite load and positively with variation in NAb levels across 

populations of the Galápagos Hawk.  Smaller, more inbred host populations had higher 

parasite loads, lower average immune responses (generally) and lower variation in 

within-population immune response than more outbred populations.  NAb levels were 

negatively correlated with the abundance of a skin and blood feeding amblyceran louse, 

further linking inbreeding, immune response and parasite burden.   

As a result of lower within-population genetic variability and lower and less 

variable within-population NAb levels, most of the peripheral, inbred and highly 

differentiated island populations of the Galápagos hawk are vulnerable to disease 

agents.  This result may not be surprising, but few studies have evaluated this 

relationship in wildlife populations.  These populations contained more among-island 

variability in NAb levels than the larger island-populations, possibly due to the strong 

effects of genetic drift (Spielman et al. 2004b; Pearman & Garner 2005) or local 

coevolutionary dynamics (Thompson 1999).  Protection of the highly differentiated 

peripheral hawk populations should be prioritized as the variation they contain is 

essential for the long-term viability of this species (Lesica & Allendorf 1995).  

Conversely, the large amount of within-population genetic and immunological variation 

within the largest hawk island populations is also important from a conservation 

perspective.  Since tradeoffs exist between the humoral and cellular immune response 

(Lindström et al. 2004), these populations may be better able to respond to multiple 

invasions of pathogens than the smaller, more isolated populations.  Notably, breeding 

populations within three large islands (Islas Floreana, San Cristóbal and Santa Cruz) are 
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now likely extinct (Bollmer et al. 2005; in press) and each of these is geographically 

proximal to one or several of the most inbred island populations.  Thus, if 

metapopulation dynamics were operating in this system (Thompson 1999; Templeton et 

al. 2001), the potential for the introduction of novel alleles (e.g., resistance alleles) by 

recurrent gene flow among populations has now been reduced given that only eight out 

of eleven island populations remain intact.  Thus, managers of the Galápagos National 

Park may consider restricting travel to the smallest island populations of the hawk, given 

that invasive avian disease vectors have established within several human-inhabited 

islands that serve as a base of operations for the tourism industry (Whiteman et al. 

2005).    

As a potential mechanism underlying the relationship between host genetic 

diversity and average parasite load, we showed that NAb agglutination titres were 

negatively related to abundance of native parasites that fed on skin and blood (C. 

turbinatum), although the correlational nature of this analysis and its marginal 

significance, after correcting for the effects of island, indicate that this result be accepted 

with caution and requires confirmation.  However, strength of the PHA-induced immune 

response in birds was directly related to amblyceran species richness, indicating that 

amblycerans and their avian hosts are engaged in coevolutionary arms races (Møller & 

Rózsa 2005).  Thus, our finding of a potential relationship between host immune 

response and amblyceran, but not ischnoceran abundance at the individual host level, is 

in accord with this macroevolutionary trend.   

The influence of another unmeasured factor correlating with population genetic 

diversity may also explain the results, although we know of no such factor.  Nearly 90% 

of the variation in hawk genetic diversity is explained by island size and these hawk 

populations are genetically isolated from one another (Bollmer et al. 2005; in press).  

Given that larger island populations typically had lower parasite loads, a simple 



Matson, Kevin, 2006, UMSL, p. 

 

136

relationship between host population size and parasite load is unlikely here (Lindström  

et al. 2004).  Specific mechanisms underlying the relationship between H and disease 

susceptibility may include the exposure of deleterious recessive alleles (Keller & Waller 

2002), the fixation of slightly deleterious alleles through genetic drift (Johnson & Seger 

2001), other microevolutionary processes associated with founder events and 

maintenance of small population sizes over time, or a combination of these.  

Generalized inbreeding depression may also lead to physical and behavioral changes 

that affect preening efficiency and this may be particularly germane for D. regalis, which 

mainly encounters mechanical host defences (Clayton et al. 1999; Whiteman & Parker 

2004b).   

Extinction and disease ecology are “by their nature cryptic and difficult to study in 

natural communities” (de Castro & Bolker 2005).  Clearly, however, this information is of 

basic biological interest and offers insight into how populations will respond to invasions 

of alien pathogens, which is underway in most previously isolated ecosystems.  Future 

studies examining host immunogenetics, parasite population genetics and transmission 

dynamics are necessary for fully assessing the threat of pathogens to this island 

endemic. 
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FIGURE LEGENDS 

Figure 1.  Map of the Galápagos Archipelago, located ~1000 km west of mainland 

Ecuador, South America.  Extant breeding island populations of the Galápagos hawk 

(Buteo galapagoensis) are named, followed by estimates of island population genetic 

diversity (H; Stephens heterozygosity values) calculated from multilocus minisatellite 

data.  Small black dots within islands indicate sampling localities.  An estimation of H 

from the mainland Swainson’s hawk (the putative sibling species of B. galapagoensis) 

was included for comparative purposes.  Extinct island populations of B. galapagoensis 

are indicated by an “X” (there is no evidence indicating hawks have ever inhabited Isla 

Genovesa located in the northeastern part of the archipelago).   

Figure 2.  Scatterplot of two disease susceptibility variables vs. estimated host 

population genetic diversity (heterozygosity) values.  (A) Louse abundance vs. host 

population genetic diversity.  Closed circles = average amblyceran abundance ± 95% 

confidence intervals (Colpocephalum turbinatum, Laemobothrion maximum, and 

Kurodaia sp.; r = –0.949, n = 9, p < 0.0001).  Open circles = average ischnoceran 

abundance ± 95% confidence intervals (Degeeriella regalis; r = –0.854, n = 9, p < 0.01).  

Dyads with heterozygosity values > 0.9 represent a mainland B. swainsoni population 

and the remaining values represent eight island populations of B. galapagoensis.  Island 

populations reading left to right are as follows:  Santa Fe, Española, Pinzón, Marchena, 

Pinta, Isabela, Fernandina, Santiago; (B) Average agglutination titres (NAbs) ± SDM 

from 46 B. galapagoensis individuals vs. estimated host population genetic diversity (the 

relationship between NAb agglutination titres and genetic diversity was not linear, 

although significant differences existed in average NAb agglutination titres among 

island-populations, one-way ANOVA: F6,39, p < 0.01).  Island populations reading left to 

right are as follows:  Santa Fe, Española, Marchena, Pinta, Isabela, Fernandina, 

Santiago. 



Matson, Kevin, 2006, UMSL, p. 

 

146

Figure 3.  Negative linear relationship between Colpocephalum turbinatum abundance 

and natural antibody (NAb) titres.  The regression line through the raw data (uncorrected 

for island) is shown (β = –0.355, p < 0.01).  The relationship was marginally significant 

after controlling for the effects of island and other host factors (β = –0.342, p = 0.05).  

Open circles = individuals from more inbred island populations (Española, Marchena, 

Santa Fe), solid circles = individuals from more outbred island populations (Fernandina, 

Isabela, Pinta, Santiago).
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Chapter 6 

Increase in the constitutive innate humoral immune system in Leach’s storm 

petrel (Oceanodroma leucorhoa) chicks is negatively correlated with growth rate. 

In press: R. A. Mauck, K. D. Matson, J. Philipsborn & R. E. Ricklefs.  

Functional Ecology. 

 

Summary: 

1. Using a simple technique for assessing constitutive innate immune function 

recently adapted for use in wild populations, we characterize changes in 

avian immune system development by repeated measurements of individuals 

over the period of nestling growth in a wild population of Leach’s storm-

petrels (Oceanodroma leucorhoa). 

2. We measured levels of natural antibodies (NAb) during the early, middle, and 

late phases of storm-petrel development and related these levels and NAb 

rate of change to mass and wing length growth. We used natural variation in 

nestling growth to assess the influence of nutritional status on the 

development of innate immunity. 

3. NAb levels increased over the first fifty days of chick development, however, 

rate of increase was inversely proportional to wing growth. 

4. Initial titer levels were inversely proportional to rate of change in NAb levels 

over the initial 50 days of immune development. This suggests that 

individuals with low initial NAb levels accelerate immune development to 

reach adult levels, whereas individuals with high initial levels do not. 

5. As in previous studies, our results demonstrate an inverse relationship 

between growth rate and development of components of the avian immune 

system. While such a relationship is consistent with the idea that immune 
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function development involves trade-offs, the processes involved are more 

complex than simple energy allocation. 
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Introduction 
Immune function is increasingly seen in the context of life-history trade-offs 

(Martin et al., 2001; Norris & Evans, 2000; Schmid-Hempel, 2003; Sheldon & Verhulst, 

1996; Tella et al., 2002). The ability to respond effectively to parasites and pathogens 

has been shown to have fitness benefits in terms of body condition, survival, and 

reproductive success (e.g., Alonso-Alvarez & Tella, 2001; Christe et al., 2001; Horak et 

al., 1999; Johnsen et al., 2000; Råberg & Stjernman, 2003; Svensson et al., 2001). With 

benefits come costs; resources allocated to the immune system are not available for 

other functions. For example, experimentally elicited immune responses have been 

shown to decrease avian nestling growth (Alonso-Alvarez & Tella, 2001; Brommer, 

2004; Fair et al., 1999; Nilsson, 2003; Soler et al., 2003a; Whitaker & Fair, 2002), 

degrade adult body condition (Alonso-Alvarez & Tella, 2001; Sanz et al., 2004), and 

increase metabolic rate (Ots et al., 2001). 

Many studies (reviewed in Tella et al., 2002) have employed the 

phytohemagglutinin (PHA) skin test to assess non-specific cellular immunity (commonly 

referred to as cell-mediated immunity, or CMI). Although the PHA response involves 

proliferation of T-cells, PHA also attracts other immune cells, including basophils and 

heterophils, to the injection site and causes inflammation (Smits et al., 1999). Response 

to PHA is typically positively correlated with nestling body condition or food availability, 

sometimes mediated through an effect of brood size or season (e.g., Dubiec & Cichon, 

2001; Hoi-Leitner et al., 2001; Merino et al., 2000; Westneat et al., 2004).  

 Much recent work on immune function in developing birds has focused on 

measuring induced immunological responses, a subset of immune function that involves 

adaptive humoral immunity (e.g., antibody responses to specific antigens) and cellular 

immunity (e.g., changes in leukocyte profiles, often after a specific or nonspecific 

challenge). Less attention has been paid to constitutive immune function in wild 



Matson, Kevin, 2006, UMSL, p.  

 

153

populations. An important humoral component of constitutive, innate immunity are 

natural antibodies (NAb), which represent a first-line of defense against pathogens 

(Ochsenbein & Zinkernagel, 2000).  

Unlike adaptive Ab, NAb are directly encoded by germ-line genes in the absence 

of somatic rearrangement (Avrameas, 1991; Boes, 2000; Ochsenbein & Zinkernagel, 

2000) and, by definition, are the only class of immunoglobin molecules whose 

concentration in blood is not dependent on previous exposure to specific antigens (Boes, 

2000; Pereira et al., 1986). NAb serve a number of functions, including direct immediate 

control of novel bacterial and viral challenges, initiation of the complement enzyme 

cascade that results in cell lysis, regulation of self-reactive B and T cells, and clearance 

of damaged or transformed cells (Boes, 2000; Carroll & Prodeus, 1998; Ochsenbein & 

Zinkernagel, 2000; Reid et al., 1997). Selection experiments with chickens suggest that 

changes in NAb levels parallel changes in primary antibody responses and general 

disease resistance (e.g., Parmentier et al., 2004) and might be genetically linked with 

specific humoral responses (Cotter et al., 2005).  

Laboratory studies of chickens show that the immune system of newly hatched 

birds is inefficient and poorly developed, then becomes stronger with age (Apanius, 

1998). However, little is known about the development of constitutive innate humoral 

immune function in the wild, particularly about the influence of nutrition and environment 

on the rate of development. 

Recently, Matson et al. (2005) described a highly repeatable assay for innate 

humoral immunity based on NAb-mediated complement activation and red blood cell 

agglutination. Because the assay requires only a single, small (~100µL) blood sample, it 

is suitable for use in wild populations of small birds. Unlike the PHA test, which assesses 

non-specific cellular immunity involving an array of responses, the NAb assay measures 

a single, well-characterized component of the innate immune response. Moreover, 
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measurement of NAb does not induce an immune response in situ, and so, unlike the 

PHA test, natural antibody titers of an individual can be measured independently and 

repeatedly over time, allowing the investigator to quantify the development of immune 

function in young birds and changes in immune function in response to natural or 

experimental treatments. 

In this paper, we present a longitudinal study of NAb concentrations in chicks of 

Leach’s storm-petrels (Oceanodroma leucorhoa) over the postnatal growth period and in 

relation to the chicks’ rate of mass gain and wing growth. Storm-petrels are particularly 

appropriate for investigating the effects of nutrition on immune function development 

because food provisioning varies widely and chicks are readily accessible through the 

entire development period. Characteristic of the avian order Procellariiformes, storm-

petrels are long-lived, breeding up to 35 years, and lay a single egg each year 

(Huntington et al., 1996). Petrels dig their nests in underground burrows where male and 

female members of a pair share incubation during a 40- to 44-day incubation period 

(Gross, 1935; Huntington et al., 1996). Once hatched, the nestling is brooded for about 5 

days, after which it remains alone in the burrow for another 55 to 65 days before 

fledging, physically indistinguishable from adult individuals. During development, a 

nestling is fed during brief, nocturnal visits by both parents. Due the unpredictable nature 

of the pelagic resource, there is great variation in chick provisioning by adults and, 

therefore, in chick nutritional status (Ricklefs et al., 1985; Ricklefs & Schew, 1994). Rate 

of increase in wing length and maximum chick mass during development (x = 82.5 ± 6.1 

SD, range 67 – 97 g) reflect the total food delivered to the chick during development 

(Mauck & Ricklefs, 2005). We measured naturally occurring antibody levels during the 

early, middle, and late phases of storm-petrel development and related these levels and 

NAb rate of change to mass and wing length growth. We used natural variation in 

nestling growth to assess the influence of nutritional status on the development of innate 
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immunity.  

Methods 

Study population  

We conducted this study at a breeding colony of about 2,000 pairs of Leach’s 

storm-petrels at the Bowdoin Scientific Station on Kent Island, New Brunswick, Canada 

(44°35’ N, 66°45’ W) near the mouth of the Bay of Fundy. During the 2003 breeding 

season, we monitored chick growth in 13 burrows on Kent Island. At approximately the 

same time each day, we measured chick wing length to the nearest mm, tarsus length to 

the nearest 0.1mm, and chick mass to the nearest 0.1g with a portable electronic 

balance (OHAUS, Inc.). Two of the thirteen chicks were not measured daily and were 

measured only on the days on which blood samples were collected. 

Measuring immune response 

 We collected three blood samples from each chick, which represented early (day 

19-21), middle (day 33-35), and late (day 49-51) phases of chick development. For each 

sample, we used heparinized microcapillary tubes to collect approximately 100µL of 

whole blood from the brachial vein. Samples were kept without refrigeration for less than 

two hours before centrifugation and plasma removal. We froze the resulting blood 

plasma at -20ºC for storage and transport. 

We assessed innate humoral immunity by characterizing NAb-mediated rabbit 

red blood cell agglutination titers as described by Matson et al. (2005), with two minor 

modifications. First, for all steps requiring phosphate buffer saline (PBS), we used 

Dulbecco’s PBS (#D8662, Sigma, St Louis, MO). Because this formulation includes 

MgCl2·6H2O and CaCl2·2H2O in addition to the basic PBS ingredients, its use 

counteracted any effects of plasma serial dilution on endogenous divalent cation 

concentration. Second, we used plates processed for improved hydrophilic qualities 

(Corning Costar #3798, instead of #3795). Assays were randomized and run blindly with 
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respect to sample. Digitized images produced by this protocol were also randomized 

with respect to plate, plate location, and sample, and were scored blindly for both lysis 

and agglutination of rabbit red blood cells. Lysis titers reflect the interaction of NAb and 

complement; agglutination results only from NAb activity. In our samples, 90-minute lysis 

titers showed almost no variation with 34 out of 35 samples scoring 0.0 (0.07 ± 0.07 SE 

titers), which were similar to scores reported by Matson et al. (2005) for the related 

waved albatross (Phoebastria irrorata). Accordingly, we used only agglutination titers for 

our analyses of immune function in storm-petrel chicks.  

Of the 39 samples from 13 chicks, four samples were not usable due to 

insufficient volume of blood plasma. Thus, we were able to analyze early, middle, and 

late samples for nine chicks, early and middle samples for two chicks, and middle and 

late samples for two chicks. 

Statistical analyses 

 We used several derived variables to compare chick development and immune 

function. For each chick, we calculated the rate of increase (slope) of the wing (WLS; 

mm d-1) during the linear phase of wing growth (20-50 days of age) and maximum mass 

attained during the nestling period (MaxMass; g). As an index of chick body condition at 

maximum mass (BCImax), we divided MaxMass by tarsus length (TL). For each chick, we 

used the slope of the least squares regression of agglutination titer versus age to 

characterize change in NAb activity during chick development (NAbSlope). As an index 

of chick body condition on day 50 (BCI50), we divided chick mass by tarsus length (TL). 

For all derived variables, the distribution of values did not differ from normal.  

To determine whether NAb activity increased with chick age, we used a one-

sample, one-sided t-test of NAbSlope against the null hypothesis that mean NAbSlope 

was less than or equal to zero.  
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 To investigate how chick growth and environment influenced rate of immune 

function development, we used an information-theoretic approach (Burnham & 

Anderson, 1998) to investigate models of the relationship between NAbSlope and four 

independent variables representing seasonal effect (Julian hatch date of the chick), food 

delivered to the nest (MaxMass), and chick growth rate (WLS), as well as initial NAb 

level (NAb20) to account for any effect of starting point on immune function development. 

As suggested by Burnham and Anderson (1998) for observational studies, this approach 

allowed us to rank models and select a “best” model using Akaike’s information criterion 

(AIC). We constructed all possible combinations of seasonal effect, food delivered to the 

nest, chick growth rate, and initial NAb levels. In this way, we constructed 15 models 

with these four variables (Table 1). We used the JMP (SAS Institute) statistical 

package’s stepwise regression function to calculate AICc values for each model. We 

then calculated Akaike model weights (�m) to rank models, and Akaike parameter 

weights (�p) to rank individual variables with respect to their explanatory power. When 

one model and one parameter emerged as a particularly important factor, we used linear 

regression to test the post-hoc hypothesis that chick growth rate influenced the rate of 

immune function development. We then used multiple linear regression to assess the 

effect of the initial NAb level on immune development while holding chick growth rate 

constant.  

 To compare our data with studies reporting immune function in relation to body 

condition at a single point near the end of chick development, we regressed the 

agglutination titer on day 50 against chick body condition (BCI) on day 50. To investigate 

the generality of the relationship between agglutination titer and BCI, we repeated the 

analysis for day 20 and day 35 samples. 
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Results 

 Agglutination titers increased with chick age (Fig. 1). Mean change in 

Agglutination titer over time (0.06 ± 0.02 SE titers day-1) was significantly greater than 

zero (one-sample, one-sided t-test, df=12, T=2.92, P=0.006). 

 The best model (Table 1) for predicting the rate of increase in NAb (NAbSlope) 

contained only chick growth rate (WLS). This simple model was superior to the models 

containing only Initial (NAb20) level (�AICc = 1.74) or both NAb20and WLS (�AICc = 

1.70). Models with �AICc less than 2.0, however, are often considered equivalent 

(Burnham & Anderson, 1998) and, therefore, NAB20 must be considered a useful 

predictor of NAbSlope. Since models with a �AICc greater than 4 are considered 

implausible (Burnham & Anderson, 1998), inclusion of only WLS and NAB20 may be 

sufficient to explain variation in immune function development rate. As indicated by their 

low Akaike parameter weights (Table 2), total food delivered to the chick (MaxMass) and 

season (JD) probably have little predictive power. The primary importance of chick 

growth rate as a predictor of change in agglutination titers over the first fifty days of chick 

development is indicated by the difference in Akaike parameter weights between WLS 

and all other variables (Table 2).  

 Linear regression of NAbSlope against WLS (the “best” model) revealed a 

negative correlation (-0.14 ± 0.06 SE titers d-1/mm d-1) between NAb rate of increase and 

chick growth rate (R2 = 0.34, df = 12, F = 9.03, P = 0.009; Fig. 2). 

 Linear regression of NAbSlope against both WLS and NAB20 (R2 = 0.69, df = 8, F 

= 5.69, P = 0.036) had little effect with respect to WLS (-0.11 ± 0.04 SE titers d-1/mm d-1, 

P=0.02) and revealed a negative correlation between NAbSlope and initial NAb level (-

0.02 ± 0.008 SE titers d-1/ NAB20 score, P=0.03). 

 Linear regression revealed a negative correlation (-1.99 ± 0.54 SE titers/BCI) 

between NAbScore and body condition index on day 50 (R2 = 0.60, df = 10, F = 13.65, P 
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= 0.005). BCI50 and chick mass on day 50 are highly correlated (r = 0.77). Therefore, to 

allow easier interpretation of immune function and chick nutritional state on day 50, we 

used chick mass rather than BCI in to show this relationship graphically (Fig. 3). There 

was no correlation between body condition and agglutination score on day 20 (r = 0.17) 

or day 35 (r = 0.06). 

Discussion 

 Our results add to the literature demonstrating an inverse relationship between 

particular components of immune function and growth rate of individuals in wild 

populations; it is the first, however, to directly measure development rate of the immune 

system itself in a natural population. As expected, NAb activity increased over the first 

fifty days of chick development (Fig. 1), however, the rate of increase was inversely 

proportional to wing growth rate (Fig. 2). For every mm d-1 increase in wing growth rate, 

innate immune function development decreased by –0.14 titers d-1. This result is 

consistent with the idea that development of the innate immune system involves trade-

offs, though the nature of those trade-offs is unclear. 

At the same time, initial titer levels were inversely proportional to rate of change 

in NAb levels over the initial 50 days of immune development (-0.02 ± 0.008 SE titers d-1/ 

NAB20 score). This suggests that individuals starting with low NAb levels accelerate 

immune development to reach adult levels, whereas individuals starting with high levels 

do not. Indeed, variation in NAb levels decreases through early (CV=164.0), middle 

(CV=93.4), and late (CV=58.8) development. Incubating adults show even less variation 

(CV=23.0; Mauck et al., unpubl.). Possibly, initial NAb levels set a rate of development 

for this component of immune function that, in turn, imposes a cost in terms of chick 

growth.  

Our results are consistent with studies that imposed an immunological cost on 

developing chicks, resulting in slower growth rates (Brommer, 2004; Soler et al., 2003b; 
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Swain & Johri, 2000; Tsiagbe et al., 1987), although other studies have failed to find 

such a cost (e.g., Fair et al., 1999; Whitaker & Fair, 2002). The relationship between 

immune function and other life-history traits is not well understood (Norris & Evans, 

2000; Owens & Wilson, 1999). In particular, it is not clear that simple maintenance of 

immune function is costly in the absence of infection (Klasing, 1998b; Kraaijeveld & 

Godfray, 1997; Webster & Woolhouse, 1999), though maintenance is apparently costlier 

for the innate immune system than for the adaptive immune system (Råberg et al., 

2002). There is little doubt, however, that mounting an immune response is energetically 

costly due to both direct and indirect metabolic requirements of both the innate and 

adaptive systems (e.g., Demas et al., 1997; Lochmiller & Deerenberg, 2000; Nilsson, 

2003; Råberg et al., 2002). Unlike many previous studies, we investigated immune 

function development rather than immune function response – i. e., having an immune 

system vs. using an immune system. Although we did not measure energetic costs 

directly, nestling growth rate is certainly linked to energy availability. Procellariiform 

growth and development is thought to be energetically expensive compared to other 

altricial and semi-altricial bird species (Hodum & Weathers, 2003; Ricklefs et al., 1980). 

It is, therefore, possible that the apparent growth-immune function trade-off observed 

here can be explained by energetics. 

It is doubtful, however, that simple energy allocation is wholly responsible for the 

negative relationship (Fig. 2) between rate of innate immune function development and 

chick growth. A simple energy allocation model would predict an effect of food delivery 

on rate of immune development. Typical of all storm-petrels, chicks gain mass irregularly 

to a maximum late in the nestling period, followed by rapid decline before fledging 

(Huntington et al., 1996; Mauck & Ricklefs, 2005). The excess mass is primarily lipids 

accumulated as insurance against an uncertain resource (Ricklefs & Schew, 1994). If 

immune development is a simple matter of energy allocation, then we should have seen 
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a positive effect of MaxMass on immune development, since the heaviest chicks have a 

net energy surplus. We did not (Table 1, 2). The simple energy allocation model would 

also predict a positive correlation between BCI and agglutination score at any age. We 

found no correlation between BCI and agglutination score during early (r = 0.17) and mid 

(r = 0.06) development and a strong negative correlation late in development (r = 0.77). 

Apparently, stored energy alone did not enable rapid immune function development in 

these nestling storm-petrels. Although our results certainly suggest a trade-off, it is 

evidently more complex than a simple allocation of energy, perhaps also involving other 

critical resources or control mechanisms.  

 Our results stand in contrast to the many studies that have measured immune 

function at the end of chick development and found that chicks in better body condition 

are better able to respond to immune challenges (e.g., Hoi-Leitner et al., 2001; Horak et 

al., 1999; Saino et al., 2002; Tella et al., 2001). We found a negative relationship 

between body size and innate immune function near the end of the growth period (Fig. 

3) and it is not clear why. The irregular pattern of petrel provisioning is such that chicks 

lose weight on 43.8% of days during development; on a finer scale, some chicks gain as 

much as 20g in 24 h, or lose weight on as many as 6 consecutive (x = 3.0 ± 0.9 SD) 

days (RAM, unpubl.). It is tempting, therefore, to see petrel chick provisioning as a 

natural parallel to experiments by Klasing (1998a) in which domestic chicken nestlings 

were either force-fed or deprived of food. In those experiments, food-deprived (light) 

chicks showed increases in some aspects of immune response and over-fed (heavy) 

chicks showed decreased responses. Although fifty-day old storm-petrel chicks show a 

similar pattern (Fig. 3), the lack of any relationship between mass and agglutination 

score during early (r = 0.17) and mid (r = 0.06) development suggest this is not an 

adequate explanation for our result.  
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Not surprisingly, our measures of innate immune function increased with time 

(Fig. 1). The extensive literature on galliform birds clearly demonstrates an increase in 

the concentration of natural antibodies over the first six months of age in chickens 

(Apanius, 1998). In validating their NAb measurement protocol, Matson et al. (2005) 

tested Cobb broiler chickens and found that NAb levels increased over time to adult 

levels by 11 weeks of age. Storm-petrels differed from chickens in this respect because 

the NAb levels of 50-day old chicks (2.06 ± 0.36 SE titers) were only 60% of those 

observed in incubating adult petrels (3.42 ± 0.18 SE titers; Mauck et al., unpublished 

data). Structural growth in petrels is completed before fledging, usually by day 55-60 

(Mauck & Ricklefs, 2005; Ricklefs et al., 1980). On average, day 50 chicks in this study 

had achieved 78% of their completed wing growth. Thus, innate immune system 

development appears to lag behind structural development in storm-petrels.  

Using this simple technique for assessing constitutive innate immune function in 

wild populations, we have characterized changes in avian immune system development 

by repeated measurements of individuals over the period of nestling growth in a wild 

population. As in previous studies, our results demonstrate an inverse relationship 

between growth rate and development of the avian immune system. While such a 

relationship is consistent with the idea that immune function development involves trade-

offs, the processes involved are certainly more complex than simple energy allocation.  
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Figure Legends 

1. Change in immune function (agglutination score) during storm-petrel chick 

development during the early (day 20), middle (day 35) and late (day 50) phases 

of nestling growth. Black circles represent mean values at each phase. Error bars 

are SE. The dotted line represents the mean regression line for change in 

agglutination titer with age for N = 13 chicks.  

2. Change in rate of immune function development as a function of chick growth 

rate. Solid line represents least squares fitted line for N = 13 chicks.  

3. Immune function (agglutination score) as a function of chick mass on day 5 for N 

= 11 storm-petrel chicks.
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Figure 1 
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Figure 2 
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 Figure 3 
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Table 1. All possible models involving seasonal effect (Julian Hatch Date of chick; JD), 

food delivery to nest (Maximum Mass attained by chick; MaxMass), chick growth rate 

(Wing Length Slope between day 20 and day 50; WLS) and initial titer (NAb20). Models 

are ranked by �AICc after Burnham and Anderson (Burnham & Anderson, 1998). #Par 

represents the number of parameters included in the model. 

Rank Variables included #Par AIC AICc �AICc �i
1 WLS 1 -57.96 -55.29 0.00 0.411
2 WLS, NAb20 2 -58.59 -53.59 1.70 0.175
3 NAb20 1 -56.21 -53.55 1.74 0.172
4 WLS, JD 2 -56.33 -51.33 3.96 0.057
5 WLS, MaxMass 2 -56.06 -51.06 4.23 0.050
6 MaxMass 1 -52.84 -50.18 5.11 0.032
7 JD 1 -52.30 -49.63 5.66 0.024
8 NAb20, JD 2 -54.63 -49.63 5.66 0.024
9 MaxMass, NAb20 2 -54.23 -49.23 6.06 0.020

10 WLS, MaxMass, NAb20 3 -57.18 -48.61 6.68 0.015
11 WLS, NAb20, JD 3 -56.61 -48.04 7.25 0.011
12 MaxMass, JD 2 -51.32 -46.32 8.96 0.005
13 WLS, MaxMass, JD 3 -54.33 -45.76 9.53 0.003
14 MaxMass, NAb20, JD 3 -52.66 -44.09 11.20 0.002
15 Full Model 4 -55.45 -41.45 13.84 0.000
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Table 2. Akaike variable weights (�I) calculated after Burnham and Anderson (Burnham 

& Anderson, 1998) from all possible models (Table 1) involving these four variables. N = 

13 for all variables, except MaxMass and Initial Titer (NAb20) for which N = 11. 

Variable X ± SE �i 

WLS 3.13 ± 0.08 mm d-1 0.721 

NAb20 0.75 ± 0.4 g 0.418 

JD 260.8 ± 2.8 d 0.126 

MaxMass 81.6 ± 2.5 g 0.126 
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Chapter 7 

Variation in the innate and acquired arms of the immune system among five 

shorebird species. 

In press: L. Mendes, T. Piersma, D. Hasselquist, K. D. Matson & R. E. Ricklefs.  

Journal of Experimental Biology. 

 

Summary: To contribute to an understanding of the evolutionary processes that shape 

variation in immune responses, we compared several components of the innate and 

acquired arms of the immune system in five related, but ecologically diverse, migratory 

shorebirds (ruff Philomachus pugnax Linnaeus, 1758; ruddy turnstone Arenaria interpres 

Linnaeus, 1758; bar-tailed godwit Limosa lapponica Linnaeus, 1758; sanderling Calidris 

alba Pallas, 1764; red knot C. canutus Linnaeus, 1758). We used a hemolysis-

hemagglutination assay in freeliving shorebirds to assess two of the innate components 

(natural antibodies and complementmediated lysis), and a modified quantitative 

enzyme–linked immunosorbent assay in birds held in captivity to assess the acquired 

component (humoral antibodies against tetanus and diphtheria toxoid) of immunity. 

Ruddy turnstones showed the highest levels of both innate and acquired immune 

responses. We suggest that turnstones could have evolved strong immune responses 

because they scavenge among rotting organic material on the seashore, where they 

might be exposed to a particularly broad range of pathogens. Although ruffs stand out 

among shorebirds in having a high prevalence of avian malaria, they do not exhibit 

higher immune response levels. Our results indicate that relationships between immune 

response and infection are not likely to follow a broad general pattern but instead 

depend on type of parasite exposure, among other factors.
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1. INTRODUCTION 

The immune system is one of the most important defense mechanisms of vertebrates for 

protection against pathogens and parasites (e.g.; see Zuk and Stoehr, 2002; Schmid-

Hempel, 2003). Besides the obvious benefits, immune responses also convey costs, 

including greater risk of autoimmune disease (Råberg et al., 1998; Finch and Crimmins, 

2004) and the depletion of energy that could otherwise be used in other activities 

(Nelson et al., 2002). Such costs, which potentially even reduce survival (Hanssen et al., 

2004), will mould the evolution of the immune defence (e.g. Råberg et al., 2000). 

Therefore, maximising parasite resistance must be balanced by minimising damage to 

the host (Råberg et al., 1998; Segel and Bar-Or, 1999). This benefit/cost balance should 

depend on environmental conditions. For instance, relative benefits will increase with 

parasite density or parasite diversity (Råberg, 2002), while in habitats with high rates of 

infection, repeated activation of the immune response might select for strategies that 

minimise the risk of collateral damage and place a premium on optimising the immune 

responses (Segel and Bar-Or, 1999). The balance between benefit and cost is likely to 

lead to variation in immune response, and indeed, within individuals of the same 

species, the immune function can vary with sex, age and season (Hasselquist et al., 

1999; Duffy et al., 2000; Lorenzo and Lank, 2003; Nelson et al., 2002). In comparisons 

between species, immune response variation may also reflect the optimization of 

phenotype responses to the environment (Ricklefs and Wikelski, 2002); variation among 

species might thus represent phenotypic plasticity or genotype-environment interactions. 

In vertebrates, the immune system consists of two arms, a non-specific, innate 

arm and a more specific, acquired arm (Male and Roitt, 2000; Doan et al., 2005). The 

innate immune system provides initial protection to a wide variety of foreign organisms. 

The acquired immune system confers delayed, but more specific, protection against 

foreign antigens; in the blood stream it acts through specific antibodies that attach to its 
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target pathogen. Higher levels of one component of the immune system need not imply 

greater overall resistance (Adamo, 2004); hence one should strive to assay the different 

parts of the immune system. In the present study, we collected several measurements of 

both the innate and the acquired (humoral) arm of the immune system.  

Migratory shorebirds share many of the life-history traits that are thought to 

correlate with well-developed immune response, such as low reproductive rate and 

relatively long life span (Tella et al., 2002). However, this group of birds also varies with 

respect to migration strategy, habitat choice, and foraging style (Piersma, 2003). While 

migration strategies might affect immune response through competition for limited 

energy resources (Piersma, 1997; Møller and Erritzøe, 1998), habitat choice also can 

create differences in disease risk (Moore, 2002; Mendes et al., 2005). In effect, while 

positive relationships between disease risk and immune response have been found in 

several studies (Lindström et al., 2004; Apanius et al., 2000), the relationship between 

migration and immunity may prove to be more difficult to uncover.  

 In this study, we use a combination of immunological assays that measure different 

branches of the immune system (innate as well as acquired) in a comparative and 

experimental study of five related Scolopacidae, including four Arctic-breeding and 

coastal wintering species: red knot Calidris canutus Linnaeus, 1758; bar-tailed godwit 

Limosa lapponica Linnaeus, 1758; sanderling Calidris alba Pallas, 1764; and ruddy 

turnstone Arenaria interpres Linnaeus, 1758; and the temperate-breeding ruff 

Philomachus pugnax Linnaeus, 1758. Unlike the other species, the ruff is confined to 

freshwater wetlands year-round. Ruddy turnstones breed at more southerly latitudes 

than the other marine wintering species and they routinely scavenge among human and 

other refuse along seashores (Piersma et al., 1996). Among coastal shorebirds, ruddy 

turnstones seem to be particularly affected by wildlife diseases (Hansson, 2003), as are 

species using freshwater habitats in the tropics, such as ruff (Mendes et al., 2005).  



Matson, Kevin, 2006, UMSL, p.  

 

179

2. MATERIAL AND METHODS  

Wild shorebirds were caught along the East Atlantic flyway (Smit and Piersma, 1987; 

van de Kam et al., 2004). Coastal/marine shorebirds were caught at night with mistnets 

in the Parc National du Banc d’Arguin, northern Mauritania, ca. 20°N, 16°W, during 

November-December 2002 and in the western Wadden Sea, The Netherlands, 53º, 5ºE, 

between 1999 and 2002 during northward and southward migration, and also during 

winter. In addition, we captured birds during the day using so-called ‘wilsternets’ (see 

Jukema et al., 2001) in the meadows of the Dutch province of Fryslân (ca. 53º N, 5º 

30’E) in April-May 2002. In total, we caught 54 red knots, 33 sanderlings, 15 ruddy 

turnstones, 8 bar-tailed godwits, and 12 ruffs. Birds captured with wilsternets were bled 

within ca. 10 min after capture, those captured in mistnets within ca. 3 hrs. 

 Individuals of all five species to be held in captivity were caught in The Netherlands 

during the nonbreeding season. Three species were caught with mistnets at night during 

southward migration in the western Wadden Sea (53º 16’N; 5º 08’E): 10 red knots of the 

African wintering subspecies C. c. canutus and 11 sanderlings in July-August 2001, and 

two sets of ruddy turnstones, the first group with 24 individuals during August 2001 and 

the second with 11 individuals during November 2002, after post-breeding moult in the 

Wadden Sea (Meltofte et al., 1994). Fourteen bar-tailed godwits and 10 ruffs were 

trapped with wilsternets in daytime during northward migration (Jukema et al., 2001). 

The bar-tailed godwits were caught in meadows on the island of Texel (53º 05’N, 4º 

75’E) in May 2001, and the ruffs, in the province of Fryslân during April-May 2003. All 

birds were individually ringed, measured, weighed, and aged as being in their first year 

of life or older on the basis of plumage characteristics (Prater et al., 1977). 

Measuring immune responses 

We chose assays to examine both the innate and the acquired arms of the immune 

system. Innate immunity was investigated in free-living individuals by measuring two of 
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its most important components, i.e. natural antibodies and the complement cascade 

(Matson et al., 2005). Natural antibodies recognise and attach to invading organisms 

and are also responsible for initiating the complement cascade (Ochsenbein and 

Zinkernagel, 2000). The complement cascade recognises and kills extracellular foreign 

organisms (Wilson et al., 2002). To assess the acquired immune response, we 

challenged wild birds kept under identical aviary conditions with two antigens widely 

used in immunoecology studies, i.e. tetanus and diphtheria toxoid (inactivated toxin; e.g. 

Svensson et al., 1998; Råberg et al., 2003; Hanssen et al., 2004). In this study, we 

considered separately antibody binding before vaccination and after primary and 

secondary immune responses because these involve different mechanisms and 

molecules (Doan et al., 2005). In the humoral immune response, specific antibodies are 

responsible for neutralizing the intracellular pathogens by blocking cell binding/entry and 

preventing the spread of pathogenic organisms; they also neutralize toxins produced by 

bacteria such as diphtheria and tetanus (Roitt et al., 2000). 

Hemolysis-hemagglutination assay in free-living shorebirds 

A blood sample of ca. 160 µl was obtained by puncturing the brachial vein of wild 

shorebirds with a sterile 23-gauge needle; blood was collected in two 80 µl heparinized 

microhematocrit capillary tubes. Samples were stored on ice and were centrifuged for 10 

minutes at 6.900 g within two hours. Plasma was stored at –20 ºC until analysis at the 

University of Missouri-St. Louis.  

 To estimate the levels of circulating natural antibodies and complement we used the 

hemolysis-hemagglutination assay described in detail by Matson et al. (2005). The 

agglutination reaction measures the interaction between natural antibodies and antigens, 

which results in blood clumping. The lytic reaction measures the amount of hemoglobulin 

released from the lysis of exogenous erythrocytes (e.g. rabbit), which is a function of the 
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amount of lytic complement proteins present in the sampled blood. In both cases, 

quantification is achieved by serial dilution of plasma samples and assessment of the 

dilution step at which either the agglutination or lysis reaction stopped. For this assay, 

we placed 25 µl of plasma in 6 of the 8 wells of the first row of a 96-well polysterene 

plate (8 columns by 12 rows) (Corning Costar # 3795). The same amount of 0.01 M 

sterile phosphate solution (PBS; Sigma #P3813, St Louis, MO) was set in the first well to 

serve as the negative control; 25 µl of plasma of a well known high responder (a chicken 

standard sample) was added to the last well as a positive control. Next, we used a multi-

channel pipette to dilute with PBS all 6 plasma samples, the negative control and the 

positive standard sample up to 1:1024, through a set of ten 1:2 serial dilutions. After the 

addition of 25 µl of 1% of rabbit blood cell suspension to each well, each plate was 

sealed with a polystyrene plate lid. Plates were vortexed for 10 sec at a low speed, and 

set to incubate at 37 ºC for 90 min. After incubation plates were tilted at a 45º angle 

along their long axis for 20 min at room temperature, plates were scanned (Microtek 

Scanmaker 5900) using the positive transparency (top-lit) option and a full size image 

(300 dpi). We then quantified agglutination (which gives a measure of natural antibody 

levels) and complement-mediated lysis by assessing the dilution stage (on a scale from 

1 to 12) at which these two reactions stopped (for further details, see Matson et al., 

2005).  

Humoral immune assays on wild birds held in captivity 

With the exception of the 24 ruddy turnstones caught during August 2001 that were 

challenged with antigens five months after capture, all other birds were challenged within 

a month of capture. 

 To avoid the possibility of confounding effects of sex and age on the immune 

response, we attempted to restrict our experimental animals to adult females. Upon 
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capture we selected bar-tailed godwits with the longest bills (Piersma and Jukema, 

1990), red knots and sanderlings with long bills and the clearest brood patches (Nebel et 

al., 2000), and small-sized ruffs (van Rhijn, 1991). There are no external criteria for 

distinguishing female ruddy turnstones, and therefore we determined sex by a molecular 

PCR-DNA technique verified for red knots (Baker et al., 1999), and tested for sex and 

age differences in the group with enough individuals to compare between sexes or ages, 

the first group of ruddy turnstones (9 males and 15 females; 10 adults and 14 juveniles). 

We found no differences in diphtheria antibody levels between males and females or 

between first year and older birds (sex: repeated measures ANOVA: F1, 20=0.13; p=0.73; 

age: F1, 20=0.29; p=0.60; sex*age: F1, 20=1.22; p=0.28) or in tetanus antibody levels (sex: 

repeated measures ANOVA: F1, 20=0.11; p=0.75; age: F1, 20=0.63; p=0.44; sex*age: F1, 

20=0.42; p=0.52). Therefore, in the context of interspecific comparisons, sex and age 

differences in antibody production are probably negligible.  

 Birds were kept in single-species flocks in large aviaries at the Royal Netherlands 

Institute for Sea Research (NIOZ) under the ambient natural light: dark cycle. The size of 

the aviaries, which had running fresh water and seawater ranged from 1 m by 3 m and 

2.5 m high, to 7 m by 7 m and 3.5 m high. Bar-tailed godwits, red knots, sanderlings and 

ruddy turnstones were fed trout pellets ad libitum, and ruffs also received mealworms 

Tenebrio sp. By two weeks after capture, body mass had stabilised and we presumed 

that birds had acclimated to captivity. At the time of testing, body masses as a percent of 

the level at capture were 81% ± 11% for bar-tailed godwits (mean capture mass = 316 g, 

n = 14), 87% ± 11% for red knots (mean = 137 g, n = 10), 86% ± 14% for sanderlings 

(mean = 52 g, n = 11), 90% ± 15% for the first group of ruddy turnstones (mean = 117 g, 

n = 24), 98% ± 14% for the second group of ruddy turnstones (mean = 114 g, n = 11), 

and 98% ± 8% for the ruffs (mean =108 g, n=10). 
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 Primary immune responses were elicited through vaccination with 120 µl of the 

combined tetanus and diphtheria toxoid in the pectoral muscle with a 0.5 ml sterile 

syringe (see Hasselquist et al., 2001 for further details of procedures). Secondary 

immune responses were elicited through a second vaccination with 100 µl of the same 

vaccine combination. Blood samples were taken prior to the first injection, and with the 

exception of the second group of ruddy turnstone which were sampled one week later, at 

day 14 after the first injection and day 7 after the second injection, respectively 

(Feldman, 2000; Hasselquist et al., 1999, 2001; Owen-Ashley et al., 2004). Blood was 

centrifuged for 12 min at 6.900g and the plasma preserved at -30º C until analysis.  

 Antibody levels against tetanus and diphtheria toxoid were determined by using a 

modified quantitative enzyme–linked immunosorbent assay (ELISA, Hasselquist et al., 

2001). Individual polysterene 96-well plates (Costar) were coated with either a diphtheria 

toxoid or with a tetanus toxoid (both diluted to 3 µg/ml with 0.15 M of carbonate buffer, at 

pH 9.6) and left to incubate overnight at 4º C. After washing three times with a buffer 

(0.01 M PBS with 0.05% Tween 20), all plates were blocked with 3% milk powder, 

diluted in the same buffer, for 2 h at room temperature. Plates were then washed twice 

and 100 µl of a 1:1600 diluted plasma sample was added (plasma was diluted in a 1:2 

serial dilution with 1% milk powder mixed in PBS/Tween20) and left incubating overnight 

at 4º C. After three buffer washes, 100 µl of a 1:1000 diluted rabbit anti-passerine Ig 

antibody (produced against redwinged blackbird Agelaius phoeniceus antibodies; 

Hasselquist et al., 1999) was added to the wells and left to incubate for 1 h at 37º C. 

Plates were washed again two times and a diluted peroxidase-labelled goat anti-rabbit 

antibody (Cat. A 6154, Sigma) was added and incubated for 30 min at 37º C. Plates 

were washed twice and thereafter the substrate solution [200 µl of 0.2mM ABTS (Cat. A 

1888, Sigma) and 80 µl of 30% H2O2 (diluted 1:40 in distilled H2O) mixed in 20ml of 

citrate buffer (pH 4.0)] was added to achieve colour reaction. We used a Vmax 
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microplate reader (Molecular Devices, Sunnyvale, CA, USA) to read the kinetics of 

colour reactions at 405 nm every 30 s for 14 min. Calculation of antibody titers was 

based on the slope of the substrate conversion, in millioptical density units/min 

(mOD/min).  

 Statistical analysis 

All samples from the specific antibody measurements were run in duplicate. 

Repeatability (intersample variability) was estimated as a percentage of the total 

variability; interplate variability was based on the series of diluted reference samples 

(1:600 to 1:76800) run on each plate. Intersample variability was 2% and interplate 

variability was 16%. We used the average values of the duplicate samples in all 

analyses. To account for interplate variation we adjusted all values to be comparable 

with a reference plate, using plasma from one red knot (known to be a high responder) 

as reference sample on all plates. 

 Natural antibody data were log2 transformed, to achieve normality (samples were 

1:2 serial diluted). We tested for interspecific differences in natural antibody levels with 

analysis of covariance (ANCOVA), in which body mass entered as a covariate. 

Complement activity data was not normally distributed, and therefore we used Kruskal-

Wallis (multiple species) and Kolmogorov-Smirnov tests (two species), to test for 

interspecific differences (Sokal and Rohlf, 1995).  

 Humoral antibody titers were log10-transformed to normalize the residuals (Sokal 

and Rohlf, 1995). We accounted for the unwanted variability caused by interspecific 

differences in body mass, by using an analysis of covariance (ANCOVA), in which body 

mass was entered as a covariate. Furthermore, to identify which species exhibited the 

highest antibody response, we performed a posthoc Tukey test.  

 To investigate whether immune responses exhibit a general pattern, we correlated 

the different immune measurements at the individual and the species level. We used the 
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parametric Pearson correlation coefficient to determine the relationships between 

complement activity and natural antibody levels (innate components) and between 

tetanus and diphtheria humoral response (acquired components). Because the innate 

and acquired measurements were taken in different individuals, we used Spearman rank 

correlations to see whether species average response values correlated among and 

between the two arms of the immune system. All tests were performed in SYSTAT 9 for 

Windows.  

3. RESULTS 

Natural antibodies and complement activity of wild birds 

Natural antibodies levels only differed among species when we corrected for body mass 

(ANCOVA: species F4,121= 1.41; P=0.23, body mass F1,121= 1.24; P=0.27; species×body 

mass F4,121= 2.63; P=0.04; Fig. 1). The level of complement activity varied significantly 

among species (Kruskal-Wallis U=43.36, df=4; p=0.00, Fig. 1). The non-parametric 

Kolmogorov-Smirnov test revealed that ruddy turnstones had the highest level of 

complement-mediated lysis (all species: p<0.05; see also Fig. 1).  

Humoral immune assays on wild birds held in captivity 

The two groups of ruddy turnstones differed with respect to diphtheria pre-vaccination 

antibody levels (ANCOVA: trial F1,31= 6.40, p=0.02; body mass F1,31= 2.06, p=0.16) and 

tetanus primary immune response (ANCOVA: trial F1,31= 4.92, p=0.03; body mass F1,31= 

0.15, p=0.70), but not with respect to the primary immune response against the 

diphtheria toxoid (ANCOVA: trial F1,31= 0.92, p=0.35; body mass F1,31= 0.41, p=0.53), or 

the secondary immune response (ANCOVA: trial F1,31= 0.84, p=0.37; body mass F1,31= 

0.13, p=0.73). The same was true for the pre-vaccination (ANCOVA: trial F1,31= 0.29, 

p=0.60; body mass F1,31= 0.27, p=0.61) and secondary antibody titers against the 
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tetanus antigen (ANCOVA: trial F1,31= 0.05, p=0.82; body mass F1,31= 0.22, p=0.65). 

Although the absolute magnitudes of these differences were small compared to the 

differences between the shorebird species (Fig. 2), we nonetheless included only the 

group of ruddy turnstones that were challenged within a month of capture in the 

interspecific analysis.  

 All species responded positively to vaccination by producing antibodies against the 

diphtheria toxoid (Repeated Measures ANOVA: ruff F2,18= 17.96, p=0.00; ruddy 

turnstone F2,16= 111.39, p=0.00; bar-tailed godwit F2,26= 12.39, p=0.00; sanderling F2,20= 

8.93, p=0.00; red knot F2,18= 10.11, p=0.00) and the tetanus toxoid (Repeated Measures 

ANOVA: ruff F2,18= 26.37, p=0.00; ruddy turnstone F2,16= 81.26, p=0.00; bar-tailed godwit 

F2,26= 18.26, p=0.00; sanderling F2,20= 14.44, p=0.00; red knot F2,18= 23.92, p=0.00) (see 

also Fig.2). 

  Diphtheria antibody levels differed between species, even before vaccination 

(ANCOVA: species F4, 49= 4.54, p=0.00; body mass F1, 49= 0.07, p=0.79). The 

interspecific differences in diphtheria antibody levels widened during the primary 

(ANCOVA: species F4, 47= 6.23, p=0.00; body mass F1, 47= 0.09, p=0.77) and the 

secondary immune responses (ANCOVA: species F4, 47= 16.92, p=0.00; body mass F1, 

47= 2.95, p=0.09). In contrast, tetanus antibody levels did not differ between species, 

either before vaccination (ANCOVA: species F4, 49= 1.06, p=0.39; body mass F1, 49= 0.29, 

p=0.59), or during the primary immune response (ANCOVA: species F4, 47= 0.90, p=0.47; 

body mass F1, 47= 0.06 p=0.82), but they did differ during the secondary immune 

response (ANCOVA: species F4, 47= 9.94, p=0.00; body mass F1, 47= 2.68, p=0.11). Post 

hoc Tukey tests revealed that the ruddy turnstone had (in the case of diphtheria), or 

developed (in the case of tetanus), higher antibody levels to the same amount of vaccine 

than the other species. Pre-vaccination, primary, and secondary antibody levels against 
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diphtheria and secondary antibody levels against tetanus did not differ among the other 

species (see also Fig. 2).  

Relation between the different immune measurements 

The two innate components measured in this study, i.e., natural antibody level and 

complement-mediated lysis, were not correlated (r= 0.09, n=127, p=0.17), but the two 

measurements of the acquired arm of the immune system (antibody titers against 

diphtheria and tetanus) were positively correlated during pre-injection (r= 0.66, n=44, 

p=0.00), primary response (r= 0.63, n=54, p=0.00) and especially secondary immune 

response (r= 0.82, n=55, p=0.00).  

 Even though the correlations between innate and acquired immune components 

were based on the data points for the five species and were never significant at the 5% 

level, there was a tendency for a positive correlation between natural and background 

antibodies against diphtheria and between complement activity and secondary tetanus 

antibody titers (Table 1). 

4. DISCUSSION 

Although we found considerable interspecific variation in both innate and humoral 

immune components, differences were most pronounced for complement-mediated lysis 

and primary and secondary humoral immune response. This result suggests that not all 

immune components are under the same pressure to be internally regulated. Indeed, the 

levels of natural antibodies varied little, even among species with such different body 

masses as the sanderling and the bar-tailed godwit. This is consistent with the idea that 

natural antibody production is largely independent of internal and external stimuli 

(Ochsenbein and Zinkernagel, 2000). However, although natural antibodies are present 

in relatively low densities, they play an important role in the initial recognition of foreign 

particles and they support subsequent defense by the complement cascade and the 
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acquired humoral response (Ochsenbein and Zinkernagel, 2000; Turner, 2000). 

Therefore, organisms may benefit by maintaining a minimum level of immunoglobulins, 

as these molecules likely convey benefits in terms of earlier detection of parasites. With 

respect to the innate immune system, we found no difference between the five shorebird 

species in natural antibody levels, whereas ruddy turnstones showed a higher 

complement system activity than the four other species.  For the humoral responses of 

the acquired immune system, pre-injection, primary, and secondary antibody titers 

against diphtheria toxoid and secondary antibody titers against tetanus were higher in 

ruddy turnstones, whereas there were no differences in antibody responses between 

any of the other shorebird species. 

The hemolysis-hemagglutination assay measurements of natural antibodies and 

complement activity were well within the range of values found for other bird groups 

(Matson et al., 2005). With respect to the ELISA assay of antibody levels against tetanus 

and diphtheria, we found that the primary and secondary antibody titers in all five 

shorebird species were significantly higher than pre-injection values. Hence, despite the 

ELISA being designed for passerine birds, it apparently works well also in shorebirds. 

Among all five shorebird species, antibody responses against diphtheria were lower than 

those against tetanus, which is in accordance with other studies on wild birds (e.g. 

Westneat et al., 2003; Owen-Ashley et al., 2004).  

 We did not find any correlation between the two innate components (natural 

antibody level and complement-mediated lysis), nor between innate and acquired 

components. This result underlines the problem of obtaining a ‘general’ measure of 

immunocompetence and emphasizes the importance of measuring different aspects of 

the immune system (Adamo, 2004; Matson et al, in press). There was a tendency for a 

relationship between natural antibodies and background antibody titers, which suggests 
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that they both might reflect the basic level of (polyclonal) natural antibodies in the 

circulation.  

  Ruddy turnstones stand out as high responders in three of the four immune 

measurements taken (complement mediated lysis, humoral responses to tetanus and 

diphtheria toxoid). This difference is not likely to be explained by phylogeny because 

turnstone’s closest relatives (sanderling, red knot, and ruff) were as low responders as 

the more distantly related bar-tailed godwit (see Piersma et al., 1996). Thus, the high 

responder is embedded in a clade of low responders in our study, and presumably 

evolved from a low-response state. Furthermore, neither habitat choice per se, nor 

migration strategy can explain the exceptionally strong immune responses observed in 

the ruddy turnstone, since this species shares coastal wetlands and long-distance 

migration with other low responders, such as the bar-tailed godwit, the sanderling, and 

the red knot. Ruddy turnstones do stand out, however, by their scavenging habits. They 

often feed on decomposing food remains, including dead fish and mammals (Piersma et 

al., 1996), and as a consequence they are often found close to human settlements, e.g. 

in harbours, where they are likely to benefit from an abundance of such food items. This 

opportunistic feeding style might expose them to infections, particularly diseases that are 

transmitted by contaminated dead animals, e.g. Avian Cholera or Herpes virus (Friend 

and Franson, 2001). Indeed, in the eastern USA, ruddy turnstones carried 67.5% of 

Avian Influenza Virus (AIV) infections, even though they accounted only for 12.4% of 

2162 individuals from 15 different shorebird species in a study by Hansson (2003).  

 We suggest that in the nonbreeding season ruddy turnstones might be exposed to a 

particularly broad range of disease organisms, and that they therefore require high 

responsiveness in several parts of the immune system. A similar conjecture was made 

for populations of the Darwin’s finch Geospiza fuliginosa, in which islands with the 

highest prevalence of avian pox and feather mites supported host populations with the 
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highest natural and humoral immune responses (antibody levels) (Lindström et al., 

2004). 

It is perhaps surprising that ruffs exhibited low levels of immune response, as they 

occur in inland freshwater habitats where the likelihood of avian malaria infection is high 

(Mendes et al., 2005). This environment presumably would select ruffs to invest strongly 

in their immune systems (Piersma, 1997), but this hypothesis was not supported here. 

Note, however, that we did not measure cell-mediated immunity, a type of response 

known to be involved in the control of malaria parasites (Wakelin, 1998; Doan et al., 

2005). 

 To the best of our knowledge, this is the first time that a suite of immune system 

measures has been applied to shorebirds in a comparative study of immunocompetence 

between species. In brief, our findings emphasize the need to study several immune 

components, preferably from different arms of the immune system when assessing 

“general immunocompetence.” Furthermore, we suggest that the relationships between 

immune response and infection patterns are particular, rather than general, and depend 

strongly on the range and strength of exposures and the precise variety of parasite 

types.  
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Table 1. Spearman rank correlation coefficients (rS) based on humoral immune response 

values, calculated from the species averages (n=5). All correlations were positive, 

but none were significant at the 5% confidence level; when rS>0.7, then 0.05<p<0.1. 

 Diphtheria Tetanus 

 background  primary secondary background primary secondary 

Natural antibodies 0.7 0.1 0.1 0.5 0.4 0.3 

Complement-mediated lysis 0.3 0.1 0.4 0.4 0.1 0.7 
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Fig. 1. Natural antibody levels and complement-mediated lysis in five species of 

shorebirds, estimated the log2 transformation of the score of the 1:2 serial dilution of the 

shorebirds sera. Natural antibodies level was calculated at the step agglutination stops 

and complement at the step at which lysis stops. Error bars represent standard errors.  
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Fig. 2. Antibody titers before and after (repeated) vaccination with tetanus and diphtheria 

toxoids in five shorebird species. For the ruddy turnstone, the dark box represents the 

experiment where birds were tested five months after capture. The ruff, the only 

freshwater specialist, is indicated by a white box. 
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