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Introduction 

 

The most common types of species interactions include competition, predation, mutualism, 

commensalism, and parasitism. Two of these, predation and parasitism, appear similar in that one 

organism ultimately gains while the other loses, however they differ in fundamental ways. First, 

whereas predators kill their prey, it is not necessarily in the interest of the parasite to kill its host; a 

host is required to complete all or part of a parasite’s life cycle. Secondly, while predators can be 

slightly larger or smaller than their prey, parasites are magnitudes of scale smaller than their hosts. 

Parasites are diverse in form, ranging from arthropods that live on a host’s external layers to worms 

or protozoans that occupy deeper tissues, and they are unified by the fact that they all acquire 

resources at a cost to their hosts. 

 

That parasites are small, microscopic even, has resulted in their frequent exclusion from ecological 

studies. When included, the fact that parasites steal resources from their hosts has resulted in a 

generally negative portrayal of their roles. Yet, a number of studies from wildlife systems show that 

infection with one or more parasites is not only normal in nature (Cox, 2001; Pedersen and Fenton, 

2007), but that the occurrence of diverse parasite communities may be indicative of population- or 

community-wide health (Hudson et al., 2006). For example, food network studies that incorporate 

parasites-host relationships can double or triple the number of species interactions (Lafferty et al., 

2006), revealing strong relationships between organisms at polar ends of a trophic network. This 

suggests that parasites contribute toward balancing interactions between free-living organisms, and 

that the removal of native parasite infections could partially destabilize wildlife systems. In a similar 

vein, studies of parasite concomitant infections demonstrate that the presence of multiple parasites or 

multiple strains of the same parasite can have variable effects on host health, in some cases improving 

host health or chances of survival (Balmer et al., 2009; Knowles, 2011). 
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Increasingly, parasites are being recast into a light that does not ignore their ability to trigger declines 

in host populations, but also acknowledges there potential to signal community stability, or at the 

very least, ecological change or disturbance (Chapman et al., 2006; Gillespie and Chapman, 2008). 

As such, the overarching goal of this dissertation was to lay a foundation for research that explores 

this duality of parasites in nature and at multiple scales; single hosts, host populations, and host 

communities. Specifically, here I focus on identifying parasites and describing how they are 

distributed in a Neotropical nonhuman primate community in Southeastern Perú. 

 

Primates are an excellent model for the study of parasite ecology for a number of reasons. First, 

Primates encompass upwards of 500 species, distributed throughout tropical and subtropical latitudes 

around the world. Within this group is variation in size, sexual dimorphism, preferred habitat, diet, 

reproductive biology and behavior, and especially social organization, all of which are necessary to 

account for different outcomes of parasite-host relationships that may be influenced by environmental 

or social factors. Second, nonhuman primates are closely related to humans and have been the focus 

of large numbers of biomedical research programs and health screenings (Nunn and Altizer, 2005). 

Consequently, we now have ample data on what parasites infect primates in nature and in captivity, 

and many associated pathologies. Nevertheless, parasite sampling from wild primate communities 

remains unevenly distributed, with the largest gaps in the Neotropics, and the majority of available 

data is devoid of ecological context (Hopkins and Nunn, 2007). Third, the conservation status of 

primates is critical, and current estimates suggest that over 55% of primate species are threatened 

with extinction and 75% of species have declining populations (Estrada et al., 2017). Unfortunately, 

the bulk of this crisis is caused by the loss of habitat as a result of human activity. This in turn has 

given rise to greater questions surrounding the exchange of parasites and pathogens between human 

and nonhuman primates. Finally, as threats to nonhuman primates increase, we should not forget that 

some of the ecosystem services they provide are irreplaceable. For example, primates are the sole or 

primary distributors of seeds for a large number of tropical tree species (Rosin and Swamy, 2013). 
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Since seed dispersal is a primary mechanism for the maintenance of plant diversity, declining primate 

populations will inevitably effect tropical tree diversity (Swamy et al., 2010), and hence, biodiversity 

overall. Monitoring parasitism, although not a traditional measure for host population status, could be 

a particularly effective method for shy and elusive primate species, particularly because data can be 

obtained from noninvasively collected fecal samples.  

 

The primates that were the focus of this dissertation consisted of two sympatric tamarin hosts, 

Saguinus imperator and Leontocebus weddelli, that have participated in an annual mark-recapture 

program since 2009. A mark-recapture program enabled the collection of multiple sample types for 

screening parasites (i.e. blood and fecal samples) alongside detailed information on every host animal 

across multiple years. Thus, in addition to asking what parasites are present, I was able to ask how 

they are distributed across host demographic factors. Tamarins are atypical among primates in that 

they live in small, often polyandrous, groups where reproduction is monopolized by a single 

dominant female (Sussman and Kinzey, 1984). To accommodate individual variation in reproductive 

capability, I developed a reliable model for accurately assigning breeding status to all individuals, 

regardless of age (Chapter 4). I was then able to systematically screen for parasites from blood 

(Chapter 1) and feces (Chapter 2) and analyze how they are distributed across host factors (age, sex, 

and breeding status) within and between the two hosts.  Finally, I conducted targeted screening for 

Plasmodium, the causative agent of malaria in humans, because of its wide interest in the scientific 

and public health communities. In Chapter 3, I report my findings from this effort within a larger 

context of what is currently known about nonhuman primate malarial parasites in the New World. All 

together, this dissertation represents one of the most detailed and comprehensive sampling efforts for 

blood and gastrointestinal parasites from two intact, free-ranging populations of New World monkeys 

to date. I have provided baseline data that can be used for comparison to parasite studies from 

different field sites or to future points in time at the same site. Results from this dissertation open 

several new lines of inquiry that can contribute much more to our understanding of primate parasite 
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ecology in general. 
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Abstract 

Parasite-host relationships are influenced by several factors intrinsic to hosts, such as social standing, 

group membership, sex, and age. However, in wild populations, temporal variation in parasite 

distributions and concomitant infections can alter these patterns. We used microscropy and molecular 

methods to screen for naturally occurring haemoparasitic infections in two Neotropical primate host 

populations, the saddleback (Leontocebus weddelli) and emperor (Saguinus imperator) tamarin, in the 

lowland tropical rainforests of southeastern Peru. Repeat sampling was conducted from known 

individuals over a three-year period to test for parasite-host and parasite-parasite associations. Three 

parasites were detected in L. weddelli including Trypanosoma minasense, Mansonella mariae, and 

Dipetalonema spp., while S. imperator only hosted the latter two. Temporal variation in prevalence 

was observed in T. minasense and Dipetalonema spp., confirming the necessity of a multi-year study 

to evaluate parasite-host relationships in this system. Although callitrichids display a distinct 

reproductive dominance hierarchy, characterized by single breeding females that typically mate 

polyandrously and can suppress the reproduction of subdominant females, logistic models did not 

identify sex or breeding status as determining factors in the presence of these parasites. However, age 

class had a positive effect on infection with M. mariae and T. minasense, and adults demonstrated 

higher parasite species richness than juveniles or sub-adults across both species. Body weight had a 

positive effect on the presence of Dipetalonema spp. The inclusion of co-infection variables in 

statistical models of parasite presence/absence data improved model fit for two of three parasites. 

This study verifies the importance and need for broad spectrum and long-term screening of parasite 

assemblages of natural host populations. 

 

Keywords: co-infection; blood parasites; cooperative breeding; longitudinal sampling; Callitrichidae 
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1. Introduction 

The surveillance of parasites and pathogens in wildlife populations has received international 

attention, since wildlife conservation outcomes can be affected by parasitic infections (van Riper et 

al., 1986; Levin et al., 2013), and since wildlife are increasingly found to host pathogens that can 

infect humans (Guberti et al., 2014). Parasite-host associations are dictated by characteristics intrinsic 

to the host, the parasite, and the environment. Although associations can vary, parasitism is frequently 

correlated with host density (Poulin, 2004; Fernandes et al., 2012), age (Sol et al., 2003; Clough et al., 

2010; Parr et al., 2013; Leclaire and Faulkner, 2014) sex (Poulin, 1996; Schall et al., 2000; Clough et 

al., 2010; MacIntosh et al., 2010), and dominance status (Muehlenbein and Watts, 2010). Meta-

analyses across species indicate that parasitism positively correlates with group size (Vitone et al., 

2004; Rifkin et al., 2012), but this is modulated by the mode of transmission and mobility of the 

parasites in question (Cote and Poulin, 1995). In addition to these host-specific factors, when 

longitudinal data are available, studies of parasite prevalence in diverse taxa demonstrate temporal 

effects of season (Huffman et al., 1997; Raharivololona and Ganzhorn, 2010) and year (Bakuza and 

Nkwengulila, 2009; Clough et al., 2010; Moreno et al., 2013).  

 

In nature, animals almost always exhibit infections by several different parasites at the same time and 

in succession (Pedersen and Fenton, 2007; Telfer et al., 2008; 2010). Since parasites can bring about 

distinct changes to host hematology, body condition and immune investment (Budischak et al., 2012; 

van Wyk et al., 2014), it follows that even disparate parasites can boost (Monteiro et al., 2007b; 

Knowles, 2011; Thumbi et al., 2014) or suppress one another (Moreno et al., 2013) via their 

influences on host immune function (Cox, 2001; Ulrich and Schmid-Hempel, 2012). Although the 

logistics and economics of collecting long-term, individual-based infection data are challenging, these 

data are critical to study the effects of age, social structure, life history, time, seasonal variation, and 

co-infection on disease dynamics (Clutton-Brock and Sheldon, 2010). For example, with repeat 

sampling we can assess how particular parasites influence host susceptibility to other parasites (Telfer 
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et al., 2008), and if concomitant parasite infections reduce or increase host fitness overall (Balmer et 

al., 2009). While long-term studies on human populations are numerous (Weil et al., 1999; Bloch et 

al., 2011), comparable monitoring of wild animal populations are rare (Telfer et al., 2008; Tompkins 

et al., 2010); however, such studies are critical in the case of long-lived hosts, such as the primates, 

with complex social organization. 

 

A minority of primates exhibit social systems in which non-biological parents care for the offspring 

of dominant individuals in a group in a process known as alloparenting (Riedman, 1982; Sussman and 

Kinzey, 1984). These cooperative breeders, primarily tamarin and marmoset genera within the 

Callitrichidae, may exhibit greater amounts of parasitism than solitary or pair-bonded breeders due to 

elevated levels of sociality (Burkart, 2015), which will influence density- and frequency dependent 

parasite-host relationships (Anderson and May, 1978; Altizer et al., 2003; Poulin, 2004; Patterson and 

Ruckstuhl, 2013). However, if sociality affords an overall reduction in group energy expenditure, then 

cooperative breeding could instead decrease parasitism by allowing improved individual host immune 

function (Spottiswoode, 2007; Lutermann et al., 2013). Here, we present novel haemoparasite 

infection data from a longitudinal study of two free-ranging sympatric populations of cooperatively 

breeding primate species - the saddleback tamarin (Leontocebus weddelli, formerly Saguinus 

fuscicollis wedelli) and the emperor tamarin (S. imperator) (Matauschek et al., 2011; Buckner et al., 

2015). This study explores the potential influences of intrinsic host factors, co-infection, and temporal 

variation on parasite prevalence via a mark-recapture program that allowed us to track the parasite 

infection status of individual animals across multiple years. This enabled us to control for biases due 

to temporal, environmental and protocol-related changes, which have been rarely addressed in studies 

of these species to date (Lisboa et al., 2000; Phillips et al., 2004; Wenz et al., 2009; West et al., 2013), 

but see (Monteiro et al., 2007a; 2007b). 

 

We predicted four patterns of parasite prevalence would occur within this study system. Due to our 
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observations of consistent host social group sizes through an annual mark-recapture program from 

2009 to 2015 (Watsa et al., 2015), we assumed stable host populations and that parasite prevalence 

would exhibit only minor fluctuations between years due to random stochastic variation in the 

environment (Schall et al., 2000; Knowles et al., 2013). Second, although sex-biased parasitism is a 

topic of long debate across taxonomic orders (Morales-Montor et al., 2004) with a tendency to assign 

greater parasite risk to males (Poulin, 1996; Klein, 2004; Muehlenbein, 2005; Muehlenbein and 

Watts, 2010) we predict the opposite trend in this host system. Callitrichid sociality is characterized 

by stark competition among females for breeding opportunities, with primary breeding females in 

return suppressing the reproduction of subdominant females behaviorally or through physiological 

stress (Ziegler et al., 1987; Beehner and Lu, 2013). Conversely, callitrichine males share mate access 

with little to no overt antagonism, and do not invest in potentially costly secondary sexual 

characteristics or extensive mate-guarding rituals (Hamilton and Zuk, 1982; Setchell et al., 2009). 

Callitrichids exhibit unusually high rates of twin offspring among primates (> 80% of births) with 

groups usually consisting of a single female that reproduces, while all other adults assist in rearing her 

offspring (Sussman and Kinzey, 1984; Terborgh and Goldizen, 1985). While absolute male-female 

sex ratios are not skewed in this population (Watsa, 2013), operational sex ratios are biased towards 

males, since typically a single female reproduces in each group. Thus, if there is a parasite risk 

associated with maintaining social status we predict that it should be borne predominantly by the 

primary breeding female in a group. Third, while immunosuppression in juveniles can lead to a 

preponderance of infections in younger age classes (Sol et al., 2003), immunosenescence in aging 

adults intensifies the accumulation of parasites over a lifespan, resulting in high incidences of 

infection among older age classes (Shanley et al., 2009). However, although callitrichids can live up 

to 20 years in captivity, higher predation risks in the wild result in lower lifespan maximums of 

around 9 to 11 years (Goldizen, 1996). We therefore predict a lower parasite prevalence in adults vs. 

subadults or juveniles in this study system. Finally, we predict significant associations between co-

infecting parasites that present ecological overlap in infection sites, host resource use, or arthropod 
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vectors, since they are more likely to interact directly or indirectly via the host immune response 

(Cox, 2001). 

 

2. Material and methods 

2.1 Study area and sample collection 

Sample collection took place at the Estación Biológica Rio Los Amigos (EBLA) in the Madre de 

Dios Department of southeastern Peru (12°34’07”S, 70°05’57”W)). The 900-hectare tropical 

rainforest research station is located at the confluence of the Los Amigos and Madre de Dios Rivers, 

and is contiguous with the much larger Los Amigos Conservation Concession (~1400 km2) that lies 

within the buffer zone of Manu National Park (Watsa, 2013). Samples were collected annually during 

the dry season between May and August from 2012 to 2014. All of the primate social groups in this 

study inhabit a uniform area of forest with similar access to terra firme and várzea habitat. A safe 

animal mark-recapture program ongoing since 2009, based on the Peruvian trap model (Savage et al., 

1993), was optimized to minimize the risk of harm to animals (Watsa et al., 2015). Animals were 

given permanent identification tags via subcutaneous microchips (Avid, Home Again©). Blood 

samples (<300ul) drawn from the femoral vein under ketamine hydrochloride anesthesia (Ketalar, 

Pfizer Inc., New York, USA) were stored dry on Whatman FTA Micro Elute Cards, and 2 to 3 blood 

smears were prepared with fresh blood from each animal. All sampling protocols adhere to guidelines 

outlined by the American Society of Mammalogists (Sikes and Gannon, 2011) and were approved by 

the Institutional Animal Care and Use Committee at the University of Missouri-St. Louis (317006-2, 

733363-2) and the Directorate of Forest and Wildlife Management (DGFFS) of Peru annually. 

 

2.2 Age class and breeding status determination 

Among callitrichids, age and sexual maturity can become desynchronized, particularly among 

females, as a result of reproductive suppression of all but one dominant breeding female per group 

(Ziegler et al., 1987; Saltzman et al., 1998). Reproductive suppression has not been confirmed among 
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males; however they do exhibit significant variation in testicular volume and body size within a 

group, suggestive of a loose dominance hierarchy (Garber et al., 1996; Watsa, 2013). Therefore, we 

used separate methods to classify age-sex classes and breeding status for both sexes. 

 

We used three broad age classes based on dental eruption patterns (Watsa, 2013). Juveniles were 

defined as individuals whose adult teeth were absent or not fully erupted (<11 mo). Sub-adults were 

animals with adult teeth, but that were juveniles in the preceding year. All remaining individuals were 

assigned to the adult age class. Older adults could not be distinguished based on tooth eruption 

patterns alone and were thus pooled within the adult age-class. 

 

Breeding status assignments were based on individual weight measurements and reproductive 

morphology following Watsa et al. (2016, bioRxiv:047969). Briefly, body size and suprapubic gland 

area for both sexes, testes volume in males, and average nipple length and vulva index in females 

were combined in a principal component analysis (PCA). Coordinate values from the first two 

dimensions, accounting for > 80% of variation in the dataset, were applied to a linear discriminant 

function analysis that assigned all individuals of unconfirmed breeding status to one of three 

categories: primary breeder, secondary breeder, or non-breeder. 

 

2.3 Parasite detection and identification by microscopy 

Immediately after blood draw, blood smears were made on standard microscope slides and air-dried. 

All smears were fixed for five minutes in 100% methanol within six hours. They were stained in 

Giemsa’s solution following Valkuinas et al. (2008) within three weeks of fixation, and observed at 

400x magnification using light microscopy for the presence of parasites. Small extracellular and 

intracellular blood parasites were recorded while conducting a total leukocyte count estimation 

(enumeration of leukocytes in 10 non-overlapping fields of view in the smears’ monolayer at 400x 

magnification) and differential (classification of 200 leukocytes in the monolayer at 1000x 
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magnification); each slide examination took less than 30 minutes. Examinations were carried out in a 

systematic direction to avoid overlapping fields of view, and damaged sections, where leukocytes and 

parasites were too distorted to identify, were excluded. To rule out the possibility of false negatives 

for trypanosome infection, blood smears from individuals that tested negative from two targeted PCR 

screenings were scanned a second time for 15 minutes at 1000x magnification, including areas of the 

smear not in the monolayer. Representative micrographs of each parasite were recorded under oil-

immersion at 400x and 1000x magnification from the blood smears of at least ten separate individuals 

per host species. Measurements of length and width and the location of key anatomical features were 

made using printed photographs, which were compared to reference values from the literature to 

confirm species identification (Eberhard et al., 1979; Petit et al., 1985; Bain et al., 1986; Sato et al., 

2008). 

 

2.4 Molecular detection and sequencing 

DNA was isolated from a 3 mm diameter hole punch from the blood stored on Whatman FTA Micro 

Elute Cards into 30ul of ddH20 according to manufacturer instructions (GE Health Care Life 

Sciences, Pittsburgh USA). First and second elutions of DNA were obtained from each hole punch 

and both effectively amplified parasite DNA from infected animals; we used the first elution for 

consistency across animals for this study. Two genes were targeted to detect and identify filarial 

nematodes. The internal transcribed spacer 1 (ITS1) was amplified using forward primer S.r.ITSI-

NC5/F1 and reverse primer NC13R following the protocol of Sato et al. (2008). Also, mitochondrial 

cytochrome oxidase I (COI) was amplified using forward primer COIintF and reverse primer COIintR 

following the protocol of Casiraghi et al. (2001). Both targets produced a single solid band on agarose 

gels for infected individuals that did not differentiate the two nematode parasites. The additional 

information from thin blood smears was used to assign single or concomitant infection status. If 

parasite infections remained unclear after viewing multiple blood smears for each animal, Sanger 

Sequencing of COI (rather than ITSI) clearly differentiated the parasites by sequence, or resulted in 
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chromatograms with double-peaks in the case of co-infection (Supplementary Fig. S4). A universal 

nested PCR reaction targeting the ssrRNA gene was used to detect and identify Trypanosoma spp. in 

all samples. The outer reaction used forward primer TRY927F and reverse primer TRY927R, and the 

inner reaction used forward primer SSU561F and reverse primer SSU561R following the protocol of 

Noyes et. al. (1999), but see primer clarifications in (Noyes et al., 2000). For all parasites we 

concluded that a sample was positive for an infection if it appeared in a blood smear or if it could be 

successfully amplified by PCR. Conversely, to be considered negative for a given parasite, a sample 

had to be blood smear negative and PCR negative across a minimum of three replicate reactions. 

 

For parasite classification, a subset of the positive PCR products were purified using Machery-Nagel 

PCR Clean-up Kits (Bethlehem USA) and sent to EuroFin Genomics (Louisville USA) for Sanger 

Sequencing using forward primers S.r.ITSI-NC5/F1 and COIintF for microfilariae, and SSU561F for 

Trypanosoma spp. 

 

2.5 Statistical analyses 

To test for significant changes in parasite prevalence across the study period while controlling for 

repeat measures of individual animals, we implemented randomized Z-tests of proportions. Each 

individual in our study was selected at random only one time for 1000 iterations of the test, thereby 

removing concerns of non-independence. If greater than or equal to 95% of the iterations resulted in 

p-values < 0.05, a difference in prevalence was considered significant.  If a significant difference 

across the entire study period (2012 – 2014) was detected, then similar pairwise tests between all 

combinations of years were carried out but with p-values adjusted using the Holm-Bonferonni 

procedure (Holm, 1979). 

 

The presence/absence of each parasite was modeled using generalized linear mixed effect models 

(GLMMs) with logit link functions and binomial errors (Bates et al., 2015, arXiv:1406.5823v1).  
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Fixed factor model terms included ‘species’, ‘sex’, ‘age class’, and ‘breeding status’, while ‘group’, 

‘individual identity’, and ‘year’ factors were incorporated as random effects when they showed any 

impact on model outcomes (Zuur et al., 2007). If convergence errors occurred during model selection, 

individual identity was excluded from the most saturated fixed-factor models, as there were only ~ 

1.7 captures/individual in the study.  However, all random effects were reinstated following the first 

one or two rounds of model selection (Telfer et al., 2008). Model selection was carried out by 

stepwise term deletion and comparison of nested models with likelihood ratio tests, and we confirmed 

that the removal of all minimal model terms increased the Akaike Information Criterion (AIC) by at 

least two units (Akaike, 1974).  All statistical analyses were performed using R software v.3.2.2 (R 

Development Core Team, 2015). 

 

To discern the influences of host intrinsic factors from other concomitant parasite infections, a nested 

modeling approach was used (Telfer et al., 2008). Concomitant parasite infection data were added to 

models of each parasite response variable with its optimal host factor structure. This enabled us to 

determine whether co-infections generally improved model fit or strengthened or weakened 

associations with host factors. Additionally, we constructed a GLMM with Poisson errors to model 

parasite species richness.  For this analysis, factors were the same as in other models, except ‘group 

size’ was inserted as additional fixed factor and ‘species’ was converted to a random effect since one 

of the three parasites discovered did not infect S. imperator. 

 

3. Results 

 

3.1 Blood parasite detection and identification 

In total, we collected 186 blood samples (120 Leontocebus weddelli, 66 Saguinus imperator) from 

111 individuals (74 L. weddelli, 37 S. imperator) (Table 1). Three blood parasites were identified by 

microscopy and targeted PCR screening: filarial nematodes Mansonella mariae and Dipetalonema 
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spp. and kinetoplastid Trypanosoma minasense. 90% of animals infected with a filarial nematode 

were detected by PCR alone; however, the remaining (8/76 and 10/94 for each nematode, 

respectively) infections were only detected by microscopy. We relied primarily on PCR to detect 

infections of T. minasense since low numbers of parasites (1-3 parasites/blood smear/infected animal) 

led to frequent false negatives; however, ~20% (25/127) of our positives came from blood smears for 

which corresponding PCR screening was repeatedly negative. 

 

Table 1. Host sampling stratification by year, sex, age class, and breeding status 
Year 2012 2013 2014 

L. weddelli 35 49 36 

Sex Male 18 30 19 
Female 17 19 17 

Age 
Juvenile 8 10 4 
Sub-adult 4 6 1 
Adult 23 33 31 

Breeding 
Status 

Non-breeder 11 12 4 
Secondary Breeder 5 15 18 
Primary Breeder 19 22 14 

S. imperator 21 24 21 

Sex Male 10 15 10 
Female 11 9 11 

Age 
Juvenile 6 3 4 
Sub-adult 2 3 1 
Adult 13 18 16 

Breeding 
Status 

Non-breeder 8 4 5 
Secondary Breeder 2 6 4 
Primary Breeder 11 14 12 

Mean captures per individual  ’12 – ’14 L. weddelli 1.6 (1 - 3) 
S. imperator 1.8 (1 - 3) 

Median captures per individual  ’12 –‘ 14 L. weddelli 1 
S. imperator 2 

 

 

Our morphological description and measurements of Mansonella mariae and Trypanosoma 

minasense (Supplementary Table 3S) were consistent with previously published references for these 

parasites (Petit et al., 1985; Sato et al., 2008). Also, our partial sequences of ITS1 (N = 7) for M. 

mariae and ssurRNA gene (N = 10) for T. minasense, were both 99% identical (100% coverage) to 

records already on GenBank. Dipetalonema spp. did not sequence cleanly using ITS1; instead, we 
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amplified CO1. Our sequences (N=8) matched with Dipetalonema spp. on GenBank (95% identify, 

100% coverage), and did not differentiate between three congeners, D. gracile, D. graciliformis, and 

D. robini. Morphological measurements from thin blood smears suggested mixed infections of D. 

gracile, and D. graciliformis present in both hosts based on reference values from the literature  

(Table 3S) (Eberhard et al., 1979; Bain et al., 1986). Sequences of all three parasites have been 

deposited on GenBank (accession nos. for Dipetalonema KX932481, KX932482; for M. mariae 

KX932483, KX932484; for T. minasense KX932485, KX932486, KX932487, KX932488, 

KX932489, KX932490). 

 

3.2 Infection prevalence over time 

Across the study period the prevalence of M. mariae remained stable (0.54 to 0.67) (Fig. 1). Although 

Figure 1 suggests that there should be significant increases in Dipetalonema spp. infection across the 

study period, after controlling for repeated measures, the upward trend approached significance for 

L.weddelli alone (mean χ2= 2.41, df = 2, mean P = 0.074, but P < 0.05 63.4% of the time) 

(Supplementary Table 4S). Differences in prevalence for T. minasense across the study period were 

significant considering just S. imperator and both host species combined (P < 0.05 96.7% and 100% 

of the time, respectively), and approached significance for L. weddelli (P < 0.05 92% of the time) 

(Table 4S). By graphing changes in infection status per individual per parasite across the entire study 

period, the sources of annual variation in prevalence could be tracked (Fig. 2). A large spike in the 

presence of T. minasense in 2014 was the result of previously uninfected individuals acquiring 

infections, with no previously infected individuals losing infection – this was different from 2012 to 

2013 when equal numbers of individuals gained and lost infection. A small number of previously 

uninfected individuals acquired new infections of Dipetalonema spp. each year, and we observed only 

one instance for which a previously infected individual was not found infected with Dipetalonema 

spp. in the subsequent year. 
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 Fig. 1. Annual prevalence of single- and co-infections by species. Prevalence indicated for 

each parasite (dark gray), and each pairwise combination of parasites (light gray). Numbers 

near the top of each bar show the exact prevalence; black lines indicate 95% confidence 

intervals; dots indicate expected levels of co-infection (refer to section 3.2). M-D is co-

occurrence of M. mariae and Dipetalonema spp., D-T is Dipetalonema spp. and T. 

minasense, and M-T is M. mariae and T. minasense. 
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Fig. 2. Individual infection status by parasite by year. Strength and thickness of lines are 

scaled to the number of individuals that took a given infection trajectory from one year to the 

next. Two diagonal lines span 2012 – 2014 because those individuals were not sampled in 

2013. The + symbols represent every infection or non-infection found across all individuals 

in the study. 

 

In any given year, assuming independence, a simple expectation for the rate of co-infection can be 

obtained by multiplying the prevalence of two parasites together. All co-infection rates met these 

expectations except the rate of co-infection of Dipetalonema spp. and M. mariae, which was 

significantly higher in 2013 (χ2= 10.2, df = 1, P < 0.001) (Fig. 1).  

 

3.3 Modeling outcomes 

To explore parasite-host and parasite-parasite associations we constructed a series of nested GLMMs. 

The goal of the first model was to identify those host variables that best explained the presence or 

absence of each infection, and subsequent models incorporated co-infection explanatory variables to 
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observe if model fit improved, or whether significant predictors remained the same. Infection by 

Dipetalonema spp. was positively associated with body weight and model fit was improved by adding 

of co-infection with M. mariae (x2 = 5.032, df =1, P = 0.0249), although the GLMM estimate for M. 

mariae only approached significance (Table 2). Minimal models of prevalence of M. mariae included 

either age class or breeding status, and not both, as these factors were negatively correlated (Fisher’s 

Exact Test, p < 0.001). When co-infection variables were introduced, the presence of Dipetalonema 

spp. also had a significant positive effect on M. mariae. T. minasense infection was predicted by an 

animal’s age class or breeding status (again, correlation required factor reduction), and the addition of 

co-infection with M. mariae significantly improved model fit (Table 2). Regarding individual parasite 

species richness (PSR), younger age classes exhibited significantly fewer unique parasite infections 

(Fig. 3, Table 2)   

 

Table 2: Model outcomes for each parasite response variable and parasite species richness 

Dipetalonema spp.     

 estimate Std. Err Wald (x2) Df P-value 
W/out co-infection: n=186, df=181,  AIC = 178.0  

(intercept) -0.79 1.80    
Body weight 5.66 2.37 5.70 1 0.017 

W/ co-infection: n=186, df=181, AIC = 175.0 
(intercept) -1.81 1.60    
Body weight 5.10 2.23 5.24 1 0.022 
M.mariae 2.91 1.66 3.07 1 0.080 

      Mansonella mariae      
 estimate Std. Err Wald (x2) Df P-value 

W/out co-infection: n=120, df=116, AIC = 94.5 
(Intercept) -4.34 2.12    
Br_Primary 7.76 3.51 5.12 2 0.077* Br_Secondary 5.19 2.63 

W/ co-infection: n=120, df=114, AIC = 88.7 

(Intercept) -4.89 1.99    
Br_Primary 7.14 2.79 6.59 2 0.037 Br_Secondary 4.42 1.96 
Dipetalonema spp. 2.56 1.13 5.18 1 0.023 
      
Trypanosoma minasense     
 estimate Std. Err Wald (x2) Df P-value 

W/out co-infection: n=186, df=180, AIC = 205.0 
(Intercept) 1.66 0.81    
Age_Juvenile -1.72 0.54 10.01 2 0.007 Age_Sub-adult -0.56 0.63 

W/ co-infection: n=186, df=179, AIC = 202.2 
(Intercept) 1.19 0.88    
Age_Juvenile -1.16 0.54 4.57 2 0.102* Age_Sub-adult -0.45 0.64 
M. mariae 1.07 0.50 4.69 1 0.030 
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Parasite Species Richness 
 estimate Std. Err Wald (x2) Df P-value 

n=186, df=181, AIC = 496.7 
(Intercept) 0.61 0.15    
Age_Juvenile -1.43 0.26 34.89 2 <0.001 Age_Sub-adult -0.59 0.25 

Minimal models shown above. Saturated models included fixed factors ‘species’, ‘sex’, 

‘body weight’, ‘breeding status’, and ‘age class’. Co-infection models began with terms from 

minimal host infection models and other parasites as fixed factors. Parasite species richness 

was modeled using only host factors. All tests included random effects ‘animal identity’, 

‘group’, and ‘year’ when they evidenced any discernable effect on model outcomes. The * 

symbol indicates factors where only one of two levels was significant, and therefore a 

combined x2 statistic for all levels of those factors is not significant. 
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Fig. 3. Parasite species richness by species, age class and sex. Colors represent females 

(black) and males (grey) 

 

 

4. Discussion 

The majority of studies on parasite distributions from natural populations are constrained by sampling 

that takes place at a single time point on unknown host individuals. This limits our ability to interpret 

data due to the normal fluctuations in parasite prevalence and uncertainty regarding an animal’s 
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future or past parasite infection status. In our study, we were able to sample from consecutive years at 

the same site, thus minimizing confounding variables such as animal disappearances or sampling 

from different individuals between years. The use of combined microscopy and molecular methods to 

screen for haemoparasitic infections improved our confidence of the infection status of each 

individual. We encountered slight discordance in microfilariae infection status, ~10% of blood smear 

positive samples were PCR negative.  We think that this disparity is most likely attributable to 

parasitemia levels that are below the sensitivity of the PCR assay, poor sample quality, or a 

combination of both, as both of our assays worked 90% of the time and each primer set has been used 

on a broad range of nematodes in other studies (Casiraghi et al., 2001; Sato et al., 2006; Merkel et al., 

2007; Sato et al., 2008). Discordance for T. minasense was greater, ~20% of blood smear positive 

samples were PCR negative. This level of parasite under-detection is unsurprising, as chronically 

infected humans and animals with low levels of parasitemia are known to occur with Trypanosoma 

spp. (Piron et al., 2007).  Qvarnstrom et al. (2012) observed that different genotypes of Trypanosoma 

cruzi are differentially detected by real-time PCR assays, and therefore recommend the use of 

multiple protocols that target different genes. It is not known whether similar challenges are 

associated with detection of T. minasense, but if so, we would expect false-negatives to be equally 

represented across the study period. Instead, we had zero false-negatives in 2014, suggesting again 

that low parasitemia or poor sample quality were the likely culprits of false negatives. Nested PCR 

reactions, which we employed in this study, are the current gold standard for detection of active 

Trypanosome infections (Ndao et al., 2004; Aguiar et al., 2012). 

 

 We predicted that haemoparasite prevalences would remain constant over the study period, reflecting 

stable numbers of host individuals with average group sizes varying from 4.3 – 4.9 individuals over a 

range of 13 to 15 social groups per year. While prevalence remained stable for M. mariae, we 

cautiously report annual increases for Dipetalonema spp.; increases approached significance among 

L. weddelli after controlling for animal repeated measures through randomization tests (significant 
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63.4% of the time in 1000 iterations).  Mansonella mariae, like other filarial nematodes such as the 

human-infecting Wuchereria bancrofti, likely exhibits circadian migrations from deeper tissues to 

peripheral blood where it is picked up by hematophagus vectors (Barrozo et al., 2004). We reliably 

detected continued M. mariae infection in all animals harboring infections the previous year, so 

temporal sampling bias would not explain differences in prevalence from Dipetalonema spp. Given 

the relatively stable climate between years and that both parasites are vectored by ceratopogonid 

biting midges (Shelley and Coscarón, 2001; Lefoulon et al., 2015), we suspect that within-host 

dynamics are responsible for the variation observed between these two filarids, although the 

physiological consequences of these species on wild hosts remain unknown (Strait et al., 2012). It is 

worth mentioning that Dipetalonema spp. likely represents two species, D. gracile and D. 

graciliformis, and our study does not differentiate whether one or both are responsible for the increase 

in prevalence. Phylogenetic relationships within the Dipetalonema clade of the Onchocercidae are an 

area of active research that is beyond the scope of this study (Lefoulon et al., 2015), and since mixed 

infections are common in nature (Sato et al., 2008; Strait et al., 2012), we do not know if parasite-host 

relationships would vary at sub-genus levels. The prevalence of T. minasense did change significantly 

across the study period, and most dramatic was the 2014 spike to 100% of S. imperator individuals 

and close to 100% among L. weddelli. Like M. mariae, circadian patterns of parasitemia could 

contribute to varying prevalence when sample collection occurs at different timings (Deane and Da 

Silva, 1974), however, in this study sample collection consistently took place between 6am and noon. 

Instead, a new environmental stressor on the host populations, or changes in vector populations, in 

2014 might explain the spike in prevalence, but follow-up studies are needed to confirm this. 

 

In addition, multi-host, multi-parasite systems are common in nature but often unacknowledged, 

particularly in areas of high species density (Hopkins and Nunn, 2007). In Kibale National Park in 

Uganda, a long-term study of the sympatric black-and-white (C. guereza) and red (Pilocolobus 

tephrosceles) colobus monkeys by Chapman et al. (2005) found that forest disturbances precipitated a 
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population increase in P. tephrosceles but a decrease in C. guereza.  Simultaneously, the authors 

observed that a shared roundworm parasite, Trichuris sp., decreased in prevalence and intensity in P. 

tephrosceles while increasing in C. guereza. Although Trichuris sp. is typically asymptomatic at low 

levels, it can cause pathologies at higher intensities (Gillespie and Chapman, 2008; Gachinmath et al., 

2014), and may very well have contributed to the decline of C. guereza through altered parasite-host 

dynamics initiated by forest clearings. Our data on haemoparasites establish a baseline that will 

facilitate similar research in the event of future climate or landscape disturbances. That L. weddelli 

and S. imperator form mixed-species associations (Watsa, 2013), possess broadly overlapping diets 

(pers. obs.), and exhibit similar social structures and reproductive strategies (Goldizen, 1996), but 

only share two of the three parasites is surprising. We did not expect that M. mariae would be absent 

from S. imperator given that it was previously documented in a more distantly related primate, the 

common squirrel monkey (Saimiri sciureus) (Sato et al., 2008). Nevertheless, as M. mariae evidenced 

a positive association with Dipetalonema spp., which are shared by both hosts, its potential for 

indirectly regulating parasitism in S. imperator should not be discounted. 

 

Contrary to our hypothesis, and to a recent study on parasite distributions from a cooperatively 

breeding meerkat population (Smyth and Drea, 2015), we found no evidence that dominant 

individuals (in this case primary breeding females) were more or less parasitized than others across 

both host species. Our results are consistent with Viljoen et al. (2011) who found no clear relationship 

between parasitism and female reproductive dominance in the highveld mole rat (Cryptomys 

hottentotus pretoriae). One explanation for this negative finding is methodological.  Since effects on 

host health and fitness are often parasitemia dependent, our reliance on parasite presence-absence, 

rather than densities, decreases our ability to detect small associations between parasites and host 

factors. Hence, we can challenge the existence of a strong relationship between blood parasites and 

sex or breeding status, but not entirely rule it out. Another explanation might be that cooperative 

breeding behavior produces group-wide energy conservation benefits that offset any extra burden that 
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would be experienced by dominant breeding individuals (Lutermann et al., 2013). It will also be 

worth considering the effects of social rank from the perspective of gastrointestinal parasites in this 

same population. Parasites found in the gastrointestinal tract versus peripheral blood generally differ 

in their modes of transmission (usually direct and indirect versus arthropod-vectored, respectively) 

and this can precipitate fundamentally different associations with host populations. For example, the 

encounter-dilution effect predicts a negative association between parasitism and social group size for 

arthropod-vectored parasites (Mooring and Hart, 1992; Cote and Poulin, 1995). Our data showed no 

relationships between group size and parasite species richness; however group size only ranges from 

3-8 in this system (Watsa et al., 2015), which may not be sufficiently variable to test this hypothesis 

(Patterson and Ruckstuhl, 2013). 

 

Across all of our models, breeding status and age class were too tightly correlated to be included as 

separate explanatory variables, and future studies might avoid this limitation by developing fine scale 

measures to differentiate the adult population. That parasite species richness was significantly 

elevated among adult individuals and breeders, as opposed to juveniles or sub-adults, suggests that 

more time for parasite exposure, and not immune status, is responsible for age-biased parasite 

distributions. We do not think this result was influenced by parasite prepatent periods, that can last 

months for filarial nematodes (Wong et al., 1969), since the trend included both juveniles and sub-

adults ranging from 4 to 18 months of age. Additionally, positive relationships between prevalence 

and intensity of filarial infections and host age are well-documented from studies on human 

populations (Vivas-Martínez et al., 2000; Terhell et al., 2001; Opara and Fagbemi, 2008). We also 

established a small but significant positive association between body weight and prevalence of 

Dipetalonema spp. Generally, the potential effects of host body size are considered with respect to 

parasite species richness in interspecific comparisons (Hubbell, 1997; Vitone et al., 2004), and not 

intraspecific prevalence. In this study, S. imperator is about 25% larger than L. weddelli (Watsa et al., 

2015), and yet our models did not detect an interspecific difference in microfilariae infection, after 
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controlling for concomitant infections. We suspect that body size covaries with other factors, such as 

age class, which we have shown to effect prevalence. 

 

Controlled experimental studies on co-infection dynamics (Cox, 2001; Knowles, 2011) and studies 

from wild populations (Pedersen and Fenton, 2007; Monteiro et al., 2007b; Telfer et al., 2008) 

consistently show that relationships between parasites should not be ignored when evaluating parasite 

distributions in a single host (Christensen et al., 1987). This study provides additional evidence for 

that conclusion; specifically, the nested modeling approach uncovered two instances in which the 

addition of co-infection variables improved model fit. The patterns of co-infection in this study also 

raise questions.  Trypanosoma minasense and Dipetalonema spp. (at least marginally) exhibited 

increases in prevalence, and we might expect an association between the two that is mediated by the 

immune system. Instead, co-infection between M. mariae and Dipetalonema spp. exhibited a positive 

association, and M. mariae alone best predicts the presence of T. minasense. 

 

These findings demonstrate that longitudinal sampling from known individuals provides valuable 

insight into limiting confounding variables and unraveling complicated relationships between 

parasites and wild host populations. They also reemphasize the importance of factoring co-occurring 

parasites into analyses on parasite distributions. Challenges associated with conducting repeat 

sampling of blood from wild mammalian hosts have skewed prior research towards noninvasive 

gastrointestinal parasite monitoring from fecal samples, yet it is important to detect deviations in 

these patterns due to differences in parasite life cycles. Particularly when attempting to understand 

parasite distributions and individual risks among hosts with complex social organization, longitudinal 

sampling protocols that incorporate multiple hosts can be indispensable. Here, we have established 

that two very similar cooperatively breeding hosts in sympatric association differ in their blood 

parasite assemblages, and further, that individual differences engendered by callitrichid cooperative 

breeding dynamics do not appear to influence blood parasite prevalence. We recommend that future 
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work incorporate measures of individual immune status alongside blood parasite data, and also 

include analyses of gastrointestinal parasites.   
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Supplemental Materials 

 
Supplementary Fig. S4. Agarose gel image and chromatogram of COI gene. (a) Gel bands of 

individuals with infection with either Dipetalonema spp. (not indicated), M. mariae (indicated), or 

both (indicated). (b) Co-infection is confirmed on a chromatogram by the presence of double-peaks. 
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Table 3S. Parasite measurements 
Parasite Length ± sd (min - max) width n 
Mansonella mariae 313.5 ± 21.0 (290 – 360 ) 2.25 (2.00-2.50 ) 12 
Dipetalonema gracile 119.0 ± 20.3 (87-150)  5.3 ± 0.5  (4.5 – 6.0) 7 
Dipetalonema graciliformis 102.6 ± 7.1 (95-120 )  4.8 ± 0.5 (4-6) 27 
Trypanosoma minasense* 41.6 ± 4.8 (20-50) 

 
23 

All measurements are in µm 
 

Table 4S. Randomized Z-tests of parasite prevalence across years  
Dipetalonema spp. 

Host(s) Comparison Mean x2 Df mean P % 
L. weddelli 3 years 2.41 2 0.074 63.4 
S. imperator 3 years 1.90 2 0.486 2.8 
Both species 3 years 5.14 2 0.138 32.5 

T. minasense 
L. weddelli 3 years 6.05 2 0.020 92 
L. weddelli ‘12 v ‘13 0.39 1 0.665* 0.1 
L. weddelli ‘12 v ‘14 3.61 1 0.245* 3.8 
L. weddelli ‘13 v ‘14 6.01 1 0.064* 44.4 
S. imperator 3 years 10.05 2 0.012 96.7 
S. imperator ‘12 v ‘13 1.75 1 0.436* 1.9 
S. imperator ‘12 v ‘14 5.72 1 0.273* 1.2 
S. imperator ‘13 v ‘14 8.97 1 0.043* 43.6 
Both species 3 years 16.46 2 <0.001 100 
Both species ‘12 v ‘13 1.88 1 0.312* 3.2 
Both species ‘12 v ‘14 10.33 1 0.041* 72.2 
Both species ’13 v ‘14 15.41 1 0.001* 100 
Each test is the result of 1000 iterations of randomly re-sampling the study population so that each 

host individual is represented a single time. The % symbol refers to the percentage of iterations with 

P-values <0.05. Significant differences are highlighted in bold. The * symbol represents adjusted P-

values using the Holm-Bonferroni method. 
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Introduction 

 

Parasitism has a fundamental role to play in the persistence of animal populations in nature, and the 

richness of parasite communities may serve as effective population and ecosystem level measures of 

health (Hudson, 1998; Hudson et al., 2006). There is evidence from animal and human populations 

that natural infections with multiple parasites can have positive effects on host health (Petney and 

Andrews, 1998). For example, helminth infections have been shown to reduce allergic, autoimmune 

and inflammatory reactions (Maizels and McSorley, 2016), and helminth-modulated macrophages are 

now being studied as possible therapies for inflammatory diseases, such as diabetes, multiple 

sclerosis, and bowel disease (Steinfelder et al., 2016). Although the “hygiene hypothesis” has led to 

much misunderstanding about the importance of personal hygiene in preventing disease, it has fueled 

studies that are increasingly linking the incidence of allergies and autoimmune diseases to lack of 

exposure to diverse microbes during development (Scudellari, 2017). Thus, while “parasitism” 

connotes the acquisition of resources (space, food, etc.) by one organism at the expense of another, 

we should be cautious about considering parasites as detrimental in complex environments where 

they may play a role in maintaining an ecological balance that is necessary for species persistence. 

 

Recent taxonomic revisions have described 504 species in 16 extant families within the Primate 

Order, of which 60% are threatened with extinction and 75% evidence population declines (Estrada et 

al., 2017). This pattern is strongly linked to human pressures on nonhuman primate populations 

through habitat loss via industrial agriculture (including palm oil production), cattle ranching, 

logging, oil and gas drilling, and gold mining (Lewis et al., 2015; Vijay et al., 2016). The 

conservation status of many primates is further threatened by the effects of global climate change 

driven by anthropogenic factors (Gouveia et al., 2016; Malhi et al., 2008; Pearson and Dawson, 

2003), as well as disease spillover originating as a byproduct of increased contact between human and 

wild nonhuman primates (Dashak et al 2008). Hence, increasingly close monitoring of the health of 
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wild primate populations is critical to global human health. 

 

Gastrointestinal parasites, which can be detected through noninvasive surveying, may be ideally 

suited for health monitoring efforts of a primate community (Gillespie, 2006; Howells et al., 2011). 

They are relatively easy to evaluate from fecal samples collected from habituated primate groups, and 

can also be acquired in the absence of habituation by scat detection dogs or by searching beneath 

known feeding or resting locations (Arandjelovic et al., 2015; Orkin et al., 2016). Several long-term 

research programs have successfully used temporal parasite data to examine ecological perturbations 

of threatened primate populations (Bakuza and Nkwengulila, 2009; Chapman et al., 2005; Gillespie 

and Chapman, 2008; Gillespie et al., 2005). In contrast, in the absence of temporal data, comparative 

studies between isolated and more urban primate populations are effective at evaluating impacts of 

increased contact with humans (Salzer et al., 2010; Wenz et al., 2009). Despite the utility of such 

studies, parts of the world with the highest primate diversity, such as the Neotropics, remain relatively 

inadequately sampled for naturally occurring gastrointestinal parasites (reviewed in Hopkins and 

Nunn (2007). 

 

Except for a few South American primate taxa, notably howler monkeys (Allouatta spp.), golden lion 

tamarins (Leontopithecus rosalia), and golden-headed lion tamarins (Leontopithecus chrysomelas) 

(Milton, 1996; Monteiro et al., 2007a; 2007b; Stuart et al., 1998; Valdespino et al., 2010), patterns of 

parasite-host relationships have been tested primarily among primates in Africa and Asia. These 

works highlight that parasitism varies with host population demographic variables, including age 

class and sex (Clough et al., 2010; Gillespie et al., 2013; 2010; MacIntosh et al., 2010), and sexual 

maturity or dominance (MacIntosh et al., 2012; Muehlenbein and Watts, 2010), although not all 

studies concur (Gillespie et al., 2010; Setchell et al., 2009; 2006). Host behavior in combination with 

parasite mode of dispersal can also structure parasite populations (MacIntosh et al., 2010; Nunn and 

Heymann, 2005). Influences of concomitant parasite infections are not routinely analyzed, but when 
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they are, their impacts are comparable to those exerted by host or environmental factors 

{Telfer:2008jw}(Erkenswick et al., 2017; Monteiro et al., 2007b; Nunn et al., 2014). Also, meta-

analyses find general support for increasing parasite species richness as social group size increases 

(Cote and Poulin, 1995; Nunn et al., 2003; Rifkin et al., 2012; Vitone et al., 2004), but the scale 

(population, community-wide, regional, or global) at which this pattern holds true requires additional 

consideration. Finally, seasonal and annual variation in parasite communities is also well documented 

(Clough et al., 2010; Gillespie et al., 2010). 

 

Hence, the range of factors that can explain parasite-host patterns in nature is large, often 

contextually-dependent on the environment and time, and therefore may be best approached through 

longitudinal monitoring efforts of host communities at the level of the individual (Clutton-Brock and 

Sheldon, 2010; Stuart et al., 1998). A primary challenge has been that research on wild primates 

requires long, careful habituation to observers, which often puts constraints on sample sizes, thereby 

making it difficult to analyze many of the factors mentioned {Williamson:2003vp}. There are many 

studies, including those in the Neotropics, that have offered single snapshots of parasite prevalence 

levels, focused on just one or two parasites of known interest, sampled a single primate host, or have 

reported data from health inspections, or necropsies, after animal extraction from the wild (Cosgrove 

et al., 1968; Porter, 1972; Wolff, 1990); collectively they have created a broad foundation of primate 

parasite data (see Nunn and Altizer, 2005 for a detailed compilation). Emerging patterns can now be 

examined carefully in the wild to look at influences of host demography and development, mode of 

transmission, and change over time at the level of a population. As an example, for almost a half-

century it has been well known that New World monkeys are broadly infected by Plasmodium 

braslianum, a quartan malarial parasite, that may in fact be the same as the human parasite 

Plasmodium malariae (Collins and Jeffery, 2007; Lalremruata et al., 2015). However, only this year 

do we have the first evidence that it may persist in a highly aggregated manner among a small number 

of chronically infected non-human primate hosts (Erkenswick et al. in review). In addition, long-term 
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studies that incorporate more than one primate host individual will be essential to examine several 

longstanding hypotheses of how sociality influences parasite prevalence, intensity, and diversity 

(Altizer et al., 2003; Freeland, 1976; 1979), as will long-term studies of multiple sympatric species to 

examine species-specificity of infection dynamics. 

 

The Callitrichidae (comprised of tamarins and marmosets) are small arboreal primates that are widely 

distributed throughout the forests of South America (Sussman and Kinzey, 1984). They are frequently 

found in sympatry with other New World monkeys and in some cases have proven relatively resilient 

and flexible in the face of encroachment by human populations (Gordo et al., 2013; Leite et al., 2011; 

Soto-Calderón et al., 2016). Part of their ecological flexibility may be due to their generalist diets that 

include fruits, insects, tree exudates, and fungi (Sussman and Kinzey, 1984), a characteristic that also 

could expose them to a wide array of parasites that are dispersed by intermediate arthropod hosts. 

Studies of the gastrointestinal parasites of callitrichids have documented overlap with other primate 

families including in the Ateledae, Cebidae, and Aotidae (Michaud et al., 2003; Phillips et al., 2004; 

Tantalean et al., 1990; Wolff, 1990). Considering the approximately 60 species and subspecies of 

Callitrichidae, there have been only a handful of comprehensive evaluations of gastrointestinal 

parasites from free-ranging populations (Monteiro et al., 2007a; Müller, 2007; Wenz et al., 2009), and 

only two populations in which parasites have been monitored routinely over time (Monteiro et al., 

2007b).  

 

 

The principle aim of this study was to characterize the gastrointestinal helminth assemblages from 

two populations of sympatric, individually identifiable, free-ranging callitrichids, the saddleback 

tamarin (Leontocebus weddelli, formerly Saguinus fuscicollis weddelli) (Buckner et al., 2015; 

Matauschek et al., 2011) and emperor tamarin (Saguinus imperator), from noninvasively collected 

fecal samples. Both hosts exhibit group sizes (3 – 8 individuals), mating systems, and reproductive 
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behaviors characteristic of most Callitrichids (Watsa et al., 2016). Typically, a single, reproductively 

dominant female will mate with multiple males and give birth to twin offspring once a year, and the 

remaining adult group members provide alloparental care of the offspring (Sussman and Kinzey, 

1984; Wislocki, 1939). By sampling these hosts across three years, we attempted to determine precise 

estimates of the prevalence of gastrointestinal parasites, parasite species richness, and the extent of 

parasite overlap between the two host species. We also calculated rates of change in infection status 

from animals that were screened for helminths in two consecutive years. In doing so, we establish 

robust baseline data for future comparative studies on changing weather patterns due to climate 

change, habitat loss/modification, or greater human encroachment. Secondarily, we analyzed how 

parasite prevalence varies by host demography, age class and sex, and co-infection. As a result of 

greater social burdens placed on females to compete for dominant breeding opportunities, we 

predicted that an age-sex interaction will influence prevalence and parasite species richness. 

Specifically, adult females of both host species will have higher prevalence and richness. Based on 

prior research of blood parasites from these populations (Erkenswick et al., 2017), we predicted that 

there will be non-random prevalence of several co-infections, considering all pairwise combinations 

of parasites. Finally, we test the hypothesis that there will be a relationship between group size and 

parasite species richness, and predicted that larger groups will harbor greater numbers of parasites, 

which has not yet been tested within the Callitrichidae. Our findings are additionally discussed in 

terms of parasite pathogenicity and parasite mode of dispersal. 

 

 

Methods: 

 

Field site and study subjects: 

 

Sample collection took place annually from 2012 – 2014 in the Madre de Dios Department of 
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Southeastern Perú at the Estacion Biologica Rio Los Amigos (EBLA) (12°34’07”S, 70°05’57”W), 

which is managed by the Associación para la Conservación de La Cuenca Amazonica (ACCA). All 

sampling took place within a forest trail system that covers approximately 900 hectares of tropical 

evergreen rainforest that is adjacent to the Los Amigos Conservation Concession, which is inside the 

buffer region of Manu National Park. There are two definite seasons each year at this site – the wet 

season from October to March, (average monthly precipitation > 250 mm), and the dry season from 

April to September. Mean total annual rainfall was 2584 ± SD 492 mm, with average precipitation in 

the dry season of 136 mm  

± SD 19 mm (Watsa, 2013). All sampling took place during the dry season, from May – July each 

year, precluding the study of the effects of seasonality on the parasite community in these primates. 

 

There are three callitrichines at this site: the saddleback and emperor tamarins (Watsa, 2013), as well 

as the more cryptic Goeldi’s monkey (Callimico goeldii) (Watsa et al., 2012). They share this habitat 

with eight other primate species including three species of Cebidae, and two species each of Atelidae 

and Pithecidae, as well as owl monkeys (Aotus nigrifrons) (Watsa, 2013). At EBLA, both S. 

imperator and L. weddelli have average group sizes of ~ 5 individuals and group compositions are 

similar (Watsa et al. 2016, BioRxiv https://doi.org/10.1101/047969). The primary differences 

between S. imperator and L. weddelli are adult weight, 515g and 386g, respectively, and nuances in 

feeding behavior including greater amounts of fungi consumption in S. imperator (pers. obs.; 

Terborgh, 1983). 

 

Each individual sampled was classified in three broad age classes based on dental eruption patterns 

(Watsa, 2013). Juveniles were defined as individuals whose adult teeth were absent or not fully 

erupted (<11 months old). Sub-adults were animals with adult teeth, but that were juveniles in the 

preceding year. All remaining individuals were assigned to the adult age class. Due to small sample 

sizes from the sub-adult class, the juveniles and sub-adult classes were combined to analyze the 
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effects of age on parasite prevalence. 

 

Sample collection and storage 

 

Since 2009, an annual mark-recapture program has been implemented on ~ 70 saddleback and 

emperor tamarins by Field Projects International. During capture, each individual was permanently 

tagged with a Home Again microchip, and was overtly identifiable by unique patterns of bleached 

rings around the tail, as well as a tricolor beaded necklace that signified group, sex and individual 

identity (for the full capture protocol see Watsa et al., 2015). In addition to collecting fecal samples at 

the time of capture, we used radio telemetry to track tamarins in 14 groups each year via a SOM2190 

radio collar {Wildlife Materials, weight ~8g, less than 3% of average adult body weight as per 

Cuthill:1991cf} placed on the breeding female in each group. We used both full (sleep-site to sleep 

site, spanning ~ 11 hours) and half-day (minimum 5 hours) follows to opportunistically collect fecal 

samples from all group members as they were produced.  

 

Upon collection, all fecal samples were transferred using sterile technique into numbered plastic bags 

stored in a chilled thermos. Within 6 hours of collection, each sample was fixed in 10% neutral 

buffered formalin (1:2, feces to preservative ratio). For each sample, we recorded species, individual 

ID, group, date, time of day, and type of collection (follow or trapping event). Only samples produced 

by identified individuals were included in this study. All samples were exported to the Parker 

laboratory at the University of Missouri – St. Louis for analyses. 

 

All sampling protocols adhered to guidelines outlined by the American Society of Mammalogists 

(Sikes and Gannon, 2011) and were approved by the Institutional Animal Care and Use Committee at 

the University of Missouri-St. Louis and the Directorate of Forest and Wildlife Management 

(DGFFS) of Perú annually. The DGFFS also granted export permits for the samples, while the CDC 
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and US Fish and Wildlife Services approved the import of these samples into the USA.  

 

Laboratory analysis: 

 

Isolation of parasite cysts, eggs, and larvae from fecal samples followed a two-step process based on 

sedimentation procedures as per MacIntosh (2010) and Zajac and Conboy (2006). In Step 1, we used 

a fecal straining procedure in which fecal samples were 1) diluted in 10% neutral buffered formalin, 

2) strained of large debris through cheese cloth into a plastic cup, 3) transferred to a 15ml falcon tube 

with an empty weight already recorded, 4) centrifuged at 800xg for 5 minutes to form a fecal pellet, 

5) removed of the supernatant and weighed, 6) re-suspended and homogenized in 5ml of 10% 

formalin. In Step 2, we followed the centrifugal sedimentation test outlined by Zajac and Conboy 

(2006) with 1ml of the homogenized suspension from Step 1. Sedimentations from Step 2 were re-

suspended in exactly 1ml of preservative, and 80ul aliquots were placed onto clean slides with a 

coverslips for evaluation under an Olympus CX31 light microscope. Evaluations of parasites were 

timed and tabulated using a free online data counter, COUNT (http://erktime.github.io/count/), and 

each unique infection/sample was documented with multiple micrographs taken with a Leica ICC50 

HD camera. Three separate aliquots per sample were evaluated with each evaluation taking an 

average of 10 minutes. 

 

A minimum of 10 representative micrographs per parasite per species were measured with a 

calibrated ruler in Image J (https://imagej.nih.gov/ij/) to the nearest 1 µm. Measurements of all 

parasite forms were compared to known references values in the literature and identified to the lowest 

taxonomic scale possible.  

 

Statistical analysis 
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Average prevalence, as well the proportion of individuals that acquired infection, lost infection, or 

showed no change in infection status, were calculated for each helminth identified by microscopy 

across the three-year study period. Significant differences in helminth prevalence between host 

species was tested with Fisher’s Exact Test and adjusted p-values following the Holm-Bonferonni 

method{Holm:1979hl}. To test for variation in the presence of parasitic infections across host 

variables we used mixed-effect logistic regression models with a binary response variable and 

binomial errors. Fixed effects included ‘sex’, ‘age class’, and ‘species’ and random effects included 

‘animal identity’ and ‘year’ to accommodate individual resampling and possible inter-annual 

variation. We also incorporated the number of samples collected per animal per year as an offset to 

account for temporal sampling bias (Walther et al., 1995). Parasite species richness, which was a 

discrete numerical response variable, was analyzed with an identical model formula but using Poisson 

errors. Model selection for all models was carried out with step-wise term deletion by removing non-

significant factors and comparing nested models with a likelihood ratio test. 

 

To test for significant correlations between group size and parasite species richness we calculated 

rarified parasite community richness estimates per group. The use of species accumulation curve 

estimates are advocated by Walther et al. (1995), because raw values of parasite community richness 

are easily biased by uneven sampling. We used Spearman’s rank correlations to test if parasite 

community richness estimates with similar sampling effort were associated with group size.  

 

To identify any nonrandom parasite co-occurrences, we compared the prevalence of all observed 

pairwise co-infections with expected estimates of co-infection (calculated as prevalence of A * 

prevalence of B = expected prevalence of AB).  We then plotted expected against observed values to 

identify high or low levels of co-infection, and if applicable, used a two-sample z-test to compare 

proportions. All statistical analyses were performed in R (R Development Core Team, 2015). 
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Results 

 

In total, we collected 288 individually identified fecal samples from 105 unique tamarins (71 L. 

weddelli, 34 S. imperator) distributed across 13 groups of L. weddelli and 7 groups of S. imperator.  

The number of samples collected per individual per year ranged from 1 to 7, with a mean of 1.6 and 

median of 1. The average fecal sample weight, post Step 1in sample processing (see Methods), was 

0.41grams +/- 0.22. Considering all sex and age classes, our sampling included slightly more males 

than females across years, and sub-adults of both hosts species were the least sampled group (Table 1) 

 
Table 1. Numbers of samples distributed by species, sex, age class, and year 

 
Year 2012 2013 2014 Total 

L. weddelli 36 46 34 116 

Sex Male 19 28 17 64 
Female 17 18 17 52 

Age 
class 

Juvenile 8 9 3 20 
Sub-adult 4 6 1 11 
Adult 24 31 30 85 

S. imperator 18 23 19 60 

Sex Male 7 14 10 31 
Female 11 9 9 29 

Age 
class 

Juvenile 6 3 3 12 
Sub-adult 2 3 1 6 
Adult 10 17 15 42 

 

We were able to differentiate 11 helminth parasites by morphology and identified 5 to the species or 

genus level, 2 to a genus we suspect, 2 to the appropriate family, and another 2 were placed in the 

correct phylum (Table 2). Most, if not all, of these parasites have been detected in the Callitrichidae 

in the past, and representative micrographs and measurements can be found in Supplementary 

Materials (Fig. 3). All but one rare parasitic infection, Spirura guianensis, were found in both host 

species, although prevalence profiles varied (Table 2). Prevalence for Dicrocoeliidae was 

significantly higher in S. imperator (Fisher’s test mean-adjusted P-values = 0.012), and Hymenolepis 

sp. was significantly higher in L. weddelli (Fisher’s test mean adjusted P-value = 0.008). 



 50 

Table 2. Mean annual prevalence by host species and parasite 
		 		 L.	weddelli	 S.	imperator	 		

Mode	of	
dispersal	

	
	

Pathogenic	Class	 Parasite	 Prev.mean	 Prev.sd	 Prev.mean	 Prev.sd	 Diff	
Acantho
cephala	 Prosthenorchis	sp.	 0.85	 0.04	 0.78	 0.08	 0.07	 Trophic	 Yes	
Cestoda	 Hymenolepis	sp.	 0.44	 0.02	 0.07	 0.02	 0.37*	 Trophic	 Unknown	

Nemato
da	

Spirura	guianensis	 0.06	 0.06	 0	 0	 0.06	 Trophic	 Yes	
P.		jacchi	 0.04	 0.05	 0.07	 0.08	 0.03	 Trophic	 Unknown	
Gongylonematidae	 0.15	 0.09	 0.13	 0.06	 0.02	 Trophic	 No	
Trypanoxyuris-like	 0.16	 0.08	 0.25	 0.1	 0.09	 Trophic	 Unknown	
Large	larvated	ova	 0.16	 0.08	 0.21	 0.07	 0.05	 Unkown	 Unknown	
Small	larvated	ova	 0.04	 0.04	 0.15	 0.06	 0.11	 Unkown	 Unknown	
Strongyloides-like	 0.43	 0.11	 0.4	 0.16	 0.03	 Direct	 Unknown	
Molineus	spp.	 0.83	 0.07	 0.76	 0.22	 0.07	 Direct	 No	

Tremat
oda	 Dicrocoeliidae	 0.08	 0.1	 0.4	 0.12	 0.32*	 Trophic	 Unknown	
The * symbol indicates significant differences (Fisher’s exact p<0.05). Prev.mean = mean prevalence across the study period, Prev.sd = 
mean standard deviation across the study period, Diff= difference in in mean prevalence between the two host species 
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To explore changes in infections status we subset our data to all instances were an individual was 

sampled across a two-year period, either 2012-2013 or 2013-2014, and calculated the mean 

proportion of individuals that acquired, lost, or did not change infection status (Fig 1). For most 

helminths, individual infections remained unchanged with small, but even, proportions of individuals 

switching status in both directions. This pattern differed among S. imperator for Molinues spp., in 

which ~0.4 individuals either gained or retained the same infection status, while 0.2 had a previous 

infection that was not re-detected. Also, ~0.45 of Dicroceoliidae infections were either lost or 

remained unchanged across years, while 0.12 appeared to be new (Fig1, Supplemental Table 5). 

Among L. weddelli, Dicroceoliidae was rare and we only documented individuals missing a prior 

infection, 0.12, or remaining uninfected, 0.88.  We had no cases of L.weddelli losing infection of P. 

jachhi, but on average 0.07 individuals acquired new infections annually. Also among L. weddelli, 0.5 

individuals evidenced no change in infection status for Hymenolepis sp., while 0.3 lost infections, and 

0.18 acquired infections on average (Fig 1, Supplemental Table 5). 

 

 

Fig 1. Average proportion of individual infection status change by host species and parasite. 
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Considering each year separately, we did not detect any significant deviations between expected and 

observed prevalence of co-infection (Fig. 2); the largest absolute difference in prevalence across all 

parasite combinations throughout the study period was 0.07. We also found no evidence of a 

relationship between group size (ranged 3 – 8) and estimated parasite species richness within groups 

after controlling for sampling effort (Spearman’s rank correlation = -0.36, P-value = 0.058, n = 28). 

 

Fig 2. Observed versus expected prevalence of parasite co-infection. 
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positively associated with Dicrocoeliidae but negatively associated with Molineus and Hymenolepis. 

Relative to adults, juveniles and sub-adults were negatively associated with Prosthenorchis and 

Strongyloides-like larva, but positively associated with Hymenolepis and the larvated nematode ova. 

Our models of parasite species richness identified host species as the only significant predictor 

considered in this study (Table 3), which had a significantly negative estimate for S. imperator. 

Table 3. GLMM outcomes for each parasite and parasite species richness 
Parasite Fixed effects B Std. Error Wald(x2) DF P-value 

Prosthenorchis 
sp. 

intercept 0.7772 0.4963       
Age: Sub-adult -1.4417 0.5459 6.9742 1 0.008 

Molineus sp. intercept 0.4347 0.45 
   Species:S.imp. -0.8282 0.4322 3.6726 1 0.055 

Hymenolepis sp. 
intercept -2.4263 0.3764 

 
    

Species:S.imp. -4.1473 0.8134 25.998 1 <0.001 
Age: Sub-adult 1.9867 0.6172 10.36 1 0.001 

Large larvated 
ova 

intercept -4.2509 0.5863 
   Age: Sub-adult 1.3999 0.5733 5.9619 1 0.015 

Strongyloides-
like larva 

intercept -1.7792 0.3472 
 

    
Age: Sub-adult -1.511 0.6875 4.8303 1 0.028 

Dicrocoeliidae intercept -4.4469 0.7193 
   Species:S.imp. 2.0681 0.4903 17.794 1 <0.001 

PSR intercept -0.4743 0.1495 
   Species:S.imp. -0.6413 0.1848 12.041 1 <0.001 

Small larvated 
ova Could not reject null model   
Minimal, best-fit models for the presence of each parasite and parasite species richness (PSR).  Model 
selection began with fixed factors host ‘sex’, ‘age class’, and ‘species’, while ‘individual identity’ and 
‘year’ were incorporated as random effects, and the number of fecal samples collected for each 
individual/year was included as a model offset. Data were insufficient to analyze the distribution of 
Spirura guianensis, Gongylonematidae, and Primasubulura jachii. 
 

 

Discussion 

 

It is customary for wild animals to acquire and maintain multiple parasitic infections during their 

lifetime (Cox, 2001; Petney and Andrews, 1998). While clinical and/or experimental studies are 

effective at demonstrating the pathogenicity of parasites, translating such findings to natural systems 
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is not always straightforward. For example, the thorny-headed worms (Phylum Acanthocephala) are 

well-known parasites of Central and South American primates (King, 1993; Tantalean et al., 

1990).They attach themselves to the intestinal mucosa of their primate hosts and cause inflammatory 

responses, obstruction of the lumen, and the formation of lesions and ulcers, which may lead to 

secondary infections or even peritonitis in the worst cases (King, 1993; Strait et al., 2012). In spite of 

the potential to cause severe pathogenicity, Acanthocephala infections (e.g. Prosthenorchis spp.) are 

extremely common in this study population, routinely found in other surveys of callitrichids (Müller, 

2007; Tantalean et al., 1990; Wenz et al., 2009), and are also present in other New World primate 

families such as the Cebidae and Atelidae (King, 1993; Phillips et al., 2004; Wenz et al., 2009).  It has 

been shown before that in nature, where the host’s ability to tolerate infection is most important to its 

fitness, parasite pathogenicity may be dictated by environmental factors (Cardon et al., 2011), what 

Walker et al. (2010) discussed as “environmental forcing of pathogenicity”.  On top of this, it is well-

documented that interactions between diverse parasite species modulate pathogenicity (Balmer et al., 

2009; Lello et al., 2004; Monteiro et al., 2007b; Petney and Andrews, 1998). Of the 10 helminths 

documented in this study, seven are of unknown pathogenicity, two are probably non-pathogenic, and 

two known to be pathogenic (Table 2 and Supplemental Table). That the two most common parasites 

in this study, across years, consisted of a nonpathogenic (Molineus) and pathogenic (Prosthenorichis) 

helminth reinforces that caution is necessary before translating clinical findings to real-world systems 

and labeling a parasite as harmful. Specifically, observations of particularly pathogenic parasites (e.g. 

Acanthocephalans) should be viewed in context with the broader parasite community and changes in 

the environment, which requires detailed longitudinal data collection (Haukisalmi et al., 1988).  

 

Although our analysis did not identify nonrandom associations between co-infecting parasites, it is 

still possible that within-host parasite interactions are at play. The use of presence-absence infection 

data is much less sensitive at detecting relationships than accurate measures of parasite intensity or 

burden (Knowles et al., 2013; Lello et al., 2004), which will be an aim of future studies. Our inability 
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to detect a relationship between group size and parasite species richness is consistent with our 

previous work on blood parasites (Erkenswick et al., 2017), and may be a consequence of too little 

variation in group sizes, which ranged from 3 to 8. Other genera of Callitrichids can occur in slightly 

larger groups than our hosts species, for example Callithrix groups can be as large as 15 members 

(Pontes and Cruz 1995)(Watsa et al., 2016), but it also may be that generalities about group size and 

parasite diversity do not apply within the Callitrichidae.  

 

The data we have provided here represent the first description of the intestinal parasite for free-

ranging Saguinus imperator. Although the IUCN currently lists S. imperator of least concern 

(Rylands and Mittermeier, 2008), the core of its distribution is surrounded by one of the fastest 

growing gold mining industries in the world (Asner et al., 2013). Moreover, S. imperator is currently 

one of the most valuable Peruvian monkeys in the illegal wildlife trade (Watsa, 2015). Hence, close 

monitoring of intact populations of S. imperator is crucial to elevate its conservation status. We also 

provide a new comparative dataset of gastrointestinal parasites from L. weddelli (formerly S. 

fuscicollis weddelli), which is also a primate of ‘least concern,’ though recent taxonomic revisions 

may result in revision of its conservation status (Buckner et al., 2015; Matauschek et al., 2011). 

 

We find some noteworthy similarities and differences between this study and previous studies of 

gastrointestinal parasites from congeneric callitrichids. Phillips et al. (2004) screened one group of S. 

fuscicollis in the relatively nearby Tambopata National Reserve and identified four parasites 

(Trichuris, Iodamoeba, Entamoeba, and an unidentified strongyle), none of which were found in our 

hosts. Although they had a small sample size of 4 individuals, it is surprising that they did not detect 

Prosthenorchis sp. infection, which they did find in 1 of 18 squirrel monkey (Saimiri sciureus) fecal 

samples at the same site. In northern Peru, both Wenz et al. (2009) and Muller (2007) conducted 

gastrointestinal parasite surveys over a single season from sympatric callitrichine hosts, S. fuscicollis 

and S. mystax, and reported a parasite assemblage that mostly overlaps with our findings 
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(Prosthenorchis, Hymenolepis, large and small Spirurids, Primasubulura, Strongylid larvae). Both 

recorded higher prevalence than our study for every helminth except Prosthenorchis, which was 

considerably less common. Comparing both of their tamarin hosts, they detected higher prevalence of 

Hymenolepis and PSR for S. fuscicollis, as we did. The variation in prevalence between the studies is 

likely related to ecological differences between the locations. We suspect that greater diversity of 

helminths observed in this study is associated with a higher diversity of primates (11 compared to 4), 

but also may be a consequence of prior human activities at the site which altered the densities of 

primate species at EBLA (Rosin and Swamy, 2013) 

 

Interpreting these findings in light of parasite mode of transmission, direct or trophic, is challenged by 

the lack of information on the exact intermediate hosts of many trophic parasites, and many could 

have more than one intermediate host (Supplemental Material). Two helminths in this study, 

Molineus and Strongylid larvae, are transmitted between individuals via direct contact or a 

contaminated substrate, and yet prevalence differed by ~ 0.40. Although neither host age class nor sex 

explained prevalence of either of these parasites, there was a significant species difference (increased 

prevalence of Molineus sp. among L. weddelli). While a comprehensive study of feeding and foraging 

behavior has not been conducted on our host populations, it has been conducted on sympatric S. 

fuscicollis and S. mystax in Northern Perú. Findings from two studies on tamarin predation agree that 

S. fuscicollis spends significantly more time foraging in the lower strata and on the ground, while the 

opposite was true of S. mystax (Heymann and Knogge, 2000; Smith, 2000). If parasite free-living 

phases persist longer on the ground or in certain forest strata, then niche specialization might account 

for this observed difference in prevalence. Smyth (2000) also documented that each host species 

exercised distinct feeding preferences such as color and size of prey items. This could account for the 

two observed species differences among trophically transmitted parasites, Dicrocoeliidae and 

Hymenolepis, since size and coloration of tropical arthropods and small vertebrates are important 

evolutionary characters across different forest habitats. Consistent with the prevalence of blood 
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parasites from this population (Erkenswick et al., 2017), age class predicted the presence of four 

trophically transmitted parasites, though not always in the same direction. We attribute this to 

differences in diet and foraging efficiency between younger and older individuals which would alter 

parasite encounter rates.  

 

By tracking prevalence of parasitic infections over time in wild populations it is possible to infer 

whether natural parasite communities are stable, however, longitudinal data at the level of the 

individual provides insights into the source, or lack, of population stability {Knowles:2013eb}. In 

some cases, it could even aid in identification of parasites that have negative health consequences. For 

example, if parasite prevalence and incidence of new infection is consistently high across years, but 

there is no evidence of individuals clearing infections, then previously infected hosts must be 

disappearing regularly. In this study, we encountered few disparities in the rate of acquisition or loss 

of parasites, and considered in concert with observed prevalence, we see no obvious signs of negative 

health consequences. If any, further research on potential health effects of Molineus spp. may be 

warranted due to the higher rate of acquiring than losing infection, and given that its elevated 

prevalence was not accounted for by age-class, or the arrival of new individuals by birth. As our data 

were amalgamated over three years it is worth addressing the potential for false negatives to influence 

our esimated rates of change in helminth infection status due to sampling error. Across both of our 

host species there were 19 animals sampled for all three years. For each parasite, we counted the 

frequency in which an individual’s infection status switched from infected to uninfected and back to 

infected in 2014, which could be an indication of false negatives.  Across 11 helminths this occurred 

12 times, on average 1.09+/-1.3 (0:4) instances per parasite, with a median of 1. The highest observed 

frequency was 4 with Molineus spp. infections, and all other frequencies were 2 or less per helminth. 

Although this seems high for Molineus spp., considering all 12 occurrences together, 3 took place for 

separate helminth infections in one S. imperator individual, while the other 9 were isolated 

occurrences across 9 different host individuals. Hence, it seems unlikely that sampling error could 
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explain our findings. 

 

The results provided here, in combination with recent works on hemoparasites (Erkenswick et al., 

2017; Erkenswick et al., in review), represent a benchmark against which future parasitological 

surveys can be compared. Represented in these callitrichine host parasite assemblages are parasites 

that are transmitted directly, trophically, or by arthropod vectors. Given changes in the environment 

that alter food availability or vector populations, we would expect corresponding deviations from 

what has been documented here. The near ubiquity across South America rainforests, propensity to be 

found in sympatry with other New World primates, and relative resilience to human altered 

landscapes, make Callitrichidae a potential flagship family for the regional detection of ecological 

changes, or even environmental threats.  
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Supplemental Materials 
 

 
Figure 4. Representative micrographs and measurements for each helminth parasite 
 
 
 
 
 
Table 5. Average proportion of individual infection status change by host species and parasite. 

  
Mean	 Standard	Deviation	

Species	 Parasite	 Gain	 Loss	 No	change	 Gain	 Loss	 No	change	

S.	
fuscicollis	

Dicroceoliidae	 0	 0.12	 0.88	 0	 0.09	 0.09	
Gongylonematidae	 0.14	 0.2	 0.66	 0.06	 0.16	 0.23	
Hymenolepis	sp.	 0.18	 0.3	 0.52	 0.06	 0.04	 0.1	
Larvated	ova	1	 0.07	 0.14	 0.8	 0.03	 0.06	 0.09	
Larvated	ova	2	 0.02	 0.05	 0.93	 0.04	 0	 0.03	
Molineus	spp.	 0.16	 0.02	 0.82	 0.1	 0.04	 0.06	
P.	jacchi	 0.07	 0	 0.93	 0.03	 0	 0.03	
Prosthenorchis	sp.	 0.09	 0.09	 0.82	 0	 0	 0	
S.	guianensis	 0.09	 0.02	 0.88	 0.13	 0.04	 0.09	
Strongyloides.like	 0.18	 0.05	 0.77	 0.13	 0	 0.13	
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Trypanoxyuris.like	 0.12	 0.14	 0.75	 0.09	 0	 0.1	

S.	
imperator	

Dicroceoliidae	 0.12	 0.45	 0.44	 0.02	 0.07	 0.05	
Gongylonematidae	 0.16	 0.1	 0.74	 0.05	 0.14	 0.09	
Hymenolepis	sp.	 0.05	 0.06	 0.88	 0.07	 0.09	 0.02	
Larvated	ova	1	 0.1	 0.15	 0.75	 0.14	 0.21	 0.07	
Larvated	ova	2	 0.16	 0.14	 0.7	 0.05	 0.09	 0.14	
Molineus	spp.	 0.38	 0.2	 0.42	 0.12	 0.28	 0.16	
P.	jacchi	 0.06	 0.04	 0.9	 0.09	 0.05	 0.14	
Prosthenorchis	sp.	 0.12	 0.12	 0.76	 0.02	 0.02	 0.05	
S.	guianensis	 0	 0	 1	 0	 0	 0	
Strongyloides.like	 0.22	 0.16	 0.62	 0.16	 0.05	 0.12	
Trypanoxyuris.like	 0.26	 0.16	 0.56	 0.09	 0.05	 0.05	
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Abstract 

There is an increased interest in potential zoonotic malarias. To date, Plasmodium malariae that 

infects humans remains indistinguishable from P. brasilianum, which is widespread among New 

World primates. Distributed throughout tropical South America, the Callitrichidae are small arboreal 

primates in which detection of natural Plasmodium infection has been extremely rare. Most prior 

screening efforts have been limited to small samples, the use of low-probability detection methods, or 

both. Rarely have screening efforts implemented a longitudinal sampling design. Through an annual 

mark-recapture program of two sympatric callitrichids, the emperor (Saguinus imperator) and 

saddleback (Saguinus fuscicollis) tamarins, whole blood samples were screened for Plasmodium by 

microscopy and nested PCR of the cytochrome b gene across four consecutive years (2012 – 2015). 

Following the first field season, approximately 50% of the samples collected each subsequent year 

were from recaptured individuals. In particular, out of 250 samples from 134 individuals, 11 samples 

from 6 individuals were positive for Plasmodium, and all but one of these infections was found in S. 

imperator. Importantly, the cytochrome b sequences were 100% identical to former isolates of P. 

malariae from humans and P. brasilianum from Saimiri sp. Chronic infections were detected as 

evidenced by repeated infections (7) from two individuals across the 4-year study period. 

Furthermore, 4 of the 5 infected emperor tamarins were part of a single group spanning the entire 

study period. Overall, the low prevalence reported here is consistent with previous findings. This 

study identifies two new natural hosts for P. brasilianum and provides evidence in support of chronic 

infections in wildlife populations. Given that Callitrichids are often found in mixed-species 

associations with other primates and can be resilient to human-disturbed environments, they could 

contribute to the maintenance of P. malariae populations if future work provides entomological and 

epidemiological evidence indicating human zoonotic infections. 

 
 
Keywords: Plasmodium brasilianum; Plasmodium malariae; Callitrichidae; Chronic infection   
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Introduction 

In 2015 malaria was diagnosed in approximately 212 million people, and resulted in the loss of 

429,000 lives worldwide (1). In malaria-endemic regions, infections are unevenly distributed among 

human populations, with the highest prevalence among children and adolescents. Today, malaria 

control programs remain among the largest public health efforts, costing an estimated $4.75 billion 

annually (2), despite the fact that the causative agents of malaria (protozoan parasites of the genus 

Plasmodium) were first discovered as early as 1880 (3). A potential challenge faced by ongoing 

efforts to eliminate malaria in human communities is the possibility of zoonotic infections (4).  In 

particular, there is compelling evidence that some Plasmodium species infecting humans are also 

circulating in nearby simian and ape communities. Whether such non-human primate host can act as a 

reservoir of human malarias is a matter of great interest.  

 

According to the Global Mammal Parasite Database, 27 species of Plasmodium have been 

documented in nonhuman primates (5), three of which (P. falciparum, P. vivax, and P. malariae) 

frequently occur in humans. Along with P.ovale, Plasmodium species that infect humans do not form 

a monophyletic group (6). The two parasites that cause the greatest morbidity (P. falciparum and P. 

vivax) are part of larger clades of species that include many that parasitize nonhuman primates 

(4,7,8).  

 

In South America, Plasmodium brasilianum was first described in monkeys in the beginning of the 

20th century and has now been documented in approximately 31 species of New World monkeys (9). 

This broad host range is unusual among other non-human primate malarias and may indicate a very 

resilient parasite species. To date, numerous studies have looked for, but not found, any reliable 

morphological, serological, or genetic differences between P. brasilianum and P. malariae that infect 

humans (7,10-13). Lalremruata et al. (12) collected blood samples from several remote populations of 

the Yanomami people in Venezuela, and isolated 33 infections by nested-PCR screening for the 18S 
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gene of P. malariae. Of these, 12 sequences were 100% identical to P. brasilianum strains recovered 

from howler monkeys in French Guiana, and the remainder were 99-100% identical to P. malariae 

strains from Myanmar and Papua New Guinea. Although the 18S gene does not allow us to accurately 

discern recent host switches due to its rate and semi-concerted mode of evolution (14), the genetic 

distance between all 33 strains seems consistent with intraspecific variation observed within other 

single species of Plasmodium. The only factor that has ever been used to differentiate these two 

parasites is host-identity (human or not), and yet experimental studies have demonstrated that 

nonhuman primates are susceptible to P. malariae (15). These findings suggest that P. brasilianum 

and P. malariae could very well be the same organism.  

 

Plasmodium malariae/brasilianum causes quartan malaria, so termed for having 72-hour erythrocytic 

cycles, unlike P. falciparum or P. vivax that cycle every 48 hours (16). Plasmodium malariae has led 

to nephrotic syndromes in humans and experimentally infected monkeys (16,17), and has been shown 

to persist in humans for years, suggesting that a similar pattern may occur in non-human primates like 

chimpanzees (18,19).  Recrudescent infections of P. malariae/brasilianum can occur when hosts are 

subjected to stressful conditions or become immunocompromised (16,20). In malaria-endemic 

regions, co-infections of P. malariae/brasilianum with other Plasmodium spp. are common 

(12,21,22). Since host parasitemia for P. malariae/brasilianum is relatively low, co-infections are 

probably under-detected when screenings are performed only by microscopy (16,17), and yet 

microscopy remains the most broadly utilized diagnostic technique around the world today. 

 

The ability to reside in non-human primates, induce renal pathology, persist as a chronic infection in 

humans, and interact with other species of Plasmodium qualifies P. malariae as an important health 

concern at the human-wildlife interface given that present research suggests it is the same as P. 

brasilianum. Fundamental to assessing health risks are the development of a clear understanding of 

host breadth and associated prevalence for these (or this) species. The majority of infections found in 
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wild New World monkeys are confined to the Atelidae, Pitheciidae, and Cebidae, while detection in 

the Callitrichidae, perhaps the most speciose and widespread Neotropical primate family, remains 

rare (9,13,21,23). Callitrichids are always found in sympatry with other New World primate species, 

frequently in the context of mixed-species, or polyspecific associations (24,25). Unlike the majority 

of other New World primates they can also persist in disturbed and human occupied areas (26-28). 

Moreover, continuing removal of large Neotropical primates due to poaching and hunting may be 

leading to a population expansion of the Callitrichids (29). If proven to be vectors of Plasmodium 

infections, these characteristics of the callitrichids might implicate them as an important sylvatic 

component for malaria control efforts. 

 

When considering accessible survey data on Plasmodium infections from wild populations of 

callitrichids to date, several biases stand out. First, although five of the seven callitrichid genera have 

been tested for Plasmodium brasilianum (Saguinus, Cebuella, Callithrix, Leontopithicus, and Mico), 

the majority of species have not been sampled (5,23). Of the ~24 species investigated so far, nine 

have shown an infection, including Saguinus midas, S. niger, S. geoffroyi, S. martinsi, Mico 

humeralifer, Leontopithicus chrysomelas, L. chrysophagus, L. rosalia, and Callithrix geoffroyi. 

However, only the first three of these species (S. midas, S. niger, and S. geoffroyi) are clear cases of 

natural infection; the other infections were recently detected from captive animals at primate research 

or rescue centers (23,30). Of the cases representing natural infections, the number of infected 

individuals and corresponding sample sizes consist of 1/1000 for S. geoffroyi (31), 4/109 for S. niger 

(32), 4/178 in another study of S.niger (32,33), and 3 in 54 for S. midas (13). This is relevant since P. 

brasilianum tends to exhibit low prevalence, averaging 0.045±0.043 for the Callitrichidae and 

0.023±0.024 for the Primate Order (34). Third, no studies to date report chronic natural infections by 

sampling the same individuals across years. If true, this would provide evidence that the 

Callitrichidae could be suitable hosts for P. malariae/brasilianum and may act as a reservoir for 

human malaria.  
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Here we screen for natural Plasmodium infections longitudinally across four years in two sympatric 

species of callitrichids, the saddleback tamarin, Saguinus fuscicollis weddelli (but see ongoing 

taxonomic revisions (35,36)), and the emperor tamarin, Saguinus imperator. Given the observed host 

breadth of P. brasilianum/malariae and the small sample sizes of prior efforts, we predict that 

callitrichine species could be competent reservoirs for this parasite. Second, since P. malariae 

infection can be chronic in humans, we predict that the same will be true for these callitrichine hosts. 

In addition to testing these predictions, our goal is to establish the prevalence of Plasmodium, and 

incidence of new infections, in both species, and to explore any patterns in how infections are 

distributed across host characteristics such as sex, age class, and group membership. 

 

Materials and methods 

Study Subjects and Sampling 

Samples were collected from a free-ranging population of saddleback (Saguinus fuscicollis) and 

emperor (Saguinus imperator) tamarins at the Estación Biológica Rio Los Amigos (EBLA) in the 

Madre de Dios Department of southeastern Perú (12°34’07”S, 70°05’57”W). This privately owned 

field station is managed and protected by the Amazon Conservation Association (ACA) and receives 

more than 150 visitors each year. The field station is located at the confluence of the Los Amigos and 

Madre de Dios Rivers, and the 900-ha plot is contiguous with the much larger Los Amigos 

Conservation Concession that lies within the buffer zone of Manu National Park. The site exhibits 

lower densities of large-bodied primates than has been recorded from nearby forest in the government 

protected Tambopata National Reserve, which is attributed to hunting that took place prior to 

purchase by the ACA (29); however densities of medium- and small-bodied primates are higher. The 

study groups of both species inhabit both terra firme and várzea habitat.  

 

Since 2009, we have encountered approximately 70 unique individuals each year, across both species. 
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Our program is optimized to ensure habituation of primates to subsequent human observation (37). 

Animals are given permanent identification tags via subcutaneous microchips (Avid, Home Again©) 

so samples could be collected from the same individual across years. Samples for this study were 

collected across four years (2012-2015) in June and July (the dry season). During capture, blood 

samples of < 300 uL were drawn from the femoral vein of each animal while it was anesthetized with 

ketamine hydrochloride (Ketalar, Pfizer Inc., New York, USA). Each sample was stored dry on 

Whatman FTA Micro Elute Cards for subsequent DNA extraction and at least two blood smears were 

prepared with fresh blood.  All sampling protocols adhere to guidelines outlined by the American 

Society of Mammalogists (38) and were approved by the Institutional Animal Care and Use 

Committee at the University of Missouri-St. Louis (317006-2, 733363-2) and the Directorate of 

Forest and Wildlife Management (DGFFS) of Perú annually. 

 

Blood parasite microscopy 

Immediately after blood draw, blood smears were made on standard microscope slides and air-dried. 

All smears were fixed for five minutes in 100% methanol within six hours and stained in Giemsa’s 

solution following Valkiunas et al. (39) within three weeks of fixation. Smears were observed at 400x 

magnification using light microscopy (Olympus CX31) for the presence of parasites. Blood parasites 

were recorded while conducting a total leukocyte count estimation (enumeration of leukocytes in 10 

non-overlapping fields of view in the smears’ monolayer at 400x magnification) and differential 

(classification of 200 leukocytes in the monolayer at 1000x magnification); each slide examination 

took less than 30 minutes. Examinations were carried out in a systematic direction to avoid 

overlapping fields of view, excluding damaged sections, where leukocytes and parasites were too 

distorted to identify. 

 

Molecular detection and sequencing 

DNA was isolated from a 3 mm diameter hole punch from the blood stored on Whatman FTA Micro 
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Elute Cards into 30ul of ddH20 using standardized protocols recommended by the manufacturer (GE 

Health Care Life Sciences, Pittsburgh USA). DNA samples from the first three years (2012 – 2014) 

were screened for haemosporidian parasites by a nested polymerase chain reaction (nPCR) protocol 

that targets part of the parasite cytochrome b (cytb) gene, 709 base pairs (bp), following Duval et al. 

(40). To confirm infection status and to obtain the near complete mitochondrial cytb gene (1,131bp) 

for infected individuals across the entire study period (2012 – 2015), we employed a separate nPCR 

protocol that amplifies a 1,038 bp fragment with specific forward-TGTAATGCCTAGACGTATTCC 

and reverse-GTCAAWCAAACATGAATATAGAC primers for the outer PCR and forward-

TCTATTAATTTAGYWAAAGCAC and reverse-GCTTGGGAGCTGTAATCATAAT primers for 

the inner PCR, following Pacheco et al. (41). PCR amplifications were carried out in a 50 µl volume 

with 8ul of total genomic DNA, 2.5 mM MgCl2, 1X PCR buffer, 1.25 mM of each deoxynucleoside 

triphosphate, 0.4 mM of each primer, and 0.03 U/µl AmpliTaq polymerase (Applied Biosystems, 

Roche-USA). The PCR conditions were: a partial denaturation at 94 °C for 4 min, 36 cycles with 

1 min at 94 °C, 1 min at 53 °C and 2 min extension at 72 °C, and a final extension of 10 min added to 

the last cycle. Then, a nested PCR using 1 µl of the first amplification as the template was performed 

under identical PCR conditions. After electrophoresis, all amplified products were excised from the 

gels, purified by the QIAmp Gel Extraction Kit (Qiagen), and both strands were sequenced using an 

Applied Biosystems 3730 capillary sequencer.  

 

Phylogenetic analysis 

Complete cytb gene sequence identity for samples positive for Plasmodium was confirmed using 

BLAST against NCBI. Electropherograms were visually examined to rule out mixed infections. In 

addition to the sequences obtained in this study, we included a total of 26 sequences available in 

GenBank for Plasmodium parasites isolated from mammals in the subsequent phylogenetic analysis.  

The phylogenetic relationships between sequences were inferred on the cytb gene using MrBayes 

v3.2.6 with the default priors (42). Alignments were made using ClustalX v2.0.12 and Muscle as 
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implemented in SeaView v4.3.5 (43) with manual editing. The data were fit with a General Time-

Reversible model (GTR + I + Γ) that had the lowest Bayesian Information Criterion (BIC) score (44). 

Bayesian support for the nodes was inferred in MrBayes using 4 × 106 Markov Chain Monte Carlo 

(MCMC) steps, and after convergence was reached (posterior probability < 0.01, potential scale 

reduction factor between 1.00 and 1.02), we discarded 25% of the samples as burn-in (42). Then, the 

sequence divergence between species was calculated using a Kimura two-parameter model of 

substitution as implemented in MEGA v.6.05 (45). 

 

Results 

In total, we collected 250 blood samples (153 from Saguinus fuscicollis, 92 from Saguinus imperator) 

spread across 134 individuals (83 and 46, respectively) during the study period. Zero infections were 

confirmed from examination of thin blood smears; however, 10 samples were successfully amplified 

by nPCR from emperor tamarins (three each from 2012 and 2013, and two each from 2014 and 2015) 

and one from a saddleback tamarin in 2014 (Table 1). The single saddleback tamarin infection only 

amplified once during preliminary screening for Plasmodium following the Duval et al. (40) protocol, 

and because the cytb fragment was of shorter length it was excluded from phylogenetic analysis; 

however, the sequence was 100% identical to others obtained in this study. The remaining 10 partial 

cytb sequences (1,038bp) were 100% identical to each other and to reference sequences for human 

isolates of Plasmodium malariae and squirrel monkey (Saimiri sp.) isolates of P. brasilianum (Fig 1); 

only one sequence per year is included in the phylogeny. These 10 sequences have been deposited to 

GenBank (Accessions KY709297– KY709306).
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Table 1. Nested-PCR Screening Results 

Individuals 
sampled 

Prevalence (S. 
imperator only) 

Incidence 
(S. imperator 

only) 

Animal 
ID Species Sex Age 

class 

Group 
ID 

(size) 

Sample 
Collection 

Date 

S.fuscicollis 35 
S. imperator 21 0.14 NA 

81 S. imperator M Adult 9 (6) 6/13/12 

32 S. imperator M Adult 9 (6) 6/13/12 
89 S. imperator F Adult 15 (3) 6/18/12 

S. fuscicollis 45 
S. imperator 24 0.13 0.33 

34* S. imperator F Sub-
adult 9 (7) 7/10/13 

32 S. imperator M Adult 9 (7) 7/10/13 
36** S. imperator F Adult 9 (7) 7/10/13 

S.fuscicollis 36 
S. imperator 21 0.10 0.0 

140 S. fuscicollis M Adult 13 (4) 6/27/14 
32 S. imperator M Adult 9 (6) 7/6/14 
36 S. imperator F Adult 9 (6) 7/6/14 

S.fuscicollis 37 
S. imperator 26 0.08 0.0 

32 S. imperator M Adult 9 (8) 6/27/15 
36 S. imperator F Adult 9 (8) 7/3/15 

*Infection was not detected in this individual in 2014. 
**This individual is natal to this group, born in 2011. An infection was not detected in 2012 as a sub-adult.



 
 

 

Fig 1. Cytochrome b phylogeny with new Plasmodium isolates. One Plasmodium isolate per 
year from this study has been included in the phylogeny with infected animals indicated by their 
unique animal ID numbers. Plasmodium isolates from humans are indicated in red and a squirrel 
monkey isolate from Perú is in blue. For each sequence, host species, sample locations, and 
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GenBank accession numbers are provided. The map (upper left) indicates the sampling location 
for this study. 
 

 

Prevalence of infection among emperor tamarins was 0.14 in 2012 (n = 21), 0.13 in 2013 (n = 

24), and 0.10 in 2014 (n = 21), and 0.08 in 2015 (n=26) with an average across years of 0.11+/-

0.03 (Table 1). While prevalence remained relatively stable across years, incidence decreased 

from 0.33 in 2013 to 0 in 2014 and 2015.  Prevalence was maintained by 1 adult male that 

remained infected across the entire study period, and 1 adult female, born in this same group in 

2011, that acquired and maintained an infection from 2013 to 2015 (see Table 1).  Two other 

emperor tamarin individuals (an adult male and female from 2012) were found infected in the 

only years they were sampled. An infection in one sub-adult female from 2013 could not be 

detected in 2014 or 2015. Although this study assessed 7 emperor tamarin groups, 4 of the 5 

emperor tamarin infections belonged to the same group. The infected saddleback tamarin was an 

adult male from 2014 whose home range partially overlapped with the infected emperor tamarin 

group and also included parts of the basecamp at the field site. An infection was not detected 

from this individual in 2015. 

 

Discussion 

A handful of Plasmodium species other than P. malariae/brasilianum can infect both human and 

nonhuman primates. However, in many cases, there is still limited evidence that non-human 

primates are a reservoir of human malaria. A clear example of zoonotic malaria is Plasmodium 

knowlesi, a simian parasite in southeast Asia that has been repeatedly found in humans (46,47). 

This parasite appears to have independently infected humans in many areas of Southeast Asia 

(47-49). In addition, Plasmodium cynomologi parasitizes Asian macaques and has at least one 

documented case in humans (50). Beyond these two cases, other studies have detected human 

malarias in non-human primates but the epidemiological and genetic data are still insufficient to 



 78 

implicate non-human primates as reservoirs for human malaria. The human parasite P. vivax is 

suspected to circulate in a subset of west African apes that are positive for the Duffy blood group 

antigen molecule (4). The normal hosts for P. simium are large New World monkeys (Atelidae), 

but there is at least one case of a human infection (51). Plasmodium falciparum, the most virulent 

human Plasmodium, is sometimes detected in New World monkeys (8 species over 5 genera) (5) 

but there is no evidence indicating that such non-human primates act as malaria reservoirs. 

 

Although host switches are common in non-human primates, not all host switches indicate the 

presence of a zoonosis (41,52). As an example, P. falciparum has been found in apes, particularly 

chimpanzees (19,53). However, such infections had a human origin because they were all 

resistant to commonly used antimalarial drugs (41). Thus, it was shown that apes can acquire the 

parasite from humans; however, whether there could be human infections from a non-human 

primate host (a true zoonosis) requires additional evidence beyond the detection of identical 

parasites. In particular, evidence of active gene-flow and the presence of competent vectors that 

can infect humans from a non-human primate are missing. A case in which zoonoses have been 

clearly established by these criteria is Plasmodium knowlesi from isolated macaque (Macaca 

spp.) populations in Borneo and Peninsular Malaysia (49). A first step in the case of P. 

malariae/brasilianum, however, is to better characterize its host range throughout South America. 

 

Plasmodium brasilianum has been screened for in S. fuscicollis on two separate occasions 

between 1995 and 2013 (n = 19 and 6, respectively) in Brazil (9,21), and only once in S. 

imperator (n = 2) (54), with zero reported infections for both species. Here we confirm for the 

first time that these two species are susceptible to P. brasilianum/malariae. Like past studies of 

Plasmodium from other simian hosts in South and Central America, P. brasilianum was 

genetically identical to P. malariae using cytb, reinforcing that they are likely to be a single 

organism (13). That we were only able to amplify a single saddleback tamarin infection in a 
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single assay is likely caused by poor sample quality, extremely low parasitemia, or both.  As the 

sample was physically isolated from any other surrounding positives, it would represent a very 

improbable instance of contamination during laboratory analyses. 

 

Importantly, our data suggest that chronic infections of P. brasilianum occur in the wild, 

consistent with the low, stable prevalence in emperor tamarins despite decreasing incidence of 

new infection (Table 1). If true, this provides evidence that Callitrichidae might act as reservoirs 

for human zoonotic malaria; however further investigation should take place to show that a 

complete parasite lifecycle is taking place, such as the presence of intraerythrocytic development.  

Our findings also suggest that these non-human primates may naturally clear infection of P. 

brasilianum; however, it will be necessary to differentiate a natural clearance from a sub-

microscopic infection with a parasitemia that is below PCR detection thresholds. Since infections 

appear to be clustered in our study population, additional years of data will allow us to track the 

rate of transmission to new group members (for example, offspring within infected groups) and to 

new groups. This also opens possibilities for measuring individual health parameters before and 

after the onset of P. brasilianum infections and whether there exist associations with other natural 

parasites (20). 

 

The parasite prevalence we observed for emperor tamarins was in the same range that has been 

published from other wild Neotropical primate populations. Although prevalence was too low to 

analyze variation between different demographic groups, we observed that 4 of 5 infections 

occurred in a single group (out of 7). Previous studies on Plasmodium from Neotropical primates 

make little mention of how parasites are distributed within host populations, but potentially 

uneven distributions would be an important factor for assessing disease risk (49), particularly if 

some of those non-human primates share competent vectors with humans. Although the available 

data are limited, there are several explanations for the observed pattern of clustered infections. 
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First, the mosquito vector might show preference for certain vertebrate hosts. This hypothesis 

requires additional data, including some evidence of population structure in the parasite that is 

linked to specific hosts. Indeed, P. inui, also a quartan parasite, does not show host population 

structure in Borneo (55) but P. knowlesi does in Malaysia (49). This effect could even be 

exaggerated by host behavior, if, for example, the infected group utilizes unusually open sleep 

site locations. Nunn and Heyman (56) found preliminary support for the hypothesis that primates 

that sleep in closed microhabitats experience lower prevalence of Plasmodium infection. Emperor 

tamarins generally sleep in thick tangles of branches and vines, and sometimes tree holes, and 

although this is an unlikely explanation, it will be worth ruling out in future years. Second, there 

could be additional hosts within the home range of the infected group of S. imperator that might 

increase the parasite encounter rate. The latter scenario is not unlikely, as there are 9 other 

nonhuman primate species present that could host Plasmodium, including members of the 

Atelidae, Cebidae, Pithecidae, and Aotidae, as well as a small but dynamic population of human 

researchers. However, all of the nonhuman primate species occur concurrently throughout the 

study area, and thus may not explain clustering within one species and one social group. 

Regarding the risk from infected humans at EBLA, the home range of this group does not overlap 

with the stations basecamp. Of two saddleback and two emperor tamarin groups with home 

ranges that do intersect with the basecamp, only the sole saddleback tamarin that appeared 

infected for a single year is member to these groups. That these groups closest to basecamp, 

which are the most well-sampled and exposed to the highest degree of proximity with 

researchers, accounted for a single Plasmodium infection from one year, suggests that 

transmission from human to nonhuman primates is not the source of P. brasilianum infection at 

EBLA.  However, greater efforts to detect P. malariae in human populations that are in contact 

with non-human primates infected with P. brasilianum are needed to fully assess whether there 

are zoonotic infections.  Finally, there could be differences in host susceptibility or simply very 

low parasitemia below the detection of the PCR implemented in this study. As we have only 
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sampled tamarin groups that occur within an approximate 200-hectare area, it would be 

worthwhile to expand the study area to see if other clusters are present. 
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Abstract 

Prior research on cooperative breeders has considered correlations between group 

reproductive output (GRO) and the number of individuals in each age-sex class, but 

without controlling for uneven sampling efforts, the underlying effects of group size, and 

pseudoreplication at the group and species levels. Among callitrichids, age-sex classes do 

not provide meaningful categories, as individuals within an age-sex class can demonstrate 

varying reproductive development due to reproductive dominance of a few individuals 

per group. This study re-assesses the drivers of GRO in callitrichids by a) conducting a 

meta-analysis of published studies of callitrichid group composition; b) determining a 

novel method to assign developmental class based on reproductive morphology; and c) 

utilizing a multistep modelling approach to assess whether any sex-based developmental 

class predicts both the presence and the numbers of surviving offspring among free-

ranging saddleback (Leontocebus weddelli) and emperor tamarins (Saguinus imperator) 

in Peru. The meta-analysis utilizing a historical dataset revealed that adult females and 

group size, but not the number of adult males is significantly correlated with GRO. 

Statistical models of the new dataset revealed that only mature males predicted if groups 

had any infants at all, but that the number of surviving infants was predicted by mature 

females and group size. Thus mature males appear to be necessary for groups to raise any 

infants, but mature females and a larger group size increase group reproductive output 

overall. 

 
Keywords 
Callitrichid, cooperative breeding, group composition, reproductive output, development 
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Introduction 

Callitrichids exhibit a cooperative breeding system in which offspring receive care from 

alloparents, or individuals other than biological parents (Garber 1997; Jennions 1994; 

Sussman and Garber 1987). Groups typically consist of a single breeding female 

(although other females may be present) and variable numbers of adult and sub-adult 

males. Adults and subadults in a group can participate in infant rearing, including infant 

provisioning and transportation (Bales et al. 2000; Goldizen and Terborgh 1986; Huck et 

al. 2004). Despite the monopoly of breeding by a single adult female in most cases, 

callitrichids are rarely monogamous, but rather display a range of flexible mating 

strategies over time and within groups (Garber 1997; Garber et al. 2015; Goldizen 1988; 

Goldizen et al. 1996; Sussman and Garber 1987; Terborgh and Goldizen 1985).  

One of the primary arguments for the presence of helpers, typically unrelated adult males 

or natal subadults, is that they alleviate the cost of rearing energetically expensive twin 

offspring that constitute over 80 % of all births in callitrichids (save Callimico) (Tardif 

1997; Wislocki 1939). Alloparenting behaviors by helpers benefit offspring survival, and 

thus increase group reproductive output (GRO) (Bales et al. 2000; 2001; Boulton and 

Fletcher 2015; Garber 1997; Heymann 2000; Koenig 1995). By investing in the care of 

offspring, helpers could incur indirect fitness benefits if they are related to the biological 

parents; they also benefit from and contribute to group benefits, including increased 

vigilance and protection from predators, as well as access to valuable resources (for 

reviews see Bales et al. 2000; French 1997; Tardif 1997). Prior research suggests that the 
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effects of helpers on GRO are not uniform, and can vary based on helper sex and social 

status (Bales et al. 2000). There may also be species differences in how helpers of 

different age-sex classes influence GRO due to differing costs of infant-rearing between 

species (Díaz-Muñoz 2015; Heymann 2000). For example, pygmy marmosets (Cebuella 

pygmaea) have infant-parking strategies (Heymann 2000), while Goeldi’s monkeys 

(Callimico goeldii) do not produce twins (Porter 2001), which reduces the cost of infant-

care in these species. 

 

Five cases in the published literature have attempted to explain variation in GRO by 

correlational analyses of group demographics. First, a study by Garber et al. (1984) found 

that the average number of infant moustached tamarins (Saguinus mystax) that survived 

to become juveniles was significantly positively correlated with the number of adult male 

helpers in a group. A follow up to this study further indicated that groups with one adult 

male had one third the number of dependent offspring that groups with three or more 

adult males did, independent of group size (Garber 1997). Second, a review of research 

on wild common marmosets (Callithrix jacchus) revealed that the number of juveniles 

was significantly correlated only with the number of adult males, and no other age-sex 

class (Koenig 1995). Third, using a large dataset on golden lion tamarins (Leontopithecus 

rosalia), Baker et al. (1993) calculated a higher mean number of offspring for two-male 

groups than in single-male groups, only including adult non-natal males in these analyses. 

Fourth, Bales et al. (2000) examined the effects of particular alloparents on GRO in the 

same population of L. rosalia by classifying alloparents in two ways, a) as “helpers”, 

defined as all animals over 18 mo of age other than the reproductive pair and 
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reproductive subordinate females and b) “adult males”, both breeding and nonbreeding 

(Garber 1997; as with Garber et al. 1984; Koenig 1995). They found that among young 

groups (formed for three years or less) both numbers of helpers and adult males were 

positively correlated with the number of surviving infants, but that in established groups 

(formed for over three years), only the number of helpers correlated with GRO (Bales et 

al. 2000). And finally, infant numbers were found not to correlate with numbers of adult 

males or numbers of adult and subadult group members in an analysis of 21 group-years 

of pygmy marmosets (Cebuella pygmaea); however, juvenile numbers were strongly 

positively correlated with the number of adult and subadult group members (irrespective 

of sex) (Heymann and Soini 1999; Soini 1988).  

 

Other than these correlational analyses, two published studies have attempted to model 

the predictors of GRO in callitrichids to date.  Bales et al. (2001) modelled the effects of 

several maternal factors on female reproductive output in a population of L. rosalia that 

has two birthing seasons per year. Their analysis accounted for female identity, prior 

female reproductive success, repeat sampling of females across multiple years, and age. 

Female body mass predicted female reproductive output for litters in the first birth 

season, whereas that the number of helpers (as defined in Bales et al. 2000) explained 

offspring numbers in the second birth season. They concluded that mothers with 

increased helpers may carry infants less and thus be in better body condition for the 

subsequent birth season (Bales et al. 2001). A study of a single group of moustached 

tamarins (Saguinus mystax) from 1999 to 2008 used a logistic regression to model the if 

infants survived to age 3 months (response variable) against the number of male helpers 
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(Culot et al. 2011). This analysis revealed that the number of male helpers significantly 

affected infant survival to 3 months, but GRO was not modelled directly. However, they 

did find that 33.33% fewer infants survived when 2 vs. 3 males were present in the group, 

and infants died significantly more often with a median of 2.5, rather than 3, males 

present. 

 

 

The prior analytical approaches used to explore the role of helpers of both sexes, 

including adults and subadults, on GRO exhibit several methodological complications 

that should be addressed. 	Strict correlational analyses of mean GRO with numbers of 

individuals in different age-sex classes (Garber 1997; Koenig 1995) do not account for 

variable group sizes, which are often uneven across a species. For example, an 

assessment of data from a thirteen-year study on Leontocebus weddelli (formerly 

Saguinus fuscicollis weddelli (Buckner et al. 2015; Matauschek et al. 2010)) (Goldizen et 

al. 1996) with groups containing 1-4 adult males revealed that 25% (12/47) of groups had 

only one male, 68 % (32/47) of groups had 2 adult males, while only 5 % (2/47) had 3 

males, and 2 % (1/47) had four males – disparate sample sizes that preclude using means 

to test the effect of age-sex class on GRO as per Garber (1997). In another approach, 

Koenig (1995) attempted to assess the impacts of group size on GRO across multiple 

studies, but these analyses did not consider uneven sampling or random variation 

between studies, which can be accounted for by meta-analytical statistics. While Bales et 

al. (2001) used more powerful statistical methods such as generalised linear mixed 

modelling, theys examined only the effects of female-factors on GRO in L. rosalia, 
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excluding the potential influences of individuals from other age-sex classes (particularly 

adult males) from their model. 

  

When considering the Callitrichidae, an important distinction should be made between 

the set of individuals that copulate within a group (the mating system) and the smaller 

subset of individuals that contribute towards the gene pool of viable offspring (the 

breeding system) (Garber 1997). Kappeler and van Schaik (2002) refer to these as the 

social and the genetic mating systems respectively. Molecular techniques can be used to 

reliably identify participants in the genetic mating system (i.e. the biological parents) in 

wild populations (Garber et al. 2015; Huck, Löttker, Böhle, et al. 2005; Huck et al. 2007; 

Nievergelt et al. 2000), and as expected, this mating system usually contains  a single 

male and female. In rare cases, multiple males can father offspring in the same litter 

(Díaz-Muñoz 2011; Huck, Löttker, Böhle, et al. 2005; Suárez 2007). The social mating 

system, however, remains difficult to describe since copulation can be cryptic, occur 

infrequently, or be of short duration in many arboreal species(Campbell 2006; Watsa 

2013) Nevertheless, the potential to contribute to the gene pool rather than an individual’s 

actual contribution, which can be affected by many factors, may be relevant to 

understanding GRO in cooperatively breeding primates, particularly because biological 

parents’ efforts are not the sole contributors to infant survival. As yet, factors that 

describe the social mating system of each group, such as variation in individual 

reproductive development, have not been explored in relation to offspring survival, but 

they could clarify why all adults do not contribute equally to GRO (Garber 1997). 
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There are several mechanisms can contribute to variation in the reproductive capabilities, 

or developmental class, of callitrichids within the same age-sex class. Although further 

research is warranted to determine its frequency, there is evidence of reproductive 

suppression of female callitrichids from both wild and captive settings (Barrett et al. 

1990; Beehner and Lu 2013; Ziegler et al. 1987). Additionally, there is evidence of 

differences of up to 174% in testicular volumes of male moustached tamarins (Saguinus 

mystax) within the same group (Garber et al. 1996), which suggests that there may be 

reproductive skew among these males. A study of 24 male Leontopithecus rosalia in 14 

groups was able to demonstrate quantifiable reproductive suppression in subordinate 

males unrelated to the dominant breeding male in a group (Bales et al. 2006). There are 

also studies documenting delayed dispersal of individuals from natal groups in the wild 

(Garber et al. 2015; Goldizen and Terborgh 1989), which can have physiological 

ramifications (Ginther et al. 2001; Ziegler et al. 1987).  Thus, in a sampling of wild 

individuals, it is possible to encounter variations in reproductive morphology pertaining 

to scent-glands, vulva, nipples, testes and body weight measurements that may not 

reliably correspond with age.  

 

Reproductive development has been assessed before through endocrine studies of 

derivatives of testosterone, estradiol, and prolactin among callitrichids in captivity 

(Ziegler et al. 1993) and in the wild (Bales et al. 2006; French et al. 2003; Löttker et al. 

2004). However, wild studies are invariably challenged by the inability to collect blood 

for peptide hormones or adequate numbers of fecal steroid samples from known 

individuals across multiple ovarian cycles and breeding seasons (Löttker et al. 2004). One 
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study that measured testosterone levels among wild moustached tamarins (Saguinus 

mystax) found that concentrations varied too widely during maturation to reliably 

determine an individual’s level of reproductive development, including between twin 

siblings (Huck, Löttker, Heymann, et al. 2005). In golden lion tamarins (Leontopithecus 

rosalia) however, androgen levels were found to be different only in the case of 

subordinate males unrelated to the dominant male, and age class had no effect on 

hormone profiles, indicating that reproductive capability is sensitive to group 

demography and not reflected by age-class alone (Bales et al. 2006).  

 

Another means to evaluate reproductive development is to assess dominance status in a 

group, the definitions for which differ by sex. Among females, reproductive dominance 

can be exerted through endocrine monitoring, interactions with breeding males 

(marmosets: Sousa et al. 2005), infanticide and aggression (Bezerra et al. 2007; Digby 

and Saltzman 2009), and through age effects (i.e. the oldest female is the breeding 

female) (moustached tamarins: Garber 1997). Among males, agonistic interactions have 

been used by some to identify a dominant male (Baker et al. 1993), because using these 

criteria is not always feasible (Huck, Löttker, Heymann, et al. 2005),.  Nevertheless, 

given that reproductive skew has been observed in wild and captive callitrichids, it is 

clear that current metrics can fail to differentiate individuals of varying reproductive 

potential, particularly in light of species, demographic and site-specific variation. Thus, 

since all individuals in an age-sex class cannot be assumed to possess similar 

reproductive potential, it is critical that developmental class, and not only age-classes, be 

assessed for possible impacts on GRO. 
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In this study, we compiled two datasets to contrast the utility of using simple age-sex 

classes or morphology-based developmental classes on GRO. The first is a historical 

dataset of all published studies on wild callitrichids that provide data on the numbers of 

individuals in each age-sex class and the numbers of surviving offspring per year. We 

apply a meta-analytical approach to this historical dataset that builds on past works in 

estimating the average magnitude of correlations between age-sex classes and GRO 

across studies (Scheiner and Gurevitch 2001). In captive studies, males with only a single 

mate for a helper lost significantly more weight during offspring rearing than those with 

additional helpers (Achenbach and Snowdon 2002). Also, the addition of more sexually 

active males to a group was found not to threaten group stability, unlike cases of multiple 

breeding females within a group (Burkart 2015). Based on these findings and prior 

studies that have examined the effect of age-sex classes on GRO (Baker et al. 1993; Bales 

et al. 2000; 2001; Culot et al. 2011; Garber 1997; Heymann 2000; Koenig 1995) we 

predicted that the number of adult males should be significantly positively correlated to 

GRO across studies. Further, several cases of maternal infanticide have been reported for 

some tamarin species (Bezerra et al. 2007; Culot et al. 2011; Digby 1995; Tirado Herrera 

et al. 2000), largely in the case of multiple breeding females reproducing in a single 

group, such as in Callithrix jacchus (Digby and Saltzman 2009). An analysis of Saguinus 

mystax also predicted that infants were four times as likely to die before reaching the age 

of 3 months in groups with 2 breeding females rather than one (Culot et al. 2011). We 

therefore also predicted that high numbers of adult females would have a negative effect 

on GRO across studies.  
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The second dataset, from a 6-year study on saddleback (Leontocebus weddelli) and 

emperor tamarins (Saguinus imperator) in southeastern Peru, consists of group 

compositions by sex-based developmental classes and the numbers of surviving offspring 

each year.  We developed a method that uses multiple morphological variables collected 

via a mark-recapture program to reliably assign individuals to one of three developmental 

classes – infantile, immature, and mature - reflecting their potential to participate in the 

social mating system of a group. We use these data to answer two questions on the 

factors that drive GRO. First, which developmental classes have a significant effect on 

determining if a group has any offspring at all? Second, which developmental classes 

have a significant effect on predicting the number of surviving offspring (0 to 3)? These 

are two fundamentally different ways of addressing the question of GRO, however, we 

predicted (as with the historical dataset), that mature males would have a significant 

positive effect, while mature females would have the opposite effect. In our analyses, to 

account for group size variation, we used proportions of individuals belonging to each 

developmental class instead of raw numbers, as in the past.  

  

 

Methods 

(a) Study Site and Subjects 

We studied 21 groups of free-ranging saddleback tamarins (Leontocebus weddelli, 

formerly Saguinus fuscicollis weddelli (Buckner et al. 2015; Matauschek et al. 2010)) and 

emperor tamarins (S. imperator) at the Estación Biológica Río Los Amigos (EBLA) 
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(12°34′S 70°05′W) in the Madre de Dios Department of southeast Perú annually across 6 

seasons (2010-2015). We used a mark-recapture program (detailed protocol in (Watsa et 

al. 2015)) of 166 animals (106 Leontocebus weddelli and 60 Saguinus imperator) with an 

average of ~55 captures per year, for a total of 331 capture instances. At capture, infants 

were 4 to 7 months old, readily identifiable by facial pelage and dentition. The largest 

suspected breeding female in each group was fitted with a radio collar to facilitate 

tracking as a part of a larger behavioral study. Groups were followed for an average of 

425 hours (range: 116 to 1135 hours) each season (May to August) and instances of 

mating and dispersal were recorded ad libitum. All groups were censused at least twice a 

month for group composition. In total, we monitored the study groups for a total of 2127 

hours across the 6-year period. We recorded a total of 143 instances of mating across 33 

males of both species.  

 

 (b)  Assigning developmental status: 

In this paper, we call those individuals that participated in mating, and who have the 

potential to contribute to the gene pool, as mature females or males. We were able to 

classify a female as mature if the female displayed a nipple length of > 3 mm for 

Leontocebus weddelli or > 4 mm for Saguinus imperator (Soini and de Soini 1990; Watsa 

2013), indicating a prior birth record, regardless of whether multiple adult females or 

infants were present in the group. Mature males were considered to be any males that we 

observed copulating. We identified immature individuals in groups as those who were 

between 1 and 2 years of age i.e. were known to have been born in the prior census year. 

Thus, during a census, groups could consist of mature or immature members of both 
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sexes, as well as any offspring born in that same year who would belong to the infantile 

class. Based on these criteria, we identified a subset of individuals of known reproductive 

developmental status that could be used to validate our models to predict reproductive 

developmental status in other animals. 

 

During capture, we recorded body mass and length and width of genitalia and suprapubic 

glands to formulate indices of developmental status as follows: vulvar index (length + 

width), suprapubic gland area (length * width), average nipple length, and testicular 

volume (a semi-spherical estimate) (Garber et al. 1996; Soini and de Soini 1990). In 2.4 

% (8/331) of captures, a measurement (not always the same one) was not recorded by 

accident. We included these 8 instances by replacing the missing values with the mean 

value for the measurement in that developmental class (if known, N=4), or in that age 

class instead (N=4). We mean-centred and scaled all measurements and indices by 

standard deviation for use in a principal components analysis by species-sex groups 

(Principal Components Analysis: FactoMiner package in R (Beehner and Lu 2013)). We 

used individual coordinate values from the first two principal components in a linear 

discriminant function analysis (LDA) to model assign individuals of unknown 

developmental status to three categories: mature, immature, and infantile. Resampling of 

individuals occurred 1 to 4 times per animal, with 51.8 % captured at least twice. To 

avoid pseudoreplication, we used mean individual component scores across years for 

animals with known developmental status to train the LDA functions. We checked each 

species-sex class for normality (q-q normal plots), linear relationships (linear regression), 

and homoscedasticity between developmental categories (Bartlett’s test of homogeneity 
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of variance, p > 0.05). We omitted infant males of both species from the LDA due to 

limited variance causing heteroscedasticity; but since they were < 7 months old, this 

exclusion had no impact on adult and sub-adult male classifications. We calculated the 

percentage of known individuals that were correctly classified by this PCA-LDA model 

(Table 1), and used a MANOVA (manova: MASS package in R (Venables and Ripley 

2002)) to test the null hypothesis that all predicted developmental status groups were 

indistinguishable based on individual component scores. All statistical analyses were 

performed in R v.3.2.2 (R Development Core Team 2015). 

Table 1: Sample sizes of developmental classes before and after the LDA model 
  LEONTOCEBUS 

WEDDELLI 
SAGUINUS IMPERATOR 

 Known 
developmenta
l 
class 

% 
correctly 
classifie
d by 
LDA 

Full 
datase
t 

 Known 
developmenta
l class 

Full 
datase
t 

% 
correctly 
classifie
d by 
LDA 

MATURE 
FEMALES 

24 100 % 36  17 26 100 % 

IMMATUR
E 
FEMALES 

17 94 % 41  12 15 100 % 

INFANTILE 
FEMALES 

18 100 % 19  17 17 100 % 

MATURE 
MALES 

21 81 % 55  12 42 83 % 

IMMATUR
E MALES 

9 67 % 26  5 15 100 % 

INFANTILE 
MALES 

28 NA 28  11 11 NA 
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(c) Group reproductive output in the historical dataset 

To assess the reliability of previous findings that numbers of adult males is strongly 

associated with GRO, we performed a meta-analysis of all available historical data. We 

utilized Google Scholar and Scopus to conduct a literature review for published 

information demographics and group reproductive output in wild callitrichid populations. 

We compiled a historical dataset from 15 studies published from 1976 to 2015 on wild 

populations of Saguinus spp. (including S. geoffroyi, S. mystax, S. weddelli (now 

Leontocebus weddelli (Buckner et al. 2015; Matauschek et al. 2010) ), S. tripartitus, and 

S. oedipus), Leontopithecus caissara, and Callithrix jacchus. Studies were included in 

our analysis only if they reported raw numbers of individuals per age-sex class and GRO 

across a minimum of 5 group-years (Appendix 2 in Electronic Supplementary Material). 

For the meta-analysis of numbers of adult males to GRO, we included an additional study 

(now N=16) on L. rosalia by Bales et al. (2000) by calculating the effect size from the 

sample size and Spearman’s rank correlations presented in the study. To combine data 

from multiple studies, we used a Spearman’s rank correlation weighted by the number of 

group-years in the study as a standardized effect size. In this dataset, groups (within a 

study) and species (across multiple studies) were subject to repeated sampling over time, 

which could render certain data points non-independent. To control for interspecific 

differences, we added species as a moderator variable in a mixed effect meta-analysis of 

the historical dataset. Species did not have a significant effect and was subsequently 

removed; we proceeded with a random effects meta-analysis that does not assume equal 

effect sizes across studies. Regarding repeated sampling of a subset of groups in long-

term studies, we feel that their inclusion does not bias our study more than their 
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exclusion, which would drastically shrink the dataset. However, we use a more 

conservative significance level of p < 0.01 for the meta-analyses (see Gurevitch et al. 

1992; Poulin 1994 for detailed explanation of this reasoning).  

 

(d) Group reproductive output in the Los Amigos dataset 

Correlations are pair-wise, not predictive, and cannot control for group identity or species 

(Bolker et al. 2009). Further, group size can be controlled for by using proportions of 

individuals in each age-sex or developmental class. With this in mind, we first 

constructed a mixed-effect logistic regression model with a binomial error structure and a 

logit link function to predict a binary response variable - offspring presence or absence 

based on proportions of individuals of each developmental class as fixed factors. As per 

Bales et al. (2001) we also built generalised linear mixed models (GLMMs: lme4 in R 

(Bates et al. 2014)) with a Poisson error structure, response variable GRO (ranging from 

0-3), and proportions of individuals per developmental class as fixed factors. We used 

saturated fixed-effect models to optimise random structures, and incorporated group 

identity, species, and year as needed to ensure independence of data points across all 

models. Correlation analyses were conducted on all pairwise combinations of explanatory 

variables and any fixed factor redundancies were removed. Each explanatory variable 

was plotted against the response variable to ensure that there were no nonlinear 

relationships. We established minimal models using Akaike Information Criterion 

(Akaike 1994) by backwards non-significant term deletion, retaining terms only if they 

reduced criteria by two units (Moreno et al. 2013). Minimal models were confirmed by 

performing a likelihood ratio test, which compares the difference in log-likelihoods of 
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nested models with a Chi-square distribution. The residuals of best fit models were 

plotted to ensure that they were randomly distributed around zero. 	

(d) Ethical Note 

This study follows the Animal Behaviour Society Guidelines (Rollin and Kessel 2006) 

and American Society of Mammalogists’ Guidelines on wild mammals in research (Sikes 

and Gannon 2011). The study is part of an ongoing, long-term annual capture-and-release 

program that began at this site in 2009. In brief, we captured entire groups at baited 

compartment traps to which they are habituated, and processed and released them on the 

same day to minimize disruption and discomfort to the animals. Although based on 

previous capture protocols established for callitrichids (Savage et al. 1993), our study 

utilizes a novel two-step chemical restraint method that has improved recapture rates, 

virtually eliminated capture-related injuries, and has no visible effect on habituation for 

subsequent behavioral research (see Watsa et al. 2015 for protocol comparisons).  

 

The Peruvian Ministry of the Environment (SERFOR) granted annual research and 

collection permits, and the Animal Studies Committees of Washington University in St. 

Louis and the University of Missouri - St. Louis approved protocols.  

1.  

Results 

(a) Mean Group Reproductive Output per Age-Sex Class 

As observed in one of the best longitudinal datasets on wild callitrichids (Cocha Cashu, S. 

fuscicollis, now Leontocebus weddelli) (Goldizen et al. 1996), the pattern of using 

average GRO that does not account for uneven sample sizes held true for the historical 
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dataset.  Confidence in the average number of offspring per number of adult males in a 

group is directly related to the frequency with which groups of variable numbers of males 

have been observed. Even the largest datasets are biased towards groups with 1 to 2 

males, and much less frequently collect data on groups with 3 or more males. Although 

previous publications have suggested an increase in the average number of offspring with 

increasing numbers of males, disparate sample sizes result in hugely overlapping 

confidence intervals that confound the use of mean GRO as an effective method for 

comparison. For example, mean offspring =1.10 ± SD 0.87 (CI: 0.94-1.27) in groups with 

two adult males while mean offspring = 0.93 ± SD 0.77 (CI: 0.72-1.14) in groups with 

one adult male in data from Cocha Cashu (Figure 1). This precluded the use of mean 

GRO to evaluate the effect of age-sex class on GRO as per Garber (1997). 
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A	

B	

Fig. 1 Average number of infants (circles), with 95% C.I. (lines) depending on the 

number individuals from each age-sex class in the complete historical data set; adult 

males (AM), adult females (AF), sub-adult males (SM), sub-adult females (SF) 

(b) Meta-analyses of GRO in the Historical Dataset 

A random-effects meta-analysis combining data from prior studies and the present study 

revealed significant Spearman’s rank correlations between adult females and GRO 

(weighted average rs (16) = 0.185, P < 0.028), as well as group size and GRO (weighted 

average rs (17) = 0.252, P < 0.003) (Figure 2). Adult males and subadults of either sex 

were not significantly correlated with GRO across studies (P > 0.05). These results 

remain unchanged when our study was excluded from the analysis. 
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Fig. 2. Forest plot showing the meta-analysis of a correlation of group reproductive 

output (GRO) with A) number of adult females (P < 0.001, N= 15); B) group size (P 

<0.001, N=15) and C) number of adult males (P > 0.05, N=16). Confidence intervals that 

do not overlap zero are generally not considered to be significant. Adult females (A) and 

group size (B) are significantly positively correlated with GRO across studies, while 

adult males (B) are not. These results are not altered when this study is removed from the 

dataset.  

 

(c) Group Demographics from Our Study Population 

Over 6 years we observed 21 groups across 63 group-years during which they could have 

reproduced, including 14 groups of Leontocebus weddelli sampled for a mean of 2.86 ± 

SD 1.35 years and 7 groups of Saguinus imperator sampled for a mean of 3.43 ± SD 1.27 

years. Mean group sizes (Table 2), adult group sex ratios (males:females) (L. weddelli: 

1.23 ± SD 0.63; S. imperator: 1.65 ± SD 1.34), and GROs (L. weddelli: 1.03 ± SD 0.87; 

S. imperator: 0.92 ± SD 0.88) were not significantly different between species (Welch’s 

Two Sample t-test, p >0.05). Across the study, 8.7% of all captured animals were infants, 

with 1-2 offspring per group and only one instance of three offspring. We also observed 7 

instances of two mature females present in a single group – four cases in L. weddelli and 

three in S. imperator.  
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Table 2: Group compositions based on developmental class status. All figures are 

provided as mean number of individuals ± standard deviation (range). 

Note: N = Number of unique groups. 

 

	

(d) The Developmental Class Model  

In our model, the minimum requirements for factor analyses were satisfied, with an 

average of 19 and 23 samples per variable for the females and males, respectively. The 

first two dimensions represented an average of 86 % (range: 82 – 90 %) of total group 

variation. For all species-sex classes, Principal Components Analysis dimension 1 was 

determined by all morphological variables and Principal Components Analysis dimension 

2 was determined primarily by nipple length in females and suprapubic area and body 

mass in males (Tables 1 and 2 in Appendix 1 of Electronic Supplementary Materials).  

SPECIES N GRO
UP 
SIZE 

MATU
RE 
FEMA
LES 

IMMAT
URE 
FEMAL
ES 

MATU
RE 
MALE
S 

IMMAT
URE 
MALES 

ALL 
FEMA
LES 

ALL 
MAL
ES 

ALL 
INFA
NTS 

LEONTOC
EBUS 
WEDDELL
I 

1
4 

4.95 
± 
1.63 
(3-8) 

0.95 ± 
0.50 (0-
2) 

0.90 ± 
0.78  (0-
3) 

1.40 ± 
0.98 
(0-3) 

0.65 ± 
0.74 (0-
2) 

1.88 ± 
0.69 (1-
4) 

2.05 
± 
0.90 
(0-5) 

1.03 ± 
0.86 
(0-3) 

SAGUINUS 
IMPERAT
OR 

7 5.21 
± 
1.41 
(3-8) 

1.08 ± 
0.41 (0-
2) 

0.67 ± 
0.96 (0-
3) 

1.71 ± 
1.23 
(0-4) 

0.63 ± 
0.77 (0-
2) 

1.96 ± 
1.00 (1-
4) 

2.33 
± 
1.20 
(0-6) 

0.92 ± 
0.88 
(0-2) 
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For animals with known developmental class (57.1 % of Leontocebus weddelli and 59.5 

% of Saguinus imperator), the LDA correctly assigned 98.3 % of female L. weddelli, 100 

% of female S. imperator, 76.7 % of male L. weddelli, and 88.2 % of male S. imperator 

(Figure 3, Table 1). The LDA classification mismatched one immature female to the 

infantile class (L. weddelli); four mature males were reclassified as immature males, three 

immature males as mature males (L. weddelli); and two mature males as immature males 

(S. imperator). The LDA successfully distinguished between developmental classes for 

females and males of both species (MANOVA, P <0.0001, Table 3), and we calculated 

mean values and ranges of morphological variables per species-sex group (Table 4).  For 

both species, we observed variation in developmental classes in all age-classes except 

among infants (Figure 4).  

 

Table 3: MANOVA results distinguishing if developmental classes are significantly 

differentiated within all species-sex classes. Female assessment included three 

developmental classes (df=2), but males used only two (df=1).  

 

 
 

SPECIES-SEX CLASS WILKS’ 
Λ 

F DF P-VALUE 

FEMALE LEONTOCEBUS 
WEDDELLI 

0.0461 82.35 2 <0.0001 

FEMALE SAGUINUS 
IMPERATOR 

00348 56.67 2 <0.0001 

MALE LEONTOCEBUS 
WEDDELLI 

0.3722 43.29 1 <0.0001 

MALE SAGUINUS 
IMPERATOR 

0.4756 19.48 1 <0.0001 
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Fig. 3 Developmental status by species and sex before (left) and after (right) 

implementing the PCA-DFA assignment model and classifying all individuals of 

uncertain status (star symbol) to a category based on reproductive morphology and mass. 

Female categories are differentiated by discriminant functions 1 and 2 (DF1 & DF2), 

while mature (Mat) and immature males (Imm) are differentiated by DF1 only; males in 

the infantile developmental class were removed from the DFA.  
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Fig. 4. The distribution of developmental classes (mature, immature, and infantile) 

between age-classes (adult, subadult and juvenile) for males and females of both 

callitrichine species at Los Amigos.  

  



Table 4: Morphological variables by developmental class. All values expressed as mean ± s.d. (range) 

SPECIES-SEX 
CLASS 

DEVELOPMENTAL 
CLASS 

NIPPLE 
LENGTH 
(MM) 

SUPRAPUBIC 
AREA (MM2) 

VULVA 
INDEX 
(MM) 

MASS 
(G) 

TESTES 
VOLUME 
(MM3) 

N IND. 

FEMALE 
LEONTOCEBUS 

WEDDELLI 

Infantile 0.00 22.30 ±  32.52 
(0.00-104.28) 

10.98 ± 
2.05 
(7.90-
16.15) 

230 ± 
47.55 
(135-
330) 

NA 19 14 

Immature 0.24 ± 0.58 
(0.00-1.91) 

251.27 ± 101.29 
(75.36-483.48) 

19.11 ± 
3.26 
(13.50-
28.10) 

394.59 
± 34.08 
(305-
475) 

NA 41 29 

Mature 3.41 ± 0.79 
(2.15-5.60) 

276.32 ± 86.21 
(103.14-522.21) 

21.74 ± 
2.52 
(17.40-
29.40) 

401.11 
± 31.96 
(340-
490) 

NA 36 21 

MALE 
LEONTOCEBUS 

WEDDELLI 

Infantile NA 8.09 ± 22.05 
(0.00-101.99) 

NA 219.82 
± 34.52 
(160-
285) 

106.37 ± 
45.48 
(42.60-
243.39) 

28 27 

Immature NA 83.25 ± 49.00 
(0.00-174.03) 

NA 363.15 
± 24.94 
(310-
430) 

671.33 ± 
146.03 
(321.88-
953.17) 

26 21 

Mature NA 148.54 ± 69.11 NA 396.91 1029.13 ± 55 30 
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(0.00-323.22) ± 23.52 
(350-
460) 

248.34 
(579.83-
1986.27) 

FEMALE 
SAGUINUS 

IMPERATOR 

Infantile 0 0.79 ± 3.25 
(0.00-13.41) 

12.64 ± 
3.72 
(0.00-
16.55) 

318.24 
± 73.06 
(200-
460) 

NA 17 11 

Immature 1.21 ± 1.00 
(0.00-
3.000) 

151.51 ± 88.09 
(0.00-295.22) 

20.67 ± 
2.95 
(13.38-
24.70) 

518.33 
± 43.33 
(455-
595) 

NA 15 12 

Mature 5.15 ± 0.94 
(3.65-7.45) 

232.02 ± 67.37 
(91.08-364.00) 

25.59 ± 
3.55 
(19.88-
32.65) 

572.50 
± 52.20 
(465-
645) 

NA 26 10 

MALE 
SAGUINUS 

IMPERATOR 

Infantile NA 0 NA 258.18 
± 51.73 
(150-
320) 

122.06 ± 
36.82 
(56.16-
175.11) 

11 11 

Immature NA 15.43 ± 35.45 
(0.00-122.20) 

NA 453.93 
± 42.46 
(360-
520) 

518.24 ± 
104.06 
(298.30-
722.06) 

15 13 

Mature NA 69.51 ± 90.96 
(0.00-300.83) 

NA 517.02 
± 52.66 
(420-
645) 

832.76 ± 
189.08 
(417.14-
1150.34) 

42 18 

Note: N = total number of samples; Ind. = number of unique individuals in this class 
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(e) Group Reproductive Output in the Los Amigos Dataset 

Our logistic regression model indicated that the proportion of mature males (B = 3.877, s.e. = 

1.961, χ2 = 3.91, P < 0.05) was the sole significant factor in predicting the presence of 

offspring (Figure 5). The mean proportion of mature males in groups with no offspring 

(0.27 ± SD 0.23, N=22) was significantly lower than in groups with one or more offspring 

(0.41 ± SD 0.23, N=41; t=-2.32, df=43, P = 0.025) (Figure 5). The proportions of mature 

females and immature males or females were not significant predictors of the presence of 

offspring in this analysis. However, a GLMM with offspring number as a discrete numerical 

response variable revealed that the proportion of mature females relative to group size (B = 

3.559, s.e. = 0.962, χ2 = 13.69, P < 0.001) and group size (B = 0.343, s.e. = 0.128, χ2 = 7.15, 

P = 0.008) were the only two significant factors.  Removing group-years in which there were 

multiple mature females in a group (7 instances) did not alter the outcome of this GLMM. 

Greater proportions of mature females and larger group sizes were significantly associated 

with GRO. The proportions of mature males and immature males or females were not 

significant predictors of GRO in the GLMM. 
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Fig. 5. A box plot of the proportion of mature males in groups where infants are either 

present or absent. The two proportions are significantly different as revealed by a logistic 

regression model.  

 

 

Discussion  

Like other callitrichids, both study species at Los Amigos twinned frequently and formed 

groups with multiple breeding females (Garber et al. 2015; Watsa 2013). Though these 

species diverged ~9.10-10.07 mya and are now placed in separate genera (Buckner et al. 

2015; Matauschek et al. 2010), we noted no significant differences between them in mean 
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group size, adult group sex ratios, or mean GRO. Thus, we pooled data from both species for 

the purposes of this study. 

 

Reproductive status has previously been evaluated in callitrichids through measurements of 

their genitalia (Soini and de Soini 1990). In addition, scent-gland morphology is known to 

signal estrus, changes around parturition (Callithrix jacchus (Moreira et al. 2015)), and 

differs by sex (French and Cleveland 1984; Watsa 2013; Zeller et al. 1988); suggesting that 

variation in scent gland morphology is representative of an animal’s ability to reproduce 

(Watsa 2013). Here we created a reliable model that is based on genitalia and scent gland 

morphology, as well as body mass, to assign animals into developmental classes. That 

females were more reliably assigned to the correct class than males is likely due to the 

availability of better external indicators of developmental status, such as observed nursing 

and nipple lengths (Soini and de Soini 1990). Higher resolution of male developmental class 

would require the inclusion of all or most copulation records, which is not feasible as 

copulation is cryptic among arboreal primates (Campbell 2006) and of short duration (1-12 s) 

in tamarins (Watsa 2013). Nevertheless, our model successfully discriminated between 

developmental categories for all species-sex classes, and revealed that all animals of a 

particular age-sex class do not have equal reproductive capabilities. This method allowed us 

to re-examine how group composition influences GRO, by discriminating based on 

developmental status, in addition to age-sex classes.   

More than any other factor, the number of adult males in a group have long been considered 

the key to increased callitrichine GRO (Heymann 2000; Koenig 1995). However, there are 

many reasons unrelated to offspring survival for why a group might vary in the number of 

males it contains (Carnes et al. 2011; Heymann 2000; Kappeler 2000; Ridley 1986). For 
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instance, the number of adult males in a group have been proposed to increase with shorter 

breeding seasons (Ridley 1986), since a single male probably cannot successfully 

monopolize multiple reproductively synchronised females (Carnes et al. 2011; Dunbar 2000). 

However, it has also been suggested that primate males simply “go where females are” 

(Altmann 1990). Cross-species analyses that control for phylogeny show that these theories 

are not necessarily exclusive - the number of males is tightly positively correlated with the 

number of females in primate groups across species (Mitani et al. 1996), but either overlap or 

synchrony of female breeding can predict adult male numbers after female numbers are 

controlled for (Nunn 1999). Other theories for larger numbers of males in groups include 

heightened predation risk (Savage et al. 1996; van Schaik and Hörstermann 1994) or, as with 

callitrichids, the necessity for alloparents due to the high costs of caring for twin infants 

(Heymann 2000; Tardif 1994; 1997). With the exception of Callimico, Heymann (2000) 

found the number of adult males to be positively correlated with litter mass gain and daily 

path length among callitrichids, implying that adult males are necessary to counter increased 

costs of infant care. This conclusion was recently supported by an extensive cross-genera 

analysis of the effect of infant care costs on variation in reproductive behaviors (Díaz-Muñoz 

2015), which identified genus Saguinus (which now includes genus Leontocebus) as facing 

the highest infant care costs among all callitrichine genera. Thus we expected that the 

number of males would positively influence GRO across the Callitrichidae, including our 

study species. 

	

Surprisingly, our meta-analysis, which utilized a robust methodology commonly used in the 

field of medicine for summarizing outcomes across a range of studies (Gurevitch et al. 1992; 

Scheiner and Gurevitch 2001; Vetter et al. 2013), did not meet this expectation. Instead, 
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group size and the number of adult females were positively correlated with GRO across five 

callitrichine genera for which data were available. This does not necessarily imply that adult 

males have a negligible effect on infant survival. Our meta-analysis was restricted to using a 

common quantitative metric that could be applied to all studies across the historical dataset 

on GRO in wild callitrichids, which was a correlation with the number of infants in a group, 

and not estimates of whether infants were present or absent (a categorical variable) given the 

increased numbers of males. Our dataset from Los Amigos that comprised 63 group years of 

a population of free-ranging Saguinus imperator and Leontocebus weddelli, did lend itself to 

a logistic regression model that tested this alternative perspective on male contributions to 

infant survival. Our finding that groups with high proportions of mature adult males are most 

likely to have one or more infants present concurs with those of Culot et al. (2011), who 

analysed factors explaining infant survival to three months of age in S. mystax using similar 

methodology. These results demonstrate that how we define reproductive success in 

callitrichids, as the simple presence of any offspring at all or the actual number of offspring, 

has a bearing on whether males are the key to GRO or not. Additionally, it suggests that the 

developmental class of adult males is also a significant factor to be considered.  

Although females are not usually identified as playing a significant role in determining GRO, 

a study of the most comprehensive dataset on a wild callitrichine population to date (L. 

rosalia from Poço das Antas Reserve in Brazil) did highlight the importance of many female 

factors to reproductive success (Bales et al. 2001). Our analyses indicate that, after 

controlling for group size, the proportion of mature adult females in a group is the primary 

determinant of GRO. This finding was not due to the seven cases of multiple mature females 

in a single group that are a part of our dataset, as our results remained the same even when 

those instances were excluded from the analysis. This behooves us to consider the natural 
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circumstances under which the proportion of mature adult females could contribute 

significantly to increased GRO, given numerous observations of adults and subadults of both 

sexes actively participating in alloparenting (reviewed in Erb and Porter 2017).  We posit 

three possible scenarios for high proportions of mature adult females in a group: Case 1) a 

single mature female present in a relatively small group, Case 2) multiple mature females 

present in a relatively small group, or Case 3) multiple mature females present in an average 

sized group.   

In the first case, a single mature female will form a large proportion of group membership if 

group size is small, and by being the only mature female she experiences reproductive 

dominance without challengers. The proportion of mature females would be maximized at 

0.5 if there were only one mature adult male that comprised the rest of the group. A recent 

review of a range of wild tamarin studies (N= 183 groups and an additional 66 resampled 

cases) reported this group composition in only 9.4% of cases, and these single breeding pairs 

invariably failed to raise infants in the wild (Garber et al. 2015). In fact, prior to our study, 

there was only one reported case exception to this trend, in Saguinus imperator at Cocha 

Cashu (Windfelder 2000). In our study, however, we report mixed reproductive success from 

our smallest groups i.e. those that contained a single pair of mature adults and one immature 

subadult. In three cases of L. weddelli and one of S. imperator there were no living infants at 

the time of evaluation, either because the female did not give birth to them or the male-

female pair was unable to raise offspring to the age of weaning. In contrast, we observed two 

groups of L. weddelli where one infant survived successfully to weaning age. In one of these 

groups, this occurred in two consecutive years, and the infant from the first year was still 

present in the second year as an immature subadult. Thus, of 7 group-years of a single pair of 
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mature adults, we observed a ~43% success rate in raising infants to weaning, which is more 

common in this dataset than the remaining callitrichine data. 

	

In cases 2 and 3, multiple mature adult females coexist in a single group of small or average 

size and could enhance infant survival in several ways. If only one female breeds 

successfully (i.e. there is high female reproductive skew), then the second female can 

enhance infant survival indirectly by increasing vigilance and foraging efficiency, or directly 

by alloparenting. This in turn could be beneficial to this non-breeding female in a variety of 

ways (parenting experience, future reproductive opportunities, or via kin-selection if she is 

the breeder’s sibling or close relative) (reviewed in Erb and Porter 2017). In a study of 12 

groups of L. weddelli in Bolivia (Garber et al. 2015), 25% of the groups contained two 

parous females (determined by nipple length), and the majority of these pairs were 

genetically verified to be likely mother-daughter pairs. Unfortunately, none of the groups 

contained infants at the time of assessment, so whether both females bred simultaneously is 

unknown. In the longest running study to date on L. weddelli at Cocha Cashu spanning 13 

years, female reproductive skew was high, with a suspected 50% of females never breeding 

(Goldizen et al. 1996), although how the reproduction of these females was limited is not 

known precisely. However, a broader review of all callitrichine studies to date presented in 

by Garber et al. (2015)  reveals that groups with multiparous females see minimal evidence 

(6.3%  or 18 of 287 group-years) of both females breeding in tamarins (genera Saguinus and 

Leontopithecus) but a higher propensity for this (41.7%  or 25 of 60 group-years) in the 

marmoset genus Callithrix (Garber et al. 2015). Due to marmoset propensities to carry 

multiple litters in a year, there are more breeding opportunities available to mature females in 
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groups, groups are themselves larger, and in several of these cases females gave birth several 

months apart (reviewed in Garber et al. 2015).  

The danger inherent to multiple females breeding in a single group is that of one female 

losing its offspring to infanticide, over ten cases of which have been reported in the wild for 

both marmosets and tamarins together, including some involving cannibalism (Arruda et al. 

2005; Bezerra et al. 2007; Ferrari and Digby 1996). Despite the risk of infanticide that could 

reduce GRO in groups with multiple mature females that have offspring, not all outcomes 

result in increased infant-care costs to the group and reduced GRO relative to the rest of the 

population. For example, we observed a case of allonursing of infants by a mature female L. 

weddelli who most likely lost her own infants at birth either to predation, infanticide, or other 

injury. This permitted a pair of twin offspring to nurse until close to six months of age, 

whereas they would normally be weaned around three months (full account in Watsa 2013). 

This pair survived for over three years in their natal group before dispersing. Allomaternal 

care such as this can be greatly beneficial to the survival of offspring across primate species 

(Fedigan and Jack 2011; Isler and van Schaik 2012; Smith et al. 2001) and occurs commonly 

in cooperatively breeding meerkats (Suricata suricatta) as well (MacLeod 2013). Multiple 

females breeding in a group a few months apart might also enhance GRO, if separately timed 

births reduce conflicts related to infant care. We observed multiple breeding females in a 

group of L. weddelli in which a pair of infants differed in age by approximately two months 

based on timings of tooth eruption, indicating that only one infant from each female survived. 

Offspring survival from both females has been observed in at least two cases in the genus 

Saguinus (Calegaro-Marques and Bicca-Marques 1995; Garber et al. 1993) and in multiple 

cases of Callithrix (Digby 1994; Digby and Ferrari 1994; Ferrari and Digby 1996; Roda 

1989). We also report a case in which a group of two adult male and two adult female L. 
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weddelli raised three offspring of approximately the same age, implying that the females had 

produced offspring simultaneously. This group composition of adults is a common minimum 

among callitrichines; for example, 32% of groups assessed in the longest study of L. weddelli 

(Goldizen et al. 1996) and 66.7% of groups of L. weddelli assessed recently in Bolivia 

(Garber et al. 2015) had at least two adult males and females, although the precise 

developmental classes of the adults is too data deficient to be assessed.  

 

Our data emphasize the value of long-term, individual-based field studies in which 

morphology can be evaluated via mark-recapture programs in evaluating overall patterns of 

reproductive output, a view shared by others in the field of primatology (Clutton-Brock 2012; 

Clutton-Brock and Sheldon 2010; Robbins 2010). Many other valuable characteristics of this 

study population are currently being evaluated to further inform these analyses. First, 

analyses of dental ecomorphology will allow us to determine more fine-tuned age-classes or 

even predict chronological age based on an ever expanding dataset of identified individuals. 

With chronological age for each individual in this study population, we can explore how 

reproductive status changes over an individual’s lifetime, monitor for shifting population 

demographics in developmental status, and more carefully look for interspecific differences 

in development and reproductive behavior between Saguinus and Leontocebus. We can also 

use genetic sampling to determine paternity and relatedness to directly address the impacts of 

developmental class on the identities of actual biological parents in groups. Additional 

behavioral observations of actual infant care in this population could elaborate on the role of 

individuals of different developmental class on group reproductive output. This study 

highlights the differences in the impacts of mature adult male and female presence on group 

reproductive output, which allows us to further understand the composition of groups capable 
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of reproducing and contributing to population viability, which is an important consideration 

for the conservation of these primates. A recent assessment of the conservation status of the 

Callitrichidae revealed that of the 48 identified species, six remain data deficient and ~36% 

(15 species) of the remaining species are classified as threatened by the International Union 

for the Conservation of Nature (Estrada et al. 2017). Thus, these data will form an important 

benchmark for this study population against which future data can be compared in for the 

monitoring of long-term viability of these primates. 
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Table 1: Loading (L) and correlation (C) matrix for PCA  

Species-Sex 
Class 

Morphological 
Variable 

Dimension 1 Dimension 
2 

Dimension 3 Dimension 4 

 L C L C L C L C 

Female 
Leontocebus 

weddelli 

Weight 0.517 0.884 -0.307 -
0.255 

0.778 0.386 0.182 0.070 

Vulvar Index 0.553 0.944 -0.058 -
0.048 

-0.202 -0.100 -
0.807 

-0.310 

Suprapubic 
Area 

0.527 0.900 -0.298 -
0.247 

-0.593 -0.294 0.531 0.204 

Nipple Length 0.386 0.660 0.902 0.747 0.056 0.028 0.185 0.071 

Male 
Leontocebus 

weddelli 

Weight 0.461 0.547 0.737 0.753 0.494 0.366 N/A N/A 

Testicular 
Volume 

0.725 0.860 0.009 0.009 -0.689 -0.510 N/A N/A 

Suprapubic 
Area 

0.512 0.608 -0.676 -
0.690 

0.530 0.393 N/A N/A 

Female 
Saguinus 
imperator 

Weight 0.494 0.897 -0.535 -
0.278 

0.677 0.341 0.105 0.045 

Vulvar Index 0.510 0.927 -0.072 -
0.037 

-0.305 -0.154 -
0.801 

-0.341 

Suprapubic 
Area 

0.503 0.913 -0.202 -
0.105 

-0.615 -0.310 0.573 0.244 

Nipple Length 0.492 0.893 0.817 0.425 0.265 0.133 0.140 0.060 

Male 
Saguinus 
imperator 

Weight 0.421 0.502 0.774 0.794 0.473 0.343 N/A N/A 

Testicular 
Volume 

0.727 0.868 0.024 0.025 -0.686 -0.497 N/A N/A 
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Suprapubic 
Area 

0.542 0.647 -0.633 -
0.649 

0.553 0.400 N/A N/A 

 
 

Table 2: Eigenvalues for the PCA  

Species-Sex 
Class 

Dimension Eigenvalue % Variance Cum. % 
variance 

Female 
Leontocebus 

weddelli 

Dimension 1 2.9194 72.98 72.98 

Dimension 2 0.6865 17.16 90.15 

Dimension 3 0.2461 6.15 96.30 

Dimension 4 0.1480 3.70 100.00 

Male 
Leontocebus 

weddelli 

Dimension 1 1.4083 46.94 46.94 

Dimension 2 1.0431 34.77 81.71 

Dimension 3 0.5486 18.29 100.00 

Female 
Saguinus 
imperator 

Dimension 1 3.2948 82.37 82.37 

Dimension 2 0.2699 6.75 89.12 

Dimension 3 0.2535 6.34 95.46 

Dimension 4 0.1817 4.54 100.00 

Male Saguinus 
imperator 

Dimension 1 1.4227 47.42 47.42 

Dimension 2 1.0529 35.10 82.52 

Dimension 3 0.5244 17.48 100.00 
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Conclusion 
 

In this dissertation I screened broadly for blood and gastrointestinal parasites from two free-ranging, 

sympatric nonhuman primate hosts found in the lowland Amazon rainforest of Southeast Perú. Blood 

and gastrointestinal parasites are fundamentally different in how they are distributed: the former 

acquired actively through contact with conspecifics, contaminated substrates, or through ingestion of 

a parasite’s intermediate host, and the latter is acquired passively from haematophagus arthropod 

vectors (e.g. mosquitos). As the two primate hosts considered in this dissertation are closely related, 

exhibit a high degree of ecological overlap including diet, habitat use, social organization, and are 

frequently found together in polyspecific association, I expected that most parasites would be shared. 

In addition, the successful implementation of a primate mark-recapture program spanning multiple 

years allowed me to give each host a unique identity, as well as determine its sex, age class, and 

breeding status.  Thus, beyond merely determining if parasites are shared by both host species, I 

explored if parasites were distributed across demographic groups in the same way. 

 

While detailed discussions regarding the blood and gastrointestinal parasites discovered in this 

dissertation can be found at the end of each chapter, it is worth pointing out the overarching findings 

of this work. Across the entire study period, I collected blood and fecal samples from 134 animals, 83 

Leontocebus weddelli and 46 Saguinus imperator, spread across 21 groups. Regarding blood parasite 

infections, I found that parasite prevalence varied significantly across years, demonstrating the 

necessity of a longitudinal sampling design to assess parasitism in natural primate populations. 

Despite that blood parasites are distributed by arthropod vectors that likely feed from both hosts 

evenly, I documented 2 potential cases of host specificity.  Of the four haemoparasites identified, 1 

filarial nematode was absent from S. imperator, and except for a single positive PCR, which could not 

be replicated, Plasmodium brasilianum was absent from L. weddelli. The two remaining blood 

parasites were identically distributed across both primate hosts, with older or mature animals more 
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likely to have an infection than younger and immature animals. Finally, a series of mixed-effect 

logistic models suggested that the inclusion of co-infection variables was always important for 

predicting the presence or absence of parasite infections. 

 

My survey of gastrointestinal parasites from the same population also highlighted that parasitism 

varies across years and that longitudinal data was needed to determine accurate baseline levels of 

parasite prevalence. Unlike for blood parasites, I documented no cases of parasite-host specificity, 

and I observed that prevalence for a subset of trophically transmitted helminths was significantly 

different between hosts. This could be attributed to different rates of parasite exposure as a 

consequence of subtle differences in arthropod feeding behaviors or preferences. Also, while older or 

reproductively mature individuals were more likely to harbor blood parasites, the same trend was not 

observed among gastrointestinal helminths. There was even one trophically transmitted 

gastrointestinal helminth that was significantly more prevalent among younger and less mature 

individuals. Finally, these data on gastrointestinal helminths showed no significant associations of 

parasite co-occurrence. 

 

As a result of this dissertation a number of new avenues of research are possible, some of which are 

already in progress. First, there are nine other sympatric primate hosts on site from which fecal 

samples have been collected and are being examined for parasites by both microscopy and DNA 

metabarcoding techniques. Second, an additional primate host, Callicebus brunneus, or the dusky titi 

monkey, has been incorporated into the annual mark-recapture program, and hence, its blood can be 

screened for similar filarial, trypanosome, and Plasmodium parasites.  Third, I can now combine data 

on blood and gastrointestinal helminth infections to assess within-host species interactions that can 

only be mediated by the host immune response, since these parasites occur in different tissues. Also 

with respect to co-infection, it would be beneficial to re-examine these samples and estimate levels of 

parasitemia, instead of relying on only presence or absence data. Four, I am eager to pursue new 
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dental cast imaging methods that would allow me to differentiate adult animals into finer classes (i.e. 

young, middle, and old adults) based on tooth wear. This would likely disassociate age and breeding 

status further and enable the construction of more accurate models to explain variation in individual 

infection status. 

 

This work would not have been possible without the guidance and support of a number of people, in 

particular my dissertation advisor, Dr. Patricia Parker, and my primary research collaborator in Peru, 

Dr. Mrinalini Watsa. It also would not have been possible without the assistance of several agencies 

and organizations including Field Projects International, the Amazon Conservation Association, the 

Whitney R. Harris World Ecology Center, and the Centro de Ecología y Biodiversidad. This work 
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