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ABSTRACT 
 

THE ROLE OF LOCAL AND REGIONAL FACTORS IN THE FORAGING 

ECOLOGY OF BIRDS ASSOCIATED WITH POLYLEPIS WOODLANDS 

 

Understanding the extent to which patterns of functional structure and organization 

are repeated in space and time and the level or scale at which different factors (local and 

regional) operate to explain community patterns are of central importance in studies of 

community ecology. 

In this dissertation, I studied the extent of spatial variation in foraging ecology of 

birds in the Polylepis community, a unique vegetation association of the Andes, in regard to 

variation in local (e.g.,, vegetation structure, floristic composition, food resource availability) 

and regional factors (e.g.,, biogeography). I used a pluralistic approach with detailed studies 

of foraging ecology of nine insectivorous bird species (and the assemblage they conform) 

across twelve disjunct Polylepis woodlands embedded in three biogeographic regions of the 

Peruvian Andes. I focused the study on foraging ecology (i.e., maneuvers and microhabitat 

use) because the ways in which individuals forage influenced their performance. Natural 

selection should favor those strategies that maximize fitness, or some proxy of fitness, e.g.,, 

rate of resource acquisition, production of offspring. 

I examined the extent of spatial variation in foraging ecology at species and 

assemblage levels. At species level, I assessed intraspecific variation using two foraging niche 

components: breadth and plasticity, both of which provide complementary information at 

different spatial scales and levels of organization (e.g., species, populations). Niche breadth 

measures if the species is a specialist (i.e., uses a relatively limited fraction of the range of 

available resources) or generalist (i.e., uses a relatively large fraction of available resources) 

relative to other community members or species in a clade. Niche plasticity evaluates how 

restricted or plastic are intraspecific regularities in the niche. Thus, a species is restricted if 

its niche is consistent across populations, and plastic when niche regularities across 

populations break down. Results indicate that foraging niches of bird species varied in a 

continuum from specialist-restricted (i.e., consistently narrow foraging niche) to generalist-

plastic (i.e., highly variable and broad niche). With the exception of one specialist-restricted 
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species (Oreomanes fraseri), foraging ecology of bird species seemed to be influenced mostly 

by fluctuations in food resources, floristic composition, and vegetation structure. In 

particular, variation in food resources was a predictor of foraging ecology in seven of the 

nine bird species studied. Lack of variation in foraging of specialist-restricted species, 

despite fluctuations in local factors, may be a consequence of past events in the evolutionary 

history of the species that set a limit to the range of possible responses within a population, 

constraining the foraging niche. 

At the insectivorous assemblage level, I assessed variation in structure using the 

conventional guild approach (e.g., guild classification, number of guilds) with the underlying 

assumption that species with similar ecological attributes act or respond to environmental 

variation in similar ways. I focused on two factors that may influence assemblage structure: 

food resources (i.e., arthropod abundance in microhabitats where birds forage) and the 

potential effect of biological interactions (i.e., competition). The relative importance of food 

resources was assessed by relating site similarities in food resource abundance and site 

similarities in richness and abundance of birds within guilds. The potential role of 

competition was assessed using null models to determine if patterns of niche overlap among 

species in the assemblages were consistent with competition theory. Results indicate that 

niche overlap patterns in the assemblage may respond to competitive interactions (i.e., 

assemblage niche overlap was significantly higher than expected by chance). However, food 

resources seemed to be of relative less importance in structuring bird assemblages in the 

Polylepis community. Guild identities were largely consistent among Polylepis woodlands, with 

bark foragers, foliage foragers, and aerial foragers present at most sites. However, the 

number and identity of species associated with each guild was not necessarily consistent due 

to regional differences in species richness and intrapopulation variation in foraging ecology. 

Studies that describe the extent of spatial variation in the structure of communities and the 

factors in which the community is embedded are insightful, yet scarce. The present study 

acknowledges the complexity of communities as a dynamic collection of species integrated 

to varying degrees by ecological and historical factors. 
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CHAPTER ONE 

LOCAL AND REGIONAL PATTERNS OF FLORISTIC COMPOSITION 
AND VEGETATION STRUCTURE OF POLYLEPIS WOODLANDS IN THE 

PERUVIAN ANDES 

The relative contribution of local, regional and historical processes in structuring 

biological communities continues to be a debated issue in community ecology (Latham and 

Ricklefs 1993, Ricklefs and Schluter 1993, Francis and Currie 1998, Ricklefs and Latham 

1999, Kelt 1999). Local contemporary processes have often been invoked to be of prime 

importance in structuring extant communities and, therefore, community attributes are 

expected to be strongly correlated with particular local physical and biotic features (Connell 

1978, Huston 1979, Keddy 1989, Palmer 1991, Zobel 1992, Aarssen 1992, Tilman and 

Pacala 1993). In recent years, conceptual models of community structure have broadened, 

and patterns and processes on regional (i.e., biogeography) and historical (i.e., history of 

taxa) levels have also been considered to structure ecological communities (Ricklefs 1987, 

Cornell and Lawton 1992, Ricklefs and Schluter 1993, Schluter and Ricklefs 1993, Losos 

1994, Caley and Schluter 1997, Karlson and Cornell 1998, Losos et al. 1998). 

Studies on several taxa support the hypothesis that contemporary communities are 

the result of the complex role of the local and regional environment and the evolutionary 

and historical relationships of the taxa involved (e.g., Darwin’s finches, Grant 1986; 

Caribbean Anolis lizards, Losos 1994, Losos et al. 1998; stream fishes, Angermeier and 

Winston 1998; desert rodents, Kelt 1999; plants in calcareous grasslands, Pärtel and Zobel 

1999). Consequently, understanding present structure and organization of communities 
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require multiple analytical approaches that incorporate the local, regional, and historical 

factors, as well as chance events in which the community is embedded (Vuilleumier and 

Simberloff 1980, Ricklefs 1987, Ricklefs and Schluter 1993, Angermeier and Winston 1998). 

Yet, generalizations about the relative importance of particular processes in explaining 

community structure and organization depend to a great extent on the ability to delimit the 

community itself, and on an adequate knowledge of the patterns of variation of community-

level attributes in space and time. 

The high Andes of South America provide an ideal setting to examine the patterns 

of spatial variation in fundamental attributes of plant community structure such as floristic 

composition and vegetation structure. The diverse topography of Andean mountains results 

in a complex mosaic of areas that vary in microclimate, soils, aspect, exposure, and wind 

conditions (Walter and Medina 1969, Smith A. 1972, 1977, Smith B. 1988, Sarmiento 1986, 

Smith and Young 1987, Young 1992, Fjeldså and Kessler 1996, Young and León 1999), as 

well as frequency and intensity of natural (i.e., landslides, Gentry 1982, 1992) and 

anthropogenic disturbances (Ellenberg 1958a, 1958b, Laegaard 1992, Hensen 1993, Kessler 

1995, Fjeldså and Kessler 1996). This complex set of local conditions creates opportunities 

for specialization and adaptation, and has likely led to the heterogeneous distribution of 

plants across the Andes (Young 1992, Young and León 1999). However, despite 

considerable local variation may occur in Andean systems, patterns of species distribution 

across regions may be more regular as a result of shared environmental history. For 

instance, the Andes are composed of several independent structural units separated by low 

valleys that represent important barriers for dispersal of high elevation elements (Simpson 

1975). The movements of plants into high mountain habitats and their subsequent 
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speciation likely proceeded differently in each section of the Andes. Therefore, the 

phytogeographical history of the Andean flora includes shifting climatic zones, vicariant 

events, dispersal of montane species, and spread of taxa from other continental floras 

(Chardon 1938, Vuilleumier 1971, Simpson 1975, 1983, Ruthsatz 1977, Cleef 1981, Simpson 

and Todzia 1990, Kessler 1995, Taylor 1995). 

Throughout the high Andes of Peru (ca. 3500-4800 m), forests dominated by the 

arborescent genus Polylepis R. & P. (Rosaceae) formed a distinctive and clearly defined 

community of exceptional interest in ecology and biogeography. In this community, 

woodlands dominated by one and sometimes two or three sympatric Polylepis species 

(characterized by gnarled shape with thick and rough, densely laminated bark) occur as small 

islands in gorges, on slopes, and along cliff edges. The microclimate, productivity, and 

species composition of the woodlands contrast sharply with surrounding grassland habitats 

(Weberbauer 1945, Troll 1959, Koepcke H. 1961, Simpson 1979, Vuilleumier 1984, Smith 

D. 1988, Kessler 1995, Fjeldså and Kessler 1996). Contemporary patterns of distribution of 

Polylepis woodlands have been attributed to microclimatic and physiological requirements of 

the plants (Weberbauer 1945, Troll 1959, 1968, Koepcke H. 1961, Walter and Medina 1969, 

Simpson 1979, Vuilleumier 1984, Rauh 1988). Alternatively, it has been suggested that these 

woodlands are relicts of a habitat that was more widespread during the late Pleistocene (i.e., 

10,000-20,000 years ago) and has become fragmented due to anthropogenic disturbances 

(Ellenberg 1958a, 1958b, Beck and Garcia 1991, Fjeldså 1992a, Hensen 1993, Kessler 1995). 

The scattered distribution of Polylepis woodlands throughout the Andes provides a 

set of discrete and relatively simple systems in terms of plant species composition, when 
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compared to more species-rich forests at lower elevation, thus facilitating studies on floristic 

composition and vegetation structure. 

To date, few studies have looked at patterns of spatial variation in floristic 

composition and vegetation structure within a local and regional context (Gentry 1982, 

1992, 1995, Hensen 1993, Dillon et al. 1995, Sklenar and Jorgensen 1999). Therefore, little is 

known about the relative importance that particular local and regional processes play in 

structuring Andean communities. Describing patterns of floristic composition and 

vegetation structure in contemporary Polylepis woodlands is of considerable importance to 

determine the potential mechanisms that likely generate and maintain the structure of the 

plant assemblage in this community. Local contemporary patterns of floristic composition 

and vegetation structure in Polylepis woodlands might stem from local conditions that favor 

the presence of some species in some sites more than in others. Consistent patterns in the 

relationship of local floristic composition or vegetation structure to site conditions would 

support the hypothesis that local processes are the major determinants of plant assemblage 

organization. Conversely, local patterns of floristic composition and vegetation structure 

may also stem from regional factors such as large-scale environmental conditions or 

physical/biotic barriers to dispersal, in addition to the history of the taxa that make up the 

assemblage. Similar patterns of floristic composition and vegetation structure in Polylepis 

woodlands within, but not among regions would provide support for a major role for 

regional and/or historical processes in determining plant assemblage organization. 

The present study is aimed toward documenting the degree of spatial variation in 

floristic composition and vegetation structure of plant assemblages across a series of Polylepis 

woodlands located in three regions of the Peruvian Andes. The main objectives are: (a) to 
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describe how Polylepis woodlands vary in floristic composition and vegetation structure 

across sites and regions, (b) to determine the scale (local and/or regional) that best explains 

patterns of floristic composition and vegetation structure, and (c) to develop hypotheses 

regarding the potential causal mechanisms (processes) that influence patterns of floristic 

composition and vegetation structure in Polylepis woodlands and the scale at which they 

operate. 

METHODS 

Regional settings 

The Andes are differentiated longitudinally into a series of parallel mountain systems 

divided along their length into distinct tectonic segments recognizable by surface and 

structural features, volcanism, geophysical evidence, and boundaries (Jenks 1956, Petersen 

1958, Ham and Herrera 1963, James 1971, Simpson 1975, Smith D. 1988). Three different 

regions of the Peruvian Andes were selected for the present study: the Cordilleras Blanca, 

Occidental, and Vilcanota. The Marañon River separates the western Cordillera Occidental, 

and the eastern Cordillera Oriental (James 1971, Smith 1988) between the Huancabamba 

and Abancay deflections (Fig. 1). Each of these mountain systems is composed of a series 

of segments. The northern portion of C. Occidental (Ancash Department) is C. Blanca. 

Towards the south, (Lima Department) there is a separate segment, hereafter called C. 

Occidental (Fig. 1). C. Oriental is also composed of separate segments, including Cordillera 

Vilcanota, one of the three study regions (Fig. 1). Despite geological differences, all these 

mountain systems reached their present altitude in the Pleistocene or late Tertiary. 
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The regions selected for this study are recognized to differ biogeographically 

(Koepcke H. 1961, Koepcke M. 1961, Simpson 1975, Berry 1982, Lamas 1982, Smith D. 

1988, Fjeldså 1992a, 1992b, 1993). In addition, C. Blanca and C. Vilcanota have been 

hypothesized to be glacial Pleistocene refuges for a number of taxa (Fjeldså and Kessler 

1996) and areas of ecoclimatic stability that have promoted speciation processes (Fjeldså et 

al. 1999). 

The climate in tropical mountains is characterized by small annual variation in mean 

temperature, large variation of daily temperature, and a seasonal pattern of cloudiness and 

precipitation (Johnson 1976, Sarmiento 1986). The monthly and annual precipitation and 

humidity are quite variable from site to site due to topography (Kessler 1995) but in general, 

a dry season characterized by low precipitation and humidity occurs from late April to early 

November and a wet season from late November to early April, when moisture is carried 

from the Amazon basin by tropical easterlies and clouds form locally by heating of slopes 

(Johnson 1976, Smith D. 1988). Climatic data from high mountain areas are scarce and 

fragmentary information on temperature, precipitation, and humidity is available only from 

stations located in valleys (Smith, D. 1988, Arce 1992, Galiano 1995) (Fig. 1). 

Local settings 

Within each region, I selected four Polylepis woodlands > 50 ha in size and above 

3500 m elevation. At these elevations, distinct woodlands dominated by Polylepis species and 

separated by Puna grasslands are a prominent feature of the landscape (Lamas 1982, Kessler 

1995). Sites within the same region were selected based on similarities in moisture 

conditions and tree architecture of dominant Polylepis species (Table 1). The 12 woodland 
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sites selected for the present study were: 1) C. Blanca: Aquilpo and Ishinca (dominated by P. 

weberbauerii), Morococha and Llanganuco (P. sericea); 2) C. Occidental: Maticuna and Japani 

(P. incana), Yaui and Quichas (P. weberbauerii); and, 3) C. Vilcanota: Yanacocha, Sacsamonte, 

Pumahuanca, Quenuamonte (P. racemosa) (Fig. 1). 

General study design 

I studied floristic composition and vegetation structure using a hierarchical sampling 

design with four independent woodlands within each of three regions (Cordillera Blanca, C. 

Occidental, and C. Vilcanota) (Total woodlands = 12). In each woodland, two sets of four 

transects (100 m length and placed 50 m apart from each other) were established in the 

forest interior (hereafter referred as plots), separated by at least 500 m (Total plots = 24). 

Each plot was located in a homogeneous place regarding aspect and degree of slope. Data 

on floristic composition and vegetation structure were taken in eight randomly placed 20 x 5 

m belts embedded within the four main transects on each plot (covering a total of 0.08 ha). 

Data were combined across the eight 20 x 5 m belts; the experimental unit was each plot. 

Floristic composition and vegetation structure 

Data on floristic composition and vegetation structure were taken across Polylepis 

woodlands from May to December 1997, months that correspond to the dry season and 

beginning of the rainy season. Since Polylepis species and most vegetation are evergreen, 

changes in season are not expected to have a great impact in the present study. 

Floristic composition.- To compare floristic composition across study plots and 

woodlands I identified all trees (>10 cm dbh) and shrubs (<10 cm dbh and > 50 cm height) 
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found in belt transects. The presence (“1”) or absence (“0”) of each plant species was then 

included in a plot by plant species matrix for analyses. I built a “floristic composition 

distance matrix” to obtain a measure of resemblance between plot pairs using Sorensen’s 

similarity coefficient. I used species accumulation curves to examine whether the number of 

plant species reached an asymptote. Voucher specimens for all woody plant species were 

collected and deposited at the Vargas Herbarium at Universidad Nacional de San Antonio 

Abad in Cusco, and the Weberbauer Herbarium at Universidad Nacional Mayor de San 

Marcos in Lima. 

Vegetation structure.- Aspects of vegetation structure were derived based on 

measurements of all woody plants (> 50 cm height). The following structural variables were 

calculated to obtain a single measure for each plot per site: 

a. Tree size class and mean tree height (HEIGHT).- I measured dbh and height for each 

tree in belt transects. I assigned trees to one of three size categories: > 10-20 cm dbh 

(DBH1), > 20-30 cm dbh (DBH2), and > 30 cm dbh (DBH3). Height was measured for 

each tree encountered using a telemetric graduated pole (12 m, Hastings Telescoping 

Measuring Rod); mean tree height was then calculated at the plot level. For analyses, I 

combined measures of all trees regardless of species identity. 

b. Total basal area (TBA).- I used basal area as a measure of tree species coverage. 

TBA was calculated by converting measures of diameter at breast height (dbh) of all trees to 

circular area. Tree basal area was then summed across transects to obtain TBA per plot (800 

m2). 

c. Tree density (TD) and shrub density (SD).- I counted the number of trees (> 10 cm 

dbh) within each of the eight 20 x 5 m belts, summed values across all belts within a plot 
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and divided the total by the area of the plot (800 m2) to get density estimates. I estimated 

density of shrubs (< 10cm dbh and > 50 cm height) in a similar manner. 

d. Foliage height density (FHDEN) and foliage height diversity (FHD).- Every 20 m along 

each of the four 100 m transects within a plot (total n = 24 points per plot), I took 

measurements of foliage height density along "vertical" transects with a telemetric graduated 

pole. The number of times vegetation “intersected” the pole in a radius of 25 cm was 

recorded at the following intervals: 0-2 m (FHDEN1), > 2-6 m (FHDEN2), and > 6-10 m 

(FHDEN3). Vegetation contacts were summed within each interval across points and then 

divided by total contacts across all heights to obtain a proportion of foliage density 

occurring within different heights. The proportion of the vegetation in each interval was 

used to calculate foliage height diversity values using the Shannon-Wiener Index 

(MacArthur and Horn 1969, James and Shugart 1970). 

I built a “vegetation structure distance matrix” to obtain a measure of resemblance 

between plot pairs using Sorensen’s dissimilarity coefficient. 

Local factors 

Many local factors have been suggested to account for contemporary patterns of 

distribution of Polylepis woodlands, including features related to topography, edaphic 

conditions and microclimate (Simpson 1979, Smith D. 1988, Kessler 1995). Microclimatic 

data for Polylepis woodlands, however, and for most Andean forests, is lacking. For the 

present study, local conditions were based on a qualitative assessment of each plot. I 

obtained data on two topographic features: degree and aspect of slope; and one edaphic 

feature: soil texture (Table 1). 
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Topography.- The aspect and degree of slope influence the amount of solar radiation 

received, hence the temperature and moisture regimes (Smith D. 1988). I measured aspect 

and degree of slope with a compass and categorized aspect (1=SW, 2=W, 3=N, 4=S, 5=E, 

6=NE) and degree of slope (1=50-60o, 2=30-45o, and 3=10-20o) at each plot. 

Edaphic conditions.- High Andean soils have variable texture, and the distribution of 

plant species may respond to soils with different levels of stone coverage, since previous 

studies have shown that stones provide protection mainly due to an increase in soil 

temperature (Smith D. 1988). Soil texture was categorized by the percent cover of stones on 

the ground; categories included: 1=>50% coverage, 2=>10-50%, and 3=<10%. 

Data obtained from local factors were used to construct a “local distance matrix” 

using Sorensen’s dissimilarity values between plot pairs. 

Regional factors 

The study relies on the integration of floristic composition and vegetation structure 

patterns nested within three distinct biogeographic regions. I built a “regional distance 

matrix” by examining each plot pair and scoring “0” if plots belong to same region and “1” 

if they differed. 

Geographic distance 

I included a measure of geographical distance to understand overall trends of 

floristic composition and vegetation structure. I used a map of the Peruvian Andes and 

measured the linear distance between the 276 possible pair plots, with the aid of Geographic 

Information Systems (ESRI 1992-1997) to build a “geographic distance matrix”. 
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Data analysis 

I analyzed data on floristic composition and vegetation structure of Polylepis 

woodlands using univariate and multivariate statistics. I used a combination of hierarchical 

Analysis of Variance (ANOVA), Bray Curtis ordination techniques, and Mantel tests to 

assess the relative importance of the local and regional factors in explaining patterns of 

floristic composition and vegetation structure. 

Rarefaction curves.- I used rarefaction analyses (Hurlbert 1971, Simberloff 1972, 

Gotelli and Graves 1996) to build species accumulation curves using the EcoSim Program, 

Version 5.53 (Gotelli and Entsminger 2000). The program draws a designated random 

sample of individuals from a given species abundance distribution to estimate species 

richness in regard to sampling effects. Simulations were repeated 1000 times to provide 

mean, variance and 95% confidence intervals of species richness at each forest plot based 

on different abundance levels to facilitate comparisons among woodland sites and regions. 

Analysis of variance models.- To examine if patterns of vegetation structure vary in 

woodlands nested within region or across regions, I used a General Linear Model (GLM) 

(SPSS 1999) to do hierarchical Multivariate Analysis of Variance (MANOVA) that included 

11 vegetation structure variables (TBA, TD, SD, FHDEN1, FHDEN2, FHDEN3, FHD, 

HEIGHT, DBH1, DBH2, and DBH3). I used the same analysis of variance model to 

examine floristic composition, including total plant species number and total number of 

individuals as variables. Normality of each variable was tested using Wilk-Shapiro tests and 

variables were logarithmically transformed when necessary. Plots within woodlands were 

used as replicates in the design and the null hypothesis was that vegetation structure 

variables did not differ across woodlands or regions. More specifically, a significant among 
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group (F2,9) component will indicate the relative importance of regional factors (i.e., large-

scale environmental conditions, physical/biotic barriers to dispersal, and history of the taxa) 

in explaining floristic composition and vegetation structure patterns. If "among forests 

within regions" component (F9,12) is found to be significant, then this will indicate the 

relative importance of local factors (i.e., aspect and exposure of slope, soil texture) in 

shaping floristic composition and vegetation structure. If both terms were found to be 

significant then both local and regional processes could be implicated as important 

predictors of vegetation structure patterns in Polylepis woodlands. Results of hierarchical 

MANOVA were followed by Tukey tests to identify which woodlands and regions were 

significantly different from each other. 

Bray Curtis ordination.- I analyzed patterns of similarity in floristic composition among 

forest plots independently from patterns of similarity in vegetation structure variables using 

Bray Curtis ordination (PC-ORD Version 4, McCune and Mefford 1999). I used Sorensen’s 

percent dissimilarity as a measure of distance between plots. This index is commonly used 

with ecological data because it retains sensitivity in heterogeneous data sets and gives less 

weight to outliers (McCune and Mefford 1999). I used the variance regression method for 

end point selection and Euclidean distance for axis projection geometry (Beals 1984, Greig-

Smith 1983, McCune and Mefford 1999). The 11 vegetation structure variables (columns) 

across 24 study plots (rows) were relativized by column totals to give equal importance to all 

variables. The variables for the floristic composition matrix were the presence or absence of 

each plant species (columns) across the 24 study plots (rows). 

Mantel tests.- I used Mantel tests, a regression approach that compares the 

relationship between distance matrices (Mantel 1967, Burgman 1987, Sokal and Rohlf 1995), 

 



Grace P. Servat, 2006, UMSL, 13  

to estimate the relative effect of local and regional processes among woodlands or regions in 

terms of floristic composition and vegetation structure. Analyses were run using the 

program Permute version 3.4, release alpha 5 (Casgrain 1998), a special version of Mantel test 

which allows for several predictor variables to be tested over one response variable and 

generates partial regression coefficients and the associated permutation probability for each 

predictor variable. 

Floristic composition and vegetation structure were the response variables and were 

represented by distance matrices generated using Sorensen’s percent dissimilarities. Two 

separate models were tested, the floristic composition model included three predictor 

variables: 1) region (built by examining each plot pair and scoring “0” if plots belong to 

same region, and “1” if they differed), 2) geographic distance (built using the actual distance 

(in km) between the 276 plot pair combinations); and 3) local variables (a dissimilarity 

matrix based on measurements at each plot). The vegetation structure model included: 1) 

region, 2) geographic distance, 3) floristic composition (since plant composition may 

influence physiognomy), and 4) local conditions, as predictor variables. I selected the 

variable(s) that most contributed to explaining variation in structure or composition 

dissimilarity matrices using stepwise regression followed by a backward elimination 

procedure; 999 permutations of the original matrix were performed to determine the 

significance probability of the observed relationship between predictor and response 

variables data matrices. 
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RESULTS 

Floristic composition patterns 

The forest interior of Polylepis woodlands contained a total of 56 plant species 

distributed among 34 genera and 21 families. Asteraceae was by far the most speciose family 

(22 species), and within Asteraceae, the most speciose genera were Baccharis (6 species) and 

Gynoxys (6 species) (Appendix 1.1). At least 28 genera were represented by only one species. 

From the total list of plant species, 30% (17 species) are restricted to high elevations above 

3000 m and 23% (13 species) are considered endemic to the Peruvian Andes (Brako and 

Zarucchi 1993) (Appendix 1.1). 

Plant species sampling in most plots approached an asymptote as revealed by 

accumulation curves (Fig. 1.2). Accumulation curves also illustrate the great variation in 

plant species richness across sites and regions. When number of individuals is controlled 

for, plant species richness differs significantly across Polylepis woodlands and regions (Table 

1.2). Basically, more species were found in Llanganuco (average 12 plant species/100 

individuals), and one plot in Morococha (average 8 species /100 individuals) (Cordillera 

Blanca), and Yanacocha (average 12 species/100 individuals) (C. Vilcanota) than in other 

woodland sites (Fig. 1.2, Table 1.2). In addition, hierarchical MANOVA of total number of 

species and individuals at each plot revealed significant differences across Polylepis 

woodlands (Table 1.3), as well as among regions, with C. Occidental contributing to the 

difference in species and individuals number (Table 1.3). 

Sorensen’s percent dissimilarity values between woodlands (plots within woodlands 

combined) ranged from 0 - 0.52 (0 indicates no similarity, 1 equal or high similarity) (Fig. 1. 
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3). Results emphasized that forests within the same region tended to be similar in floristic 

composition yet regions differed floristically. Similarity values were low even within same 

region not only due to differences in plant species composition but also, in most cases, to 

differences in species richness in woodlands within the same region. For example, in C. 

Occidental, Quichas and Yaui were sites with low species richness that did not share any 

species (including Polylepis) with Japani, resulting in low similarity values between these sites 

(Fig. 1.3). 

Bray Curtis ordination of a presence/absence matrix of 53 plant species across 24 

plots revealed similarities in floristic composition within regions (Fig. 1.4). The first three 

ordination axes explained 59% of the variance. Axis 1 (29% variation) separated plots in C. 

Vilcanota from plots in C. Blanca and C. Occidental (Fig. 1.4). Axis 2 (15%) separated 

Ishinca plots from Maticuna (Fig. 1.4), and axis 3 (15%) separated Morococha and 

Llanganuco plots from Yaui and Quichas plots. Different species of Baccharis, Berberis, 

Gynoxys, and Polylepis had high factor loadings in the two first axes of the ordination, and 

therefore contributed to regional separation. 

Region and geographic distance explained a large proportion of the variance in 

floristic composition as revealed by Mantel test (Table 1.4). A significant positive association 

between floristic composition and geographic distance indicates that Polylepis woodland plots 

closer together share more species than plots further apart, and that plots within regions are 

more similar than plots among regions (Table 1.4). Local factors accounted for only 8% of 

the variance in floristic composition (Table 1.4). 
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Vegetation structure patterns 

In general, woodlands dominated by Polylepis racemosa, P. weberbauerii and P. sericea 

were more similar structurally than woodlands of P. incana. However, in most cases, plots 

from different woodlands showed greater similarity than did plots within the same 

woodland (e.g., Morococha, Quenuamonte, and Pumahuanca, Fig. 1.5), suggesting some 

degree of local heterogeneity. 

Results of the ordination revealed that axis 1 (51%) largely separated Polylepis plots 

located in the three regions of study from a set of five plots located in the C. Occidental; the 

latter were characterized by low total basal area and greater foliage density below 6 m (Table 

1.5, Fig. 1.5). Axis 2 (13%) separated one of the Maticuna plots (T2) from all remaining 

ones (Table 1.5, Fig. 1.5). This plot was characterized by greater foliage density below 2 m 

(Fig. 1.5). In general, plots in Polylepis woodlands within C. Vilcanota and C. Blanca tended 

to have greater basal area, larger trees, and more foliage in the canopy than Japani and 

Quichas in C. Occidental. 

Vegetation structure in Polylepis woodlands differed significantly both across sites 

nested within regions (F9, 12 = 5.83, P < 0.01) and across regions (F2, 12 = 1.86, P = 0.05). All 

structural variables differed significantly across sites except tree density (TD) and number of 

small trees (> 10 - 20 cm dbh) (Table 1.6). I found significant differences across regions in 

all variables except number of small and large trees, foliage density below 2 m, and mean 

tree height (Table 1.6). 

Patterns of vegetation structure were explained by local variables (exposure and 

angle of slope, and soil texture) measured at each plot, as revealed by Mantel test. Floristic 

composition and geographic distance also contributed to the variance in patterns of 
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vegetation structure in Polylepis woodlands (Table 1.4). As geographic distance among plots 

increases, plots are more similar in vegetation structure. This result agrees with the Bray 

Curtis ordination in which plots of Polylepis woodlands located within C. Blanca and C. 

Vilcanota, the two more distant regions in the present study, tend to group together. 

DISCUSSION 

The role of local and regional factors as significant predictors of floristic 

composition and vegetation structure in Polylepis woodlands is summarized in Figure 6. 

Regional factors, including history, had important influences on floristic composition but 

only contributed indirectly (through their effect on floristic composition) to explain 

vegetation structure. Instead, floristic composition and local conditions played a more 

important role in determining vegetation structure. In sum, the floristic composition 

component of communities, influenced by large-scale environmental and historical 

processes, further interacts with local environmental conditions to influence the 

physiognomy of the vegetation (cf., Pärtel and Zobel 1999). 

Floristic composition 

Patterns of floristic composition similarities in Polylepis woodlands were strongly 

influenced by regional factors and to a lesser extent by local factors. Floristic composition in 

Polylepis woodlands might be linked to present environmental conditions that are shared 

within a region, such as precipitation, temperature, and humidity, as has been reported in 

many studies in other systems and regions of the world (e.g., Gleason and Cronquist 1964, 

Good 1974, Grace 1987, Sykes et al. 1996, Bullock et al. 2000). Indeed, the regions selected 
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for the present study vary in humidity, and it has been proposed that species richness in 

Polylepis woodlands is higher in more humid areas (e.g., C. Blanca and C. Vilcanota) than less 

humid ones (e.g., C. Occidental) (Fjeldså 1992a, 1992b, 1993, Fjeldså and Kessler 1996). 

However, even though current environmental conditions may explain patterns of plant 

species richness, they do not necessarily account for patterns of floristic composition 

turnover across regions (Fig. 1.3). 

Present distribution of plants inhabiting Polylepis woodlands and similarities within 

but not across regions suggests a greater role for environmental history as a determinant of 

present day floristic composition. One of the major determinants of floristic composition 

changes in recent earth history was the cyclic change in climate and topography during the 

Pleistocene (see explanation in terms of global cooling and orbital forcing by Berger et al. 

1984, Shackleton et al. 1990, and Hooghiemstra and Ran 1994). Many Cordilleras in Peru 

were covered by ice repeatedly over the last 2-3 million years, restricting plant species to 

lower elevations on the Andean slopes, and to certain mountain basins that remained ice-

free (Simpson 1975, Simpson and Todzia 1990, Fjeldså and Kessler 1996). The iced-covered 

mountain caps may have isolated some refuges with Polylepis woodlands and associated 

vegetation from the continuous band of humid shrubbery that is thought to have remained 

along the Andes. Isolation during glaciations may have promoted differentiation in certain 

genera (e.g.,, Polylepis, Gynoxys), such that distinct species evolved, remaining endemic to their 

area of origin (Fjeldså and Kessler 1996). These relict populations that survived periods of 

global climatic change likely were the source pool of species for colonization of other areas 

as the glaciers receded (Simpson and Todzia 1990, Fjeldså et al. 1999). 
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In addition, the low floristic composition similarity levels between C. Blanca and C. 

Vilcanota observed in the present study could also be attributed to the hypothesis that 

Polylepis woodlands were disrupted by tectonics and erosion that created isolation barriers 

(e.g., Apurímac Canyon, Fig. 1.1). Such vicariant events preceding Pleistocene glaciations 

might have served to isolate relatively non-vagile plants, resulting in pairs of sister taxa on 

both sides of each barrier, and thus, influencing community composition across regions. In 

contrast, more vagile species are likely to have been less affected because of their ability to 

disperse across unsuitable habitats. In such cases, one might expect to see a distance 

gradient in community similarities. C. Blanca and C. Occidental were the two regions that 

shared relatively more plant species (than did either region with C. Vilcanota). Moreover, a 

gradual decrease in species number from north to south suggests a relative larger role for 

dispersal between these two regions. Dispersal during interglacial periods and post-glacial 

periods could have been an important influence in explaining present floristic composition 

patterns (Simpson 1975, Fjeldså and Kessler 1996). The low similarity value between C. 

Blanca and C. Vilcanota (0.07 %) could be due to very few species with a wide distribution 

throughout the Peruvian Andes that were present before vicariant events, or that dispersed 

but were not found in the study area. Further studies are needed to address the history of 

taxa, a factor that may contribute with the high percent (53%, Table 1.4) of unexplained 

variance found in the present study. Also, tests of biogeographic relationships in which 

plant species for which putative phylogenetic reconstructions are available need to be 

compared using cladistic analyses (e.g., Brundin 1988, Humphries et al, 1988). In addition, 

timing of phylogenetic events (i.e., application of molecular clocks) would also be basic to 
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discern the relative importance of dispersal and vicariance hypotheses. To date, no parallel 

examples for adequate testing exist for plant taxa of the Andes. 

The relative influence of local factors in determining present patterns of floristic 

composition similarity in Polylepis woodlands was small but significant (b = 0.09*). This 

result is not surprising given that few processes could be considered uniquely regional in 

scale (Huston 1999). Several studies have addressed fine-scale correlations between different 

plant groups and local conditions (Johnston 1992, Clark D. A. et al. 1995, Clark D. B. et al. 

1998, Sabatier et al. 1997, Vormisto et al. 2000). Local factors in Japani forest could have 

resulted in low species richness and high turnover patterns with respect to other sites in C. 

Occidental (Fig. 1.4). In this study, some plant species may be locally adapted to specific soil 

texture, topographic positions, and slope angle. 

Vegetation structure 

Throughout the study area, Polylepis woodlands differed in vegetation structure, and 

patterns were influenced by floristic composition and local conditions. The influence of 

floristic composition on vegetation structure was expected given the fact that the 

combination of plant species present in a community likely contributes to its architecture 

and physiognomy. Yet, local conditions, such as aspect, degree of slope and soil texture 

affect plant growth, and other structural components of the vegetation. The overall 

variation in physiognomy of Polylepis woodlands throughout the study area is likely a 

consequence of variation on the morphology and growth forms of Polylepis trees because of 

their dominance in the system. Local factors measured in the present study, such as aspect 

and degree of slope and soil texture, have been shown to influence local abundance and 
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growth patterns (i.e., height, branching patterns) of Polylepis and other plant species (Kahn 

1987, Smith 1988, Clark D. A. et al. 1995, Clark D. B. et al. 1998, Fjeldså and Kessler 1996). 

For example, in C. Blanca Polylepis weberbauerii is found as dense woodlands in which trees 

reach 12 m height. In other localities within the same region, however, the same species are 

shrub-like reaching only 6 m in height. This variation has been attributed to topographic 

position (dense woodlands in south-facing slopes) (Smith 1988) and soil texture (e.g., growth 

on boulders) (Smith 1988, Fjeldså and Kessler 1996). Thus, greater similarities in vegetation 

structure among Polylepis woodlands located in C. Blanca and C. Vilcanota, the two more 

distant regions, can be explained by similarities in local abundance and growth patterns of 

Polylepis and other plant species responding to local conditions. 

Certainly, other biotic and abiotic factors not measured in this study, such as 

microclimatic conditions, local winds (e.g., Smith 1988, Young and Leon 1999), soil 

nutrients (e.g., Johnston 1992, Tuomisto et al. 1995), other fine-scale soil conditions (e.g., 

Clark D. A. et al. 1995, Clark D. B. et al. 1998, Sabatier et al. 1997) may be important factors 

influencing vegetation structure. Indeed, the high percent of unexplained variance (88%, 

Table 4) may be due to these factors. Nonetheless, the results of this study point to the 

importance of local factors in explaining patterns of variation in vegetation structure but it 

does not separate causal factors from correlative ones. 

In summary, the present study provides the first comparative data set on floristic 

composition and vegetation structure of Polylepis woodlands on a large spatial scale (ca. 600 

km). Little overlap in floristic composition across regions of study suggest a role for regional 

factors, including history, while local differences in vegetation structure suggests a role for 

floristic composition and local conditions. By using a hierarchical approach, I was able to 
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better discern local and regional variation in floristic composition and vegetation structure. 

This is the first step to generate specific hypotheses regarding the organization of high 

Andean communities. The study revealed that identifying the appropriate scale that shapes 

patterns of vegetation structure and floristic composition in the Polylepis community requires 

knowledge of the regional context in which it is embedded to be able to refine hypotheses 

and interpretations regarding community structure and organization. As ecologists continue 

to sort out the roles of the many processes involved in community organization, hierarchical 

designs that incorporate the local and regional context in which the community is 

embedded will become increasingly important in revealing how and where those processes 

operate. 
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Figure 1.1. Map of the Peruvian Andes showing study regions, Polylepis R. & P. woodlands, 

and climate stations mentioned in text. The line indicates the 3,000 m elevation contour. (A) 

C. Blanca: 1 = Ishinca (09o22’S, 77o28’W, 4075 m, 200 ha), 2 = Aquilpo (09o21’S, 77o30’W, 

3800 m, 200 ha), 3 = Morococha (09o01’S, 77o32’W, 3836 m, 100 ha), 4 = Llanganuco 

(09o04’S, 77o38’W, 3850 m, 100 ha). (B) C. Occidental: 1 = Yaui (10o35’S, 76o48’W, 4184 m, 

200 ha), 2 = Maticuna (10o39’S, 76o50’W, 3990 m, 200 ha), 3 = Japani (11o41’S, 76o31’W, 

4140 m, 300 ha), 4 = Quichas (10o33’S, 76o46’W, 4200 m, 100 ha). (C) C. Vilcanota: 1 = 

Yanacocha (13o17’S, 72o03’W, 4012 m, 200 ha), 2 = Sacsamonte (13o13’S, 72o02’W, 3926 m, 

100 ha), 3 = Pumahuanca (13o12’S, 72o05’W, 4110 m, 100 ha), 4 = Quenuamonte (13o11’S, 

72o13’W, 3812 m, 50 ha). Climatic stations: a = Chinancocha (9o6’S, 77o40’W, 3850m, 8oC, 

642mm, and 64%), b = Lampas Alto (10o0’S, 77o20’W; 4030m, 6oC, 737mm, 67%), c = 

Carampoma (11o38’S, 76o26’W, 3272m, 12oC, 389mm), d = Urubamba (13 o18’S, 72 o7’W, 

2870m, 14oC, 494mm, 66%), e = Calca (13o20’S, 71o57’W, 2859m, 15oC, 437mm). 
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Figure 1.2. Plant species richness as a function of species abundance across Polylepis 

woodlands plots based on rarefaction analyses. (a) Cordillera Blanca, (b) C. Occidental, (c) 

C. Vilcanota. Labels in legend represent Polylepis woodlands studied (from North to South), 

and numbers (1 and 2) refer to plots (see text for design). 
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Figure 1.3. Pair-site similarities (Sorensen’s coefficients) in floristic composition of Polylepis 

woodlands and regions. Higher values for Sorensen’s coefficient imply greater similarity 

between two sites or regions. 

 



Grace P. Servat, 2006, UMSL, 31  

 
 
 

Cordillera 
Blanca

Cordillera 
Occidental

Cordillera 
Vilcanota

0.20

0.0

0.07

Cordillera 
Blanca

Cordillera 
Occidental

Cordillera 
Vilcanota

0.20

0.0

0.07

Sacsamonte

Quenuamonte

0.35

Pumahuanca

0.36

0.43

0.52

Yanacocha

0.27
0.25

Sacsamonte

Quenuamonte

0.35

Pumahuanca

0.36

0.43

0.52

Yanacocha

0.27
0.25

Llanganuco

Morococha

0.41

0.17

0.33

Aquilpo

Ishinca

0.25

0.35
0.24

Llanganuco

Morococha

0.41

0.17

0.33

Aquilpo

Ishinca

0.25

0.35
0.24

Yaui

Quichas

0.44

0.18

0.40

Maticuna

Japani

0.0

0.20
0.0

Yaui

Quichas

0.44

0.18

0.40

Maticuna

Japani

0.0

0.20
0.0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Grace P. Servat, 2006, UMSL, 32  

Figure 1.4. Arrangement of plots along the first and second axes obtained from Bray Curtis 

ordination of floristic composition (presence/absence of 53 plant species) across 24 plots. 

The asterisk (*) indicates endemic species to the Peruvian Andes. The letters indicate the 

forest: A = Aquilpo, I = Ishinca, M = Morococha, L = Llanganuco, U = Yaui, T = 

Maticuna, J = Japani, K = Quichas, Y = Yanacocha, S = Sacsamonte, P = Pumahuanca, Q 

= Quenuamonte; and numbers (1, 2) indicate the plot. 
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Figure 1.5. Arrangement of plots along the first and second axes obtained from Bray Curtis 

ordination of 12 vegetation structure variables across 24 plots. The letters indicate the 

forest: A = Aquilpo, I = Ishinca, M = Morococha, L = Llanganuco, U = Yaui, T = 

Maticuna, J = Japani, K = Quichas, Y = Yanacocha, S = Sacsamonte, P = Pumahuanca, Q 

= Quenuamonte; and the numbers (1, 2) indicate the plot. 
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Figure 1.6. Relative contribution of local and regional factors on floristic composition and 

vegetation structure of Polylepis woodlands. Numbers are partial regression coefficients 

obtained from Mantel tests, and asterisks indicate significance levels: * = P < 0.05, ** = P < 

0.01, *** = P < 0.001. The contribution of each factor is emphasized by the thickness of the 

arrow. 
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Table 1.1. Polylepis species present at each woodland and region and local factors measured 

at each plot. (1) = First notation before slash refers to plot 1 and after slash to plot 2. (2) = 

Categories used for stone coverage as a measure of soil texture. 1 = > 50%, 2 = > 10 – 

50%, 3 = < 10% (see text). 
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Region Forest Dominant 
species Exposure Slope 

degree 
Soil 

texture

C. Blanca Aquilpo P. weberbauerii SW/SW 60/60 1/1 

 Ishinca P. weberbauerii SW/SW 50/50 1/1 

 Morococha P. sericea W/W 10/45 2/2 

 Llanganuco P. sericea N/N 10/10 3/3 

C. Occidental Yaui P. weberbauerii S/S 60/50 2/2 

 Maticuna P. incana E/W 30/35 1/1 

 Japani P. incana S/S 10/10 1/1 

 Quichas P. weberbauerii S/S 45/35 2/2 

C. Vilcanota Yanacocha P. racemosa E/W 60/50 1/1 

 Sacsamonte P. racemosa E/W 50/50 1/1 

 Pumahuanca P. racemosa NE/NE 50/20 1/1 

 Quenuamonte P. racemosa E/E 45/45 1/1 
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Table 1.2. Mean, variance, and 95 % confidence intervals of plant species richness obtained 

by rarefaction after number of individuals was standardized (n = 100) across plots of 

Polylepis woodlands. Values were obtained after 1000 randomizations. An asterisk (*) 

indicates significant differences in mean species richness between plots within woodlands. 
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Regions Woodlands  
and plots 

Species Richness 
(X+SD) 

CI (95%) 

C. Blanca Aquilpo 1* 3.4+0.23 2.4 4.3 

 Aquilpo 2* 5.6+0.32 4.5 6.7 

 Ishinca 1 4.3+0.23 3.4 5.3 

 Ishinca 2 5.4+0.38 4.2 6.6 

 Morococha 1* 9.4+0.75 7.7 11.1 

 Morococha 2* 5.5+0.59 4.0 7.0 

 Llanganuco 1 13.1+1.25 10.9 15.3 

 Llanganuco 2 10.7+1.49 8.3 13.1 

C. Occidental Yaui 1* 5.2+0.42 4.0 6.5 

 Yaui 2* 1.0+0.00 1.0 1.0 

 Maticuna 1 4.2+0.22 3.3 5.1 

 Maticuna 2 5.6+0.41 4.3 6.8 

 Japani 1 3.0+0.05 2.5 3.4 

 Japani 2 2.9+0.10 2.3 3.5 

 Quichas 1* 4.0+0.00 4.0 4.0 

 Quichas 2* 2.3+0.22 1.4 3.2 

C. Vilcanota Yanacocha 1* 12.1+1.18 10.0 14.2 

 Yanacocha 2* 6.5+1.26 4.3 8.7 

 Sacsamonte 1* 4.7+0.21 3.8 5.6 

 Sacsamonte 2* 8.0+0.46 6.7 9.3 

 Pumahuanca 1 5.0+0.00 5.0 5.0 

 Pumahuanca 2 5.0+0.04 4.6 5.3 

 Quenuamonte 1 5.0+0.00 5.0 5.0 

 Quenuamonte 2 5.6+0.24 4.6 6.6 
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Table 1.3. Multivariate hierarchical ANOVA results for plant species and individuals 

number. Means and SD are shown for both variables across 12 woodlands and 3 regions of 

study based on two replicate plots. Significance of F-values for local and regional effects is 

indicated as: * = P < 0.05, ** = P < 0.01, *** = P < 0.001. Superscripts following means 

indicate differences across sites (a, b, c) or regions (A, B) according to Tukey multiple 

comparison among means test. 
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Floristic Composition Variables 
Forests and Regions 

Richness 
(X + SD) 

Abundance 
(X + SD) 

Aquilpo 4.5+0.70ªb 260.0+25.45ªb 

Ishinca 5.0+1.41ªb 318.0+15.55ªbc 

Morococha 8.5+2.12ªbc 338.5+30.40ªbc 

Llanganuco 14.5+0.70c 325.0+15.55ªbc 

C. Blanca 8.12+4.38B 310.3+36.36AB 

Yaui 3.5+3.53ª 187.5+19.09ªb 

Maticuna 5.5+0.70ªb 379.5+102.53bc 

Japani 3.0+0.00ª 133.0+7.07ª 

Quichas 3.5+0.70ª 253.5+108.18ªb 

C. Occidental 3.8+1.72A 238.3+113.58A 

Yanacocha 12.5+4.94b 518.0+137.17c 

Sacsamonte 7.0+2.82ªb 214.0+31.11ªb 

Pumahuanca 5.0+0.00ªbc 307.5+2.12ªbc 

Quenuamonte 5.5+0.70ªbc 332.0+5.65ªbc 

C. Vilcanota 7.5+3.85B 342.8+129.34B 

MANOVA Local F9,12 5.16** 5.08** 

MANOVA Region F2,12 6.17** 9.36** 
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Table 1.4. Results of Mantel tests using 999 permutations and the program Permute 

(Casgrain 1998). Model 1 examines the influence of local, region and geographic distance on 

floristic composition. Model 2 examines the influence of local, region, geographical distance, 

and floristic composition on vegetation structure. A significant positive value between 

floristic composition and geographic distance indicates that Polylepis woodland plots closer 

together share more species than plots further apart, and that plots within regions are more 

similar. Partial regression coefficients (b) and overall model R2 are provided. Asterisks (*) 

indicate significance levels. ** = P < 0.01, *** = P < 0.001. 
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Partial regression coefficient (b) 

Models 
Local 

variables Region Floristic 
composition

Geographical 
distance 

Overall 
R2

1. Floristic 
composition 0.09* 0.36* ---- 0.37** 0.47** 

2. Vegetation 
structure 0.21** NS 0.30*** -0.32** 0.12** 
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Table 1.5. Factor loadings for vegetation structure variables along axis 1 and 2. Loadings 

and  respective r values (in parentheses) were obtained from Bray Curtis ordination of 24 

Polylepis plots and 11 vegetation structure variables, using Sorensen’s coefficient of 

dissimilarity, variance-regression as endpoint selection, and Euclidean projection. DBH = 

Diameter at breast height (DBH1, DBH2, DBH3 = individuals number in size class 1, size 

class 2, and size class 3 respectively); FHD = foliage height diversity (Shannon-Wiener 

Index); FHDEN = foliage height density. 
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Vegetation Structure Variables Axis 1 Axis 2 

TBA (total basal area/m2) 0.447 (0.876) 0.124 (-0.344)

TD (tree density/m2) 0.396 (0.662) 0.131 (-0.336)

SD (shrub density/m2 0.384 (0.383) 0.155 (0.212)

DBH1 (> 10 – 20 cm dbh) 0.357 (0.177) 0.138 (-0.173)

DBH2 ( > 20 - 30 cm dbh) 0.446 (0.696) 0.115 (-0.394)

DBH3 (> 30 cm dbh) 0.450 (0.447) 0.123 (-0.176)

FHD (foliage height diversity) 0.342 (-0.125) 0.140 (-0.357)

FHDEN1 (% coverage at > 0-2 m) 0.277 (-0.657) 0.191 (0.857)

FHDEN2 (% coverage at > 2-6 m) 0.274 (-0.848) 0.142 (-0.053)

FHDEN3 (% coverage at > 6-10 m) 0.442 (0.745) 0.105 (-0.588)

HEIGHT (mean tree height) 0.373 (0.483) 0.135 (-0.316)

Variation (%) extracted of the original distance matrix 50.62 13.40 

Variation (%) cumulative 50.62 64.02 

Sum of squares of remaining 
residual distances 

0.018 0.013 
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Table 1.6. Multivariate hierarchical ANOVA results for 11 vegetation structure variables. 

Means and SD for all variables across 12 woodlands and 3 regions of study based on two 

replicate plots. Significance of F-values for local and regional effects are indicated as: * = P 

< 0.05, ** = P < 0.01, *** = P < 0.001. Superscripts following means indicate differences 

across sites (a, b, c, d, e) or regions (A, B) according to Tukey multiple comparison among 

means test. TBA = total basal area (800 m2), TD = tree density (# trees /800 m2), SD = 

shrub density (# shrubs /800 m2), DBH 1 = number of individuals in size class 1 (> 10 – 

20 cm dbh), DBH 2 = number of individuals in size class 2 (> 20 - 30 cm dbh), DBH 3 = 

number of individuals in size class 3 (> 30 cm dbh), FHD = foliage height diversity 

(Shannon –Wiener Index), FHDEN 1 = foliage height density or proportional coverage at 

> 0 – 2 m, FHDEN 2 = foliage height density at > 2 – 6 m, FHDEN 3 = foliage height 

density at >  6 – 10 m, HEIGHT = mean tree height (m). NS = No significant differences. 
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Vegetation Structure Variables Forests and 
Regions 

TBA TD SD DBH1 DBH2 

Aquilpo 537.5 + 53.84b 104.5 + 12.02 165.0 + 0.00ab 40.5 + 4.90 15.5 + 2.12ab 

Ishinca 340.3 + 61.85ab 91.0 + 19.79 269.0 + 11.51ab 56.6 + 12.02 31.5 + 7.77abc

Morococha 175.5 + 76.57a 70.5 + 34.64 268.5 + 45.96ab 54.0 + 31.11 16.0 + 2.82ab 

Llanganuco 157.4 + 18.51a 56.5 + 6.36 264.5 + 2.12ab 56.6 + 13.43 39.5 + 2.12bc 

C. Blanca 302.7 + 169.31A 80.6 + 25.35AB 241.7 + 50.67AB 51.8 + 15.44 25.6 + 11.57A

Yaui 363.7 + 12.19ab 83.0 + 2.82 101.0 + 72.12a 45.5 + 7.77 33.5 + 6.36abc

Maticuna 59.4 + 42.09a 42.0 + 24.04 273.0+147.07ab 40.5 + 23.33 1.5 + 0.70a 

Japani 75.3 + 10.75a 48.5 + 3.53 32.5 + 13.43a 46.0 + 2.82 2.5 + 0.70a 

Quichas 131.0 + 19.68a 65.5 + 6.36 175.5 + 32.22ab 57.0 + 11.51 8.0 + 4.24ab 

C. Occidental 157.3 + 131.82B 59.7 + 19.52A 145.5 + 24.38A 47.2 + 12.13 11.5 + 14.21B

Yanacocha 550.4 + 213.66b 149.0 + 35.35 463.0 + 179.60b 82.5 + 9.19 65.0 + 25.45c 

Sacsamonte 350.6 + 106.08ab 56.0 + 9.89 160.5 + 41.71ab 25.0 + 9.89 24.0 + 4.24ab 

Pumahuanca 175.7 + 15.43a 85.5 + 14.84 189.0 + 80.61ab 72.5 + 20.50 12.0 + 4.24ab 

Quenuamonte 370.0 + 162.58ab 101.5 + 51.61 251.5 + 27.57ab 67.5 + 44.54 26.5 + 9.19ab 

C. Vilcanota 361.7 + 177.37A 98.0 + 43.58B 266.0 + 148.04B 61.8 + 30.34 31.8 + 23.70A

MANOVA 
Local F9,12 

6.03** NS 2.90* NS 7.90*** 

MANOVA 
Region F2,12 

10.73** 5.29* 4.43* NS 11.70** 
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Vegetation Structure Variables Forests and 
Regions 

DBH 3 FHD FHDEN1 FHDEN2 FHDEN3 HEIGHT 

Aquilpo 0.5 + 0.70b 1.5 + 0.15 0.10 + 0.07a 0.17 + 0.02a 0.72 + 0.05de 12.9 + 2.55b

Ishinca 3.0 + 0.00b 1.5 + 0.20 0.09 + 0.02a 0.10 + 0.09a 0.80 + 0.07e 7.6 + 0.11ab 

Morococha 0.5 + 0.70b 2.0 + 0.01 0.33 + 0.08ab 0.42 + 0.02abc 0.24 + 0.06abc 8.4 + 1.59ab 

Llanganuco 8.5 + 3.53a 1.9 + 0.01 0.34 + 0.01ab 0.47 + 0.09abc 0.18 + 0.08ab 4.4 + 1.56a 

C. Blanca 3.1 + 3.75 1.7 + 0.27A 0.21 + 0.13 0.29 + 0.17A 0.48 + 0.30A 8.3 + 3.48 

Yaui .0 + 1.51b 1.9 + 0.04 0.10 + 0.06a 0.29 + 0.01ab 0.60 + 0.04cde 7.6 + 0.36ab 

Maticuna ND 1.5 + 0.35 0.56 + 0.16b 0.42 + 0.14abc 0.01 + 0.02a 4.5 + 2.88a 

Japani ND 1.8 + 0.05 0.23 + 0.04a 0.71 + 0.02c 0.05 + 0.06a 7.3 + 3.69ab 

Quichas 0.5 + 0.70b 1.9 + 0.02 0.26 + 0.07ab 0.59 + 0.00bc 0.14 + 0.07ab 6.8 + 0.94ab 

C. Occidental 1.1 + 1.88 1.8 + 0.20AB 0.28 + 0.19 0.50 + 0.18B 0.20 + 0.25B 6.6 + 2.22 

Yanacocha 1.5 + 0.70b 1.9 + 0.19 0.17 + 0.08a 0.26 + 0.12ab 0.56 + 0.20cde 7.9 + 1.24ab 

Sacsamonte 7.0 + 4.24b 1.9 + 0.21 0.16 + 0.08 0.34 + 0.22 0.50 + 0.14bcde 8.8 + 1.75ab 

Pumahuanca ND 2.0 + 0.07 0.30 + 0.04ab 0.45 + 0.11abc 0.25 + 0.07abc 7.0 + 0.48ab 

Quenuamonte 4.0 + 4.24b 2.0 + 0.01 0.28 + 0.09ab 0.37 + 0.01abc 0.35 + 0.08abcd 7.4 + 0.53ab 

C. Vilcanota 3.1 + 3.64 2.0 + 0.13B 0.22 + 0.09 0.35 + 0.12A 0.41 + 0.16A 7.8 + 1.12 

MANOVA 
Local F9,12 

4.16* 3.19* 6.18** 4.84** 14.64*** 3.00* 

MANOVA 
Region F2,12 NS 4.57* NS 9.36*** 19.23*** NS 
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Appendix 1.1. Plant families and species present in Polylepis woodlands in the study area. 

Plant taxonomy classification, nomenclatural authorities, data on endemics (in bold), and 

elevation range of species follows Bracko and Zarucchi (1993). *WM & GS = W. Mendoza 

and G. Servat voucher numbers (see text for details). ** P. weberbauerii in C. Blanca normally 

occurs at > 4000 m. NC=Not collected. *** Not included in analysis. 
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FAMILY SPECIES Elevation 
(m) 

Voucher number 
(WM & GS)* 

ASTERACEAE Ageratina azangaroensis (Schultz-Bip. ex Weddell) K & H. R. 2000-4500 00191 

 Ageratina sternbergiana (DC.) K. & H. R 500-4500 00009 

 Baccharis aff. peruviana Cuatrecasas 3000-4000 00197 

 Baccharis buxifolia (Lamarck) Persoon 3000-4000 00014 

 Baccharis odorata H.B.K. 3000-3500 00018 

 Baccharis phylicoides H.B.K. 2000-3500 00192 

 Baccharis salicifolia (R. & P.) Persoon 0-3500 00141 

 Baccharis latifolia (R. & P.) Persoon 1000-4000 00195 

 Bidens andicola H.B.K. 3000-4500 00022 

 Diplostephium foliosissimum S.F. Blake 2500-4500 00202 

 Gynoxys aff. longifolia Weddell 3500-4000 00027 

 Gynoxys aff. nitida Muschler 3000-4500 00025 

 Gynoxys aff. visoensis Cuatrecasas 2500-3500 00163 

 Gynoxys caracensis Muschler 2500-4500 00208 

 Gynoxys macfrancisci Cuatrecasas 2500-3000 00207 

 Gynoxys pillahuatensis Cuatrecasas 3000-3500 00028 
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FAMILY SPECIES Elevation 
(m) 

Record number 
(WM & GS)* 

 Loricaria ferruginea (R. & P.) Weddell 3000-4500 00161 

 Mutisia cochabambensis Hieronymus 3000-4000 00211 

 Senecio torrehuasencis Cuatrecasas 4000-4500 00034 

 Senecio hohenackeri Schultz-Bip. 3000-4500 00046 

 Senecio usgarens Cuatrecasas 2500-3500 00196 

 Senecio sp --- 00150 

BERBERIDACEAE Berberis carinata Lechler 3000-3500 00056 

 Berberis humbertiana J.F. Macbride 3000-3500 00053 

CARYOPHYLLACEAE Arenaria lanuginosa (Michaux) Rohrbach 1000-4500 00058 

ERICACEAE Pernettya prostrata (Cavanilles) Sleumer 2000-4500 00066 

FABACEAE Lupinus sp --- 00239 

GENTIANACEAE Gentianella sandiensis (Gilg) J. Pringle 3000-4000 00072 

SAXIFRAGACEAE Escallonia myrtilloides L. 2500-4000 00083 

 Ribes brachybotrys (Weddell) Janczewski 2500-4500 00080 

LAMIACEAE Minthostachys mollis Grisebach 500-3500 00247 

 Satureja boliviana (Bentham) Briquet 3000-4500 00085 

LILIACEAE Bomarea dulcis (Hooker) Beauverd 3000-4500 00002 
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FAMILY SPECIES Elevation 
(m) 

Record number 
(WM & GS)* 

LOGANIACEAE Buddleja aff. montana Britton 2500-4000 00225 

MELASTOMATACEAE Brachyotum naudinii Triana 2500-4000 00263 

PIPERACEAE Peperomia hartwegiana Miquel 3000-4500 00272 

POACEAE*** Stipa ichu (R. & P.) Kunth 1000-4500 NC 

 Festuca dolichophylla J. S. Presl 3500-4500 NC 

 Calamagostris rigescens (J. S. Presl) Scribner 3500-4500 NC 

POLYGALACEAE Monnina salicifolia R. & P. 1500-4500 00104 

POLYGONACEAE Muehlenbeckia nummularia H. Gross 3000-4000 00274 

 Rumex acetocella L. 2000-4500 00273 

ROSACEAE Polylepis racemosa R. &. P. 3000-4500 00172 

 Polylepis incana H. B. K. 2500-4500 00358 

 Polylepis sericea Weddell 2500-4500 00277 

 Polylepis weberbauerii Pilger 2000-4500* 00171 

SCROPHULARIACEAE Bartsia bartsioides (Hooker) Edwin 2000-4500 00119 

 Calceolaria engleriana Kraenzlin 2000-4500 00127 

SOLANACEAE*** Salpichroa hirsuta (Meyen) Miers 3000-4500 NC 

URTICACEAE Urtica echinata Bentham 3500-4500 00178 
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FAMILY SPECIES Elevation 
(m) 

Record number 
(WM & GS)* 

VERBENACEAE Duranta mandonii Moldenke 2500-4000 NC 

PTERIDOPHYTES Adiantum poeretii Wikstrom --- NC 

 Melpomene flobelliformis (Poiret) A. R. Sm & R. C. Moran --- 00329 

 Asplenium haenkeanum (C. Presl) Hieron. --- 00333 

 Asplenium castaneum Schletcht & Cham --- 00337 
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CHAPTER TWO 

INTRASPECIFIC VARIATION IN THE FORAGING NICHE OF BIRDS 
ASSOCIATED WITH POLYLEPIS WOODLANDS: THE INFLUENCE OF 

LOCAL AND REGIONAL FACTORS 

The niche concept has played a central role in ecology for nearly a hundred years, 

mainly to gain insights into community organization (Gause 1930, Hutchinson, 1957, 

MacArthur 1958, 1965, Connell 1951, MacArthur and Levins 1964, MacArthur and Pianka 

1966, Emlen 1966, Levin 1970, Tilman 1982, for a review see Chase and Leibold 2003). 

Contemporary theory defines the niche of a species as the requirements for existence in a 

given environment (i.e., the n-dimensional hyper-volume niche, Hutchinson 1957) and its 

role on that environment (Ricklefs 1997, Chase and Leibold 2003, Naeem 2003), extending 

the “Principle of Competitive Exclusion” (Gause 1930, Hardin 1960) to the condition that 

only species with sufficiently differentiated niches may coexist within the same community 

or environment (for review see Futuyma and Moreno 1988, Chase and Leibold 2003). 

Classic niche studies have focused on resource-based, interspecific differences based 

on competition theory to determine how two or more species with similar niches can 

coexist by partitioning habitats (e.g., Paramecium, Gause 1930; grain beetles, Crombie 1945-

1947, Park 1948), microhabitats (e.g., barnacles, Connell 1951; Dendroica warblers, MacArthur 

1958), resources (e.g., algae and terrestrial plants, Tilman 1976, 1982), and foraging heights 

(e.g., warblers, MacArthur 1972). Based on these studies, interspecific differences in niche 

partitioning were inferred to influence the ecological outcomes of communities (see review 

in Chase and Leibold 2003, but see Hubbell 2001). However, communities include 
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conspecifics as well as other species, and intraspecific differences in the niche also have 

ecological and evolutionary consequences for the species and communities involved (Van 

Valen 1965; Grant 1967, 1979; Roughgarden 1972, 1974; Bolnick et al., 2003). Moreover, as 

natural selection operates at the level of the individual, the importance of including 

measures of intraspecific variation in species’ niche has been seen with renewed interest in 

studies of local adaptation, adaptive radiation, and ecological speciation (e.g., Losos 1990, 

Throwbridge 1991; Dayan and Simberloff 1994, Linhart and Grant 1996, Reznick and 

Travis 1996, Nagy and Rice 1997, Bronikowski 2000, Olson and Uller 2003, Bolnick et al. 

2003, Scott et al. 2003, Meiri et al. 2005). 

Intraspecific variation in the niche is likely affected by local differences in abiotic 

and biotic factors (e.g., temperature, Houlahan et al. 2000; Shuter et al. 1980; Magnusson et al. 

1979; elevation, Berven 1982, 1990; microclimate, Martin 1998, 2001; habitat diversification, 

Robinson and Wilson 1994; prey distribution, Ehlinger and Wilson 1988; intraspecific 

competition, Smith 1990; predation, Martin 1993, 1998, Gilliam and Fraser 2001, Werner 

1984). Furthermore, the niche may also be influenced by a complex and dynamic set of past 

and present factors acting on different spatial and temporal scales as shown in a variety of 

studies across taxa (e.g., Darwin’s finches, Grant 1986; Caribbean Anolis lizards, Losos 1990, 

Losos et al. 1998, 2003; stream fishes, Angermeier and Winston 1998; desert rodents, Kelt 

1999; plants in calcareous grasslands, Pärtel and Zobel 1999).  

Quantitative approaches to the study of interspecific and intraspecific niche 

variation are based on measures of its components (Roughgarden 1972, 1974, Bolnick et al. 

2003): breadth and plasticity. Niche breadth is defined as the number of resources used by a 

particular species and measures if the species is a specialist or generalist relative to other 
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community members or species in a clade (Futuyma and Moreno 1988, Mac Nally 1995 and 

references therein). A specialist uses a relatively limited fraction of the range of available 

resources (i.e., narrow niche breadth, Fig. 2.1 A) while a generalist uses a relatively large 

fraction of the resources available (i.e., broader niche breadth, Fig. 2.1 A) without regard for 

underlying mechanisms that determine how the species manages to identify, select, and 

capture a particular resource or the fitness effects on the focal species (Bolnick 2003; e.g., 

Sherry 1984, Mac Nally 1995). Niche plasticity evaluates how restricted or plastic is the 

niche of a species within and across populations (Fig. 2.1 B) (Mac Nally 1995, Roughgarden 

1972, 1974; Bolnick et al., 2003). The term restricted applies to the conditions under which 

intraspecific regularities in the niche might be maintained, and the term plastic applies when 

niche regularities within and across populations break down (Sherry 1990, Price 1991, Price 

and Jamdar 1991, Richman and Price 1992, Holbrook and Schmitt 1992, Forstmeier et al. 

2001). Thus, a species may have a restricted (or plastic) niche, even if its niche breadth is 

narrow (specialist) or wide (generalist) provided  if it remains consistent across populations 

throughout its distribution (i.e., restricted populations may be made up of individual 

generalists or, equally plausibly, from a variety of individual specialists) (Fig. 2.1 C). Both 

components provide complementary information for comparisons at different spatial scales 

and levels of organization (e.g., populations, species, and communities). 

In this study, I examined intraspecific niche variation (or lack thereof) of nine 

species of forest interior, arboreal, arthropod-feeding birds (hereafter, insectivorous) of the 

Polylepis (Rosaceae) community, a high elevation system of the Andes. I focus the study 

from a behavioral perspective because foraging behavior (along with physiology and 

morphology) is crucial to adapt to new habitats and, it is an important target of selection 
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(e.g., Sherry 1985, 1990, Morimoto and Wasseman 1991, Losos 1990). In addition, at high 

elevation systems, arboreal-insectivorous birds spend most of their time and effort using 

several substrates and maneuvers to search and obtain food, so it is likely that the way in 

which individuals forage influences their performance, as natural selection should favor 

those strategies that maximize fitness or some proxy of fitness (e.g., rate of resource 

acquisition, production of offspring). Specifically, I quantify the niche breadth and plasticity 

based on measures of a) microhabitat use (Levin’s index), and b) foraging categories used 

(measured by plotting maneuvers and substrates in multivariate space, cf. Mac Nally 1995). 

Measures of variation in breadth and plasticity were analyzed in light of variation in 

ecological factors across Polylepis woodlands. I focus on three factors that may vary locally: 

food resources, floristic composition, and vegetation structure because these have been 

reported to influence the niche of species intra and interspecifically (Wiens 1989, Werner 

and Sherry’s 1987, Lewontin 1987, Cadle and Greene 1993, Cornell and Lawton 1992, 

Latham and Ricklefs 1993, Francis and Currie 1998, Huston 1999). Fluctuations in the 

relative abundance, availability of alternative food types, spatial relationship among 

resources, attributes of resources such as palatability and/or hardness have been reported to 

influence: a) the relative abundance of individuals in populations or communities; b) 

seasonal migration (e.g., Rabenold 1978, 1979, 1980, Recher et al. 1983, 1985, Recher and 

Holmes 1985, Loiselle and Blake 1991, Blake and Loiselle 1991); c) opportunistic 

aggregation in areas of high food abundance (e.g., Brush and Stiles 1986); and d) partition of 

food resources (e.g., Holmes and Shultz 1988, Holmes and Pitelka 1968), foraging substrates 

(e.g., Hejl and Verner 1990), and strata. Besides food resources, variation in floristic 

composition is expected to provide a set of opportunities and constraints that may result in 
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close associations between birds and particular plant species. In addition, variation in plant 

species composition could affect foraging ecology of birds because of differences in the 

spatial arrangement of leaves, branching patterns, and other parameters of plant species’ 

architecture (e.g., Holmes and Robinson 1981, Franzeb 1983, Morrison et al. 1985, Tomoff 

1974, James and Wamer 1982, Rotenberry 1985, Wiens and Rotenberry 1981, MacNally 

1990, 1995). Vegetation structure in forests with high diversity of plant species may also be 

more complex in terms of strata (i.e., number of layers in understory, subcanopy, and 

canopy) and life forms (i.e., shrubs, small trees, large trees) and, thus, provide more 

substrates or microhabitats in which to forage when compared to low diversity woodlands 

(Holmes et al. 1979, Robinson 1981, Robinson and Holmes 1984). Some characteristics of 

habitat structure known to affect foraging ecology of birds are the number or types of 

substrates available (Jackson 1979, Fitzpatrick 1980, Greenberg and Gradwohl 1980) and 

forest physiognomy (Robinson and Holmes 1984, Whelan 1989, in Mac Nally 1995, Maurer 

and Whitmore 1981, Sabo and Holmes 1983). Moreover, regional factors, such as 

biogeography (i.e., the presence of barriers that have an effect on species dispersal), may 

influence the niche of a species within and across populations (e.g., Wiens 1989, Werner and 

Sherry’s 1987, Lewontin 1987, Cadle and Greene 1993, Cornell and Lawton 1992, Latham 

and Ricklefs 1993, Francis and Currie 1998, Huston 1999). The relative importance of 

regional factors (i.e., biogeography) in explaining foraging niche variation is indirectly 

assessed in this study by selecting a series of Polylepis woodlands nested within three distinct 

biogeographic regions of the Peruvian Andes. 

The goals of the present study are 1) to measure the extent of variation in two 

foraging niche components (breadth and plasticity) of nine species of arboreal-insectivorous 
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birds in light of local conditions (e.g., food resources availability, floristic composition, and 

vegetation structure) in a series of Polylepis woodlands nested within three distinct 

biogeographic regions, and 2) determine the relative importance of local and/or regional 

factors in explaining niche patterns.  

The hypotheses of the study are: 1) Variation in local and/or regional factors within 

and across woodlands influences intraspecific measures of the foraging niche (breadth and 

plasticity) of birds associated with the Polylepis community (“local/regional factors 

hypothesis”). Support for the hypothesis could result in two non-mutually exclusive 

scenarios: a) If the foraging niche varies in response to local factors, niche breadth and 

plasticity will track one or more local factors (i.e., abundance of food resources, floristic 

composition or vegetation structure); b) If niche varies regionally, I expect differences in 

species niche breadth and plasticity across regions but not among forests within region. 2) 

Intraspecific measures of foraging niche of birds are static and do not reflect variation in 

local or regional factors within or across Polylepis woodlands (“historical/morphological 

factors hypothesis”). If foraging niche breadth and plasticity of bird species do not vary 

within and across populations, despite variation in local and regional factors, history of taxa 

and/or morphology likely constrains the foraging niche of the species. 

METHODS 

Study system 

Throughout the high Andes from 3400 to 4600 m, Polylepis woodlands are typically 

found close to streams or as small patches in canyon gorges on slopes and cliff-edges; these 
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forests in Peru are surrounded by Puna grasslands. The Polylepis community is dominated by 

Polylepis (Rosaceae) trees and characterized by high levels of endemism in flora and fauna 

and thus, it is of great interest from evolutionary and ecological perspectives (Fjeldså and 

Krabbe 1990, Fjeldså 1992a, b, c; 1993). Polylepis woodlands are scattered in different 

biogeographic regions throughout the Andes, offering discrete units of study (i.e., local 

communities) within a historical framework. Moreover, the flora and fauna are relatively 

simple when compared to more species-rich woodlands at lower elevations, allowing 

comprehensive studies at different scales (local, regional) and levels of organization (species, 

populations, communities).  

The patchy occurrence of Polylepis woodlands is attributed to microclimatic and 

physiological requirements (Weberbauer 1945, Troll 1959, 1968, Koepcke 1961, Walter and 

Medina 1969, Simpson 1979, 1986, Vuilleumier 1984, Rauh 1988). Yet it also has been 

suggested that these woodlands are relicts of a once more widespread habitat during the 

Pleistocene (i.e., 10,000-20,000 years ago) (Ellenberg 1958, Beck and Garcia 1991, Fjeldså 

1992a, Hensen 1993, Kessler 1995). 

Regional settings 

The present study was conducted in three separate regions of the Peruvian Andes: 

Cordillera Blanca, C. Occidental, and C. Vilcanota (Fig. 2.1), areas that have been proposed 

as distinct glacial Pleistocene refuges for a number of taxa (Fjeldså 1992a, 1993, Fjeldså and 

Kessler 1996) and as different biogeographic regions (Berry 1982, Koepcke W. 1961, 

Koepcke M. 1961, Lamas 1982, Fjeldså 1992 a, Simpson 1975, Smith 1988). In more humid 

regions Polylepis woodlands often have some dense, shady sections with deep fertile soil and 
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lush vegetation of herbs between moss-covered rocks. Trees are heavily laden with mosses, 

vines (e.g., Bomarea, Mutisia, Passiflora, and Salpichroa) and mistletoes (i.e., Tristerix); bushes and 

trees of Gynoxys (Asteraceae) are often interspersed with Polylepis.  

Very few climatic data are available for the study regions, but high Andean systems 

are generally characterized by small annual variation in mean temperature while daily 

patterns may go from freezing temperatures during the night (-3 º C) to high daytime 

temperatures (24º C) (Sarmiento 1986). Precipitation in tropical mountains occurs when the 

Inter-tropical Convergence Zone (ITCZ) is at its southernmost point (40°- 45° latitude 

south). Variation in the position of the ITCZ drastically affects rainfall in the mountains 

resulting in the wet (December - April) and dry seasons (May - November). However, 

precipitation patterns during the wet season tend to be more complex and variable within 

regions than across regions due to exposure to winds and orography (Lenters and Cook 

1995). 

Local settings 

For this study, I selected four Polylepis woodlands within each of the three regions 

that matched the following criteria: 1) sites were above 3500 m where Polylepis forms distinct 

woodlands surrounded by Puna vegetation (Lamas 1982, Kessler 1995); and, 2) woodlands 

were presumably large enough (> 50 ha) to maintain populations of selected bird species. 

The woodlands selected for the present study ranged in size from 50 - 300 ha (Table 2.1); 

and the dominant Polylepis species occurring in each forest were: 1) C. Blanca: Aquilpo and 

Ishinca (P. weberbauerii), Morococha and Llanganuco (P. sericea); 2) C. Occidental: Yaui and 
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Quichas (P. weberbauerii); Maticuna and Japani (P. incana); and 3) C. Vilcanota: Yanacocha, 

Sacsamonte, Pumahuanca, Quenuamonte (P. racemosa). 

General study design 

I collected data in 12 Polylepis woodlands from May - December 1997 (foraging 

niche of birds, floristic composition, and vegetation structure) and returned to the same 

woodlands in May - October 1998 (foraging niche of birds, arthropod resources) (Table 2.1) 

which corresponded to the dry season and beginning of the rainy season. In all cases, I used 

a hierarchical sampling design with the four woodlands nested within each of three regions. 

In each Polylepis forest, I collected data on foraging niche of birds and abundance of 

arthropod resources in two sets of four 100 x 10 m transects placed 50 m apart from each 

other. The last transect from the first set was separated by at least 500 m from the first 

transect of the second set (hereafter the two sets of transects will be referred as plots). I 

took data on floristic composition and vegetation structure in two 20 x 5 m belts embedded 

within each transect. To examine variation in local factors such as arthropod abundance, 

floristic composition and vegetation structure among woodlands, I used plots within 

woodlands as replicate units (Chapter I). 

Study birds 

Approximately 112 bird species are regularly found in Polylepis woodlands of the 

Andes of Peru.  This number includes opportunistic visitors from lower montane forests 

and surrounding grasslands, bogs, and wetlands (Fjeldså 1992 a, 1997). Of these 112 species, 

at least 22 are found in Polylepis woodlands as regular breeding residents (= associated 
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species) (Fjeldså and Krabbe 1990, Fjeldså 1992 a, b, c, 1993). I studied nine species of 

forest-interior, arboreal, insectivorous birds associated with the community: Oreomanes fraseri, 

Cranioleuca baroni (or its ecological replacement C. albicapilla), Xenodacnis parina, Leptasthenura 

pileata (or its ecological replacement L. xenothorax), L. yanacensis, Mecocerculus leucophrys, and 

Octhoeca rufipectoralis (Table 2.2) (cf. Fjeldså and Krabbe 1990, Fjeldså 1992 a, b, c). 

I made observations of actively foraging birds using the Remsen and Robinson 

(1990) classification of foraging behavior. I quantified microhabitats, defined here as parts 

of the habitat where individuals forage, which in this case, are given by the combination of 

plant species and substrate used by birds (e.g., Polylepis bark, Gynoxys foliage), and maneuvers 

(prey capture attempts, e.g., glean, probe) used by individual birds. At each forest, I made 

observations throughout the day, most of which occur between 0800-1200 hrs, and 1400-

1700 hrs, for four and six consecutive days in 1997 and 1998, respectively. I systematically 

walked transects and moved from one foraging bird to another using focal-animal sampling 

(Altmann 1974); observations of foraging birds were audio-recorded, or videotaped when 

possible. I obtained foraging observations (i.e., maneuvers and microhabitats used) from a 

minimum of 10 individuals of each species in each of the 12 Polylepis woodlands. For each 

individual, the average length of continuous foraging time recorded was 180 seconds 

(individuals observed less than 180 seconds were excluded from analysis), which was later 

divided into 60-second sequences. As the number of continuous observations obtained for 

each species was highly variable in each Polylepis forest. I first chose 20 individuals and 

randomly selected one 60-second sequence from each continuous observation. This 

procedure allowed me to lessen biases that may exist due to lack of independence of 

observations (i.e., foraging maneuvers and microhabitat use may depend on previous 
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behaviors). For a few sites, however, this was not possible because of small sample size, in 

which case I used all sequences collected. I combined foraging maneuvers and 

microhabitats for each sequence into categories (Fig. 2.2). Some rare foraging combinations 

(those used 1 or 2 times in only one of the 12 localities) were excluded from analyses. 

The main data set consisted of columns that represented 25 foraging categories and 

1480 rows corresponding to each individual/species/forest (1480 rows instead of 1600 due 

to the absence of species at some sites). Counts of the total number of times that each 

foraging category was used by each individual in the 60-second sequence (hereafter = 

individuals) fill the cells of the matrix. From these data, I constructed different matrices for 

analyses. 

Variation in local factors 

I measured local food availability (i.e., types and abundance of arthropods in 

different microhabitats), floristic composition (i.e., plant species richness and abundance), 

and horizontal and vertical vegetation structure, as factors that can shape the foraging niche 

of birds. 

Food resources.- Food resources may affect how birds move through the habitat and 

how they encounter and capture prey. To measure the abundance of arthropods, the 

primary food resource of study birds, I identified microhabitats (i.e., “patches” containing 

food resources that can be discriminated by an individual; Morris 1987 in Mac Nally 1995) 

as the unit of sample. Microhabitats were defined by the combination of dominant plant 

species (i.e., Polylepis, Gynoxys, Tristerix) and substrates used (i.e., bark, foliage), except for the 

moss attached to the branches of Polylepis trees (that included many epiphytic species). I 
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quantified arthropods by focusing on discrete microhabitats used by foraging birds (based 

on preliminary studies): Polylepis bark; Polylepis, Gynoxys, and Tristerix foliage; and moss. Due 

to the structural differences among microhabitats, arthropod sampling varied. I sampled 

arthropods from the trunk of Polylepis trees by removing a 20 x 20 cm quad, 150 cm above 

the ground. Polylepis, Gynoxys, and Tristerix foliage (twigs with leaves) were sampled by 

clipping three or four 30-cm terminal twigs selected randomly from the lower to middle 

crown of trees or shrubs. To sample arthropods from moss, I removed a 20 x 20 cm quad 

of moss from branches (150 cm from the ground). In every case, I sampled 24 Polylepis trees 

(or Gynoxys shrubs or trees and Tristerix plants) equally divided between the two plots and 

calculated arthropod abundance per microhabitat across Polylepis woodlands. Samples of 

bark, foliage, and moss were placed in plastic bags and weighed using a “Pesola” scale. In all 

cases, attempts were made to sample similar amounts of bark, moss, and foliage per sample 

(ca. 50 gm). Arthropods were removed using tweezers, counted and preserved in 70 % 

alcohol. Arthropods with aposematic coloration, low occurrence (< 5 individuals per 

microhabitat), or less than 2 mm length, were excluded from the present study as they likely 

do not constitute prey for birds due to low acceptability or detectability (Wolda 1990, Servat 

1995). 

Floristic richness and composition.- Plant species richness and composition at each 

Polylepis forest was measured by counting and identifying trees (>10 cm dbh) and “woody 

stems” (<10 cm dbh) found in the forest interior (i.e., 50 m away from edge of the plot, see 

study design above). The data obtained were used to build a matrix consisting of 12 Polylepis 

woodlands (rows) by 50 plant species (columns), cells were filled with the total number of 

individuals found. 
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Vegetation structure.- I divided vegetation structure variables into those that represent 

“horizontal complexity” (i.e., the distribution of tree size classes, density of vegetation, and 

tree diameter) and those that represent the “vertical complexity” of the habitat (i.e., the 

diversity of vegetation heights and density of foliage at those heights, vertical layers: 

understory, subcanopy and canopy) (e.g., MacArthur et al. 1962, Robinson and Holmes 

1984, Rotenberry 1985, MacNally 1990, 1995). 

1. Vertical structural variables 

a. Mean tree height (HEIGHT).- I measured trees using a telemetric graduated pole (12 

m, Hastings Telescoping Measuring Rod). 

b. Foliage height density (FHDEN).- I took measurements of foliage height density, 

with a telemetric graduated pole, along "vertical" transects every 20 m along the two sets of 

100 m transects (see study design). The number of times vegetation “intersected” the pole 

in a radius of 25 cm was recorded at the following intervals: 0-2 m (FHDEN1), > 2-6 m 

(FHDEN2), and > 6-10 m (FHDEN3). Vegetation contacts were summed within each 

interval across points and then divided by total contacts across all heights to obtain a 

proportion of foliage density occurring within different heights. 

2. Horizontal structural variables 

a. Tree size classes (DBH).- I measured diameter at breast height for each tree 

encountered, regardless of species identity, and assigned them to one of three size 

categories: > 10-20 m dbh (DBH1), > 20-30 m dbh (DBH2), and > 30 cm dbh (DBH3). For 

each local factor, I used data obtained in plots as replicates in the models. All variables were 

tested for normality, and equality of variances. 
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b. Total basal area (TBA).- Total basal area was measured to describe tree coverage. 

TBA was calculated by converting measures of dbh (i.e., distance at breast height) to circular 

area, estimating proportional basal area for each tree species and adding all tree basal areas 

for each plot. 

c. Tree (TD) and shrub density (SD).- I measured tree and shrub density by counting the 

number of trees (> 10 cm dbh) or woody stems (> 50 cm height and < 10 cm dbh) per plot 

and dividing the total by the sampled area to obtain density values. 

Regional factors.- Regional factors in this study refer to history of the environment (i.e., 

biogeography) and are inferred by the study design in which four independent Polylepis 

woodlands were nested within each biogeographic region. 

Data analysis 

To determine if foraging niche of each of the focal species vary across and within 

populations, I measured breadth and plasticity. 

Niche breadth.- The niche breadth is a measure of variability in the extent to which a 

species uses resources (Feinsinger et al. 1981, Gotelli and Graves 1996). In this study, 

measures of breadth indicated the degree to which microhabitat exploitation was evenly 

spread among alternative states. I used Levin’s non-conformance niche breadth (Levins 

1968) given by: 1/Σi (pi)2 where pi is the proportion of resource items (microhabitats) in state 

i out of all items used by the population. For each species, low values of niche breadth 

imply that a small number of potential microhabitats were used (i.e., specialist) across 

populations, whereas relatively high values indicated a large number of microhabitats were 
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used more evenly (i.e., generalist). It is important to note that values of niche breadth were 

not absolute, but relative values across species and populations. 

To analyze niche breadth, I selected one species at a time and calculated the niche 

breadth, based on the foraging microhabitats used by each individual in a population 

(replicates). I compared variation in niche breadth values (dependent variable) across 

Polylepis woodlands and regions of the Andes (as the main effect and nested factors 

respectively) using Hierarchical Multivariate Analysis of Variance (SPSS, Version 10) to 

separate out the variation attributed to regional (i.e., among regions), or local niche breadth 

(i.e., among woodlands within regions) by levels of significance. I followed the analysis with 

Post-hoc Tukey (HSD) test when appropriate. Based on statistical significance of niche 

breadth, and the observed mean (and SD), I categorized species into specialists (if mean 

niche breadth was relatively narrow, variation is small and no significant differences are 

detected across woodlands and regions), or generalist (if mean niche breadth was relatively 

broad, highly variable and significant differences were found across woodlands and regions 

of study). 

Niche plasticity.- Plasticity is a measure of the foraging niche consistency within and 

across populations of the same species. Thus, species could be restricted if intraspecific 

regularities in the niche are maintained, or plastic if niche regularities within and across 

populations break down. In this study, bird species may have a restricted (or plastic) niche, 

even if its niche breadth is narrow (specialist) or wide (generalist) as long as it remains 

regular across populations (i.e., restricted populations may be made up of individual 

generalists or, equally plausibly, from a variety of individual specialists) (Fig. 2.1 C).  
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I determined foraging plasticity for each bird species across Polylepis woodlands and 

regions by identifying the “spatial position” that each individual occupies in the population. 

I employed PC-ORD Version 4 (McCune and Mefford 1999) to do Bray Curtis ordination. I 

selected Sorensen’s percent dissimilarity as a measure of distance between points (individual 

birds). This index is commonly used with ecological data because it retains sensitivity in 

heterogeneous data sets and gives less weight to outliers (McCune and Mefford 1999). I 

used the variance regression method for end point selection and Euclidean distance for axis 

projection geometry (Beals 1984, Greig-Smith 1983, McCune and Mefford 1999). The 

arrangement of points (i.e., each individual position along the first two axes) obtained from 

the ordination represents the linear combinations of all foraging categories used by within 

and across populations. Thus, I selected one bird species at a time, and for each population, 

I used the scores of all individuals along the first two axes from the previous ordination (see 

above) to calculate the population centroid. To obtain a single value for the two-

dimensional position of each individual, I used the algebraic expression a2+b2=c2; where a is 

the difference between the location of the centroid and the location along the first axis of 

each individual within the population, b is the difference between the location of the 

centroid, and the location along the second axis of individuals in the population, and 

consequently c represents the distance to the centroid. For each population, I calculated the 

mean c value and the standard deviation; or the square root of the sum of the position 

divided by the number of observations minus one [SD= √ Σc2/ (n-1)] to represent niche 

plasticity. 

To analyze data I used the c value (dependent variable) of individuals in each 

population as replicates in Hierarchical Multivariate Analysis of Variance (SPSS, Version 10) 
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to separate out the variation attributed to the main effect (i.e., among regions of the Andes), 

or nested factor (i.e., among woodlands within regions) by levels of significance. I followed 

the analysis with Post-hoc Tukey test when appropriate. 

Variation in ecological factors 

To determine if food resources, floristic composition richness, and vegetation 

structure vary locally and/or regionally I first analyzed each factor independently. 

Food resources and floristic composition.- I used rarefaction to analyze variation in richness 

of food resources (arthropods/microhabitat) and plants using plots as replicates across 

Polylepis woodlands. Rarefaction uses probability theory to derive the expected mean and 

variance of species richness for a sample of a given size (Hurlbert 1971, Heck et al. 1975, 

Gotelli and Graves 1996). I used Ecosim (Gotelli and Entsminger 2004) to obtain the 

expected mean richness and variance (of plants and arthropods, independently) while 

controlling for the number of individuals (Sanders 1968 in Gotelli and Graves 1996). The 

process was simulated 1000 times specifying the number of individuals that are randomly 

drawn from each sample. 

Vegetation structure.- To analyze variation in vegetation structure within and across 

Polylepis woodlands, I used the mean and SD for each of the 11 variables measured (plots as 

replicates). Local and/or regional variation in food resources, floristic composition, and 

vegetation structure were tested using hierarchical MANOVA models to interpret foraging 

niches. As before, hierarchical MANOVA tests separated out the variation attributed to 

regional (i.e., among regions) or local scales (i.e., among woodlands within regions) by levels 

of significance. 
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After the independent analyses of local factors, I determined the relative importance 

of local and regional factors in the foraging niche of birds. I used Mantel Tests (Mantel 1967, 

Sokal and Rohlf 1995, Burgman 1987) to identify the relative effect of local and regional 

factors in explaining patterns of foraging niche of each bird species across woodlands. I 

used seven independent models (one for each bird species) and built distance matrices to 

obtain a measure of resemblance (= Sorensen’s dissimilarity index) in foraging niche for 

each possible pair of populations (response variable), and a measure of resemblance in food 

resources, floristic composition, vegetation structure, region, and geographic distance 

(predictor variables) for each possible pair of sites. Mantel test uses a regression approach to 

evaluate the null hypothesis of no relationship between two distance matrices and basically 

determined if pair-wise population differences in foraging categories could be explained by 

pair-wise differences in any of the factors measured. I customized distance matrices for each 

bird species, since some of the variables measured (i.e., food resources) were used differently 

by different bird species. Each model consisted of the following distance matrices: 

a. Foraging matrix.- To evaluate the relationship between site similarities in food 

resources used and foraging behavior of species I selected one species at a time from the 

main data matrix (see above), and summed up all counts for each foraging category used 

across all individuals within a population. This resulted in a matrix of 7-12 populations 

(based on the presence of the species at a site) x 6-11 foraging categories (11 was the 

maximum number of categories used by any one species from the total 25). 

b. Food resources matrix.- The relationship between similarities in food resources used 

and foraging behavior of species was evaluated using the total number of arthropods 

(corrected by weight of bark, foliage, and moss) to build a forest x microhabitat matrix (7-12 
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sites x 3-5 microhabitats used). Data on food resources were customized for each bird 

species based on which foraging microhabitat(s) used, or if these were present at a site. For 

instance, in the Cranioleuca species I only included data on arthropod abundance from bark 

and foliage (as this species uses these microhabitats to feed) from localities where the 

species occurred. Customized matrices for O. fraseri included only abundance of arthropods 

found in bark, while for Leptasthenura species I used arthropod data from foliage and bark 

microhabitats, and for X. parina I used Polylepis, Gynoxys and Tristerix foliage. For the two 

flycatchers, M. leucophrys and O. rufipectoralis, I used arthropod abundance from Polylepis 

foliage because these likely constitute most of the flying prey caught by the birds during 

aerial maneuvers. 

c. Floristic composition matrix.- To evaluate the relationship between site similarities in 

floristic composition and bird species foraging behavior, I built a forest x plant species 

matrix (12 sites x 50 plant species) in which the presence (“1”) or absence (“0”) of each 

plant species filled the cells of the matrix. 

d. Vegetation structure matrix.- To evaluate the relationship between vegetation 

structure and foraging niche of birds, I built a forest x vertical structure variables matrix (12 

sites x 4 variables) and a  forest x horizontal structure variables matrix (12 sites x 5 variables) 

in which a single measure for each variable (averaging data from the two plots, see study 

design) filled the cells of the matrix. 

e. Region matrix.- A “regional distance matrix” was built by examining each forest pair 

and scoring “0” if they belonged to the same region and “1” if they differed (Sokal and 

Rohlf 1995); this regional variable was added as another predictor in the Mantel test. 
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Distance matrices of predictor variables matched the size of the bird matrix; that is, 

data on arthropod abundance, floristic composition, vegetation structure, and region were 

not included at sites where bird species were absent. Except for the “regional distance 

matrix”, I relativized original matrices by “the norm” (Greig and Smith 1983) using rows or 

columns to make categories comparable for each population or site; and used Sorensen’s 

percent dissimilarity as a measure of distance between points (populations or sites). 

The models were run using Permute! version 3.4, alpha 9 (Legendre et al. 1994), a 

special version of Mantel test, that allows for several predictor variables to be tested over one 

response variable generating partial regression coefficients and the associated permutation 

probability for each variable. I used stepwise regression, a backward elimination procedure, 

and performed 999 permutations of the original matrix to determine the significance 

probability of the observed relationship among the response and predictor variables. 

RESULTS 

Proportional use of foraging categories 

Insectivorous birds associated with Polylepis woodlands differed in the relative 

proportion of maneuvers and microhabitats used across sites and regions (Fig. 2.3 a-g). 

Some species, for instance, O. fraseri, foraged proportionally more (> 60 %) on the bark of 

Polylepis trees, using to a lesser extent other microhabitats (Fig. 2.3 a). Maneuvers used by O. 

fraseri included several hanging postures (up, down, sideways, upside down) to probe inside 

the multi-layered bark, or to glean arthropods from the surface. Other bark-foragers such as 

C. baroni (in C. Blanca and C. Occidental) and C. albicapilla (in C. Vilcanota) used 
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proportionally more Polylepis bark, but also included regularly other microhabitats such as 

dead branches hanging in the understory or attached to trees, tree surfaces covered by moss, 

and Polylepis foliage (Fig. 2.3 b). Comparatively, Cranioleuca species use more surface gleaning 

(hover-glean, sally-glean, and reach-glean) than O. fraseri (Fig. 2.3 a, b). 

More than 80 % of observations of L pileata and its ecological replacement L. 

xenothorax were foraging in Polylepis foliage (Fig. 2.3 c). The two species used many hanging 

postures to glean prey from the surface of twigs and leaflets of Polylepis trees, but 

interspecific differences were also observed. For instance, at some woodlands L. pileata 

foraged more in shrubs in the understory than L. xenothorax (e.g., 30 % in Quichas, Fig. 2.3 

c), while L. xenothorax used relatively more Polylepis bark surfaces than L. pileata (e.g., 25 % in 

Sacsamonte and Pumahuanca, Fig. 2.3 c). Moreover, the proportional use of microhabitats 

varied across populations as well (Fig. 2.3 c). The third Leptasthenura species, L. yanacensis, 

differed from the other two in the use of several foraging microhabitats (i.e., dead branches, 

Polylepis and Gynoxys foliage, moss, Polylepis bark, shrubs, and ground, Fig. 2.3 d). A similar 

pattern was observed in the other foliage gleaner, X. parina, that used a variety of 

microhabitats for foraging (Gynoxys, Polylepis, and Tristerix foliage) (Fig. 2.3 e). 

Species that capture flying insects either flycatching or hover-gleaning such as M. 

leucophrys could vary in the proportional use of foraging categories and strata (i.e., understory, 

canopy) used across woodlands. For instance in Aquilpo and Llanganuco, M. leucophrys 

flycatch or hover-gleaned relatively more often on prey on the surface of shrubs and Polylepis 

foliage, while in the remaining sites M. leucophrys was mostly observed flycatching in the 

canopy (Fig. 2.3 f). The other flycatcher, O. rufipectoralis, used relatively more sally-sit and 
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flycatching to catch flying insects swarming in the air or on the surface of shrubs in the 

understory (Fig. 2.3 g). 

Foraging niche breadth: specialist or generalist? 

Throughout Polylepis woodlands, the use of foraging microhabitats by some bird 

species was maintained while some others vary locally and/or regionally as reflected by 

niche breadth values. Based on breadth variation (or lack thereof), O. fraseri and L. 

xenothorax are considered specialists because they present relatively narrower niches that did 

not vary significantly across populations (Fig. 2.4 a, c, Table 2.3). Most bird species in the 

study were generalists in the use of foraging microhabitats, as evidenced by the relatively 

broader niche breadth. From these, M. leucophrys and L. pileata (Fig. 2.4 c, f, Table 2.3) were 

consistently broad in microhabitat use (i.e., no statistically differences in niche breadth 

across populations and/or regions), while C. baroni, C. albicapilla, L. yanacensis, X. parina, and 

O. rufipectoralis, varied in niche breadth across populations or regions (i.e., there were 

statistical differences in niche breadth values) (Fig. 2.4 b, d, e, g, Table 2.3). In general, 

intrapopulation variation in microhabitat use is observed in specialists and generalists’ 

species (as reflected by SD values) (Fig. 2.4 a-g, Table 2.3). 

Foraging niche plasticity: restricted or plastic? 

Bird species had different patterns of niche plasticity across populations, as 

represented by the position of the c value obtained in the ordination (see methods). For 

instance, O. fraseri, L. pileata, L. yanacensis, and X. parina did not show significant differences 

in position across Polylepis woodlands, suggesting restriction in the foraging niche (Fig. 2.5 a, 
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c-e), whereas populations of C. baroni/albicapilla, L. xenothorax, M. leucophrys and O. 

rufipectoralis differed significantly in position across populations, suggesting plasticity in the 

foraging niche (Fig. 2.5 b, c, f, g). 

Based on niche breadth values and foraging plasticity, insectivorous bird species 

associated with Polylepis woodlands presented four strategies: a) Specialist-restricted, b) 

Specialist-plastic, c) Generalist-restricted, and d) Generalist-plastic (Table 2.4). 

Variation in ecological factors 

Food resources abundance.- Abundance of arthropods in Polylepis bark, moss,  and 

Polylepis foliage differed significantly across woodlands (Table 2.5) while Gynoxys and Tristerix 

foliage were not significantly different in arthropod abundance across woodlands (Table 

2.5). Regional differences in food resources were also found for Polylepis bark, moss, and 

Gynoxys foliage. Basically, C. Blanca had fewer arthropods in moss and Gynoxys foliage, while 

C. Vilcanota had fewer arthropods in Polylepis bark (Table 2.5). 

Arthropods in the bark of Polylepis trees were more abundant when compared with 

other microhabitats, excluding the humidity-dependent moss (Servat unpub.). In addition, 

Polylepis bark had a distinctive set of arthropods composed by free-living and weaving 

spiders, Pseudoscorpionida, and Dermaptera, which likely use the layers of Polylepis bark as a 

refugee that protects them against desiccation, a major problem for species at high 

elevations (Irons et al. 1993, Lencioni 2004). The other microhabitats included in the study 

were pretty distinctive in terms of prey (Servat unpub.), however not all microhabitats were 

present at each forest. Based on the presence/absence of microhabitats across Polylepis 
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woodlands, I considered, Polylepis bark and foliage predictable microhabitats, while Gynoxys, 

moss, and Tristerix were unpredictable across forests. 

Floristic composition.- Polylepis woodlands contained a total of 50 plant species in 31 

genera and 24 families (Servat, Chapter I). Plant species richness differed significantly across 

Polylepis woodlands (Table 2.6), with more species found in Llanganuco (average 12 plant 

species/100 individuals), Morococha (average 8 species /100 individuals) (C. Blanca), and 

Yanacocha (average 12 species/100 individuals) (C. Vilcanota) than in other forest sites 

(Table 2.6). Total number of species and individuals also differed among regions, with C. 

Occidental (the richest region), contributing to these differences (Table 2.6). 

Vegetation structure.- Horizontal structure variables (i.e., TBA, SD, DBH2, and DBH3) 

differed significantly across woodlands with exception of the number of small size trees 

(DBH1 > 10-20 cm dbh), and tree density (TD) that remain similar in all forests (Table 2.7). 

Regional differences were also found in all variables, except for the number of smaller and 

larger categories of tree sizes (DBH 1 > 10-20 cm, DBH3 > 30 cm, respectively) (Table 

2.7). Basically, woodland differed in the basal area that Polylepis trees occupy (e.g.,, Aquilpo, 

Yanacocha, and Yaui had more tree basal area than Llanganuco, Maticuna, Japani and 

Pumahuanca woodlands, Table 2.7). Vertical structure variables (i.e., HEIGHT, FHDEN1, 

FHDEN2, and FHDEN3) were significantly different across woodlands and regions (Table 

2.8). 

Local and regional factors and foraging of insectivorous birds 

In five of the seven models tested using Permute! (i.e., L. pileata/L. xenothorax, C. 

baroni/C. albicapilla, O. rufipectoralis, X. parina and M. leucophrys), site similarities in foraging 
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ecology of insectivorous birds of Polylepis woodlands were partially explained by site 

similarities in food resources, accounting for 10 to 30 % of the variance observed (Table 

2.9). For X. parina, site similarities in food resources (R2 = 0.26), floristic composition 

(Partial R2 = 0.26), and region (Partial R2= 0. 20) partially explained site similarities in 

foraging ecology (Table 2.9). In L. pileata/L. xenothorax, food resources (Partial R2= 0.11) 

and vertical vegetation structure (Partial R2= 0.32) partially explained site similarities in 

foraging. Similarity in horizontal vegetation structure was the only predictor of similarities in 

foraging ecology of L. yanacensis (Partial R2 = -0.49), the negative value indicates that 

foraging similarities were larger at sites less similar in horizontal vegetation structure. In 

addition to food resources, site similarities in foraging of M. leucophrys were also explained by 

region (Partial R2= -0.25), a significantly negative value indicates that similarities in foraging 

ecology were larger within region than across the three regions (Table 2.9). None of the 

factors measured were suitable predictors of foraging ecology of O. fraseri. 

DISCUSSION 

The foraging niche of insectivorous bird species associated with the Polylepis 

community varied from specialist-restricted (e.g., O. fraseri); specialist-plastic (e.g., L. 

xenothorax), generalist-restricted (e.g., X. parina); or generalist-plastic (e.g., L. pileata, L. 

yanacensis, M. leucophrys, and O. rufipectoralis). 

Despite local and regional differences in measured factors, the foraging ecology of 

O. fraseri remained similar across forests and regions. Of all the bird species studied here, O. 

fraseri is the only one whose distribution is entirely restricted to Polylepis woodlands. 
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Consequently, O. fraseri may have evolved specialized searching and pursuit maneuvers (e.g., 

probing) and morphologies (e.g., longer, narrower, and flattened vertically bill) to forage in 

the multilayered bark of Polylepis trees (e.g., Ralston and Wainwright 1997, Emlen and 

DeJong 1981, Ferry-Graham 1998, Ferry-Graham et al 2001, Ferry-Graham et al 2002); 

such specializations would have been likely reinforced because of the absence of gene flow 

from any individuals outside of this forest type that arisen during isolation at very high 

elevation (with only trees of the genus Polylepis present), and the strategy may have remained 

unchanged since the time of speciation (Garcia-Moreno and Fjeldså 2000). A conservative-

specialist strategy seems to be influenced by history of taxa or morphological constraints as 

predicted by the “historical/morphological factors hypothesis”. 

With the exception of O. fraseri, pair-site similarities in foraging of bird species track 

pair-site similarities in food resource abundance, and in some species, foraging similarities 

between sites were also related to similarities in floristic composition and vegetation 

structure. For example, X. parina foraging ecology appears to respond to local and regional 

variation in food resources and floristic composition of Polylepis woodlands. Variation in 

plant species composition likely translates into “architecturally” different microhabitats 

inhabited by arthropods, the primary food resources for birds (Table 2.6). Local differences 

in plant architecture likely constrain the ways in which a bird can search and capture prey 

(Recher 1969, Robinson and Holmes 1984, see Mac Nally 1995 for review). For instance, 

Polylepis foliage is a predictable microhabitat, rich in larvae and Diptera, which is commonly 

used by several species of foliage-gleaners. When X. parina forages in Polylepis foliage, it 

searches for prey reaching and gleaning for insects in any direction (up, down, upside-

down). However, when X. parina uses Gynoxys foliage (a less predictable microhabitat in 
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Polylepis woodlands characterized by abundant Homoptera attached to the undersides of 

leaves) individuals begin foraging in the lower part of the plant and move their way up to 

the top, reaching and gleaning the undersides of leaves. Thus, X. parina switches foraging 

maneuvers locally in response to plant species.  Similarly, regional variation in foraging of X. 

parina may also reflect adaptation to regional differences in plant species composition. For 

instance, the distribution of Tristerix plants (another microhabitat used by X. parina), is 

restricted to C. Blanca and C. Occidental. When Tristerix is present, X. parina forages in this 

microhabitat in a similar fashion than when it forages in Polylepis foliage, Tristerix is a 

parasitic plant growing on branches of Polylepis trees. The Tristerix microhabitat is rich in 

Diptera, but it is not present in all woodlands, and it is not present in the C. Vilcanota 

region. When examined across all sites, X. parina is a generalist because of its ability to use 

several microhabitats, but it is consistently restricted locally in foraging ecology in function 

of the microhabitats present at each site. 

In contrast to X. parina, L. xenothorax is a specialist on Polylepis bark and foliage, but 

shows considerable foraging plasticity within and across populations, thus revealing its 

ability to adapt to changes in food resource abundance.  The morphologically similar L. 

pileata is a sister species to L. xenothorax; L. xenothorax  is endemic to southern Peru in the C. 

Vilcanota, while L. pileata is found in the northern and central Andes of Peru (Fjeldså 1992, 

Sibley & Monroe 1990, Remsen 2003). Unlike, L. xenothorax, L. pileata has a broader niche 

breadth (generalist). Comparatively speaking, arthropod abundance in Polylepis foliage was 

lower in woodlands from C. Blanca and C. Vilcanota. When L. pileata occurs in Polylepis 

woodlands with limited food resources, it uses more microhabitats (broader niche breadth) 

as predicted from optimality theory (MacArthur and Pianka 1966).  Thus, prey-rich 
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microhabitats of C. Occidental may favor specialization in L. pileata, thus leading to 

narrower niche breadths than in relatively prey-poor C. Blanca. While site similarities in 

food resources may explain some of the variation in the foraging strategies used by 

Leptasthenura species, other factors need to be taken into consideration. The third species, L. 

yanacensis, is the most widely distributed, and co-occurs with either L. pileata or L. xenothorax 

respectively.  In this study, when L. yanacensis is found with the generalist L pileata its niche 

breadth seems to be narrower than when it co-occurs with the specialist L. xenothorax. These 

results suggest the potential importance of species interactions, such as competition for rich 

microhabitats or food resources, in shaping local patterns of foraging. Increased niche 

breadth in the presence of L. xenothorax may be a mechanism to avoid competition with the 

specialist on Polylepis foliage and bark (e.g.,, Cody 1974; Ford et al. 1986; MacArthur 1958; 

Recher 1989; Recher and Davis 1998; Wheeler and Calver 1996; Wiens 1989). However, 

specialization in this context is difficult to interpret, because subordinate competitors 

through competition with dominant ones may appear to be specialists, yet such individuals 

may be restricted to only a small subset of the available microhabitats or food resources. 

Overall results of this study suggest that differences in foraging ecology of most bird species 

associated with Polylepis woodlands respond to site differences in local factors (i.e., 

vegetation structure and abundance of food resources in Polylepis foliage) and, thus, follow 

the predictions generated by the “local/regional factor hypothesis”. 

Ecological and evolutionary implications of different foraging strategies 

Large-scale studies of species foraging that include several populations contribute to 

the understanding of a species’ potential for adaptation, which is crucial for species survival 
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(Orr and Smith 1998; Lenormand 2002). In the present study foraging ecology of most 

insectivorous species associated with Polylepis woodlands responded locally to fluctuations in 

food resources, floristic composition and other factors, suggesting that populations of the 

same species may be subject to different selective pressures with subsequent ecological and 

evolutionary implications (e.g., Holbrook and Schmitt 1992). In this study, shifts in foraging 

microhabitats and maneuvers were associated with niche expansion or contraction of birds, 

which potentially (if heritable) could result in disruptive selection, evolution of reproductive 

isolation (Gibbons 1979, Seger 1985, Kondrashov and Mina 1986, Dieckmann and Doebeli 

1999), and adaptive radiation (Schliewen et al. 1994; Schluter 2000, Losos 1994). Some 

previous work suggests that foraging specialization may be correlated with the rarity of a 

species or its vulnerability to extinction (Sierro & Arlettaz 1997, Vaughan 1997). This idea 

assumes that specialized species can rarely switch foraging ecology and that specialists face 

an elevated extinction risk because of their inability to change when faced with 

environmental variation, as have been shown for some taxa (phytophagous insects; 

Ailuropoda melanoleuca:, Carter et al. 1999; Hopkins et al. 2002; Mustela nigripes, Powell et al. 

1985; Dobson &Lyles 2000). If such is the case, then it may be possible to predict 

population responses to rapid changes in the environment based on the foraging strategy 

used. If foraging ecology of birds in the Polylepis system is correlated with the risk of 

extinction, then in the presence of stochastic events or fast changes in the environment, 

restricted-specialists such as O. fraseri might be prone to local extinction, due to its inability 

to adjust to local changes and therefore will be selected against (Stearns 1994). Meanwhile, 

plastic-generalist species might be seen as proxy to local adaptation because species may be 

able to track variation in local conditions (i.e., fluctuations in food resources, floristic 
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composition, or vegetation structure). At present, there is little evidence to confirm which 

strategy is more likely to adapt to environmental change, and most studies have failed to link 

generalist species with success in changing environments (e.g., Newsome and Noble 1986, 

Veltman et al. 1996). Moreover, the specialist-restricted strategy could be seen as greater 

efficiency in resource use and, thus, increased fitness (e.g., Sherry 1990). Under this view, 

plastic-generalist species are less efficient to adapt to novel or changing environments and 

then its risk of extinction will be higher (Mayr 1965, Myers 1986, Ehrlich 1989, Williamson 

1996, Sol et al. 2002). 

Intraspecific and interspecific studies of foraging, as some other trait, are important 

to determine how species respond to the combination of historical, regional (i.e., 

biogeography), and present local environmental conditions (abiotic and biotic) in which 

species are embedded (e.g., Korona 1996, Travisano and Rainey 2000, Losos et al. 2003). 

Studies that treat conspecifics as ecological equivalents and use population average 

responses to make predictions regarding ecological and evolutionary consequences for 

species and communities ignore the variety of species’ adaptations to cope with their 

biological demands (Bolnick 2003). Future studies regarding species’ potential for adaptation 

to changing conditions also need to quantify the ecological and fitness consequences for the 

species, which is crucial for maintenance of systems modified at accelerated rates from 

human activities such as in the Polylepis system. 
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Figure 2.1. Schematic diagrams of population niche breadth (A) and plasticity (B). Foraging 

strategies (C): a) Restricted-specialist, b) Plastic-specialist, c) Restricted-generalist, d) Plastic-

generalist. ISD = Individuals SD, T = Total Niche breadth, MN = Mean Niche breadth. 
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Figure 2.2. Map of the Peruvian Andes showing study regions, Polylepis woodlands, and 

climate stations mentioned in text (in parenthesis are latitude, longitude, elevation (m), 

temperature (o C), precipitation (mm), and humidity (%). (A).- C. Blanca: 1 = Ishinca, 2 = 

Aquilpo, 3 = Llanganuco, 4 = Morococha (B).- C. Occidental: 1 = Yaui, 2 = Maticuna, 3 = 

Japani, 4 = Quichas (C).- C. Vilcanota: 1 = Yanacocha, 2 = Sacsamonte, 3 = Pumahuanca, 

4 = Quenuamonte. Contour line represents elevations above 3000 m. Stars are climate 

stations: (a) = Chinancocha (9o6’S, 77o40’W, 3850 m, 8oC, 642 mm, 64%), (b) = Lampas 

Alto (10o0’S, 77o20’W; 4030 m, 6oC, 737 mm, 67%), (c) = Oyón (10o33’S, 76o45’W, 3631 m, 

9oC, 538 mm), (d) = Urubamba (13 o18’S, 72 o7’W, 2870 m, 14oC, 494 mm, 66 %), (e) = 

Calca (13o20’S, 71o57’W, 2859 m, 15oC, 437 mm). 
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Figure 2.3. Proportional use of foraging categories by arboreal-insectivore birds associated 

with Polylepis woodlands. In legend are the names of the 25 categories, the first two letters 

indicate the microhabitat (PB = Polylepis bark, PF = Polylepis foliage, GF = Gynoxys foliage, 

GB = Gynoxys bark, DB = Dead branch, TF = Tristerix foliage, MS = moss, SH = shrubs, 

and GR = ground) and the last two letters indicate the maneuvers (GL= glean, PR = probe, 

RE = reach, HG = hover-glean, SG = sally-glean, and PG = pull-glean), with the only 

exception of AEHWC = aerial hawking in canopy, and AEHWU = aerial hawking in the 

understory. Site codes are from North to South: AQ = Aquilpo, IS = Ishinca, MO = 

Morococha, LL = Llanganuco (in C. Blanca), UI = Yaui, MA = Maticuna, JA = Japani, KI 

= Quichas (in C. Occidental), YA = Yanacocha, SA = Sacsamonte, PU = Pumahuanca, QE 

= Quenuamonte (in C. Vilcanota). Numbers above bars indicate the number of foraging 

categories used by the population at a particular forest. 
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Figure 2.4. Levin’s mean niche breadth (+ SD) for each population of insectivorous bird 

species associated with Polylepis woodlands. Low or high values of niche breadth denote 

specialist or generalist species, respectively. (*) The asterisk represents populations of L. 

xenothorax
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Figure 2.5. Foraging niche plasticity of insectivorous bird species. Plasticity is represented by 

the mean c value (+ SD) (see text for calculations). Significance of hierarchical MANOVA 

(F) results for regional and local patterns of plasticity for every bird species is shown. 

Asterisks indicate significance levels: (*) = P< 0.01, (**) P< 0.001, NS = no significance. 

AQ = Aquilpo, IS = Ishinca, MO = Morococha, LL = Llanganuco, UI = Yaui, MA = 

Maticuna, JA = Japani, KI = Quichas, YA = Yanacocha, SA = Sacsamonte, PU = 

Pumahuanca, QE = Quenuamonte.  
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Table 2.1. Polylepis woodlands in the Andes of Peru selected for the present study and dates 

of data collection during the two years of study. Approximate woodland size is based on 

aerial photographs. 
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Woodlands 
~Size 

(ha) 

Latitude 

(S) 

Longitude 

(W) 

Elevation 

(m) 
1997 1998 

Aquilpo 250 09o21’ 77o30’ 4075 Aug 3-12 Jun  9-15 

Ishinca 150 09o22’ 77o28’ 3800 Oct 16-23 Jun 15-21 

Morococha 150 09o01’ 77o32’ 3836 Aug 17-27 Sep 22-26 

Llanganuco 150 09o05’ 77o38’ 3850 Oct 27-Nov 5 Sep 28-30 

Yaui 200 10o35’ 76o48’ 4184 May 16-21 Sep 13-18 

Maticuna 200 10o39’ 76o50’ 3990 Nov 18-23 Sep 8-13 

Japani 300 11o41’ 76o31’ 4140 Nov 28-Dec 2 Jun 25-Jul 1 

Quichas 50 10o33’ 76o46 4200 ---- Jul 4-9 

Yanacocha 120 13o17’ 72o03’ 4012 Jul 1-11 Aug 16-22 

Sacsamonte 50 13o13’ 72o02’ 3926 Jul 14-23 May 27-Jun 2 

Pumahuanca 50 13o12’ 72o05’ 4110 Sep 6-15 Jul 17-23 

Quenuamonte 50 13o11’ 72o13’ 3812 Sep. 18-26 Aug 27-Sep 2 
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Table 2.2. Insectivorous species associated with Polylepis woodlands. The asterisk after the 

species name indicates the bird species and subspecies included in the study. Polylepis 

woodlands: AQ=Aquilpo, IS=Ishinca, MO=Morococha, LL=Llanganuco, UI=Yaui, 

MA=Maticuna, JA=Japani, KI=Quichas, YA=Yanacocha, SA=Sacsamonte, 

PU=Pumahuanca and QE=Quenuamonte. (1) Taxonomy follows Stotz et al. (1996); (2) 

Abundance: C = common, species that throughout their range of distribution occur in 

moderate to large numbers (densities of more than 5-6 individuals/ha) and are found easily 

during brief periods of time (1-2 days). U = Uncommon, less numerous (densities of 2-4 

individuals/ha) detected in proper habitat. R=rare, species scarce and seldom encounter 

even during prolonged stays in the field. Many of these species are territorial or patchily 

distributed and occur in small number (densities of 1-2/ha) throughout their range of 

distribution; (3) Habitat: BU=bushes, FE=Polylepis forest edge, FI = Polylepis forest interior; 

(4) Strata: U = understory, SC = sub-canopy, C = canopy, A = aerial. 
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Abundance (2) 
Family (1) Species 

Aq Is Mo Ll Ui Ma Ja Ki Ya Sa Pu Qe
Habitat (3) Strata (4) 

Furnariidae Leptasthenura yanacensis* U C   C C  C  U U  BU, FE, FI U, SC, C 
 L. xenothorax*         C C C C BU, FI U, SC 
 L. pileata cajabambae* U U C U         BU, FE, FI U, SC 
 L. pileata pileata*     U C C U     BU, FE, FI U, SC 
 Cranioleuca albicapilla*         C C C C FI U, SC, C 
 C. baroni zaratensis*     U C  C     FI U, SC, C 
 C. baroni baroni* C C C C         FI U, SC, C 
Tyrannidae Mecocerculus leucophrys pallidior* C C U U         FI SC, C, A 
 M. leucophrys spp.*     C R  U     FI SC, C, A 
 M. l. brunneomarginatus*         U R U R FI SC, C, A 
 Anairetes alpinus U U   R    U R U R FI SC, C, A 
 A. parulus         U   U BU, FI SC, C, A 
 A. nigrocristatus   U          FE, FI U, SC, C, A 
 Octhoeca rufipectoralis centralis* C U C C         FE, FI SC, C 
 O. rufipectoralis.spp.*     U R       FE, FI SC, C 
 O. r. tectricialis*         C U C C FE, FI SC, C 
 O. oenanthoides U U U  C R C U U U   FE, FI SC, C 
Thraupinae Oreomanes fraseri* U C U C U U C C C C C C FI U, SC 
 Xenodacnis parina petersi* C C C C U U R U     FE, FI U, SC 
 X. p. parina*         C C C C FE, FI U, SC 
Emberizinae Poospiza alticola C U C C         FE, FI U, SC, C 
Total species number 10 10 9 7 9 8 4 7 9 9 8 8  
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Table 2.3. Inter and intraspecific variation in niche breadth of arboreal-insectivore birds 

across forests nested within three regions. The niche breadth value of each individual bird 

for each population was used as replicates in Hierarchical MANOVA tests (F). Asterisks (*) 

indicate significance levels: * = P < 0.05, ** = P < 0.01, *** = P < 0.001 after Tukey Post 

hoc test. 
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Forest O.fraseri C.baroni/C.
albicapilla 

L.pileata/L. 
xenothorax 

L.yanacensis X.parina O.rufipectoralis M leucophrys

Aquilpo 0.13+0.133 0.05+0.061b 0.62+0.475 0.64+0.408b 0.40+0.456 0.56+0.460 0.64+0.417 
Ishinca 0.09+0.120 0.38+0.426 0.56+0.454 0.12+0.100a 0.34+0.398 0.98+0.112a 0.75+0.357 
Morococha 0.27+0.329 0.32+0.409 0.71+0.408  NP 0.48+0.445 0.99+0.010b 0.69+0.360 
LLanganuco 0.12+0.092 0.23+0.400 0.37+0.429  NP 0.43+0.437 0.84+0.336 0.63+0.393 

C. Blanca 0.15+0.202 0.25+0.372 0.57+0.452 0.38+0.394 0.41+0.429 0.84+0.334 0.68+0.379 
Yaui 0.47+0.493a 0.41+0.449a 0.47+0.407 0.46+0.454ab 0.40+0.408 0.67+0.414 0.89+0.281 
Maticuna 0.08+0.223b 0.70+0.391 0.41+0.448 0.51+0.416b 0.36+0.433  NP 0.47+0.369 
Japani 0.30+0.421  NP 0.68+0.449  NP 0.18+0.227   NP NP
Quichas 0.12+0.305 0.28+0.378 0.38+0.430 0.41+0.372ab 0.58+0.434 0.65+0.400  NP

C. Occidental 0.24+0.400 0.47+0.438** 0.48+0.442 0.46+0.410 0.38+0.405 0.66+0.402 0.68+0.386 
Yanacocha 0.07+0.084b 0.13+0.124 0.30+0.419 NP 0.17+0.293 0.52+0.411 0.88+0.293 
Sacsamonte 0.29+0.425 0.07+0.072 0.20+0.286 0.57+0.451b 0.30+0.367 0.54+0.394 0.91+0.227 
Pumahuanca 0.17+0.359 0.45+0.430b 0.12+0.223 0.75+0.387b 0.42+0.445 0.67+0.412 0.72+0.364 
Quenuamonte 0.20+0.347 0.33+0.408 0.23+0.340 NP 0.58+0.437 0.57+0.442 0.60+0.388 

C. Vilcanota 0.18+0.334 0.24+0.336 0.21+0.325*** 0.66+0.425*** 0.37+0.411 0.58+0411 0.78+0.342*
MANOVA Fregion NS       7.03** 6.90** 5.39*** NS 10.75*** 3.48*
MANOVA Flocal NS       4.62*** NS/NS *** 2.46** 3.37** NS
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Table 2.4. Foraging strategies of insectivorous birds. Data in the table includes foraging 

niche breadth (Levin’s index) and plasticity results for each bird species based on the 

statistical significance of hierarchical MANOVA tests (see text for calculations). (n) = 

number of populations. Asterisks indicate significance levels: * = P < 0.05, ** = P < 0.01, 

*** = P < 0.001 after Tukey Post hoc test..
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Niche breadth  
in microhabitat use  

Niche plasticity  
in c value position

Bird Species 

Niche range 
size 

MANOVA 
F(local)

MANOVA F(local) 

Foraging strategy 

Oreomanes fraseri (n=12) 0.05-0.47     NS NS Specialist-restricted

Cranioleuca baroni/C albicapilla (n=12) 0.13-0.70     4.62** 3.05*** Generalist-plastic

Leptasthenura pileata (n=8) 0.37-0.71   * NS Generalist-restricted 

L. xenothorax (n=4) 0.12-0.30     NS 4.17*** Specialist-plastic

L. yanacensis (n=7) 0.12-0.75    5.39** NS Generalist-restricted

Xenodacnis parina (n=12) 0.17-0.58   2.46* NS Generalist-restricted 

Mecocerculus leucophrys (n=10) 0.47-0.91     NS 3.75** Generalist-plastic

Octhoeca rufipectoralis (n=10) 0.52-0.99     3.37 5.74*** Generalist-plastic
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Table 2.5. Food resources abundance (arthropods/microhabitat). Hierarchical MANOVA 

results for arthropod abundance at each microhabitat across 12 woodlands and 3 regions of 

study based on two replicate plots per forest. Significance of F-values for local and regional 

effects is indicated as: ** = P < 0.01, ** = P < 0.001, NS = No significant differences. 

Superscripts following means indicate differences across sites (a, b, c) or regions (A, B) after 

post-hoc Tukey test. NP = not present. 
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Arthropod abundance per microhabitat 
Forests and Regions 

Polylepis foliage Polylepis bark Moss Gynoxys foliage Tristerix 
foliage 

Aquilpo 41.0+11.3a 77.5+21.9a 139.0+11.3 25.0+0.0 5.5+4.9 

Ishinca 58.5+0.7 76.0+22.6a 141.5+13.4 72.5+62.9 20.0+25.5

Morococha 69.0+32.5 134.0+8.5 65.5+4.9a 44.0+15.5 62.5+30.4

Llanganuco 57.0+26.8 89.0+11.3 50.0+12.7a 36.0+21.2 NP 

C. Blanca 56.4+19.7B 119.0+59.2B 99.0+45.3A 44.4+31.9A 29.3+31.9

Yaui 70.5+10.6 144.5+40.3 84.0+8.5 11.0+0.0 68.0+65.1

Maticuna 120.5+2.1 231.5+44.5b 436.0+120.2b 75.0+72.1 30.0+16.9

Japani 244.5+7.8c 214.5+74.2 205.5+45.9 NP 47.0+63.6

Quichas 142.5+34.6b 109.5+0.70 83.5+34.6 158.5+37.1 47.5+31.8

C. Occidental 144.5+69.2A 175.0+64.4A 202.3+161.8B 81.5+75.4B 48.1+39.7

Yanacocha 61.5+3.5 108.0+41.0 256.5+60.1 88.5+41.7 NP 

Sacsamonte 58.0+22.6 53.5+13.4 179.5+48.8 81.5+12.0 NP 

Pumahuanca 129.0+12.7 71.5+9.2a 153+11.3 120+9.2 NP 

Quenuamonte 53.0+9.9 119.5+28.9a 138.5+57.3 57+39.6 NP 

C. Vilcanota 75.4+34.8B 88.1+34.8B 181.9+60.9B 86.9+33.1B NP 

MANOVA 
 Local F11,24 

20.1*** 5.6** 9.6*** NS NS 

MANOVA 
 Region F2,10 

*** 19.4*** 16.2*** 8.1** -- 
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Table 2.6. Floristic composition across Polylepis woodlands. Hierarchical MANOVA results 

for plant species richness and abundance across regions and forests. Asterisks indicate levels 

of significance: * = P < 0.05, ** = P < 0.01, *** = P < 0.001, NS = no significance. 

Superscripts following means indicate differences across sites (a, b, c) or regions (A, B) after 

Post hoc Tukey’s test. 
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Floristic Variables Forests and Regions 

Species number Individuals number 
Aquilpo 4.5+0.70ªb 260.0+25.45ªb

Ishinca 5.0+1.41ªb 318.0+15.55ªbc

Morococha 8.5+2.12ªbc 338.5+30.40ªbc

Llanganuco 14.5+0.70c 325.0+15.55ªbc

C. Blanca 8.12+4.38B 310.3+36.36AB

Yaui 3.5+3.53ª 187.5+19.09ªb

Maticuna 5.5+0.70ªb 379.5+102.53bc

Japani 3.0+0.00ª 133.0+7.07ª 

Quichas 3.5+0.70ª 253.5+108.18ªb

C. Occidental 3.8+1.72A 238.3+113.58A

Yanacocha 12.5+4.94b 518.0+137.17c

Sacsamonte 7.0+2.82ªb 214.0+31.11ªb

Pumahuanca 5.0+0.00ªbc 307.5+2.12ªbc

Quenuamonte 5.5+0.70ªbc 332.0+5.65ªbc

C. Vilcanota 7.5+3.85B 342.8+129.34B

MANOVA Local F9,12 5.16** 5.08** 

MANOVA Region F2,12 6.17** 9.36** 
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Table 2.7. Multivariate hierarchical ANOVA results for horizontal vegetation structure 

variables. Means and SD are shown for all variables across 12 woodlands based on two 

replicate plots. Significance of F-values for local and regional effects is indicated as * = P < 

0.05, ** = P < 0.01, *** = P < 0.001. Superscripts following means indicate differences 

across sites (a, b, c, d, e) or regions (A, B) according to Tukey multiple comparison among 

means test. TBA = total basal area (800 m2), TD = tree density (# trees /800 m2), SD = 

shrub density (# shrubs /800 m2), DBH 1 = number of individuals in size class 1 (> 10 – 20 

cm dbh), DBH 2 = number of individuals in size class 2 (> 20 - 30 cm dbh), DBH 3 = 

number of individuals in size class 3 (> 30 cm dbh). AC = absent category. NS = No 

significant differences. 
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Horizontal Vegetation Structure Variables Forests and Regions 
TBA       TD SD DBH1 DBH2 DBH 3

Aquilpo 537.5 + 53.84b 104.5 + 12.02 165.0 + 0.00ab 40.5+4.90 15.5+2.12ab 0.5 +0.70b

Ishinca 340.3 + 61.85ab 91.0 + 19.79 269.0+11.51ab 56.6+12.02 31.5+7.77abc 3.0 +0.00b

Morococha 175.5 + 76.57a 70.5 + 34.64 268.5+45.96ab 54.0+31.11 16.0+2.82ab 0.5 +0.70b

Llanganuco 157.4 + 18.51a 56.5 + 6.36 264.5+2.12ab 56.6+13.43 39.5+2.12bc 8.5 +3.53a

C. Blanca 302.7 +169.31A 80.6+25.35AB 241.7+50.67AB 51.8+5.44 25.6+11.57A 3.1 +3.75 

Yaui 363.7 +12.19ab 83.0 +2.82 101.0 +72.12a 45.5+7.77 33.5+6.36abc 4.30+1.51b

Maticuna 59.4 +42.09a 42.0 +24.04 273.0+47.07ab 40.5+23.33 1.5+0.70a AC 

Japani 75.3 +10.75a 48.5 +3.53 32.5 +13.43a 46.0+2.82 2.5+0.70a AC 

Quichas 131.0 +19.68a 65.5 +6.36 175.5+132.22ab 57.0+11.51 8.0+4.24ab 0.5 +0.70b

C. Occidental 157.3 +131.82B 59.7+19.52A 145.5+124.38A 47.2+12.13 11.5+14.21B 1.1 +1.88 

Yanacocha 550.4 +213.66b 149.0+35.35 463.0 +79.60b 82.5+9.19 65.0+25.45c 1.5 +0.70b

Sacsamonte 350.6+106.08ab 56.0 +9.89 160.5+41.71ab 25.0+9.89 24.0+4.24ab 7.0 +4.24b

Pumahuanca 175.7 +15.43a 85.5 +14.84 189.0+80.61ab 72.5+20.50 12.0+4.24ab AC 

Quenuamonte 370.0+162.58ab 101.5+51.61 251.5+27.57ab 67.5+44.54 26.5+9.19ab 4.0 + 4.24b

C. Vilcanota 361.7 +177.37A 98.0+43.58B 266.0+148.04B 61.8+30.34 31.8+23.70A 3.1 + 3.64 

ANOVA Local F9,12 6.03**      NS 2.90* NS 7.90*** 4.16*

ANOVA Region F2,12 10.73**      5.29* 4.43* NS 11.70** NS

MANOVA Local F9,12 = 3.33* 

MANOVA Region F2,12 = NS 
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Table 2.8. Hierarchical MANOVA results for vertical vegetation structure variables. Means 

and SD are shown for all variables across 12 woodlands based on two replicate plots. 

Significance of F-values for local and regional effects is indicated as: * = P < 0.05, ** = P < 

0.01, *** = P < 0.001, NS = No significant differences. Superscripts following means 

indicate differences across sites (a, b, c, d, e) or regions (A, B) according to Post-hoc 

Tukey’s test. FHDEN1 = foliage height density or proportional coverage at > 0 – 2 m, 

FHDEN2 = foliage height density at > 2 – 6 m, FHDEN3 = foliage height density at > 6 – 

10 m, HEIGHT = mean tree height (m). ND = No data available.  
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Vertical Vegetation Structure Variables Forests and Regions 

FHDEN1 FHDEN2 FHDEN3 HEIGHT 

Aquilpo 0.10 + 0.07a 0.17 + 0.02a 0.72 + 0.05de 12.9 + 2.55b

Ishinca 0.09 + 0.02a 0.10 + 0.09a 0.80 + 0.07e 7.6 + 0.11ab

Morococha 0.33 + 0.08ab 0.42 + 0.02abc 0.24 + 0.06abc 8.4 + 1.59ab

Llanganuco 0.34 + 0.01ab 0.47 + 0.09abc 0.18 + 0.08ab 4.4 + 1.56a

C. Blanca 0.21 + 0.13 0.29 + 0.17A 0.48 + 0.30A 8.3 + 3.48 

Yaui 0.10 + 0.06a 0.29 + 0.01ab 0.60 + 0.04cde 7.6 + 0.36ab

Maticuna 0.56 + 0.16b 0.42 + 0.14abc 0.01 + 0.02a 4.5 + 2.88a

Japani 0.23 + 0.04a 0.71 + 0.02c 0.05 + 0.06a 7.3 + 3.69ab

Quichas 0.26 + 0.07ab 0.59 + 0.00bc 0.14 + 0.07ab 6.8 + 0.94ab

C. Occidental 0.28 + 0.19 0.50 + 0.18B 0.20 + 0.25B 6.6 + 2.22 

Yanacocha 0.17 + 0.08a 0.26 + 0.12ab 0.56 + 0.20cde 7.9 + 1.24ab

Sacsamonte 0.16 + 0.08 0.34 + 0.22 0.50 + 0.14bcde 8.8 + 1.75ab

Pumahuanca 0.30 + 0.04ab 0.45 + 0.11abc 0.25 + 0.07abc 7.0 + 0.48ab

Quenuamonte 0.28 + 0.09ab 0.37 + 0.01abc 0.35 + 0.08abcd 7.4 + 0.53ab

C. Vilcanota 0.22 + 0.09 0.35 + 0.12A 0.41 + 0.16A 7.8 + 1.12 

ANOVA Local F9,12 6.18** 4.84** 14.64*** 3.00* 

 ANOVA  Region F2,12 NS 9.36*** 19.23*** NS 

MANOVA Local F9,12 = 2.46** 

MANOVA Region F2,12 = NS 
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Table 2.9. Mantel tests using 999 permutations and the program Permute (Casgrain 1998). 

Each line in the table is a model that examines the influence of region, floristic 

compositions, vegetation structure, and arthropod abundance, on bird species foraging. n= 

number of pair site combinations used in the model (see text for calculations). Partial 

regression coefficients for each predictor variable and overall model R2 are provided. 

Significance of models is indicated by: * = P < 0.05, ** = P < 0.01, *** = P < 0.001, NS = 

No significant differences.  
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Predictor Variables 

Models 
Region Floristic 

composition
Horizontal 
structure 

Vertical 
structure 

Arthropod 
abundance 

Overall 
R2

Oreomanes fraseri (n=66) 0.034      0.087 -0.108 0.060 0.162 NS

Cranioleuca baroni/albicapilla (n=44/22) 0.160      

      

      

      

      

      

-0.022 0.087 0.067 0.385*** 0.15**

Leptasthenura pileata xenothorax (n=44/22) -0.047 -0.030 -0.186 0.316** 0.114** 0.10**

Leptasthenura yanacensis (n=21) 0.114 0.112 -0.494* -0.280 -0.089 0.24*

Xenodacnis parina (n=55) 0.203* 0.259** -0.119 0.020 0.258** 0.15**

Mecocerculus leucophrys (n=45) -0.246* -0.005 -0.186 -0.066 0.468** 0.30**

Octhoeca rufipectoralis (n=45) -0.050 -0.196 -0.110 0.179 0.406** 0.16**
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CHAPTER THREE 

BIRD ASSEMBLAGE STRUCTURE IN THE POLYLEPIS COMMUNITY  

Much of the past four decades of community ecology have been devoted to the 

analyses of community structure and organization (Diamond 1975, Connor and Simberloff 

1979, Tilman 1982, 1988, Wiens 1986, 1989, Ricklefs 1987, Drake 1990, Cornell and Lawton 

1992, Ricklefs and Schluter 1993, Losos 1994, 1998, Brown 1995, Huston 1999, Hubbell 

2001, Leibold and Chase 2003). Yet, questions regarding whether communities are assembled 

randomly or by repeatable processes, how local conditions and regional contingency influence 

community organization, and the extent to which patterns of functional organization are 

repeated in space and time, have remained poorly resolved issues (Ricklefs and Schluter 1993, 

Brown 1995, Huston 1999, Hubbell 2001, Leibold and Chase 2003). 

Our perceptions of community organization are influenced by a historical dichotomy 

of “individualistic” versus “organismal” classifications. Clements (1916) compared the plant 

community to an organism, ‘‘able to essentially reproduce its component parts’’, whereas 

Gleason (1926) argued that a plant community is “scarcely even a vegetation unit, but merely 

a coincidence of the range of species”. Presently, the individualistic-organismal debate has 

been invigorated by the “neutral” and “niche” based models of community ecology. Neutral 

models (Hubbell 2001) view all species as equal or functionally equivalent, so they exert 

similar effects both on populations and on community organization. In contrast, niche-based 
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models grant species particular properties, and thus, recognize species as functionally distinct, 

with unique or non-substitutable roles (Chave et al. 2002, Chase and Leibold 2003). 

Regardless of the debate over its nature, the complexity of natural communities 

makes it unlikely they function only as either groups of individual species present because of 

individual tolerances, or as assemblages of perfectly integrated species (Ricklefs 1987, Ricklefs 

and Schluter 1993, Ricklefs 2001). Instead, communities are regarded as a template from 

which a large number of local (e.g., past and present ecological processes), and/or historical 

factors (i.e., those that shaped the community from its beginning such as dispersal, speciation, 

migration, and extinction), which operate at different spatial and temporal scales, convene to 

shape particular aspects of their structure and organization (Vuilleumier and Simberloff 1980, 

Wiens 1986, 1989, Ricklefs 1987, Ricklefs and Schluter 1993, Losos 1994, 1998, Brown 1995, 

Huston 1999, Ricklefs 2001). 

Analyses of community structure are conventionally made by breaking down groups 

of species (not necessarily related taxonomically) into “functional groups” or “guilds” (Root 

1967), with the underlying assumption that the relationship between species and function is 

intimately linked (i.e., species with similar ecological attributes seem to act or respond to 

environmental variation in similar ways) (Walker 1992, Lawton and Brown 1994, see review in 

Chase and Leibold 2003). Although, guilds are considered to be “identifiable” and “constant” 

within a community, guilds are not static in space and time and, it is precisely their dynamic 

nature that makes them relevant to understand community structure (e.g., McNaughton 1978, 

Cornell y Kahn 1989, Mac Nally 1994) and organization (e.g., Jaksic and Delibes 1987, Jaksic 

and Medel 1990, Jaksic et al. 1993, Marti et al. 1993). A wide variety of criteria and levels of 

subdivision have been used to make assignments of species into guilds to describe community 
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structure (Karr 1971, 1976, 1980, Terborgh 1986, Szaro and Balda 1979, Blake 1983, Bradley 

and Bradley 1983, Manuwal 1983, Recher and Holmes 1985). However, given that energy 

acquisition is paramount to species survival and fitness, foraging ecology has been the 

prevalent way to group species into guilds (e.g., Root 1967, Morse 1971, Holmes et al. 1979, 

Sherry 1979, 1982, Holmes and Recher 1986, Landres and MacMahon 1983, Wiens 1983, 

Brown 1989, Mac Nally 1994). 

Fluctuation in abiotic (e.g., temperature, wind, Cody 1985, Wiens 1989) and biotic 

factors, such as vegetation structure (e.g., vertical zonation of vegetation; MacArthur and 

MacArthur 1961, MacArthur et al. 1962, Robinson and Holmes 1984, McNally 1994, Huston 

1994), floristic composition (e.g., the richness and relative number of floristic elements; 

Orians 1969, Recher 1969, James and Wamer 1982, Rotenberry 1985, Whitmore 1975, James 

et al. 1984, Tomoff 1974), available food resources (Morse 1977, Jaksic 1981, Wiens 1983, 

1989, Bradley and Bradley 1985) and species interactions (e.g., Connell 1983, Schoener 1983) 

through its effects on foraging ecology of species, likely influence community structure (e.g., 

modifying species composition and/or abundance within guilds). 

Studies that describe the extent of spatial variation in the structure of communities 

and the factors in which the community is embedded are insightful, yet scarce (e.g., 

Vuilleumier and Simberloff 1980, Recher and Holmes 1985, Holmes 1986, Wiens 1989). In 

this study, I examined the extent of spatial variation of an assemblage of forest-interior 

insectivorous birds associated with the Polylepis community, a unique vegetation association of 

the high Andes, using the conventional guild approach (i.e., guild classification, number of 

guilds, and component bird species diversity and abundance). I describe variation in bird 

species composition and abundance for each foraging guild across twelve Polylepis woodlands 
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distributed along 600 km in the Peruvian Andes in light of variation of food resources 

(available arthropods) and biological interactions (i.e., potential competition). I chose 

availability in food resources because birds in Polylepis woodlands depend on arthropods for 

foraging and thus fluctuations in availability of food resources could be a limiting factor. I 

considered arthropods to be limited due to the low temperature, high radiation, dryness, and 

other environmental variables characteristic of high elevation forests. I assess the relative 

importance of resource availability in assemblage structure by measuring arthropod 

abundance in microhabitats where birds’ forage (arthropods seem to be attached to protected 

microhabitats such as the layers of bark) and its relationship with bird species composition 

and abundance within and across guilds. 

Bird species in the Polylepis system co-occur with different sets of species within its 

range of distribution, in particular among regions of study. As species composition changes, 

so too does the precise nature of species interactions (MacArthur and Wilson 1967, Whittaker 

1972). Studies on several taxa have shown that competitive interactions can alter community 

structure (e.g., rodents, Luo and Fox 1995; Orthoptera, Beckerman 2000; ants, Holldobler 

and Wilson 1990). The outcome of “natural experiments” has been largely debated (Connor 

and Simberloff 1979, Diamond and Gilpin 1982), but has lead to the search of other analytical 

procedures such as null model tests (Gotelli 2000, Gotelli and Entsminger 2001). I compared 

the niche overlap of observed and randomly generated assemblages using null models to 

determine if structural patterns are consistent with competition theory (Gotelli and Graves 

2003). 

Although, competition and food resources available are not mutually exclusive factors 

(Martin 1985, Kotler and Holt 1989), I hypothesize that availability of food resources is of 
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primary importance to determine bird assemblage structure in the Polylepis system (“food 

resources-hypothesis”). I expect that a) bird species richness and abundance within guilds will 

follow the patterns of abundance in food resources within microhabitats across Polylepis 

woodlands, and b) that niche overlap in the bird assemblage will be significantly larger than 

expected by chance. However, if bird species richness and abundance within guilds follow the 

patterns of abundance in food resources, and niche overlap in the bird assemblage is 

significantly lower than expected by chance, I will interpret it as the result of present 

interspecific competition (i.e., species in the assemblage are segregating due to competitive 

exclusion)(“competition-hypothesis”). In addition if bird species richness and abundance 

within guilds do not follow the patterns of abundance in food resources and niche overlap in 

the assemblage is higher than expected by chance, could be interpreted as assemblage 

instability (i.e., no competitive exclusion is present where it is expected to occur), or that other 

factors, not assessed in the study, are more important in structuring the bird assemblage. 

 METHODS 

The study system 

Throughout the Peruvian Andes above 3500 m elevation, scattered Polylepis 

woodlands are typically found close to streams or forming small patches in gorges on slopes 

and cliff-edges, where they are surrounded by grasslands. The Polylepis community (defined 

here as the group of organisms with broad taxonomic affinities that occur together and 

interact within a framework of horizontal and vertical linkages, Giller and Gee 1987) is a 

distinctive biological system characterized by high levels of endemism (Fjeldså and Krabbe 

 



Grace P. Servat, 2006, UMSL, 130 

1990, Fjeldså 1992a, b, c, 1993). The scattered distribution of Polylepis woodlands throughout 

the Andes provides discrete units of study.  For this study I selected four Polylepis woodlands 

(> 50 ha) above 3500 m within each of three regions of the Peruvian Andes: Cordillera 

Blanca, C. Occidental, and C. Vilcanota (see Chapter I and II for description). From north to 

south the 12 sites selected for the present study and the dominant Polylepis tree species 

occurring at each woodland were: 1) C. Blanca: Aquilpo and Ishinca (P. weberbauerii), 

Morococha and Llanganuco (P. sericea); 2) C. Occidental: Yaui and Quichas (P. weberbauerii), 

Maticuna and Japani (P. incana); and 3) C. Vilcanota: Yanacocha, Sacsamonte, Pumahuanca, 

and Quenuamonte (P. racemosa). In each forest, I obtained data (i.e., bird species diversity and 

abundance; food resource abundance) in two replicate sets of four 100 x 10 m transects 

placed 50 m apart from each other. The last transect from the first set was separated by at 

least 500 m from the first transect of the second set (see study design in Chapter II). 

The bird assemblage 

In the Andes of Peru approximately 35-40 bird species are found associated with the 

Polylepis community. The avian assemblage in this community is composed approximately of 

28 % frugivorous (species that mainly consume fruit, seeds, and flowers), 20 % nectarivorous 

(species that mainly consume nectar), 2 % carnivorous (species that mainly consume 

vertebrates), and 50 % insectivorous (species that mainly consume insects and other 

arthropods) bird species (Fjeldså 1992, Fjeldså and Krabbe 1990, Fjeldså 1993, Herzog 2003). 

I included forest interior insectivorous species as representatives of the avian assemblage 

because they constitute ca. 80 % of the species that regularly breed and winter in Polylepis 

woodlands (“core species”, Remsen 1994). In addition, insectivorous birds associated with the 
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Polylepis community seem to be “stable” in terms of richness and abundance across seasons 

when compared to frugivorous or nectarivorous (Herzog 2003) As some of the species in the 

assemblage migrate or have very low occurrences, gathering enough foraging information on 

all species is not possible and, therefore, I restricted the analyses to 10 core species: Oreomanes 

fraseri, Cranioleuca baroni (replaced in the south by C. albicapilla), Leptasthenura pileata (replaced in 

the south by L. xenothorax), L. yanacensis, Xenodacnis parina, Anairetes alpinus, A. nigrocristatus 

(clustered together with A. parulus because of few observations for both), Mecocerculus 

leucophrys, Octhoeca rufipectoralis, and O. oenanthoides. 

Foraging observations.- I made observations of actively foraging birds at each Polylepis 

forest throughout the day using focal animal sampling (Altman 1974) on core species. I 

systematically covered transects and moved from one foraging bird to another. I obtained 

observations from 10 individuals/species for each Polylepis forest. Continuous observations 

were divided into 60-second sequences, in which I tallied the number of microhabitats (e.g., 

Polylepis bark or foliage) and maneuvers (e.g., glean, probe) used by each bird. I used the 

foraging repertoire (25 categories from core-species) in Bray Curtis ordination (PC-ORD 

Version 4, McCune and Mefford 1999) and selected Sorensen’s percent dissimilarity as a 

measure of distance between points (individual birds), variance regression for end point 

selection, and Euclidean distance for axis projection geometry (Beals 1984, Greig-Smith 1983, 

McCune and Mefford 1999). In all cases, individual observations falling closer together in the 

ordination were assumed to belong to the same foraging group. I nominated groups based on 

the main foraging category used (e.g., foliage gleaners, bark gleaners). At each Polylepis forest, I 

tested for differences among foraging groups using hierarchical Multivariate Analyses of 

Variance (SPSS Release 12.0) using the scores along the first two ordination axes of all 
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individuals by species as indicators of the gradient in ‘spatial variation’ where the species 

occur. For each axis, species were nested within nominated guilds (using individuals as 

replicates) and guilds nested within forest. When individuals of the same species fell into two 

different groups, I used majority rules to decide guild membership (e.g., Holmes et al. 1979, 

Landres and MacMahon 1980, 1983, Sabo 1980, Sabo and Holmes 1983). The analysis was 

followed by post-hoc Tukey test (SPSS Release 12.0) to determine if species assigned to 

groups were more similar in foraging categories used (i.e., not significantly different at 

P<0.01) than species assign to different groups in all Polylepis woodlands. 

Assemblage structure 

I measured two components of assemblage structure, diversity and abundance of 

birds within and across foraging guilds. I conducted bird censuses between 0600 and 0800 hrs 

and 1500 to 1700 hrs, for four consecutive days in 1997 and six days in 1998. Censuses were 

made by walking transects at a steady pace (ca. 1 km/hr) recording all birds heard and seen 

(cf. Blake et al. 1994), supplemented by casual observations. I counted the total number of 

species (i.e., richness) and the number of individuals per species (i.e., abundance), and 

calculated bird species diversity across woodlands using rarefaction curves (Hurlbert 1971, 

Sanders 1968) in the Program EcoSim 7.72 (Gotelli and Entsminger 1997-2005) to control 

for differences in bird abundance while comparing richness across sites. The process was 

simulated 1000 times specifying the number of individuals that are randomly drawn from 

each sample.  I compared the diversity across Polylepis woodlands using the same abundance 

level (30 individuals) in all cases. I tested for significant differences in total bird abundance 

 



Grace P. Servat, 2006, UMSL, 133 

among and within guilds across Polylepis woodlands, using hierarchical MANOVA, followed 

by Tukey’s test for post-hoc comparisons. 

The potential role of food resource abundance and competition  

Food resources.- I measured food resources available to birds by counting arthropods in 

samples taken from five discrete microhabitats where birds were observed to forage: Polylepis 

bark; Polylepis, Gynoxys, and Tristerix foliage; and moss (see design in Chapter II). I excluded 

arthropods with less than 2 mm length, individuals with aposematic coloration, or taxa with 

low occurrence (< 5 individuals per microhabitat), as they are unlikely to be prey for foraging 

birds due to low acceptability or detectability (Wolda 1990, Servat 1995). I analyzed data on 

arthropod abundance using hierarchical MANOVA (SPSS Release 12.0) followed by Tukey’s 

to test for differences in arthropod abundance within microhabitats, and microhabitats within 

Polylepis woodlands.  

Competition.- To assess the role that competition may be playing in the system, I 

compared the observed niche overlap of bird species in the assemblage with those generated 

from null models using Pianka’s Index in the EcoSim Program Version 7.72 (Gotelli and 

Entsminger 1997-2005). Comparisons of observed and randomly generated niche overlaps in 

assemblages reveal if structural patterns are consistent with competition theory. If observed 

patterns were not different from randomly generated communities then it will indicate no 

evidence for competition. However, if different and in the predicted direction (less overlap 

than expected), this will indicate consistency with competition theory. To construct the null 

model, I made a matrix of all potential competitor species (i.e., all species that belonged to the 

same guilds) (rows) by forest (columns). Cell values within each row of the observed matrix 
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were reassigned without replacement, and mean niche overlap, which is based on 

comparisons of all possible species pairs, was calculated during each run using RA3 algorithm 

(Gotelli and Graves 1996). The RA3 algorithm takes into account observed values (e.g., 

proportional use of microhabitats) and because values are randomly reassigned to different 

categories by rows, the rows of the utilization matrix are simply reshuffled, and the null model 

effectively retains observed niche breadth values for each species (Gotelli and Graves 1996). 

This procedure was repeated 1000 times to provide an overall mean and standard deviation of 

niche overlap values that could be compared to observed values. 

To determine if patterns of bird diversity and abundance within guilds across 

woodlands was related to variation in food resources, I used Mantel test (PCORD Version 

4.10, 1995-1999). For the models, I built pair wise-site distance matrices based on bird 

diversity and abundance within guilds (response variable) at each forest, and food resource 

abundance in microhabitats (predictor variable) to evaluate the null hypothesis of no 

relationship in distance matrices. I used Sorensen’s dissimilarity index as a distance measure 

and performed 999 permutations of the original matrix to determine the significance 

probability of the observed relationship between the response and predictor variables. 

RESULTS 

Assemblage structure 

Forest-independent ordinations of bird species in the assemblage (based on 

similarities in foraging categories used by individuals) revealed three to four foraging groups 

across Polylepis woodlands (Fig. 3.1). Overall, the farthest points along the first axis of the 
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ordination separated individuals that glean or probe proportionally more in Polylepis bark, 

from those that glean proportionally more in Polylepis or Gynoxys foliage (Fig. 3.1, Appendix 

3.1). In the second axis the farthest points separated individuals that capture prey “in the air” 

(i.e., hawking, hovering, or sally-gleaning) from foliage and bark foragers (Fig. 3.1, Appendix 

3.1). Based on the general patterns just described, I named guilds as: “Polylepis bark foragers”, 

mostly conformed by individuals of Oreomanes fraseri and Cranioleuca baroni/C. albicapilla, the 

“foliage foragers” that included most individuals of Leptasthenura pileata/L. xenothorax, L. 

yanacensis, and Xenodacnis parina, the “aerial hawkers” included most individuals of Mecocerculus 

leucophrys, Anairetes alpinus, A. parulus/A. nigrocristatus (usually found in the canopy); and the 

“aerial sit and sally gleaners” composed by most individuals of Octhoeca rufipectoralis and O. 

oenanthoides (both of which are usually found in the understory).  

Foraging position of individuals (along the two axes of the ordination) within same 

guild was not significant different (P > 0.05) across Polylepis woodlands. However, when 

comparing different guilds at each site, significant differences were detected in all Polylepis 

woodlands as revealed by hierarchical MANOVA tests (Table 3.2), revealing groups of 

species that differed in the use of the “foraging space”. Moreover, after post-hoc tests, I 

found that individuals of some species were consistently attached to a particular foraging guild 

(e.g., O. fraseri), while others were highly variable (e.g., X. parina and C. baroni/albicapilla) (Table 

3.2). The inconsistency of some species across forests may result in some of the within-guild 

variance found across Polylepis woodlands (Table 3.2). 
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Diversity and abundance of insectivorous birds 

Overall diversity of insectivorous bird species varied across Polylepis woodlands, as 

revealed by rarefaction curves (Fig. 3.2). When number of individuals is controlled for (i.e., 50 

individuals in Fig. 3.2) diversity was substantially higher in Aquilpo, Ishinca (C. Blanca), 

Yanacocha, Sacsamonte and Pumahuanca (C. Vilcanota). On the other side, diversity was 

lower in Japani, Quichas (C. Occidental), and Quenuamonte (C. Vilcanota) (Fig. 3.2), 

suggesting that diversity of birds associated with the Polylepis system varies regionally.  

Bird abundance (number of individuals/guild) among guilds was significantly 

different in all Polylepis woodlands (MANOVA F3, 128 = 23.93, P < 0.001). Nonetheless, when 

abundance of birds within same guilds was compared across woodlands, no differences were 

found in bark foragers (F11,12 = 1.24, P = 0.356), foliage foragers (F16,19 = 0.91, P = 0.570), 

hawkers (F6, 41 = 1.19 P = 0.326), or salliers (F8,15 = 2.07, P = 0.106) (Fig. 3.4). 

The relative importance of competitive interactions and food resources in assemblage structure 

Assemblages did not seem to be structured by competition, as revealed by null models 

of niche overlap. In all models I found higher foraging overlap than expected by chance, 

significantly so in 6 forests (Table 3.4), a predicted result for assemblages not structured by 

competition.  

Food resources abundance (arthropods) differed significantly across Polylepis 

woodlands within and among microhabitats. I found significant differences in arthropod 

abundance in moss (ANOVA F11,12 = 9.58, P < 0.0001), Polylepis bark (ANOVA F11,12 = 5.64, 

P = 0.003), Polylepis foliage (ANOVA F11,12 = 20.11, P < 0.0001), and Gynoxys foliage 
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(ANOVA F10,11 = 2.73, P = 0.05) across sites, but not in Tristerix foliage (P = 0.69). Basically, 

moss, Polylepis bark, and Polylepis foliage contributed most to these differences. 

The relative importance of food resources in bird species richness and abundance 

assessed by Mantel tests; shows a direct and positive relationship between pair-wise site 

similarities in abundance and richness of birds in the assemblage and pair-wise site similarities 

in food resources (r2 = 0.43 and r2 = 0.33 respectively, P < 0.001, n = 66 pairs), which 

supports predictions of the “local food resources hypothesis”. 

DISCUSSION 

Foraging guilds identities (i.e., Polylepis bark foragers, foliage foragers, aerial foragers) 

were present and largely consistent in most Polylepis woodlands. However, bird species 

identities and its abundance at each guild were not necessarily similar across forests, which 

may be due in part to regional differences in insectivorous bird species diversity and 

intrapopulation variation in foraging ecology (Chapter II). 

High overlap among species in the avian assemblage across Polylepis woodlands 

suggests that competitive interactions do not support the classic scenario expected by 

competition theory (Hutchinson 1957, MacArthur and MacArthur 1961, Urban and Smith 

1989), a result supported by several studies based on field observations or assessed through 

null models in other communities (e.g., Inger and Colwell 1977, Vitt and Caldwell 1994, Vitt 

and Zani 1998, 1996). The considerable overlap found in bird assemblages of Polylepis 

woodlands, suggests that species may be able to coexist through other mechanisms (e.g., 

microhabitat or prey differentiation) (Hofer et al. 2000). Nonetheless, in the present study 
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some aspects of competition may have not been detected (e.g., diffuse competition, 

interference competition). 

The role of food resource abundance in bird assemblage structure 

Site similarities in species abundance across woodlands were related to site similarities 

in food resources available, suggesting that birds are able to “track” food resources, or that 

bird species converge in using food resources in the only microhabitats available (Pianka 

1980, Jaksic 1981, Wiens 1983, 1989, Bradley y Bradley 1985). 

Abundance and predictable resources may play a major role in structuring the 

assemblage of birds associated with the Polylepis community. Some foraging microhabitats 

were more predictable (e.g., Polylepis bark and foliage) than others (e.g., Tristerix or Gynoxys 

foliage), so bird species adapted to exploit resources in unpredictable microhabitats were 

absent (C. baroni in Japani) or switch microhabitats (e.g., X. parina). However, without 

complementary experimental manipulations, the relative role of food resources (and 

competition) influencing present-day community structure can not be unambiguously 

determined. 

Present distribution of Polylepis woodlands (e.g., isolation and habitat extent) suggests 

an important role for history as a determinant of present day assemblage structure (e.g., 

Askins et al. 1987, Balent and Courtiade 1992, Lescourret and Genard 1994, Daniels et al. 

1992). One of the major determinants of change in recent earth history was cyclic changes in 

climate and topography during the Pleistocene (Shackleton et al. 1990, and Hooghiemstra and 

Ran 1994). Many Cordilleras in Peru were covered by ice repeatedly over the last 2-3 million 

years, which may have restricted species to lower elevations on the Andean slopes, and to 
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certain mountain basins that remained ice-free (Simpson 1975, Simpson and Todzia 1990, 

Fjeldså and Kessler 1996). The iced-covered mountain caps may have isolated some refuges 

with Polylepis woodlands from the continuous band of humid shrubbery that is thought to 

have remained along the Andes. Isolation during glaciations may have promoted species 

differentiation, remaining endemic to their area of origin (Fjeldså and Kessler 1996). These 

relict populations that survived periods of global climatic change likely were the source pool 

of species for colonization of other areas as the glaciers receded (Simpson and Todzia 1990, 

Fjeldså et al. 1999). In addition, Polylepis woodlands disrupted by tectonics and erosion may 

have become isolated by barriers (e.g., Apurímac Canyon). Dispersal during interglacial 

periods and post-glacial periods could have been an important influence in explaining present 

bird composition patterns (Simpson 1975, Fjeldså and Kessler 1996).  

Ecological research traditionally has focused on intra-community patterns, especially 

on the role of competition and other species interactions in community structure (Symstad et 

al. 2000; Caddle and Greene 1993; Cornell and Lawton 1992; Latham and Ricklefs 1993; 

Francis and Currie 1998; Huston 1999); and few systematic, quantitative, spatial scale 

descriptions have been done  Descriptive studies on a large spatial scale, acknowledge the 

complexity of communities as a dynamic collection of species integrated to varying degrees by 

numerous factors (ecological and historical) and highlight the likely factors that generate 

patterns and the scale at which future field studies should be conducted. 

This study highlights the importance of considering the spatial scale in the 

interpretation of patterns of assemblage structure (Levin 1992). In the Polylepis community, 

bird assemblages at local scales appear non-random, with birds separating into distinct guilds. 

However, at larger scales one sees that the identities and species richness, but not abundance 
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in guilds vary. Conclusions derived from one or a few sites in this system would likely fail to 

unravel the relative importance that local factors play in assemblage structure in the Polylepis 

system. Moreover, incorporating the spatial variation in guild composition to assess 

similarities in functioning is of great importance, because any relationship between diversity 

and community processes may be driven by functional redundancy or by diversity of species 

having different functional roles.
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Figure 3.1. Arrangement of individuals along the first and second axes from Bray Curtis 

ordination (based on 25 foraging categories used by birds) of each Polylepis forest. Symbols in 

the same color represent individuals of the same bird species. Enclosed in circles are groups 

of individuals similar in foraging. Discontinuous circles include individuals which may not be 

attached to a particular guild. 
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Figure 3.2. Bird species richness (mean + SD) in assemblages, as a function of sample size 

compared by rarefaction curves (EcoSim Program Version 7.72; Gotelli and Entsminger 

1997-2005). The reference line indicates bird diversity across Polylepis woodlands when the 

same number of individuals (n = 30) is compared (see text). 
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Figure 3.3. Bird abundance among guilds in Polylepis woodlands. 
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Figure 3.4. Abundance of bird species and total arthropod abundance (= food resources) in 

associated microhabitats across Polylepis woodlands. Each figure groups bird species 

associated with a particular guild. 
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Table 3.1. Species number in avian assemblages of insectivore forest-interior birds associated 

with Polylepis woodlands. Data on abundance fills the cells of the table (See text for details). (1) 

Forests: 1 = Aquilpo, 2 = Ishinca, 3 = Morococha, 4 = Llanganuco, 5 = Yaui, 6 = 

Maticuna, 7 = Japani, 8 = Quichas, 9 = Yanacocha, 10 = Sacsamonte, 11 = Pumahuanca, 

12 = Quenuamonte. (2)Abundance: C = Common, U = Uncommon, R = Rare. 
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Regions 

C. Blanca C. Occidental C. Vilcanota Family  

            

Species

1 2 3 4 5 6 7 8 9 10 11 12

Furnariidae Leptasthenura yanacensis U          C NP NP C C NP C NP U U NP
 L. xenothorax NP          NP NP NP NP NP NP NP C C C C
 L. pileata U           U C U U C C U NP NP NP NP
 Cranioleuca albicapilla NP          NP NP NP NP NP NP NP C C C C
 C. baroni C           C C C U C NP C NP NP NP NP

Tyrannidae Mecocerculus leucophrys C            C U U C R NP U U R U R

 Anairetes alpinus U          U NP NP R R NP NP U R U R
 A. parulus NP          NP NP NP NP NP NP NP U NP NP U
 A. nigrocristatus NP         NP U NP NP NP NP NP NP NP NP NP
 A. reguloides NP          C U C NP U U NP NP NP NP NP
 Octhoeca rufipectoralis C           U C C U R NP NP C U C C
 O. oenanthoides U          U U NP C R C U U U NP NP

Emberizidae Oreomanes fraseri U            C U C U U C C C C C C
 Xenodacnis parina C            C C C U U R U C C C C

Insectivore total species number             9 10 9 7 9 10 5 7 9 9 8 8
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Table 3.2. Foraging guilds (mean + SD) across Polylepis woodlands. Hierarchical MANOVA 

tests scores of individuals in each guild along the two first axes in the ordination nested within 

woodlands. NP = not present. 
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Guilds  position (mean + SD) Axis 1 Axis 2 MANOVA 
Pillai's trace Forests 

Bark Foliage Hawkers Salliers F df Pvalue F    df Pvalue F df Pvalue

Aquilpo 6.25 +1.327 3.14 +0.709 1.25 +1.327 3.50+1.327 13.13 9, 166 .000 20.98 9, 166 .000 17.15 18, 332 .000 

Ishinca 4.25 +1.327 3.00 +0.709 2.00 +1.327 NP 22.53 9, 168 .000 79.41 9, 168 .000 37.19 18, 336 .000 

Morococha  4.50 +1.327 4.00 +0.839 NP 1.50+1.327 21.91 8, 150 .000 45.17 8, 150 .000 31.45 16, 300 .000 

Llanganuco  4.00 +1.327 3.00 +0.766 2.00 +1.877 2.50+1.877 46.74 7, 149 .000 34.52 7, 149 .000 41.09 14, 298 .000 

Yaui  2.75 +1.327 3.50 +0.938 1.50 +1.327 2.00+1.327 19.93 8, 151 .000 86.82 8, 151 .000 38.05 16, 302 .000 

Maticuna  2.50 +1.327 3.50 +0.839 NP 0.75+1.327 41.36 7, 137 .000 89.47 7, 137 .000 55.10 14, 274 .000 

Japani  6.00 +1.877 3.13 +0.938 NP 2.50+1.877 42.17 4, 87 .000 72.59 4, 87 .000 48.39 8, 174 .000 

Quichas 6.25 +1.327 2.88 +0.938 NP 1.50 +1.877 11.15 6, 117 .000 49.77 6, 117 .000 26.05 12, 234 .000 

Yanacocha  5.50 +1.327 4.50 +0.938 1.83 +1.084 3.25 +1.327 8.39 8, 146 .000 66.91 8, 146 .000 22.50 16, 292 .000 

Sacsamonte  3.75 +1.327 2.60 +0.839 1.50 +1.327 1.50 +1.327 9.23 7, 152 .000 38.05 7, 152 .000 19.67 14, 304 .000 

Pumahuanca  4.75+1.327 3.60 +0.839 NP 5.00 +1.877 2.19 7, 152 .000 78.50 7, 152 .000 17.20 14, 304 .000 

Quenuamonte  4.25 +1.327 2.50 +0.938 NP 3.50 +1.877 33.61 6, 128 .000 93.57 6, 128 .000 49.22 12, 256 .000 

 
 

 



Grace P. Servat, 2006, UMSL, 161 

Table 3.3. Observed and simulated niche overlap values based on foraging categories used by 

species in avian assemblages. The mean (+SD) of simulated niche overlap for each forest was 

calculated after 1000 iterations using the EcoSim Program, Version 7.72 (Gotelli and 

Entsminger 1997-2005). I ran the program using randomization algorithm 3 (RA3), and 

retaining the niche breadth and zero values from original matrix (see text).  

Niche Overlap* Forest 

Observed X+SD Simulated X+SD 

Pvalue
(O > E)** 

Aquilpo 0.25+0.051 0.12+0.030 0.018 

Ishinca 0.21+0.056 0.14+0.032 0.016 

Morococha 0.16+0.045 0.14+0.036 NS 

Llanganuco 0.24+0.063 0.15+0.041 0.050 

Yaui 0.15+0.046 0.12+0.035 NS 

Maticuna 0.21+0.074 0.14+0.039 0.015 

Japani 0.23+0.063 0.16+0.035 NS 

Quichas 0. 17+0.021 0.14+0.032 NS 

Yanacocha 0.19+0.046 0.13+0.030 0.050 

Sacsamonte 0.22+0.043 0.15+0.038 NS 

Pumahuanca 0.22+0.045 0.13+0.037 NS 

Quenuamonte 0.18+0.060 0.13+0.030 0.030 
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Appendix 3.1. Scores (high and low) of foraging categories (in bold) along the first and 

second axes of Bray Curtis ordination for each Polylepis woodland. A) AQ = Aquilpo, IS = 

Ishinca, MO = Morococha, LL = Llanganuco, UI= Yaui, MA = Maticuna, JA = Japani, KI = 

Quichas, YA = Yanacocha, SA = Sacsamonte, PU = Pumahuanca, QE = Quenuamonte. 

PBGL = Polylepis bark gleaning, PBPR = Polylepis bark probe, PFPR = Polylepis foliage probe, 

PFGL = Polylepis foliage gleaning, GFGL = Gynoxys foliage gleaning, AHWC = aerial hawkers 

in canopy. NP = Not present. B) PBGL = Polylepis bark gleaning, PFGL = Polylepis foliage 

gleaning, PFHG = Polylepis foliage hover-glean, MSPR = moss probing, ASSU = aerial sally 

sit in understory, AHWC = aerial hawkers in canopy. NP = Not present 
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Foraging substrates Categories 
Axis 1 AQ IS MO LL UI MA JA KI YA SA PU QE

PBGL* 0.870 0.988 1.000 0.994 0.989 0.984 0.903 0.500 0.500 0.500 0.494 0.500
PBPR 0.724 0.500 0.500 0.534 0.520 0.601 0.921 0.500 0.500 0.500 0.500 0.500
PBHG 0.500 0.683 0.500 0.500 0.458 0.534 0.558 0.500 0.400 0.500 0.500 0.500

Polylepis 

PBRE 0.811 0.500 0.500 NP 0.700 0.500 NP 0.500 0.500 NP 0.500 0.500
DBPR    0.571 0.624 0.500 0.500 0.500 0.500 NP NP 0.500 0.500 0.500 0.500
DBGL   0.500 NP NP NP 0.500 0.500 NP NP 0.500 0.500 0.500 NP 

BARK  

Others 
GBGL      0.500 0.500 NP NP NP NP NP NP NP NP NP NP
PFGL 0.113 0.058 0.023 0.016 0.046 0.018 0.019 0.074 0.076 0.947 0.987 0.045
PFSG 0.452 0.436 0.500 0.508 0.379 0.486 0.455 0.500 0.637 0.514 0.500 0.662
PFHG 0.476 0.500 0.500 0.497 0.032 0.334 0.500 0.375 0.671 0.282 0.232 0.557
PFRE  0.170 0.215 0.158 0.436 NP 0.301 0.115 0.500 0.359 0.575 0.500 0.056
PFPR  0.167 0.205 0.500 NP NP NP NP NP NP 0.500 0.740 0.075

Polylepis 

PFPG       0.500 NP NP NP NP NP NP NP NP NP NP 0.242
GFGl 0.346 0.427 0.423 0.235 0.500 0.050 0.144 NP 0.500 0.516 0.500 0.500
GFHG   0.500 NP NP 0.500 NP 0.461 0.500 NP 0.512 NP 0.500 0.642Gynoxys 
GFRE   0.500 0.500 0.500 0.042 0.500 NP NP NP 0.500 0.500 0.500 0.500

Moss MSPR    NP 0.500 NP NP NP 0.500 0.500 0.500 0.500 0.500 NP 0.500
TRGl           NP NP NP NP 0.500 NP NP 0.214 NP NP NP NPTristerix 
TRRE           NP NP NP NP 0.418 NP NP 0.411 NP NP NP NP
SHGL     0.500 0.500 0.442 0.490 0.455 NP 0.500 0.480 0.444 NP NP 0.719

FOLIAGE 

Shrubs 
SHSG    0.391 0.419 0.468 0.500 0.350 0.457 0.500 0.500 0.681 NP NP 0.547
GRSA   0.483 0.409 0.446 NP 0.493 NP 0.420 0.330 0.281 NP 0.500 0.500GROUND 
GRGL    NP NP NP NP NP NP NP 0.500 NP NP NP NP 
ASSU 0.420 0.499 0.497 0.524 0.467 0.494 0.434 0.462 0.489 0.500 0.531 0.527AIR 
AHWC 0.402 0.479 0.500 0.490 0.477 0.485 0.500 0.962 0.911 0.103 0.034 0.923
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            Foraging substrate Categories 
Axis 2 AQ IS MO LL UI MA JA KI YA SA PU QE

PBGL* 0.295 0.407 0.052 0.037 0.033 0.009 0.056 0.479 0.500 0.486 0.844 0.928
PBPR 0.344 0.482 0.317 0.289 0.295 0.230 0.046 0.479 0.500 0.486 0.407 0.518
PBHG 0.420 0.454 0.338 0.405 0.404 0.269 0.606 0.479 0.400 0.486 0.303 0.633Polylepis 

PBRE  0.315 0.482 0.317 NP 0.051 0.289 NP 0.566 0.500 NP 0.292 0.696
DBPR 0.389 0.463 0.317 0.307 0.307 0.289 NP NP 0.500 0.486 0.292 0.533
DBGL   0.420 NP NP NP 0.307 0.289 NP NP 0.500 0.486 0.292 NP 

BARK  

Others 
GBGL     0.420 0.482 NP NP NP NP NP NP NP NP NP NP
PFGL 0.277 0.380 0.051 0.029 0.074 0.015 0.015 0.103 0.137 0.128 0.008 0.105
PFSG 0.797 0.530 0.683 0.338 0.249 0.718 0.510 0.479 0.299 0.518 0.292 0.326
PFHG 0.740 0.482 0.317 0.736 0.051 0.358 0.677 0.373 0.182 0.176 0.072 0.367
PFRE 0.326 0.475 0.227 0.388 NP 0.182 0.066 0.479 0.281 0.420 0.292 0.111
PFPR  0.230 0.329 0.317 NP NP NP NP NP NP 0.486 0.292 0.116

Polylepis 

PFPG       0.420 NP NP NP NP NP NP NP NP NP 0.292 0.188
GFGl 0.131 0.021 0.244 0.379 0.307 0.029 0.083 NP 0.500 0.468 0.292 0.452
GFHG   0.420 NP NP 0.672 NP 0.266 0.657 NP 0.449 NP NP 0.279Gynoxys 
GFRE   0.209 0.337 0.317 -0.006 0.307 NP NP NP 0.500 0.486 0.155 0.452

Moss     MSPR NP 0.482 NP NP NP 0.249 0.289 0.980 0.500 0.486 NP 0.452
TRGl          NP NP NP NP 0.307 NP NP 0.512 0.125 NP NP NPTristerix TRRE          NP NP NP NP 0.262 NP NP 0.451 NP NP NP NP
SHGL 0.420 0.482 0.057 0.349 0.283 NP 0.458 0.462 0.426 NP 0.274 0.282

FOLIAGE 

Shrubs SHSG 0.392 0.453 0.539 0.750 0.571 0.405 0.673 0.479 0.313 NP NP 0.394
GRSA    0.555 0.425 0.530 NP 0.303 NP 0.378 0.335 0.325 NP NP 0.452GROUND GRGL     NP NP NP NP NP NP NP 0.479 NP NP NP NP 
ASSU 0.528 0.481 0.827 0.325 0.293 0.797 0.420 0.447 0.963 0.981 0.037 0.423AIR AHWC 0.753 0.965 0.326 0.784 0.848 0.520 0.739 0.104 0.129 0.212 0.436 0.124
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