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Abstract

An increasingly popular method for fitting complex models, particularly

with a hierchical structure involves the use of Markov Chain Monte Carlo

simulation. Within a Bayesian framework, two major strategies for the

construction of these Markov chains are prominent. These two strate-

gies are Gibbs sampling and Metropolis-Hastings methods. Also, recent

research in the area of MCMC methods has witnessed the emergence of

modeling efforts which permit the movement of the chain across models of

varying dimensions. Because the Markov chain, if properly constructed,

converges to the joint posterior distribution of the parameters to be es-

timated, Bayesian averaging of the iterations in the chain, once approxi-

mate convergence has been realized, is an attractive option for producing

a final estimated function. With the transdimensional methodology, this

Bayesian averaging process takes place across these models of differing

dimensions. The purpose of this research is to incorporate a penalty

function as an integral component of the transition kernel of the Markov
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Chain to impose desired constraints on the final model. The class of

functions used to model data in this process are cubic splines on a fi-

nite closed interval. Furthermore, the knots for the spline function are

allowed to change over the course of the Markov chain, so that the final

Bayesian averaging process takes place, not only across models of varying

dimensions, but also across models with differing knot locations. The pri-

mary penalty function that is investigated, in its logarithm, is a quadratic

function of the number of knots, imposing larger penalties as the num-

ber of knots increases. It is shown that this penalty function actually

induces a prior distribution on the number of knots which is proportional

to a Normal distribution. It is also shown that this penalty function can

be written as a penalized Kullback-Leibler distance measure, where the

penalty is an increasing linear function of the number of knots and can

be chosen in such a way to achieve a desired mean and variance of the

Normal prior distribution.

However, this penalty function strategy is general and can be applied

to influence the final estimation in areas such as smoothness and knot

4
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spread. The performance of the methodology is compared with results

using no penalty and standard penalty functions such as the Akaike In-

formation Criterion (AIC) and the Bayesian Information Criterion (BIC).

This is done by evaluation of prediction errors for data sets which are in-

dependent of the modeling process.

5
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1 Introduction

Linear models historically have provided a theoretical framework in which

a response variable is considered to be a function of independent, or pre-

dictor variables. Sometimes these predictors are referred to as explanatory

variables, as they presumably possess some plausible association with,

but not necessarily causal, relationship with the response variable. In the

most common approach, the mean of the response variable is assumed to

be a linear combination of the predictor variables, where the coefficients

of the predictors are estimated by means of a least-squares process. An

individual observation is assumed to be a sampled observation from a

normal distribution with mean calculated from this linear combination

plus a random term, which is normally distributed with mean 0 and a

constant variance across all levels of the independent variables. Thus, the

expression for the linear model is:

y = β0 + β1 ∗ x1 + . . . + βp ∗ xp + ε (1)

or, in matrix form,

Y = X ∗ β + ε (2)

6
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The presence of the random error term in the model is a recognition

of the fact that uncertainty in parameter estimates exists and that some

measure of this uncertainty is assumed to be simple random noise. That

concept includes the fact, however, that some of this noise is not truly

random noise, but lack of fit due to real explanatory variables which have

not been included in the model. Overriding the entire process, however,

is uncertainty regarding the nature of the model assumptions, including

misspecification of the functional relationship itself. This is nothing more

than the admission that no model perfectly reflects reality. Even well-

specified models may suffer from the ability to incorporate only a finite

number of predictors and only a finite number of observations can be col-

lected. Omission of useful predictors as well as inclusion of questionable

ones can contribute to model misspecification. The inclusion of variables

which exhibit multicollinearity is evidence of a model that is overspeci-

fied. Such problems can contribute to biased estimates of the parameters

and/or poor fit to the data. Violations of statistical assumptions, such

as non-normality of the error terms or non-constant variance of these er-

7
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ror terms (heteroscedasticity), may result in similar problems, but can

sometimes be treated through techniques such as data transformations.

These difficulties can be diagnosed through the use of residual plots, Q-Q

plots, and other tests, but application of the appropriate remedy can be

a matter of the researcher’s insight and experience.

Much of the appeal of this linear model stems from the ease with which

estimation is possible and the nature of the statistical properties of the es-

timates, such as consistency and unbiasedness. Confidence intervals and

hypothesis tests are also straightforward from the parametric assump-

tions of the model. More recent efforts have enabled models to easily

accomodate non-normal error terms through the use of generalized linear

models. These models connect the mean of the dependent variable to the

predictors through a link function. These models have provided a conve-

nient framework for estimation when the response variable is Binomial,

Exponential, Poisson, or follows some other distribution belonging to the

Exponential family of distributions.

Even greater generality and flexibility have been achieved through more

8
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robust techniques which impose fewer constraints on the model. These

approaches may attempt to address such issues as local oscillations in the

response variable and the smoothness of the response surface. Various

robust regression options are available for capturing the local behavior of

a response function, while some type of penalty is generally imposed on

the likelihood function in order to prevent parameter estimates which pro-

duce departures from smoothness in this function. A frequent approach

is to penalize the square of the second derivative of the response function.

In theory, then the objective is to minimize the following quantity:

n∑

i=1

(yi − f(xi))
2 + λ ∗

∫
f ′′(x)2dx (3)

It is known that the natural cubic spline is the function, f, which mini-

mizes this quantity among the class of continuously second-differentiable

functions. The use of spline functions can be particulary helpful for ap-

proximating the behavior of data without imposing assumptions which

can be questionable.

The flexibility inherent in the use of splines proves to be a two-edged

sword. A spline function can significantly reduce the number of predictors

9
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in the model, but the placement of the knots within the domain of the

spline argument remains an issue.

The difficulty with the use of spline functions, which is the topic of this

research, is related to the uncertainty the researcher generally has, know-

ing not only the number of knots, where the behavior of the response

variable may change, but the location of those knots. Much effort has

been exerted to address the problem by developing an algorithm which

performs the analysis in stages. Frequently, the number of knots and their

locations are determined in the first stage and, once that is accomplished,

estimation of the response function proceeds conditioned on these values.

The determination of the knot locations is done so as to optimize some

criterion, such as a generalized cross-validation test or possibly using some

sequential process involving the addition and removal of candidate knots

one at a time. The results of the models fit in this sequential process are

compared before fixing the knot vector. The purpose of this research is

to explore and extend recent efforts to incorporate the uncertainty which

exists for both the number and location of the knots for the spline us-

10
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ing a Bayesian averaging estimation process. The averaging of models

is computed over a sample from a Markov Chain Monte Carlo (MCMC)

simulation. The major contribution from this research will be to illus-

trate how a penalty function approach can be implemented as an integral

component in the construction of an MCMC algorithm. It is clear from

penalized estimation that the use of such penalty functions when applied

to the likelihood function is equivalent to inducing a prior distribution on

the set of models and/or parameter values which are under consideration.

11
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2 Literature Review

The use of spline functions, while providing broad flexibility for model-

building, like any other approach, is hampered by some weaknesses. Its

flexibility lies in the choice of the number and placement of knots for the

model, as well as the degree of the spline function. Not only can the

shape of the spline be influenced by these parameters, but duplication

of knots can enable the model to accomodate discontinuities in selected

derivatives of the spline function, or even the actual function itself. In

addition, the type of functions which comprises the basis for the overall

spline function can offer certain advantages. For example, the use of a

B-spline basis results in a set of basis functions whose coefficients have

only local influence over the shape of the estimated curve. This allows

the insertion or deletion of knots by the researcher without a resulting

global change in the estimated curve. Another set of basis functions, the

trunctated power functions, can provide the ability to impose constraints

on the magnitudes of model coefficients which penalize departures from

various features of smoothness. Additional details regarding this capabil-

12
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ity will be discussed in this chapter.

2.1 Model Selection Methodologies

Before exploring spline functions in detail, the topic of model selection is

of interest. Generally, this refers to the selection of a single model from a

set of candidate models. Some criterion is optimized across the candidate

models, with the selected model providing the optimal value among this

set. Once the model selection decision has been made, straighforward

estimation is performed for the selected model.

Some model selection methods will now be reviewed. These would

include the traditional stepwise procedures in linear models which se-

quentially include and exclude predictors based on a straighforward F-

test, conditioned on the independent variables currently assumed to be

in the model. These are well known and need no discussion. In ad-

dition, some additional approaches include: training/test set analysis,

generalized cross-validation, stepwise procedures, and information theory

approaches. It needs to be said that when model selection is used, there is

13
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the inevitable uncertainty regarding the correctness of the model selected.

This has lead to what have termed “model-averaging” approaches. In fact,

that approach is fundamental to this research.

At the most crude level, one could simply select the model with the

smallest sum of squared error terms. This is unacceptable, however, be-

cause of the inherent bias in using the same data for modeling and evalu-

ation purposes. Moreover, given a sequence of nested candidate models,

the inclusion of an additional predictor will always reduce SSE.

The first approach involves the estimation of parameters from a train-

ing set of data. This method is not particularly sophisticated. Only a

subset of the data which have been collected is used for the estimation of

parameter values, through the methods appropriate for the model. Once

these estimates are obtained, forecasted values are calculated for each of

the observations in the “test” data set. This keeps the evaluation of model

fit independent of parameter estimation. However, it does forfeit some of

the observed data which could be used to obtain potentially more reliable

estimates. If the data set is sufficiently large, it may be that a fairly

14
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large percentage of the data points may be used for modeling purposes

and still retain a reasonable amount for testing. Some measure, such as

mean-squared-error of the forecasts, may be used to compare competing

models.

Independent validation of parameter estimates with this type of ap-

proach provides some safeguard against overfitting. A model with many

parameters which suffers from overfitting to a training data set may well

perform more poorly, in comparison with competing models with fewer

parameters, if some of the predictors in the larger model prove to be spu-

rious. Rather than measuring a true effect, these spurious predictors may

only be capturing unusual behavior in the function, or random noise.

A similar method for assessing the viability of a model is the use of

cross-validation measures. One difference from the previous approach is

that here, no observation is strictly considered to be training data or test

data. If there are n observations, then consider the following:

Let (xi, yi) = ith observation

f−i = model esimated from data omitting ith observation

15
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CV =
∑n

i=1(yi − f−i(xi))
2

In essence, CV is a mean-squared-error type of statistic. However, in the

case of each squared residual, the forecasted value for xi is not based on

data which include this observation. Values of CV can be compared for

all models under consideration.

There are then finally those types of validation measures which are

based on information theory. Boltzmann’s concept of generalized entropy

is dicussed by Akaike [1] and is revelant to physics and thermodynamics.

Kullback and Leibler [2] introduced the notion of an information distance,

based on this notion of entropy, which is useful for the comparison of com-

peting models in statistics. Suppose that a set of data has been collected,

having been generated from an underlying ”true” model, designated by

f, which is unknown. Also, consider a model specification that is under

consideration, g1. The Kullback-Leiber distance (K-L distance) from g1

to f is defined as:

dKL =

∫
ln

(
f(x)

g(x|θ)

)
f(x)dx (4)

16
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where θ is the vector of parameters under model g1 .

While f is unknown (and may only be a finite approximation to reality,

with potentially an infinite number of parameters), the difference between

g1 and some other candidate model, g2, could be written in the following

manner:

I(f, g1) − I(f, g2) =

∫
ln

(
f(x)

g1(x|θ)

)
f(x)dx−

∫
ln

(
f(x)

g2(x|θ)

)
f(x)dx

= Ef [log f(x)− log g1(x|θ)] − Ef [log f(x)− log (g2(x|θ)]

= Ef [log (g2(x|θ)] − Ef log g1(x|θ)]

When actual modeling is in view, of course, θ must be replaced by

estimates calculated from the actual data. This, again, results in values

for these parameters which include a measure of uncertainty and differ

from the values which would actually minimize the distance function.

Rather than selecting a model based on minimized actual K-L distance,

it is prudent to make this determination based on expected K-L distance

over the set of candidate models. Akaike [1] showed that the maximized

log-likelihood is, on average, an overesetimate of this measure. Akaike

17
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[1] showed that this bias is approximately equal to k, the number of

free parameters which must be estimated in the model. Given a set of

candidate models which can be of varying dimensions and possibly from

different sets of statistical families of distributions, any two models can

be compared. In fact, for any model, g, we can write:

I(f, g) = Constant − Ef [log(g(x)|θ))]

or, using estimated values, we get:

I(f, g) = Constant − (L(θ̂|y)) − k

where L is the log-likelihood function given the data, y. Because the

constant is independent of the model, then the model which maximizes

the penalized log-likelihood function, L - k, is the model of choice. Thus,

knowledge of the true underlying model, regardless of the number of pa-

rameters is unnecessary for the sake of comparison of competing models.

This is true whether the true model is a member of the candidate set or

not.

It is important to realize that the bias correction produced by Akaike

is an asymptotic (sample) result. Thus, to the degree that, in practice,

18
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the sample size of the data is small, the bias term, k, must be modified.

Research designed to identify and quantify this modification is due to

Hurvich and Tsai [3]. As the ratio of the number of parameters estimated

to sample size becomes significant, the accuracy of Taylor series expan-

sions used in the derivation of AIC suffers. The final result shows that,

for small samples, the unbiased K-L distance can be written as:

(L(θ̂|y)) − ((k ∗ n)/(n − (k + 1)))

This clearly simplifies to the AIC as n → ∞.

It should also be noted that AIC, and other information-based model

selection criteria, are fundamentally frequentist in philosophy. That is,

the rationale which motivates the development of the results is that the

data alone, apart from any prior belief system of the researcher, are re-

sponsible for the outcome. Bayesian approaches incorporate prior beliefs

or information as part of the mathematical development.

Although not strictly motivated by the concept of information theory,

the Schwarz Information Criterion (SIC) is another prominent approach

to the problem of model selection. Also known as the Bayesian Informa-

19
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tion Criterion (BIC), due to the work of Schwarz [4], this measure is an

approximation to the Bayes factor commonly used when comparison of

competing models is performed. The Bayes factor is nothing more than

the ratio of the posterior densities of two competing models, given the

observed data. An understanding of the development of the BIC starts

with Bayes’ Theorem:

P (A|B) =
P (A

⋂
B)

P (B)
(5)

=
P (B|A) ∗ P (A)

P (B)

In terms of continuous density functions, the theorem is:

f(y|x) =
f(x|y) ∗ f(y)

f(x)

=
f(x|y) ∗ f(y)∫
f(x|y) ∗ f(y)dy

for all continuous random variables, x and y.

The application of Bayes’ Theorem to the issue of model selection pro-

ceeds as follows. Suppose there is a set, M , of candidate models and a

set of prior probabilities associated with each of these models. For the

derivation of BIC, all candidate models are assumed to have equal prior

20



2.1 Model Selection Methodologies Stamps,David,2006,UMSL,21

probability. The objective is, then, to compute the probability for each

model given the observed data. Following Bayes’ theorem, this posterior

probability can be written as:

f(m|y) =
f(y|m) ∗ f(m)

f(y)
(6)

Because y is the realized data set, the denominator in the above ex-

pression is independent of m, so that we may write:

f(m|y) ∝ f(y|m) ∗ f(m)

= f(m) ∗

∫
f(y|θm, m) ∗ f(θm|m)dθm

This makes it necessary to integrate out the nuisance parameter, θm,

over the parameter space associated with model m. Under the assump-

tion of equal model prior probabilities, for the purpose of comparison of

any two candidate models, the leading term, f(m), can be ignored. To

approximate the integral, a Taylor series expansion of f(y|θm), centered

at the maximum-likelihood estimate, θ̃m, of the parameter vector, θm,

is performed. This results in the final expression for the BIC, assuming

again that the sample size is large:

21
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ln f(x, m) = L(y|θ̃m) − ((k/2) ∗ ln (n)) (7)

In terms of implementation, the resulting mathematical expressions for

AIC and BIC look very similar, namely:

AIC = ln (f(y|Θ̂) − k

BIC = ln (f(y|Θ̂) − ((1/2) ∗ ln (n) ∗ k)

The two expressions differ by a constant multiplied by the dimension

of the model considered. Also, to be observed is the fact that the use of

BIC results in the selection of models of smaller dimension. The choice

of which penalty term to use may well be determined by the philosophy

of modeling on the part of the practitioner. Or, a desire for parsimony

as opposed to overfitting may drive the decision. Yet, the similarity of

the final mathematical expression suggests the potential for some type of

unifying understanding of the two, and also the possibility of attempting

to leverage the best features of both.

22
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2.2 Knot Selection Methodologies

The method of model selection can become increasingly complex, par-

ticulary when the added task of knot selection for the spline model is

part of the process. The general methodologies which have just been de-

scribed facilitate this effort, but additional tools are useful, almost essen-

tial, when the potential set of possible knot locations for a spline becomes

prohibitively large. It can become computationally difficult to compute

every possible model and the values of AIC and/or BIC for each.

Before exploring some of the analytical approaches to knot selection,

first it is not surprising that practical considerations may not permit com-

plete freedom in the choice of knots for the model. Using time as the spline

variable, the structure of a business calendar, for example, may only allow

changes in a financial model at defined points in time, such as the begin-

ning of a new fiscal year. The depreciation in value of a financial asset,

such as an automobile, may experience changing patterns as it ages. The

automobile generally experiences rapid depreciation early in its product

life and this rate decreases as both time and distance driven increase.

23
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This value may experience significant change points which are, at least,

in part, the result of customer perception. These change points might

occur when the automobile odometer reading crosses certain thresholds,

such as 10,000 miles or the value at which a warranty provision expires.

The actual change in value may best be represented by a jump disconti-

nuity, but such a jump may not be practically permissible. The terms of

a lease or purchase contract may rigidly govern where change points can

occur in modeling the value of an asset. A similar phenomenon could oc-

cur in the realm of the escalation of insurance premiums. Clearly, policy

renewal dates and/or birthdates of the policyholder, may control when

premium increases may be implemented due to changes in mortality or

morbidity rates due to age. It is also true that even when thresholds such

as these are enforced, the number of such thresholds for a given model

may be limited. This can aid communication of the model to colleagues

in the company and the industry. It can also facilitate the marketability

of products to consumers, even if some goodness-of-fit is sacrificed.

These types of practical constraints may actually turn out to be a hid-

24
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den blessing. Even though the set of candidate knots may be severely

limited by such constraints, they can at the same time reduce the prob-

lem to a manageable level. While limiting the flexibility of the spline

model by not allowing complete freedom of knot selection, the set of can-

didate knots is kept at a reasonable size and knots are likely to reside at,

or close to, nice values.

Given ample freedom for placement of the spline knots, it is possible

that a plot of the dependent variable versus the independent variable

(underlying the spline function) may provide sufficient insight for the re-

searcher to make informed conjectures about knot locations. The density

of data at potential knots may temper this decision, particularly if the

desired number of knots is small. However, often data are sufficiently

ambiguous due to other predictor variables and random noise, so that the

decision is unclear.

The majority of my review of the literature will focus on free-knot

splines. Free-knot splines here are understood to refer to models which

rely upon some data-driven methodology for the selection of the knot loca-
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tions, and possibly the number of knots as well. However, some mention

of regression splines and P-splines (penalized regression splines) should

be made. Regression splines operate with a given set of knots and com-

pute parameter estimates by least-squares minimization. The actual esti-

mates will depend on the basis functions used for the spline space. Before

discussing specific details regarding competing methodologies for model

selection (knot selection), we will initially assume that the knots in the

model have been chosen and now are fixed. The focus, at this point, is

to examine the control that the practitioner has over the shape of the

estimated spline function given this fixed set of knots.

Unrestricted regression splines possess certain inherent vulnerabilities,

leading to potentially undesirable characteristics of the estimated func-

tion. If the fixed set of knots is small, fit to the data may be sacrificed.

If a dense set of knots is used, the risk of overfitting and lack of control

of the total variation in this function exist. Overfitting to a single data

set can also result in a poor fit to a second data set from the same under-

lying population. A popular mediating solution is to select a dense set
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of knots and impose a penalty on the spline coefficients which prevents

serious departure from some measure of smoothness.

Some of the primary work for fitting splines to data with an underlying

penalty function is due to Eilers and Marx [5]. Generally, P-splines place

knots at a large number of locations, perhaps uniformly spaced over the

spline argument, or at uniformly spaced quantiles of this variable. Or,

knots can be placed at actual values of the spline argument found in the

data. The approach of Eilers and Marx is to employ a set of B-splines as

basis functions for the spline, along with a collection of difference penalties

on the estimated coefficients of these B-splines. Work done by O’Sullivan

[6] had effectively done this by defining the following objective function:

n∑

i=1

(yi −
k∑

j=1

ĉj ∗ βj(ti))
2 + λ

∫ k∑

j=1

(ĉj ∗ β ′′
j (t))2dt (8)

Eilers and Marx constructed a modified penalty function, using differ-

ences (of unspecified order) of estimated B-spline coefficients:

S =
n∑

i=1

(yi −
k∑

j=1

(ĉj ∗ βj(ti))
2 + λ ∗

n∑

l=k+1

(∆kĉl)
2 (9)

where k is some higher-order finite difference on the B-spline coefficients.

The sum of these differences should provide a good approximation to the
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integral which serves as the penalty in O’Sullivan’s work. Clearly, it is the

intuitive discrete analogue of the integral. Notice that Eilers and Marx

extended the penalty function beyond the work of O’Sullivan to allow the

inclusion of any order of differences in the penalty. The question of the

value of λ, the smoothing parameter, which should be used, is part of the

discussion in Eilers and Marx. When λ=0, the problem reduces to the

ordinary least-squares problem. As λ becomes very large, the estimated

function approaches a polynomial of degreee k-1. The recommendation

of Eilers and Marx is the use of cross-validation statistics for choosing the

optimal value of the smoothing parameter.

A worthwhile achievement in this approach is the ease with which the

penalty function can be incorporated into the traditional least-squares

equations. If Dk represents a k x k matrix of penalties, then the penalized

least-squares system is:

X ′y = (X ′X + λD′
kDk)β (10)

Eilers and Marx demonstrate that the penalty function used by O’Sullivan

(1986, 1988), although similar to their own, produces a more complex set
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of equations to solve in order to minimize the objective function.

Ruppert and Carroll [7] extended the idea of penalty splines to include

the notion of a spatially adaptive penalty function. Their research, like

that of Eilers and Marx, fits a spline of some fixed degree, say k, but

with a different set of basis functions spanning the same spline space.

In their approach, these basis functions are composed of monomials {x0,

x1, x2, . . . , xk}, plus a set of ”truncated power functions,” of the form

{(x-t0)
k
+, (x-t1)

k
+, . . . , (x-tj)

k
+}. Again, the set of knots is fixed, but is a

smaller set than that used by Eilers and Marx. Eilers and Marx chose

a set of equally-spaced knots, but Ruppert and Carroll employ a smaller

set of knots at equally-spaced quantiles of the spline variable. While the

number of knots for the spatially adaptive method is fixed, Ruppert and

Carroll do recommend an algorithm for their selection prior to the mod-

eling process.

As opposed to the global penalty approach, Ruppert and Carroll pro-

pose a penalty function which is spatially heterogeneous, permitting the

penalty, and therefore, the smoothness, of the estimated spline to vary
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across the knots. They suggest that a linear spline be fit to the natural

logarithm of the penalty function at a subset of the knots. So, a subset,

say m, of the total set of j knots, is selected to serve as knots (change-

points) for this penalty function. Thus, the estimated function looks as

follows:

f(x) = β0 +β1 ∗x+β2 ∗x2 + . . .+βk ∗xk +

j∑

i=1

α(ti)∗βk+i ∗ (x− ti)
k
+ (11)

where the estimates are such that the objective function,

S(β) =
n∑

i=1

[yi − f(xi)]
2 +

j∑

i=1

α(ti) ∗ β2
k+i

is minimized.

The advantage in defining the spanning functions to include the trun-

cated power functions lies in the freedom to construct the penalty func-

tion, α, so that changes are initiated at each of the designated knots. In

the final analysis, the approach advocated by Ruppert and Carroll grants

the model the ability to accomodate heterogeneity in the variability of

the response function. If the function is known to oscillate more rapidly

in certain ranges of the spline, this is recognized by reducing the penalty

function in this local neighborhood.
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The estimation procedure assumes that the design matrix is defined in

the following manner:

Xi = ithrow

= {1, xi, . . . , x
k
i , (xi − t1)

k
+, . . . , (xi − tj)

k
+}

and we have a penalty matrix which is a diagonal matrix with zeroes

comprising the first k+1 diagonal elements and the remaining j diagonal

entries are equal to α(ti), i=1,2, . . . ,j. The estimator of the parameter

vector, β, then is:

β(α) = (X ′X + D(α))−1 ∗ X ′Y (12)

where α is selected by a generalized cross-validation (GCV) criterion.

Shifting attention to knot selection, a variety of ideas have been en-

tertained. One of the simplest of these can be attributed to Friedman

and Silverman [8]. The method discussed here is one which fits piecewise

linear functions to data. Without addressing the advisability of this fam-

ily of candidate models, the knot selection procedure is much like many

other stepwise selection methods.

A sequence of knot selection decisions is performed, choosing the knot
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at each step which minimizes the average squared residual (ASR). In ac-

tual practice, the set of candidate knots must be limited to some finite

set. Otherwise, the process of selection cannot be completed. The authors

limit this set to the realized values of the spline variable in the data. The

main purpose is to allow adequate flexibility in the linear spline where the

data points are dense. The sequence proceeds by placing the first knot

at the candidate knot which minimizes ASR. Continuing in this manner,

an additional knot is added at each step which minimizes this same cri-

terion, assuming that previously selected knots are kept in the model.

At the end of the process, that model chosen at one of the steps in the

process which minimizes a generalized cross-validation (GCV) statistic is

chosen as the final model. The ordinary “one-at-a-time” cross-validation

measure is computed by averaging the squared-error (residual) for the

ith observation based on the remaining n-1 sample points. This can be

written as:

CV =
1

n
∗

n∑

i

(yi − fi(xi))
2
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or,

CV =
1

n
∗

n∑

i

(yi − yi(xi))
2

(1 − hλi
)2

Here, λi represents the ith diagonal element of the smoother matrix, H, as

defined by y = Hy. The GCV statistic is a computationally advantageous

generalization of this concept which replaces λi by its average value.

Another stepwise methodology is discussed by Stone, Hansen, Koopen-

berg, and Truong (1995) in the context of extended linear models. The

procedure is more complicated than that of Friedman and Silverman. The

underlying concept is to add knots sequentially from a minimum number

of knots until some prescribed maximum is reached, and then deleting a

knot step-by-step until the original minimum value is reached. During

the addition steps, a Rao statistic is employed for decision-making, while

a Wald statistic is the measure used for knot deletion decisions. At any

stage of the addition phase of the process, suppose the current set of knot

subintervals is (assuming left and right endpoint of a and b respectively):
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{ (a, t1), (t1, t2), (t2, t3), . . . , (tk−1, tk), (tk, b) }

and defining potential knots for inclusion at the quartiles in these subin-

tervals, a Rao statistic identifies an optimal knot within each subinterval.

Recall that, in general, the Rao and Wald statistics are defined in the

following manner:

Let θ be a parameter vector to be estimated. The score function is

defined as:

Ui(θ) =
∂

∂θi

(
lnL(θi|y)

)
(13)

where L is the likelihood function and y the observed data. Also, let

Iij = −Eθ

[
∂2

∂θiθj
ln (θ|y)

]

be the information matrix. Then the Rao statistic is defined as:

R = U(θ0)
′ ∗ I(θ0)

−1 ∗ U(θ0) (14)

And the Wald statistic is defined as:

W = (θ̃ − θ0)
′ ∗ I(θ̃) ∗ (θ̃ − θ0) (15)
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where θ0 is a set of values for the parameter vector which are to be tested

and θ̃ is the set of actual parameter estimates calculated from the data.

As the knot deletion stage progresses, at each step, the least significant

current knot is deleted, using the Wald statistic. This is repeated until

only three knots are left. At the end of the entire procedure, the models

which were selected at each step are then compared according to the AIC

criterion. After this selection, some additional refinement selects a final

new candidate knot from each subinterval. One of the candidates is then

selected as the new knot and the dimension of the model is increased by

one.

A different philosophy of knot selection undergirds the work done by

Lindstrom [9]. Rather than relying upon model fit as the criterion for

selection, certain constraints are actually placed upon the knot vector

itself. Lindstrom’s research builds upon the research done by Jupp [10],

where he addressed what he termed the problem of “lethargy” in free-

knot spline modeling. Lethary refers to the tendency, when the knots

are parameters to be estimated, for model-fitting algorithms, to become
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trapped in some local neighborhood of the multi-dimensional space of

possible knot locations. That is, if the number of knots is fixed at some

value, say k, then a k-dimensional cube exists for knot values. When

lethargy occurs, there may be some k-dimensional neighborhood, possibly

on or near an edge of the simplex, where a local optimal point exists. The

algorithm may search in this neighborhood for a solution and be unable

to escape. This local optimal point may not be the global solution and

the algorithm finally fails to locate the proper overall knot vector which

is optimal.

Solution to the lethargy problem is achieved by Jupp through the use

of a transformation on the knot vector. That transformation is defined in

the following manner:

Let a = γ0 <= γ1 <= γ2 <=, . . . , γk <= γk+1 = b

and define:

hi =
(γi−γi−1)

b−a
i=1, . . . ,k

The basic idea is to penalize knot vectors where knots coalesce, either

by duplication or by their close proximity. The estimator of the spline
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coefficients is that set of values, c1, . . . , ck, which minimizes the penalized

residual sum-of-squares, where the penalty function has the form:

J =

(
(p − 1)

[ln (P (γ0(k))]

)
∗ ln (P (γ)) + 1

where ln [P (γ)] -
∑k+1

i=1 ln ((k + 1) ∗ hi)

and p, γ0(k) are constants set by the practitioner.
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3 Markov Chain Monte Carlo Methods

Undergirding the methodology that is central to this research is the math-

ematics of Bayesian analysis. As previously mentioned, the calculation of

Bayesian probabilities and density functions is the well-known elementary

result from probability theory, Bayes’ theorem (5).

Bayesian analysis, generally, allows the practitioner to incorporate his/her

own prior beliefs, if any, regarding true parameter values. In fact, by spec-

ifying an appropriately defined prior distribution for the parameters in the

model, some of the constrained estimation techniques discussed earlier can

be achieved through a Bayesian approach. One which will be discussed

is the penalizing of spline coefficients to prevent overfitting. Of great sig-

nificance to this research is the growing recent interest and development

of modeling approaches, using creative tools, called Markov Chain Monte

Carlo (MCMC) methods. These methods can be highly imaginative and

have the advantage of being capable of providing estimates for parameters

which arise from very complex model specifications. This includes many

cases where the parameters which are defined by the model follow some
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type of hierchical structure. A particular strength of these MCMC meth-

ods is the fact that, when desired, they are also capable of recognizing

the uncertainty that accompanies model specification itself. A primary

way of incorporating this uncertainty in the final parameter estimates is

the use of Bayesian model averaging. Model averaging, not unique to

Bayesian analysis, is the calculation of a parameter’s final estimate by

averaging the estimate of that parameter over a number of models which

differ in specification. The Bayesian averaging [17] which is undertaken

is the averaging, not of parameter estimates, but of estimated function

values, where the estimated function is averaged over models with differ-

ing sets of spline knots. Greater attention to the details of this modeling

concept will be given later.
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3.1 Markov Chains

Before introducing the present research, a review of the necessary mecha-

nism for implementation of the modeling process, Markov chains, should

be done. Markov chains are defined by a stochastic process in which a

sequence, indexed by the positive integers (or indexed by an uncount-

able set, in some cases) of random variables has a particular property of

dependence. It will suffice for our research to assume that the Markov

chains of interest can be considered to be sequences of random variables.

Specifically, define this sequence of random variables as:

{X1, X2, X3, . . . }

The dependent relationship which exists among these random variables

can be written as:

f(Xk|X1, X2, Xk−1) = f(Xk|Xk−1) (16)

Thus, the conditional density of any particular random variable, Xk,

in the sequence, given previous history of the chain only depends on the

value of the previous one, Xk−1. So, the history of the sequence prior to

Xk−1 has no impact on the density of Xk. One may have a time series
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which exhibits Markov Chain properties. A simple example of a Markov

Chain is a random walk. Here, a person may be positioned at the origin

of the number line at the start of the chain and then flip a coin. If a

head is the outcome, the person steps one unit in the positive direction to

+1. If tails, the person steps in the opposite direction to -1. The process

continues with the same coin flip performed at each stage and the person

advancing or retreating one step from the present position on the number

line. Clearly, the probability function governing the position at the next

step in the chain depends only on the present position, no matter the

sequence of steps which preceded the arrival of the process at its current

state.

Associated with any Markov chain is the set of outcomes which may

result at any stage in the chain. This set of outcomes is known as the state

space, S . It may consist of a finite, countable, or uncountable number

of points. Thus, as the chain progresses from any step to the next, there

is a transition from one state to another. Consequently, given the state

space, there exists a probability density governing the likelihood that the
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chain moves from any state to any other state. Although the state space

may be discrete or continuous, for the sake of simplicity, it will currently

be assumed to be discrete, possibly countable. It is customary to define

a transition matrix, P, whose elements are these transition probabilities.

Specifically, the ijth element of the matrix, pij, defines the probability

that the chain moves to state j in the next step given that the chain is

currently in state i. Clearly, any element on the diagonal represents the

probability that the chain will remain in its current state.

There are some obvious conditions that must hold for a matrix P to

function as a transition matrix. The sum of the entries in each row must

be equal to 1. These is simply the sum of the transitional probabilities

to the next state, given the current state of the chain. In addition, given

the property of dependency that defines a Markov chain, and assumming

the chain is homogeneous (that the transition matrix, P, is invariant over

the chain), it is a straightforward algebraic exercise to show that given

the current state, i, of the chain, the probability that the chain lands in

state j after exactly n iterations of the chain is: Pn =
∑

z P k ∗ P n−k.
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for 0 ≤ k ≤ n. These are known as the Chapman-Kolgomorov equations.

With this background, states of the Markov chain can be designated

by such titles as recurrent, positive recurrent, transient, absorbing, all of

which embody the likelihood that the chain will return from its current

state, i, to state i at some later iteration of the sequence. These proper-

ties have much to say regarding convergence properties of the chain. Of

primary interest will be whether the chain converges to a limiting dis-

tribution vector. A distribution vector of the Markov chain is a vector

of probabilities that the chain is in each of its possible states at a point

in the sequence. To be more clear, suppose the state space of a Markov

chain is defined by: S = {s1, s2, . . . , sm}, as an example. Then, define

the distribution vector, pk = {pk,1, pk,2, . . . , pk,m}, to be the vector of

probabilities that the chain is in each of the m possible states at the kth

iteration of the chain. If a limiting distribution exists for the Markov

chain, designation by π, then we have:

lim
i→∞

xi = π = (π1, π2, . . . , πm)
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To begin, if i and j are two states of a Markov chain, and there exists

some integer, k, such that pk
ij > 0 there also exists l such that pl

ji > 0,

then these two states are said to communicate. If all pairs of states in S

communicate, the state space, and the chain, are said to be irreducible.

Also, a state, y, of the state space, is called recurrent, if starting in y,

then the probability that the chain returns to state y in the future, ρyy,

is equal to 1. If the expected time, E(Ty), in number of iterations, until

the state revisits state y has finite expected value, additionally, the state

is called positive recurrent. If the mean of this return time is unbounded,

then the state is called null recurrent. A state which has a positive proba-

bility that the chain never returns to that state is called a transient state.

Summarizing, states are classified as:

1) ρyy = 1 Recurrent

2) E(Ty) < ∞ Positive Recurrent

3) E(Ty) = ∞ Null Recurrent

4) ρyy < 1 Transient

5) pyy = 1 Absorbing
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As we come to the issue of limiting distributions for Markov chains, one

more important property needs to be discussed. This is the notion of

periodicity. The period of a state, y ε S , is defined as the greatest

common divisor of the following set: [11] :

dy = {n ≥ 1 : P n(y, y) > 0}

If dy = 1, then the state y is said to be aperiodic. If two states com-

municate, then they have the same period. Thus, if a Markov chain is

irreducible, all of its state have the same period. In this case, also, if an

individual state is aperiodic, then the entire chain is said to be aperiodic.

An aperiodic chain which has all positive recurrent states is called er-

godic. Having established some terminology, then the following limiting

theorem, found in Gamerman [11], is valid:

If a Markov chain is irreducible, positive recurrent, and aperiodic, then:

lim
n→∞

P n(x, y) = π(y) ∀x, y εS (17)

Finally, it is often desirable that the steps of a Markov chain satisfy

a special condition known as the detailed balance equation. This con-

dition is instrumental in the strategic construction of a type of MCMC
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algorithm (Metropolis-Hastings algorithms [12]). This equation, which is

fundamental to this research, is:

π(x) × P (x, y) = π(y) × P (y, x) (18)

The objective of Monte Carlo Markov Chains is to construct a proce-

dure which simulates a chain whose limiting distribution, π, is the poste-

rior distribution of the parameter vector. Although the discussion thus far

has assumed that a discrete state space is in view, with the corresponding

transition matrix, P, the treatment from now on will be concerned with

continuous state spaces (the possible values for the set of parameters).

With this in mind, the transition matrix is replaced with the concept of a

transition kernel, P, which is a probability density function for proposed

new parameter values given their current values. The goal is now to de-

sign, for a given modeling effort, an algorithm which has as its limiting

distribution, π, and then as the n → ∞ (the number of chain iterations),

then the steps in the chain can be assumed to approximate a random

sample from π. This permits the practitioner to simulate a random sam-

ple from extremely complex, multi-dimensional parameter spaces, where
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the necessary analytical techniques may well be intractible.

Again, Markov chains which satisfy the detailed balance equation for

some probability distribution, π, prove to be extremely useful. Of primary

interest for the current research is the fact that when this property holds

for an irreducible chain, then that chain is postive recurrent, and has

limiting distribution, π (3.1). By summing both sides of this equation

over all states, x, we obtain:

∑

x

π(x) ∗ P (x, y) =
∑

x

π(y) ∗ P (y, x) = π(y) (19)

which defines a stationary distribution, π, for the chain.

3.2 MCMC Algorithms

The need for Markov Chain Monte Carlo (MCMC) schemes is driven by

the inability in many situations to draw random samples directly from the

probability distribution of a set of parameters. This is often due to the

multi-dimensional and/or hierchical structure of parameter vectors in a

modeling problem, making the necessary evaluation of multidimensional
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integrals intractible. As has been stated previously, Bayesian analysis

presumes that a parameter vector, θ, is to be estimated, and that a prior

distribution exists for this vector, and that the observed data, y, are

available. Restating the posterior density, by Bayes’ theorem:

f(θ|y)f(θ)∫
···

∫
f(y|θ) ∗ f(θ)dθ

(20)

It is clear that the calculation of the denominator, except under the

most simple probability distributions, will be prohibitive, even numeri-

cally.

At times, this problem may be avoided when the prior distribution for

θ and the distribution from which are data are selected, are conjugate.

The concept of conjugacy is that the prior distribution for the parameter

vector, θ, and the data are related mathematically in such a way that the

posterior distribution for θ belongs to the same family as the prior. This

may allow straightforward estimation of the parameters.

For example, suppose that we wish to estimate the mean, p, of a

Bernoulli process. A random sample of n observations is selected and

the mean of the set of 0’s and 1’s is calculated. In Bayesian analysis, it
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is commonly the case that a prior distribution for p is defined from the

family of Beta distributions. Here, the random variable, p, is assumed to

have the following probability density function (pdf):

f(p) =
Γ(α + β)

Γ(α) ∗ Γ(β)
∗ p(α−1) ∗ (1 − p)(β−1) 0 < p < 1 (21)

If Y represents the number of successess observed in n sampled obser-

vations of the Bernoulli process, then using the Binomial distribution:

P (Y = y) =

(
n

y

)
∗ py ∗ (1 − p)n−y y = 0, 1, . . . , n (22)

The resulting product of f(y) and f(y|θ) results in:

f(p|y) =

(
n

y

)
∗ py ∗ (1 − p)n−y Γ(α + β)

Γ(α) ∗ Γ(β)
∗ py+α−1 × (1 − p)n−y−β−1

⇒ f(θ|y) ∝ py+α−1 × (1 − p)n−y−β−1 (23)

Observation of the form of this expression indicates that it is propor-

tional to a Beta density, like the prior, but with parameters y+α, and

n-y-β. This is characteristic of Bayesian analysis where the complex de-

nominator of the posterior distribution, which is constant for a given

sample, need not be evaluated.

More closely allied with the spline problem is the conjugacy relationship
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which often exists in regression modeling in a Bayesian framework. The

parameters of interest, the regression coefficients and the scale parame-

ters, are often assumed to follow a normal and Gamma prior distribution

respectively. Here, however, under the assumption of normal error terms,

the joint posterior of these parameters is not conjugate with the nor-

mal error terms. The conditional distribution of each parameter, given

the other, however, does have this type of conjugacy. Discussion of this

conjugacy can be found in Gamerman [11]. This type of conjugacy is

important for some of the MCMC theory, particulary the Gibbs sampling

methodology.

3.3 Gibbs Sampling

Gibbs sampling provides one of the major approaches for implementing

MCMC simulations. Here, it is assumed that we wish to sample π(θ),

where θ is a vector of parameters, θ = {θ1, θ2, . . . , θk}. Each θi may be

a vector or a scalar. If we also define θ−i as the vector which is identical

to θ, but excludes θi, then consider all the full conditional distributions,
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π(θi|θ−i) to be known and that is possible to randomly sample from each

of these. This is an advantage since it is more than likely impossible to

sample directly from the joint density of θ.

Gibbs sampling consists of sampling sequentially from each of the k

conditional distributions, updating θi at the ith step in the sequence. Af-

ter a sufficient number of iterations of this sequence, then it may be as-

sumed that the result at the end of a sequence is a single random sample

from the joint distribution of the k parameters. It is recognized that this

conclusion is approximately true and convergence of the chain needs to

be monitored. The applicability of the Gibbs sampling approach to the

Bayesian problem should be evident.

3.4 Metropolis-Hastings Algorithms

An innovative method for constructing chains for MCMC estimation is

the class of Metropolis-Hastings algorithms [12] [13]. In these method-

ologies, the posterior density of the parameters for the model is coupled

with a proposal distribution, q, to provide the machinery to implement
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the simulation. If we assume that the current state of the chain (current

parameter estimates) is θ, the proposal distribution is a probability dis-

tribution which governs the potential movement of the Markov chain in

the next step to a new set of parameter estimates, θ′. What is interest-

ing about Metropolis-Hastings algorithms is the ability to tailor, to some

degree, the form of the proposal distribution, and the fact that the pro-

posed set of new values for the parameter estimates may, or may not, be

accepted as the new values. That is, there is a positive probability that

the chain will remain in its current state, when the proposed new values

are not accepted. Instead, they are accepted according to the value of a

certain acceptance ratio. The acceptance probability is defined as:

α(θ, θ
′

) = min

(
1,

f(θ
′

)|y) ∗ q(θ
′

, θ)

f(θ)|y) ∗ q(θ, θ
′

)

)
(24)

where q(θ,θ
′

) represents the proposal density of moving to state θ′, given

that the current state is θ.

In this manner, the product of the proposal density, q(θ,θ′) and π(θ,θ′),

functions as the transition kernel (transition matrix in the purely discrete
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case). Or, writing

P (θ, θ′) = q(θ, θ′) ∗ α(θ, θ′)

the detailed balance equation is satisfied, with:

π(θ) ∗ P (θ, θ′) = π(θ′) ∗ P (θ, θ′)

with f(θ) as the limiting distribtuion, π.

These types of Metropolis-Hastings schemes can be quite flexible, al-

lowing the practitioner to construct the proposal density, q, to achieve

efficiency. In addition, capability exists to construct algorithms in which

a Gibbs-style update of parameters, where a subset of the parameters

is updated at any given iteration, making the specification of the pro-

posal much simpler. The only requirement that must be met for the

proposal density, because the detailed balance equation is satisfied, is

irreducibility, which essentially implies that the entire parameter space

(multi-dimensional) must be capable of being scanned over the life of the

chain.

Further work in Metropolis-Hastings proceudres has been done by Green

[14]. Green extended the concept of these algorithms to transdimensional
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parameter spaces. In this context, the number of parameters in the model

is not fixed, even while the chain is progressing; so that, transitions in the

chain potentially involve movements from a parameter space with k1 pa-

rameters to one with k2 parameters, where k1 6=k2. This occurs when the

proposal density actually involves the addition or deletion of parameters

in a transition.
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4 Spline Regression with Penalty Function

Free-knot splines, as previously defined, refer to that class of spline func-

tions which serve as models, and for which an algorithm based on the data

selects the number of knots and their locations. Several of the methods

discussed have as their goal the selection of a single model based on a sin-

gle set of knots. The spline function is then fit, generally by least-squares,

using an appropriate set of basis functions using these knots. Some at-

tention has been given to the notion of model averaging, where a single

model is not in view, but this will be discussed in much greater detail in

our research. Model averaging is central to this research because the set

of knots which is used in the estimation process changes over the course

of the Markov Chain Monte Carlo simulation which will be implemented.

4.1 Prior Distributions for Parameters

As previously discussed, the Bayesian framework for this research requires

the specification of a set of priors for the set of parameters which accom-
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pany the model. The model which will be employed is hierchical, partic-

ularly due to the fact that the number of knots which defines the model

at any specific iteration in the Markov Chain governs the number of knot

locations and the number of B-spline coefficients (all of which collectively,

together with the intercept term and the variance term comprise the pa-

rameter vector). This actually results in some prior distributions in the

model which are conditional.

The prior distributions for various parameters can take any form, but

the practitioner may have insight which make practical sense (satisfying

real-life constraints). However, certain statistical distributions, because

of their functional form and/or conjugacy properties, tend to be promi-

nent in the literature and in practice. One of the beauties of the MCMC

methodology, in which exact evaluation of posterior densities is not re-

quired, is that the range of options for these priors is essentially limitless.

One can specify whatever functional form for these priors which is desir-

able, whether the result is a commonly recognizable statistical distribution

or not. One can also specify a prior distribution, only up to a constant,
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if the necessary integration to force the total probability to sum to 1 is

intractable.

4.2 Penalty Function Description

While the application of a penalty function to model selection and modifi-

cation is a common technique is parametric modeling approaches, it may

seem foreign to MCMC methodology. It is possible to penalize departures

from smoothness, as is done in parametric modeling, by implementing ap-

propriate prior distributions on the model coefficients. However, the same

can be done by penalizing the likelihood function as an integral part of

the MCMC algorithm at each step in the chain. It turns out that the use

of a penalty function in the acceptance ratio for the Metropolis-Hastings

procedure induces an assumed prior distribution on the parameter set (or

a subset of these parameters). What is an advantage in this alternative

method is the ability to customize the penalty without knowing the closed

form of the prior distribution which is induced by this penalty function. It

is my intention to investigate one specific penalty function to show that it
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naturally leads to a common prior distribution for the number of knots in

the model, but I will also address some other options and illustrate some

results from these briefly. This demonstrates that the penalty function

methodology of this research achieves a flexibility, by allowing the user

to impose whatever constraints on the parameters that may be desirable,

without forcing the user to resort necessarily to the standard set of prior

distributions in practice.

The unique aspect of our work is the incorporation of a penalty func-

tion which is implemented as a component in the acceptance ratio of a

Metropolis-Hastings procedure. A discrete prior distribution for the num-

ber of knots, which is proportional to a Normal density is the focus of this

research. The mean and variance of this Normal prior density can be se-

lected to influence the final estimated spline curve. It will be shown that

this prior distribution is equivalent to using a penalized version of the

likelihood function (or, equivalently, a penalized acceptance ratio) which

is a linear combination of the well-known penalties, AIC [1] and BIC

[4]. In fact, a normal prior (with the appropriate mean and variance),
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it will be demonstrated, can always be written in a manner equivalent

to this penalty function (up to a proportionality constant) The penalty

function varies according to the number of knots in each candidate model.

These two penalty functions represent two broad, contrasting philosophies

regarding model selection. The AIC penalty represents a frequentist per-

spective, while BIC incorporates Bayesian concepts. The AIC is actually

based on expected Kullback-Leibler (K-L) distance and BIC is a measure

of the posterior probability that a given candidate model is correct under

the assumption that all candidate models are equally likely. The proper-

ties possessed by this prior distribution will also be of interest. Also to

be discussed will be the implications for the model fit and a comparison

with results obtain without a penalty and the use of AIC only and BIC

separately as penalty functions.

Splines provide a great deal of flexibility, depending on the priorities of

the modeler. Greater fidelity to the observed data can always be achieved

by increasing the number of knots, but at the expense of a less parsi-

monious model specification and potential poor fit to a new set of data
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drawn from the same underlying distribution. The model is simply guilty

of overfitting and adjusting to what is, in reality, noise. This problem

may be alleviated through the use of a penalty function of the coefficients

to ensure a more smooth function. Fewer knots will yield a poorer fit,

but is clearly easier to communicate. Even discontinuities in the func-

tion, or some order of derivatives of the function, is possible through knot

duplication. Knot duplication is an extremely promising area of research

toward which we anticipate making some future contributions. Note that

it is possible to approximate splines of lower order with our present algo-

rithm by specifying knots which are very close to each other, but this is,

of course, different from exact duplication. Some minor modifications in

the MCMC algorithm contained in this research would be required to suc-

cessfully implement a procedure which allows actual duplication of knot

locations.

The thrust of this research will be to achieve some measure of com-

promise between parsimony and goodness-of-fit. The objective will be to

arrive at an estimated curve which lies between the one bounded by the
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curves which would be obtained by use of the AIC and BIC individually in

the same MCMC algorithm. The curve will inherit some of the strengths

and drawbacks of both approaches, but will serve well in numerous con-

texts.

4.3 Spline Regression

The problem that I will consider can be described in the following manner.

Suppose that a random sample of observations is available, y = {y1, y2,

. . . , yn}, where yi can be expressed as a smooth function of an independent

variable, t:

yi = f(ti) + εi (25)

Here, the final term is the usual error term, εi, for a general linear

model. In the current research model, it will be assumed that: εi ∼

N(0, σ2) and εi, εj are independent for i 6=j. It may be useful to think of

the variable, t, as a measure of time, thus making the function relation-

ship a time-series model. The knots in the model be viewed as discrete

time points where change in the series may be occurring.
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The degree of spline which will be employed is the cubic spline, a com-

mon choice for this type of modeling. A cubic spline is a continuous

piecewise polymonial, where the cubic polynomial is unique between each

pair of contiguous knots. It will be useful for our purpose to define,

for a given knot vector: t: a=t0 < t1 < . . . < tk=b, the space, St,m =

{f(t) ∈ Cm−2[a,b]: f|[ti−1,ti]}. Cm−2[a, b] refers to the subset of all splines

on [a,b] which are (m-2)-times continously differentiable at each point in

this closed interval. As we will be considering cubic splines (m=4), this

refers to those cubic splines with continuous second derivatives on [a,b].

Because of the closed interval, only continuity of the right derivatives at

a, and the left derivatives at b is required. This follows the definition as

outlined in Chui [15].

Interpolating splines are of some interest as background here. Given a

set of data:

{(y1, t1), (y2, t2), . . . , (yn, tn)}, (26)

a spline is fit to the data using the values of t from the data as knots,

and forcing the fitted spline to agree with the actual data at these knots.
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Interpolation alone is not sufficient to ensure a unique spline for this

purpose. So, the knot vector is extended, by duplicating the left and

right endpoints m-1 times. So, the extended knot vector would appear

as:

t : a = t−m+1 = . . . t0 < t1 < . . . < tn = . . . = tn+m−1 = b

If these splines are cubic, this results in the ordinary cubic spline fit.

Without an extension of the knot vector, a unique result can be achieved

by imposing restrictions on the derivatives in the first and last subintervals

of the closed interval [a,b].

Starting with this background, the following functional relationship will

be assumed in the model for our research:

y = f(t)

where:

f(t) = c0 +
k+4∑

i=1

Bi(t),

where Bi(t) (i = 1, 2, . . . , k+4) will be the basis functions employed in the

model. This is done by using B-splines as these basis functions, where Bi
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is the B-spline identified with the (i-3)rd knot and B1, B2, and B3 will refer

to those B-splines which are associated with the extended knot vector at

the left endpoint, a. This is in keeping with the extended knot vector

definition described above for the case of cubic splines. Although there

are only k interior knots, instead of k+3, there k+4 B-spline coefficients

because of the default knot at the left endpoint, a.

A description of B-spline functions on a closed interval can be found in

Chui [15]. One of the primary advantages of these basis functions for our

problem is the ease with which the MCMC algorithm can be constructed

to define proposal transitions from the current state of the model to the

next involving either the addition or deletion of a knot. This results in a

change not only in the number of basis functions, but their interpretation

for our research. The key advantage of these basis functions that will

aid our effort is the property that these B-spline functions have compact

support. In this modeling effort, this means that each B-spline function

impacts only a subset of the fixed interval [a,b]. The support of B-spline

function, Bi, will be [ti−3, ti]. So, Bi(t)=0 for t /∈ [ti−3, ti].
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Thus, in the execution of the MCMC simulation, adding or deleting a

knot can be done without affecting the current estimated function, f(t),

outside this range. This results in the changing of only a few of the esti-

mated coefficients of the B-splines in the model. It should be noted that

special treatment is necessary for B-splines at the endpoints (Chui) [15].

The research contained in this paper, as previously indicated, makes no

attempt to select an optimal set of knots for the estimated cubic spline.

Instead, as the MCMC simulation progresses, various iterations of the

Markov chain may reside in a parameter state with different knots, and

even differing numbers of knots. The MCMC algorithm continues execut-

ing and eventually reaches, approximately, the limiting distribution, for

the chain, which in this problem is the posterior density of the complete

set of parameters to be estimated in the model. The set of parameters

consists of the number of knots, the knot locations given this number of

knots, the coefficients of the B-splines used in the model, and the indi-

vidual observation-level variance term. Thus, the limiting distribution

actually consists of a transdimensional space of parameters. Once it has
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been determined that the chain has reached equilibrium, then the param-

eter estimates at each iteration beyond this point can be considered to

be an approximate random sample from the limiting distribution. The

final estimated function is actually a Bayesian averaging process of the

estimated functional value at each point t in the interval [a,b]. This is

a crucial point to remember because as the various iterations are drawn

from parameter spaces of differing dimensions, the actual interpretation of

parameters to be estimated can be different. So, we will finally not be in-

terested in any type of estimated value of a particular B-spline coefficient,

for example, because the estimation of these coefficients and consequently

the estimation of f itself is not based on a fixed set of knot locations. The

notion of Bayesian model averaging is discussed by Draper [17].

4.4 Hierchical Structure of the Model

The major categories of MCMC algorithms have been described in the

review of the current literature. Much of the work that will be done in this

paper is an extension of work done by Biller [16]. The methodology will be
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to construct a Metropolis-Hastings algorithm which allows the addition

and deletion of knots, thus resulting in movement across parameter spaces

of varying dimensions, and using the theory introduced for this type of

process by Green [14]. The model will have to adhere to a hierchical

structure, in which the number of knots is the initial parameter value

which must be known. Let us call the number of knots in the model, k.

The possible values of k need to be defined. Now, the endpoints of the

fixed interval for the model will be assumed to be fixed for the problem.

So, the set of k knots that we are referring to will be in the open interval

(a,b). These will be referred to as interior knots. So, once the number

of knots, k, is determined, the next level in the hierarchy of parameters

is the set of knot locations. These knot locations will be designated by

the knot vector t(k) = {t1, t2, . . . , tk }, where a < t1 < t2 < . . . < tk <

b. Following this level, the B-spline functions can be defined, and the

coefficients for these basis functions are then parameters to be estimated.

The set of coefficients for the model will be designated by c(k) = {c1,

c2, . . . , ck }. Regardless of the number of knots, the error term is included
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at each step in the procedure. If we allow θ to represent the entire set of

parameters, then we may write:

θ(k) = {k, t(k), c(k), σ2}

In fact, it is useful to think of the entire parameter space, over all pos-

sible dimensions, as a countable (in our case, finite) union of parameter

spaces, each of the form: {k} x {t(k), c(k), σ2 }. From here on, we will

understand θ(k) to be defined as we have done so. If we write the likeli-

hood function as: P(y | θ), then hearkening back to the discussion earlier

regarding Bayes’ theorem, the posterior density of the parameter vector,

θ, follows the following relationship (where the prior distribution for the

individual parameters will be identified by a capital P):

f(θk|y) ∝ P (k) ∗ P (t(k)|k) ∗ P (c(k)|k, t(k)) ∗ P (σ2) ∗ P (y|k, t(k), c(k), σ2)

(27)

The prior distributions are:

P(k) Number of knots

P(t(k)|k) Knot locations (given k)

P(c(k)|k,t(k)) Spline coefficients (given k,t(k))
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P(σ2) Individual observation variance term

The hierchical structure of the model is mirrored in the definition of the

joint prior distribution of the parameter set. Thus, when a set of ini-

tial values is to be randomly assigned to these parameters to initiate the

execution of the MCMC simulation, these values must be sequentially

selected in accordance with this hierchical structure (first the number of

knots is initialized, then the knot locations given k, and finally, the values

of the B-spline coefficients, which is conditioned on k, but independent

of t(k)). The variance parameter can be intialized independently of all of

these.

As indicated, a Metropolis-Hastings style MCMC algorithm will be

constructed for this research. It will largely follow the type of algorithm

described in the work of Biller [16], with some modifications, and with the

addition of a penalty function employed in the acceptance ratio. The type

of approach employed follows the reversible jump MCMC (RJMCMC)

methodology which was proposed by Green [14], and briefly referred to

earlier. An RJMCMC algorithm forms a transition kernel for the Markov
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Chain, which permits the traversing of the entire parameter space, includ-

ing potential transitions from one iteration in the chain to the next which

result in a change in the dimension of the model. This technique must not

only allow such transitions, but at the same time, must simultaneously

satisfy the detailed balance equation.

4.5 Specification of Prior Distributions for Parameters

Discussion of the prior distributions for the various parameters in the

model once again will largely emulate that of Biller [16], but less latitude

is given to the prior for the number of knots than in that work. First of

all, the prior distribution which is used for the number of knots inevitably

is governed by the range of values which are deemed appropriate by the

practitioner. As we have defined the spline function to automatically have

knots at the endpoints of the fixed interval, [a,b], this implies that at least

two interior knots must be selected from (a,b) in order for a legitimately

defined cubic spline to be fit to the data. Also, the knots added to create

the extended knot vector (for ordinary cubic splines) are not involved in
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the value of k, the number of interior knots. Some value for the maximum

number of possible knots permissible for the model, kmax, must be fixed

by the practitioner. For example, I decided to fix this value at 40, as

this is similar to the value used by Eilers and Marx [5] in their work on

P-splines, although in this work, the dimension of the model is fixed at

this value.

It is prudent to set the value of kmax reasonably large, whether models

of dimensions this large are highly likely under the posterior density or

not. We will assemble a set of candidate knots, K, which has kmax points,

all of which lie in (a,b). All of these points will serve as potential locations

for the knots in the spline function, regardless of the number of knots in

the model.

It is assumed here that the number of interior knots will be an integer

in the range from 2 to kmax. So, there are kmax-1 distinct values for k,

to which the prior distribution, P(k), will assign prior probabilities. The

two types of obvious possible prior distributions for k, discussed by Biller

[16], are the discrete uniform and the truncated Poisson (with a suitable
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value of the intensity parameter, λ, and which is normalized to sum to

1). The discrete uniform prior simply assigns equal prior probabilities to

all values of k (from 2 through kmax). It is vital for the purposes of this

research, due to the nature of the penalty function we will employ, that

the discrete uniform prior be used. Otherwise, as we discuss later in the

paper, the prior distribution for the number of knots, k, induced by the

penalty function, will be multiplied by a value which is not constant for k.

The identification of the penalty function with certain familiar probability

distributions for the prior would be impossible. However, nothing about

the MCMC would be invalidated by the use of a Poisson prior.

The prior distribution for the knot locations, which is conditioned on

the number of knots in the model, will also assign equal prior probabilities

to all possible knot vectors (with k interior knots) which are selected from

the candidate set, K. So, if we designate this set in the following way:

K = {u1, u2, . . . , ukmax
}

where each ui ∈ (a,b), the distinct values for ui must be specified. We

will space these equidistantly across the open interval (a,b). An alterna-
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tive would be to place them at equidistant percentiles of the variable, t.

However, duplicate values of t could potentially introduce discontinuities

in the spline f(t) or its derivatives. It might also be undesirable to place

knots in close proximity.

Now, suppose that the number of interior knots in the model is k. Given

that there are kmax possible knot locations, the prior distribution for these

locations that assigns equal probabilities to all the potential knot vectors

is:

P (t(k))|k) =
1(

kmax

k

) (28)

For the set of B-spline coefficients, the prior distribution will follow

a multivariate normal distribution. This type of prior is described by

Gamerman [18]. It is assumed that for these parameters, c(k), along with

the intercept term, we have (recall that a model with k knots has k+4

B-spline coefficients):

c(k) ∼ MV N(0(k+5), σ
2
0 ∗ Ik+5) (29)
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Note: This implies that the prior for the set of B-spline coefficients as-

sumes that they are independent random variables. They are also as-

sumed to have equal variances, regardless of the dimension of the model.

In fact, the dimensions of the multivariate mean vector and the vari-

ance/covariance matrix of the prior depends on the number of knots which

has significant implications for implementation of the MCMC algorithm.

This will be disucssed later in this paper. Also, assuming that there is

no particular desire to impose limitations on the magnitude of the coeffi-

cients, the value of σ2 will be relatively (in light of the order of magnitude

of the dependent variable) large.

Finally, Gamerman [11], in discussing the use of prior distributions at

length, refers to the common use of the Inverse Gamma distribution as a

suitable prior for the variance. For normally distributed response data,

with mean µ and variance σ2, use of this prior, along with a normal prior

for µ, produces a conditional conjugacy. This accounts for its common

use. In the research here, the prior for σ2 will follow an Inverse Gamma
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distribution, the notation being:

σ2 ∼ IG(1, S0), where S0 is a value set by the practitioner (30)

In summarization, the priors are defined as follows:

k ∼ Discrete Uniform (p=1/(kmax-1) for all k)

t(k) ∼ Discrete Uniform (p=1/
(
kmax

k

)
)

c(k) ∼ MVN(0k+5, σ2*Ik+5)

σ2 ∼ IG(1,S0)

4.6 Penalty Function

The primary thrust of the current research is the introduction of a specific

penalty function into the Markov Chain Monte Carlo (MCMC) algorithm

which generates the estimated cubic spline function fit to a set of ob-

served data. This penalty function is an additional component of the

acceptance ratio integral to the Metropolis-Hastings type of MCMC pro-

cedures. Some brief attention will be given to the fact that other penalty

functions can be introduced to the acceptance ratio in a similar fashion,

but for the purpose of the simulation work contained in this paper, most
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of the focus will be on this specific penalty function.

The motivation of the penalty function is to strike a balance between

models with minimal parameters, which are parsimonious in their func-

tional form, but may sacrifice fit to the data, and models with larger

numbers of parameters which fit the specific data under study, but sac-

rifice parsimony and risk overfitting. Overfitting is the phenomenon in

which the number of model parameters is large enough (close to the num-

ber of observations) so that the fit to these data is nearly perfect, but

may inadvertantly pick up noise in the parameter estimates, and result in

potentially poor fit to a second data set generated by the same process.

The penalty function, which will be denoted by R(k), is a function of k,

the number of knots in the model. By defining a penalty function which is

quadratic in k, the outcome is a penalty function which places the greatest

likelihood at a specified value (by the practitioner), and the least likeli-

hood at the extremes. This penalizes models in which the number of knots

differs significantly from the mean value. A particular quadratic penalty

function is employed, which is a convex combination of the Akaike Infor-
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mation Criterion (AIC) and the Bayesian Information Criterion (BIC),

weighted by a linear weighting function (a function of k). The form of

the penalty function is (where ν is constant such that 0 ≤ ν ≤ 1):

ln (R(k)) = λ(k) ∗ [(ν ∗ ln (AIC)) + ((1 − ν) ∗ ln (BIC))] (31)

Note that λ(k) is not a constant, but is a function of k itself. The

function that will be used is a linear function of k. The linear function

is selected so that the mean and variance of the prior for k have values

specified by the practitioner. Recalling these two commonly used penalty

functions:

ln (AIC) = (−1/2 ∗ ln (n)) ∗ k (32)

ln (BIC) = −k (33)

The function, λ(k), will be defined after certain results have been

demonstrated. Initially, let us simply define λ(k) as γ1*k + γ2. The

penalty function can clearly be seen to produce a quadratic function of k
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when the terms are multiplied. The result is:

lnR(k) = (γ1 ∗ k + γ2)(ν ∗ (1) + ((1 − ν) ∗ (lnn/2))) ∗ (−k)

= −((ν + (1 − ν)(lnn/2)) ∗ (γ1 ∗ k2)) − ((ν + (1 − ν)(lnn/2)) ∗ (γ2 ∗ k))

(34)

First, a preliminary result is useful.

Theorem 1. Any penalty function of the form, Q(k)=exp(c*(-k)), or

ln (Q(k)) = -c*k, induces a prior distribution on the number of knots

which is Exponential with mean 1
c

.

Proof. This is straightforward. Knowing that the exponential density

function is:

f(k) = β*exp(-β*k) for k > 0,

Then, clearly Q(k) ∝ f(k), where the constant β is independent of k.

Because the constant cancels out in the acceptance ratio for the Metropolis-

Hastings acceptance ratio, this constant can be ignored.

A natural corollary then is:

Lemma 1. The use of AIC and BIC as penalty functions for k induces
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exponential prior densities on the number of knots with means 1
lnn/2

and

1, respectively.

Proof. The result is clear because lnAIC = [-lnn/2]*k and lnBIC =

-1*k.

The exponential density function is known to possess the “memory-

less” property where, F(t+s | t) = F(s), ∀ t,s > 0. This can be seen for

penalty functions such as AIC and BIC in the fact that the ratio of the

penalty function at k and k+1 is constant for all k. Thus, the penalty

function itself obviously is not constant for all k, but the penalty ratio

(for models having dimensions which differ by one) is constant. This is,

in fact, the ratio employed in the MCMC process. It is also evident that

the ratio
(

R(k+1)
R(k)

)
is less when AIC is employed, making the acceptance

probabilities less for BIC than AIC.

Now, consider the penalty function, R(k), in our methodology, where

it will be shown that this constant ratio is no longer the case. Since R(k)

is an exponential function whose exponent is a quadratic function of k, it

is then possible to prove that R(k) is actually proportional to a normal
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density function at the integer values of k=2, 3, . . . , kmax.

Theorem 2. The penalty function, R(k), produces a prior distribution for

the number of knots, k, which is approximately equal to a normal prior

distribution with mean
γ2

γ1/2 and variance 1
[(2∗ν+(1−ν)∗(ln n)]∗γ1

.

Proof.

The penalty function, R(k), is:

R(k) = exp(-((ν + (1-ν)(lnn/2))*(γ1*k2))- [(ν + (1-ν)*(lnn/2))*(γ2*k))]

= exp(-[(ν + (1-ν)*(lnn/2))*(γ1) ][k2 +
γ2
γ1

*k])

Designating the constant, 2*[((ν+(1-ν*(ln2/2))*γ1], by (σp)
2, we can

write the exponent as:

= -C * ( 1
σ2
p
) * (k2 +

γ2
γ1

*k) + ( γ2
2∗γ1

)2 - ( γ2
2∗γ1

)2

This is nothing more than completing the square, resulting in:

= -C * ( 1
2∗σp

2
) * (k- γ2

γ1/2
) 2

This, being merely the exponent of the penalty function, R(k), is pro-

portional to a normal density function. The constant, C, is simply a

multiplicative constant not involving k, so that it may be absorbed into

the proportionality constant. In fact, it becomes evident by simple mul-
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tiplication that:

C = [ν + (1-ν)*(lnn/2)]*γ1

= [ν + (1-ν)*(lnn/2)]*2*(γ1/2)

The mean and variance of the normal density are evident from the expo-

nent.

Because the prior distribution for the number of knots assumed in our

MCMC procedure is discrete uniform, then multiplying the prior by this

penalty function results in an expression which is proportional to the nor-

mal density function at integer values with mean and variance specified

above. So, the application of this penalty function in the MCMC algo-

rithm is then essentially equivalent to using this normal prior distribution

for the number of knots, k. This is true due to the fact that the area under

the normal curve between j-1 and j+1 for any integer, j, can be approxi-

mated by Simpson’s rule.

It is straightforward to observe that any normal prior distribution for

the number of knots, k, exp(a2*k2+a1*k+a0), will result in a procedure

which is equivalent to imposing a penalty function on the number of knots
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of the form:

lnQ(k) = ((γ1 + γ2 ∗ k) ∗ (ν ∗ AIC + (1 − ν) ∗ BIC)) (35)

Theorem 3. Any normal prior distribution for the number of knots can

be approximated by the use of a penalty function of the form Q(k).

Proof. Consider a penalty function, Q(k), of the form:

Q(k) = exp((γ1 + γ2 ∗ k) ∗ (ν ∗ AIC + (1 − ν) ∗ BIC))

where γ1, γ2, and ν are constants. If we wish for the normal prior to have

mean µ and variance σ2, this can easily be accomplished by arbitrarily

specifying one of these three constants and solving for the other two so

that the mean and variance of the normal density, as calculated in the

previous theorem are achieved. If the value of ν is set arbitrarily (prefer-

ably between 0 and 1), then the appropriate values of γ1 and γ2 are:

γ1 = 1
σ2 [ν + (1 − ν) ∗ (ln n)] and

γ2 = - 2*µ*γ1.

An insightful observation can be made regarding the use of the penalty
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function, R(k), versus AIC or BIC. It will be the approach in this paper

to set the value of the constant ν in this function to 1. This results in the

simplified expression:

ln (R(k) = (γ1 ∗ k + γ2) ∗ (−k)

Setting this equal to the corresponding exponent for a normal distri-

bution with the desired mean µ and variance σ2, we have:

(−γ1 ∗ k2) − γ2 ∗ k = −

(
1

σ2

)
∗ (k2 − 2µ ∗ k)

Setting coefficients equal, we find that:

γ1 =
1

2 ∗ σ2

γ2 =
−µ

σ2

Thus, to achieve an induced normal prior with mean µ and variance

σ2, one acceptable penalty function is:

[(
1

2 ∗ σ2
∗ k

)
−

(
−µ

σ2

)]
∗AIC

=

[(
1

2 ∗ σ2
∗ k

)
−

(
−µ

σ2

)]
∗(−k)
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Some insight can be gained regarding the anticipated behavior of the

size of the model if one examines the expression for lnR(k + 1) - lnR(k).

Substituting these values into ln (R(k)) yields:

[−(2k + 1) ∗ γ1] − γ2

When the values of the BIC penalty are similarly evaluated for k+1

and k, we simply obtain -ln n/2 for this difference. It can be easily shown

by simple algebra that the expression in front of -k is greater than ln n
2

when k > µ + (σ2*lnn) - 1. At values of k which exceed the right-hand

side of this inequality, we can anticipate our procedure to be more likely

to reject the model of higher dimension than would be the case when the

BIC penalty is employed.

This can provide some assistance in designing the penalty function in

such a way that a final model is realized which is effectively smaller (in

terms of number of effective parameters) than that realized under the BIC

penalty function. It is immediately apparent that, generally, this penalty

function will impose higher penalties on models with larger numbers of

knots, but lesser penalties for those models with few parameters. It can
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then be expected to produce results representative of models with mod-

erate numbers of knots. Whatever priorities may be involved, the choice

of model dimension can be incorporated into the values of µ and σ2.

Other probability density functions can serve as the prior distribution

for the number of knots through this penalty function approach. For

example, the Gamma distribution has density function:

f(k) =
1

Γ(α) ∗ βα−1
∗ kα−1 ∗ e−

k
β

for k > 0 with parameters α > 0 and β > 0. One can construct the

penalty function by ignoring the constants which do not involve k. The

penalty function is then:

Q(k) = −1 ∗ kα−1 ∗ e−
k
β (36)

ln (Q(k)) = −

[
(α − 1) ∗ ln k −

k

β

]
(37)

This would again make the use of ln (Q(k)) practical when penalizing

the log-likelihood function. The same could also be done with the Geo-

metric probability distribution. Here, the probability of k knots would be

defined as:

P (k) = −(p ∗ (1 − p)k)
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Here, p represents a number between 0 and 1, which is the probability of

success in a Bernoulli trial. For the purpose of the penalty function, it is

nothing more than a parameter which regulates the mean of the prior for

k. The penalty function would have the form (ignoring the constant, p):

ln (Q(k)) = k ∗ ln (1 − p)

Interestingly, one can once again use this as a prior for the number of

knots, k, and induce both the AIC and BIC, by setting the parameter,

p, to the appropriate value. For example, if p is set to (1 - e−1), then

ln (Q(k)) = k * (-1) = -k = AIC. Note: This observation can be generally

applied to distributions belonging to the exponential family, because AIC

and BIC are both linear functions of k.
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5 MCMC Algorithm for Spline Regression

What follows is a discussion of how the transition kernel in Markov Chain

Monte Carlo procedures is implemented. The algoritm, as stated, con-

sists of a sequence of different move types, each of which consists of its

own proposal, which is accepted or rejected (according the Metropolis-

Hastings acceptance probability), followed by the next move proposal.

The notations that will prevail throughout the discussion are:

P(y | θ) = likelihood of observed data given parameter vector θ

P(θ) = joint prior distribution of parameter vector

(with the hierchical structure)

q(θ,θ′) = Proposal density for transition from current

parameter vector θ to proposal parameter vector θ′

J(θ,θ′) = Jacobian for transformation from parameter space

θ to parameter space for θ′

R(θ) = Penalty function for the model with parameter vector θ

Before discussing the move types involved in the MCMC algorithm, those

move types are defined as follows:
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1. Movement of an active knot to an inactive knot location

2. Addition of a currently inactive knot or deletion of a currently

active knot

3. Update of B-spline coefficients

4. Update of individual observation variance term, σ2

This sequence is executed at each step in the chain (in this order, although

this is not necessary). So, it is transparent that a Gibbs-style process, in

which blocked parameters are updated one block at a time, is occurring

within each iteration of the algorithm. However, the acceptance or rejec-

tion of any individual proposed transition in any of the above steps is a

Metropolis-Hastings procedure where the acceptance ratio is the deciding

factor whether the proposed transition is actually accepted. It may be

that transitions for some of the four types of moves are accepted, while

others are rejected.
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5.1 Proposed Knot Move

In the course of the MCMC algorithm, an individual iteration of the

chain a proposal to move to an existing active knot to an inactive knot

location may or may not occur. Such a proposal occurs when k < kmax.

In this step. only a change in knot location is proposed, while k and

c(k) are left unchanged. The proposal is also defined in such a way that

not all currently active knot locations may be eligible to be moved. This

restriction is imposed to exploit the local support properties of the B-

spline functions.

For a given active knot, say tj, let mj represent the number of inactive

knots, u (from the candidate set K ), that satisfy:

tj−1 < u < tj+1. So, in words, u is an inactive candidate knot that lies

between the two active knots that are contiguous to tj. So, the move

proposal is designed so that a minimal number of B-splines are disturbed.

In fact, only five B-splines are affected.

Now, from the set of current knots, it is possible that only some are

movable. In this case, for an active knot, ti, which is not movable, there
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exist no inactive knots which fall in the interval (ti−1, ti+1). Note: if Mk

(the set of movable knots) = ∅, then proceed to step 2 of the MCMC

algorithm.

However, when Mk 6= ∅, then suppose there are Nm ≥ k movable knots.

The proposed knot move consists of selecting one of these movable knots

at random, say tj, followed by randomly selecting one of the mj candidate

knots, say tj∗, which are eligible given that tj was chosen. All this results

in the following expression for the joint probability of selecting tj and tj∗:

q(tj, tj∗) =
1

mj
×

1

Nm
(38)

This is the transition kernel which is generated at this step of the

process. Recalling the detailed balance equation, it will be necessary

to calculate the corresponding reverse move (moving active knot tj∗ to

inactive knot tj). To understand how this would affect the transition

kernel, consider the following diagram:

t1 < . . . tj−1 < tj∗ < tj < tj+1

In the reverse move, tj∗ is an active knot, and tj is not. The contiguous

knots for tj∗ are tj−1 and tj+1 and the number of potential move positions
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for tj∗ is once again mj since the inactive knots between tj−1 and tj+1 are

identical with our previous discussion (with the exception that the previ-

ous tj replaces tj∗). Now, referring to the current state of the parameter

vector as θ and the proposed parameter vector as θ∗, where the parameter

vector is the entire set of parameters, but the only change from θ to θ∗

is the change of one knot position. Then the calculation of the transition

probability yields:

α(θ, θ∗) = min

(
1,

P (y|θ∗) ∗ q(θ∗, θ)

P (y|θ) ∗ q(θ, θ∗)

)
=

Nm

Nm∗

(39)

Now, it may be asked, if tj∗ simply replaces tj in the interval (tj−1,tj+1)

as an active knot, what circumstances should lead to Nm 6= Nm∗? This

would occur under an example such as the following. Consider the fol-

lowing sequence of active and inactive knots (the t’s are active, the u’s

are candidate knots which are inactive):

tj−2 < tj−1 < u1 < u2 < tj < u3 < u4 < u5 < tj+1
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Suppose u1 is selected as the proposed new knot location. Then the

new proposed knot vector looks like:

tj−2 < tj−1 < tj < u1 < u2 < u3 < u4 < u5 < tj+1

where the knot which starts as u1 becomes tj and the current active knot,

tj, becomes the inactive knot, u3. Other obvious relabeling occurs as well.

Note: there is no change in model dimension under this type of move pro-

posal. So, the penalty function which is to be implemented has no effect

on the acceptance probability ratio.

5.2 Proposed Knot Addition or Deletion

This step is actually one step, which for any given individual proposal,

will be either a proposed knot addition or deletion. Initially, the decision

whether to propose the addition or deletion is made at random (assuming

that both proposals are possible). If only two interior knots are active,

a knot addition will automatically be proposed. If all candidate knots

are active, a knot deletion proposal will occur with probability 1. As we
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proceed with the discussion of this step, it must be borne in mind that if

a knot addition is the proposal under consideration, then the reverse step

(which must be understood correctly to properly evaluate the acceptance

ratio) is a knot deletion. Suppose that the current set of active knots is:

t(k) = {a = t0, t1, t2, . . . , tk, tk+1 = b}

If a knot addition is to be proposed, then one of the kmax-k inactive

knots is selected at random for this. Thus, the proposed knot vector now

consists on k+1 interior knots (plus the endpoints a and b). This neces-

sarily introduces a potential new knot location that must lie between two

currently active knots, ti and ti+1. One can easily see that by introducing

a new knot into the model, not only is this new location a parameter, but

an additional B-spline basis function must be added so that the spline

space for [a,b] of dimension k+5 can be spanned. So, the transition ker-

nel will consist of the density of selecting one of the inactive knots for

inclusion, plus an auxiliary uniform[0,1] random variable, v, which is in-

troduced to maintain the dimension matching described by Green [14],

and which follows the methodology of Biller [16].
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Let us denote the proposed knot vector with the star superscript,

t∗(k+1). So, given the proposed placement of the new active knot, this

vector can be specified as:

t∗(k+1) = {a = t∗0 < t∗1 < . . . < t∗i < t∗i+1 < t∗i+2 . . . < t∗k+1 < t∗k+2 = b}

To keep the bookkeeping as clear as possible, here:

t∗j = tj for j=1, 2, . . . , i

t∗i+1 = u, where u is the inactive knot proposed for inclusion

t∗j = tj−1 for j=i+2, . . . , k+1

Because of the transdimensional nature of this proposed move type, when

an additional knot location is proposed to be added to the active set of

knots, this implies that an additional B-spline function must be added to

the parameter set. So that the necessary computation of the Metropolis-

Hastings acceptance ratio can be computed, the auxiliary random vari-

able, v, is generated. This is just a uniform random number on the in-

terval [0,1], which enables a bijection to be constructed between the joint

current parameter space (dimension=2k+5) and proposal (new knot, u,

and auxiliary variable, v: dimension=2, making a total of 2k+7) and the
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new parameter space (dimension=k+5+k+1+1=2k+7). This dimension

matching will also introduce an additional term into the acceptance ra-

tio, the Jacobian of this bijection between parameter spaces. Including

this Jacobian term (but ignoring the penalty function R(θ)) now, the

acceptance ratio now has the form:

α(θ, θ∗) = min

(
1,

P (y|θ∗) ∗ P (θ∗)q(θ∗, θ) ∗ J

P (y|θ) ∗ P (θ)q(θ, θ∗)

)
(40)

The form of each of the terms needs to be explained. In order to

understand these, the transition that is being proposed from vector of

current B-spline coefficients c to c∗ is, in reality, a mapping (recalling the

uniform variate, v):

φ : (c, v) 7→ c∗ (41)

First, assuming that a new active knot is to be added, this knot is

selected at random from the available kmax - k inactive knots. Thus, this

proposal probability is clearly:

q(t∗) =
1

kmax − k
(42)

The random variable, v, has density function, q(v)=1,

for 0 < v < 1. This random variable is used to map the set of current k+4
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B-spline coefficients to a new set of (k+1)+4 coefficients. Following the

procedure employed by Biller [16], three B-spline coefficients are modified

in a manner which mimics rules used for updating B-spline coefficients

in the work of Lyche and Strom [19]. Denoting the new set of proposed

coeffients by c∗, these rules are as follows:

1. c∗i+1 = (v*ci) + ((1-v)*ci+1)

2. c∗i = ci - (r*c∗i+1)

3. c∗i+2 = ci+1 - ((1-r)∗ c∗i+1)

r is defined as:
t∗−ti

ti+1−ti

which is simply the relative position of the new knot, t∗, in the interval,

(ti, ti+1). Along with these modified coefficients, c∗j = cj for j=1,2, . . . ,

i-1 and c∗j = cj−1 for j=i+3, . . . , k+1. Effectively, there are only three

coefficients which are modified, while others may experience a change

in subscript without modifying their impact on the estimated function.

Thus, the proposed new set of parameter values includes a new knot lo-
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cation and a new set of B-spline coefficients. This transformation, φ,

requires the computation of its associated Jacobian. Recall that the Ja-

cobian of a transformation is the determinant of the matrix of partial

derivatives of the current parameters (including the random variable, v)

and the transformed parameters. The generation of v provides us with

the necessary square matrix (of dimension k+5 x k+5). However, be-

cause virtually all of the B-spline coefficients remained unchanged under

this transformation, this Jacobian matrix is comprised of block submatri-

ces along the diagonal and the computation of the determinant is greatly

simplied. This is another great advantage of the use of the B-splines as

the basis for the spline.

Given that there is only a real change in the 3x3 set of variables de-

scribed above, the value of the determinant is nothing more than a matter

of calculating the determinant of this 3x3 submatrix.
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Here is the appearance of the 3x3 matrix of partial derivatives which

result from the above transformation:




∂c∗i
∂ci

∂c∗i+1
∂ci

∂c∗i+2
∂ci

∂c∗i
∂ci+1

∂c∗i+1
∂ci+1

∂c∗i+2
∂ci+1

∂c∗i
∂cv

∂c∗i+1
∂cv

∂c∗i+2
∂cv




(43)

Supplying the actual expressions for the partial derivatives results in:





1 − rv v v ∗ (r − 1)

vr − 1 1 − v (1 − v) ∗ r + v

r ∗ (ci+1 − ci ci − ci+1 (1 − r) ∗ (ci+1 − ci)





(44)

Evaluation of the determinant of this matrix yields |J | = |ci+1 − ci|.

Thus, when we substitute this into the acceptance probability, α, the ratio

simplifies to (and including the penalty function as well):

f(θ∗|y) =
P (y|θ∗) ∗ P (θ∗) ∗ q(θ∗, θ) ∗ J ∗ R(k + 1)

P (y|θ) ∗ P (θ) ∗ q(θ, θ∗) ∗ R(k)
(45)
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This complicated looking expression simplifies greatly, when, in calcu-

lating the ratio, we recognize that many parameters remain unchanged in

the proposal:

P (θ∗)

P (θ)
=

P (k + 1)

P (k)
∗

(
kmax

k+1

)
(
kmax

k

) ∗
P (t∗)

P (t)
∗

P (c∗)

P (c)

=

(
kmax

k+1

)
(
kmax

k

) ∗ (2π ∗ σ2)−1/2 ∗ exp

[
1

2 ∗ σ2
∗ (c′c − c∗′c∗))

]

=
k + 1

kmax − k
∗ (2π ∗ σ2)−1/2 ∗ exp

[
1

2 ∗ σ2
∗ (c′c − c∗′c∗))

]

The penalty function is the final component for the evalation of the

acceptance ratio.

R(k) = (exp(γ1 ∗ k2 + γ2)) ∗ (−k)

This, then, is the acceptance ratio used when a knot addition is pro-

posed. When the reverse proposal is under consideration (deletion of

the knot t∗ in our discussion), the acceptance ratio will simply be the

reciprocal of this expression. A pair of comments are in order. When a

knot deletion is proposed, no auxiliary uniform random variable is needed
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because the current location of the knot which is to be deleted will corre-

spond deterministically with a specific knot addition proposal, including

a fixed value for v. Also, it must be recalled that when the current active

knot vector has either the minimum or maximum number of knots, then

the probability that a knot addition or deletion is proposed is now no

longer 1/2, but 0 or 1 accordingly.

5.3 Update of B-Spline Coefficients

It proves to be very advantageous to separate the step in which knots

are added or deleted from the step in which the B-spline coefficients are

updated. Attempting a joint proposal of both the proposed knot change

and an update of the complete set of B-spline coefficients would seriously

complicate the computation of the Jacobian of the transformation. The

methodology that will be used in the process here is the weighted least-

squares proposal contained in the work of Gamerman [18]. The approach

in the fitting of generalized linear models is employed where Fisher scor-

ing is used to iteratively estimate the model’s parameters. Here, in the

proposal of a new set of parameter values, the posterior density of the
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B-spline coefficients given the data and other fixed parameter values is

maximized, and the estimates of these, along with the estimated vari-

ance/covariance matrix for these is used as the mean and variance of the

multivariate normal proposal distribution. Specifically, suppose that the

current values for the B-spline coefficients are given by c(k), assuming

that the current number of knots in the model is k (plus the intercept

term). Denote by c∗(k), the proposed values for the model (with the same

k knots).

According to Gamerman [18], the proposed set of new values for these

coefficients is randomly selected from a multivariate normal with the fol-

lowing mean and variance:

c∗(k) = (Σ−1 + X ′W (c(k))X)−1(X ′W (c(k)y ∗ c(k))−1 (46)

In this expression, X is the design matrix comprised of the values of

each of the k+4 B-spline functions at the value for the spline variable,

plus the intercept term. W represents a diagonal matrix of weights in
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the iterative process, where the diagonal elements are each equal to the

reciprocal of the current variance term (σ2). The matrix, Σ, is the prior

(k+5)x(k+5) variance/covariance matrix for the joint prior distribution

for the B-spline coefficients and the intercept term, and the vector, y,

is the data vector. Thus, the proposal is one step of the usual iterative

weighted least-squares approach to fitting a generalized linear model.

As with the other proposal types, the reverse proposal can be defined,

where it is assumed that the model would potentially transition from

c∗(k) to c(k). When the final decision is considered, whether to accept the

move to c∗(k) as the new B-spline coefficients, the acceptance probability

depends merely on the ratio of posterior densities,

P (y|k,t∗(k),c∗(k),σ2)

P (y|k,t(k),c(k),σ2)
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times the ratio of the proposal densities,

q(c∗(k),c(k))

q(c(k),c∗(k))
.

5.4 Update of Variance Term

The final component which is eligible for a proposed new estimated value

is the individual observation level error term, σ2. Recall that this param-

eter was assigned a prior Inverse Gamma distribution, denoted by

IG(1, S0). It may be noted at this point, that when σ2 has this density,

then the scale parameter (under normally distributed data) is 1/σ2, which

will then have a Gamma distribution, of the form, Gamma(1,S0). Because

the Gamma distribution (Gamma(α,β)) has a mean of α
β

, this leads to

the result that the prior distribution for the scale parameter has mean

1/S0, or, equivalently, that the prior for the variance, σ2, has mean S0.

This can be viewed, intuitively, as a prior sample of size 1, with a prior

value for the “error sum of squares” of S0.

Given the conditional conjugacy that exists when the mean of the data

has a normal prior and the scale parameter has a Gamma prior, it follows
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that the posterior density for the scale parameter, given fixed values for

the data and other parameters, likewise follows a Gamma distribution.

In fact, to verify this fact, designating the scale paramter by φ = 1
σ2 :

P (φ|y, k, t, c) ∝ P (y|k, t, c, φ) ∗ P (k) ∗ P (t|k) ∗ P (c|k, t) ∗ P (φ)

Because the only terms on the right-hand side that involve φ are the

likelihood function and P(φ), then this proportionality statement can be

written in the simpler form:

P (φ|y, k, t, c) ∝ P (y|k, t, c, φ) ∗ P (φ) (47)

Or,

P (φ|y, k, t, c) ∝ exp(−(S1/2) ∗ φ) ∗ exp(−S0) (48)

Here, S1 is the error sum of squares for the current model fit. But,

including the appropriate expression for the likelihood, we have:

P (φ|y, k, t, c) ∝ (φ)−n/2 ∗ exp(−S1 ∗ φ) ∗
S0

2
∗ exp(−S0/2) (49)

Combining terms as required yields:

P (φ|y, k, t, c) ∝ (φ)−(n+1)/2 ∗ exp(−(S0 + S1)/2) (50)
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Thus, the posterior density of φ is clearly Gamma((n+1)/2,(S0+S1)/2)),

so that the posterior of the variance σ2, is Inverse Gamma with mean

((S0+S1)/2)/(n+1). In this manner, it is seen that the posterior density

has a mean which is infuenced to a greater degree for smaller samples.

The MCMC algorithm at this point randomly selects a proposed new

value for the estimated variance from this posterior distribution (which

depends on the values of the other parameters in the model) and computes

the appropriate acceptance probability.

5.5 Function Estimation

The estimated curve from the algorithm as a whole is determined by av-

eraging the estimates of the value of f(t), at any specific value for the

independent variable, t, for a sufficiently large number of sample obser-

vations from the limiting distribution, π. Some determination can be

made that the limiting distribution has been approximately realized dur-

ing the course of the chain. In a discussion of various options for making

the determination, Gamerman [18] offers some suggestions. Because of

the changing dimension of the algorithm in this research, even under the
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limiting distribution, stability of the B-spline coefficients in this mature

part of the chain in not a helpful diagnostic. More meaningful diagnostic

approaches rely upon whatever metrics remain invariant in their inter-

pretation across chain iterations. In this research, estimated functional

values will suffice for this purpose.

When the limiting distribution has been reached, it is useful to di-

vide the observations into batches and compute averages for each of the

batches at each unique value of t. Once these batch averages have been

calculated, the averages of the batches (at each t), can also be averaged

to arrive at a final estimated value for f(t). This batch methodology fa-

cilitates the estimation of the standard error of this estimate. It is also

prudent to form batches from observations which are separated by some

large number of iterations, perhaps 50. This can be helpful for overcom-

ing dependency between estimated values of iterations which are close. It

is straightforward to demonstrate, given a fixed set of candidate knots,

that the final estimated curve, f(t), remains a cubic spline function, with

knots located at the union of all knots which occur in at least one of the
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iterations which contribute to the final calculation.
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6 Simulation Results

In order to evaluate the performance of the penalty function, R(k), several

data sets were generated from underlying smooth functions, together with

an additive random noise term. For each instance of a test function, f,

a training set was generated for the purpose of model estimation. Then

five additional test data sets were generated for each function, f, for the

purpose of testing prediction accuracy. Functions with differing numbers

of local extremum points were used to evaluate the robust nature of the

penalty function. The set of generating functions will be designated by

fi(t). They were defined as follows:

f1 = Cubic spline on [0,10] with interior interior knots at

{2.3, 3.8, 5.2, 7.1, 8.6}

f2 = Cubic spline on [0,10] with interior interior knots at

{2.0, 4.6, 5.9, 6.6, 8.1}

f3 = -1.5 + 1
2.75*t2

f4 = 8.2 + sin(3π ∗ t)
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A series of runs of the MCMC algorithm was conducted for each test

function using various penalty functions. Not all penalty functions were

used for each test function, but here is a summary of those employed:

SUMMARY OF PENALTY FUNCTIONS

1 NO PENALTY

2 AIC PENALTY

3 BIC PENALTY

4 R(k), µ=20, σ2=25

5 R(k), µ=10, σ2=9

6 R(k), µ=5, σ2=2

7 Eilers and Marx penalty (second differences of B-spline coefficients)

The MCMC algorithm was coded in a sequence of Matlab programs. For

each run, it was determined to execute 50,000 iterations of the Markov

chain, with the first 25,000 steps considered to be the burn-in period.

Then, the remaining 25,000 steps were taken as a random sample from

the limiting distribution of the chain. These 25,000 were divided into 50
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batches of 500 iterations, with every other batch omitted from the estima-

tion process. This was done to more accurately approximate independence

of batches. Average functional estimates were obtained for each of the 25

batches of 500 iterations. In addition to the test data sets that were used

to measure prediction error for each experiment, a measure called the De-

viance Information Criterion (DIC) was also calculated for each model.

For the two most frequently used model selection criteria, AIC and BIC,

the calculation of these statistics is evaluated at the maximum-likelihood

estimates of the parameters. Because the MCMC technique samples from

the joint posterior distribution of these parameters, the estimates at any

given iteration of the chain may differ from these values. The DIC is

described by Spiegenhalter, Best, Carlin, and van der Linde [20]. In the

fitting of generalized linear models, the deviance is defined as:

D = −2 ∗ ln (y|θ)

The DIC is then defined as D + pD, where pD is a measure of the effective

number of parameters. This recognizes that the number of parameters is

not fixed in the Bayesian averaging process. D can be considered to be
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the expected value of the deviance and can be readily calculated as the

Markov Chain progresses. It can be calculated as D, or the estimated

average value for this statistic. The effective number of parameters is: pD

= D - D(θ). The second term is simply the value of the deviance when

the average values of the estimated function for the sampled observations

are used to compute the deviance statistic. Simplifying yields:

DIC = D + pD (51)

Smaller values of the DIC statistic are indicative of a better fit, cor-

rected for the effective number of parameters. It needs to be admitted

that the DIC is an asymptotic statistic which assumes that the joint pos-

terior density function for the parameters is Multivariate Normal, which

is not the case in our research. We will calculate it for a rough guideline

of fit, however. We will now track the performance of the various penalty

approaches for these test functions.
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CASE STUDY 1

f1, n=100, σ2 = 1.5, Intercept term=4.0

B-spline coefficients: 1.3, 3.8, -7.5, 9.2, -8.1, 6.7, -8.8, 4.7, 7.5

Values for the independent variable, t, were set at intervals of .1 starting

at .1. The final sample point was generated at t=9.95 (rather than 10.0).

The value for the dependent variable was randomly generated using

these parameter values, one at each of the specified values of t. A table is

given below showing a summary of the results of the modeling effort. It is

clear that the use of no penalty function produces the largest number of

knots across the Bayesian averaging process, but both the AIC and BIC

produce similar results.

The following graph (Figure 1) shows the results with no penalty func-

tion. The graph shows the actual data (circle), the underlying function

(black), f1, and the estimated values for the function over the range [0,10]

for t (blue).
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Figure 1: Estimates for the model (No penalty)

It is evident that the estimated function follows the pattern of the

data. It will also be clear from results shown later that this approach is

greedy in terms of the number of knots selected for the model. The vast

majority of the time, the number of knots selected once convergence of

the chain has been reached is the maximum value. The graph in Figure

2 below shows the results with the AIC penalty function.
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Figure 2: Estimates for the model (AIC penalty)

Although a penalty function has been applied here, it is still the case

that the number of knots selected generally is very near the maximum. In

fact, the same turns out to be true when the BIC penalty function is em-

ployed. This is due to the fact that, although a larger penalty is applied
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to models with more knots, the individual transition from one step in the

Markov chain to the next only involves a difference in the log-penalties of

the competing models of 1. Figure 3 illustrates the results obtained for

the BIC penalty function.
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Five Knot Spline: BIC Penalty

f(
t)

Figure 3: Estimates for the model (BIC penalty)
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In order to examine the viability of the proposed penalty function,

R(k), a variety of mean/variance pairs were tested. As noted above, for

Penalty 4, µ was set equal to 20 and σ2 to 25. For Penalty 5, these values

were 8 and 9, respectively. Neither of these values produced results that

were considered significantly better (in terms of prediction error) to the

first three options. The final one listed above shows better performance

for Test 1, however. In this case, Penalty 6 is a penalty function which in-

duces a normal prior with mean 5 and variance 2. Under this scenario, the

following results were obtained: It is visibly evident that this penalty
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Five Knot Spline: Normal(5,2) Penalty

f(
t)

Figure 4: Estimates for the model (Normal(5,2) penalty)
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approach does not exhibit as many local minor oscillations as the previ-

ous approaches. Table 1 indicates that the average number of knots used

in the sampled iterations of the Markov chain is smaller for this penalty

function. This raises the hope that this option will avoid the overfitting

that is likely incorporated in those methods using no penalty, the AIC,

or the BIC methodologies. Finally, to demonstrate that another type of

penalty function, based on smoothness rather than dimension, approach

7 listed above, was run. In this modeling approach, the exponential of

the sum of the squared second-differences of the B-spline coefficients was

used as the penalty function (resembling the Eilers/Marx model selection

philosophy). It is possible to specify a prior on the spline coefficients to

accomplish this approach, but the basis functions must be defined as the

appropriate monomials plus the truncated power functions. By specify-

ing a prior distribution for these truncated power functions with a small

variance, large magnitudes for these second differences can be penalized

as desired. The use of the penalty function is a simpler method for imple-

mentation of the same concept. The graph showing the results obtained
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is found in Figure 5.
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Figure 5: Estimates for the model (Second-difference penalty)

A display of the distribution of the number of knots for the approach

with no penalty and the approach with the Normal(5,2) penalty is shown

below for contrast. Clearly, the use of no penalty results in the incorpora-
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tion of all candidate knots in the vast majority of the sampled iterations

of the simulation. The penalty function tempers this result considerably

and allows for appropriate smoothing.

In addition, figure 8 shows the results when a bootstrap sample of
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Figure 6: Distribution of number of knots (No penalty)

1000 observations from the these cases was used to generate 90 percent

pointwise confidence intervals for the estimated functional values at t ε

{.1, .2, . . . , 9.9, 9.95 } for the No Penalty approach and the Normal(5,2)

penalty function. Neither approach seems to have a clear advantage.
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Figure 7: Distribution of number of knots (Normal(5,2) penalty)

A summary of the results from these models for f1 is displayed in

Table 1.

The only penalty function which makes any substantial difference in the

dimension of the model which is fit is the Normal prior with mean 5 and

variance 2. In terms of local shape of the final estimated curve, it is then

only option which has any promise of escaping the peril of overfitting.

In order to investigate this issue, five additional data sets of 100 obser-

vations at the same values of t were generated and the sum of squared

errors computed for each model for each of these data sets. This permits
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Figure 8: Confidence Intervals for Estimated Curve

us to observe how well each approach performs against data generated in-

dependently of the modeling algorithm. The investigation indicates that

the Normal(5,2) penalty does, in fact, perform better, in terms of predic-

tion accuracy. The Normal(5,2) prior induced by the proposed penalty

function, R(k), has the smallest prediction error for each of the five data

sets. The results are summarized below in Table 2:
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PENALTY SSE AVG KNOTS

None 110.5 39.7

AIC 181.9 39.4

BIC 152.5 38.8

Normal(20,25) 177.6 39.4

Normal(10,9) 172.1 38.5

Normal(8,9) 162.1 38.0

Normal(5,2) 177.0 14.8

Sec. Diff. 177.4 39.6

Table 1: Summary of Results for Five-Knot Spline

The DIC statistics for each of these approaches were:

There is strong evidence that the Normal(5,2) penalty function is a promis-

ing approach for this particular underlying function. The values of γ1 and

γ2, as defined earlier are: γ1=.25 and γ2=-2.5.

The second generating function that was used, f2, was also a spline

with five knots, defined on the same closed interval [0,10]. The knots are

placed close to the locations for f1. In addition, the B-spline coefficients

are identical to f1, so that we can determine whether a slight perturbation

in the generating function would alter the type of results we obtain. All

modeling scenarios were not run, but the results resemble those of the
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PENALTY Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

None 300.4 328.0 281.4 303.4 307.9

AIC 291.1 310.3 277.9 306.2 294.5

BIC 261.2 270.6 256.8 276.0 266.0

Normal(20,25) 292.6 315.3 275.2 307.4 305.4

Normal(10,9) 297.0 325.4 268.9 295.7 294.2

Normal(8,9) 271.7 282.5 279.9 285.7 274.6

Normal(5,2) 254.0 254.2 264.3 260.2 259.6

Sec. Diff. 307.0 318.2 274.1 286.2 295.8

Table 2: Summary of Prediction Evaluation for Five-Knot Spline

NONE AIC BIC Normal(20,25) Normal(10,9) Normal(8,9) Normal(5,2) Sec. Diff

10.07 8.86 9.16 8.92 8.94 9.01 7.53 8.91

Table 3: Summary of DIC for Five-Knot Spline

first spline. The parameters for Case Study 2 are:

CASE STUDY 2

f1, n=100, σ2 = 1.5, Intercept term=4.0

B-spline coefficients: 1.3, 3.8, -7.5, 9.2, -8.1, 6.7, -8.8, 4.7, 7.5

Table 4 is the summary of the results:

In addition, the DIC statistics are: No Penalty: DIC=10.14, Normal(5,2)
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PENALTY Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

None 356.9 358.6 327.1 337.8 317.3

Normal(5,2) 349.7 369.0 291.9 295.8 289.6

Table 4: Summary of Prediction Evaluation for Five-Knot Spline

Penalty: DIC=8.84

To evaluate how well the proposed penalty function does with a gener-

ating function without any local extremum points (in the closed interval),

the quadratic function designated as f3 above was tested. So, this case

study is defined as:

CASE STUDY 3

f3 = -1.5 + 1
2.75*t2 = , n=100, σ2=1.5,

Initially, graphs for the results for runs with no penalty and the Nor-

mal(5,2) penalty are displayed below (Figures 9 and 10):

Table 5 shows the prediction error summary and reveals that R(k)

does not have a decisive edge in this case. The DIC statistics are: No
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Figure 9: Estimates for Quadratic Generating Function (No Penalty)

penalty: DIC=-1.15, Normal(5,2) penalty: DIC=-1.00. So, the proposed

penalty function does not show any improvement here either.

PENALTY Data set 1 Data set 2 Data set 3 Data set 4 Data set 5

None 1140.3 348.6 372.7 248.7 321.3

Normal(5,2) 1106.8 351.3 371.7 255.5 292.4

Table 5: Summary of Prediction Evaluation for Quadratic Function

Finally, a sinusoidal generating function was used to create a sample
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Figure 10: Estimates for Quadratic Generating Function (Normal(5,2) Penalty)

of 100 observations. This function is specified as f4 above on the interval

[0,10]. To challenge the method, an outlier was introduced at t=5.7 by

adding 5.0 to the dependent variable. Thus, case study 4 is defined in the

following way:

CASE STUDY 4

f3 = 8.2 + sin 3π ∗ t = , n=100, σ2=2.0,

The results from the modeling process are shown for the competing
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approaches below.
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Figure 11: Estimates for Sinusoidal Generating Function (No Penalty)

It is evident that the use of the penalty function dampens the effect

of the outlier. Once again, five additional data sets were generated using

this underlying sinusoidal function. The outlier was omitted to examine
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Figure 12: Estimates for Sinusoidal Generating Function (Normal(5,2) Penalty)

how well the penalty function mirrors the behavior of the true underlying

function. Table 6 shows the prediction error summary and reveals that

the R(k) has a slight edge for this experiment. The DIC statistics for the

modeling approaches are: No Penalty: DIC=1.92, Normal(5,2) Penalty:

DIC=-.85.
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PENALTY Data set 1 Data set 2 Data set 3 Data set 4 Data set 5

None 634.1 681.4 771.1 721.0 779.6

Normal(5,2) 648.4 710.7 725.9 664.5 719.3

Table 6: Summary of Prediction Evaluation for Sinusoidal Function
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7 Conclusion

Markov Chains provide an extremely powerful framework for complex

model formulation. Hierchical models, with the added capability of av-

eraging estimates across models of varying dimensions, permit the prac-

titioner to incorporate uncertainty about the model specification, in ad-

dition to the traditional uncertainty attached to the parameter estimates

themselves. Those models which fit the sampled data better are reflected

in the higher frequency that they occur in the sample selected from the

mature Markov chain simulation. In this manner, these models contribute

more to the final estimation of the model. Those model candidates which

are less likely are not entirely excluded, but make relatively minor contri-

butions to this final estimation. This increases the safeguard against the

distortion in estimation due to the possible presence of outliers.

The use of appropriately designed penalty functions can be easily im-

plemented using the design in this paper and give greater weight to the

types of models that are preferable. The penalty function induces a prior

distribution on some or all of the parameters in the model and need not
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belong to any well-known class of distribution functions. More research

is possible to determine whether a best penalty function can be found for

certain classes of underlying generating functions. Also, investigation of

the capabilities of this approach where the underlying dependent variable

for the model arises from any probability distribution within the Expo-

nential family may be of interest. Only Normally distributed responses

have been considered in this paper. Finally, given that splines have been

used for modeling purposes in this work, the incorporation of repeated

knots in the knot vector will be the subject of future work. The op-

tion will permit the extension of the techniques used in this research to

lower order splines in parts of the estimated functions, as well as possible

discontinuities in this function.
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