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Figure 4.4 Effect of Aβ42 concentration when Aβ40 is absent. 

 

(A) SEC-purified monomer solutions of Aβ42 and Aβ40 were combined to a total of 40 
µM Aβ.  Mixtures were incubated at 37 ºC for 24 h, then centrifuged for 10 min at 
18,000 x g and supernatants fractionated by SEC.  (B) Amount of recovered material in 
protofibril and monomer peaks from panel A, as a percentage of total recovery.  (C) 
SEC-purified monomer solutions of Aβ42 prepared at the same Aβ42 concentrations as 
in panel A, but without any Aβ40.  Incubation and analysis was the same as in panel A. 
(D) Analogous to panel B, for panel C. 
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4.2.5 Subtle inhibitory effect of Aβ40 on Aβ42 conversion to protofibril. 

Light scattering data from all preparations was recorded in-line with SEC 

fractionation. Detection of scatterers in the void volume was possible for  20 µM Aβ42 

preparations. For the remaining preparations, the signals were insufficient for reliable 

determination of molecular weight. Results from the  20 µM Aβ42 preparations are 

given in Figure 4.5A. The all-Aβ42 preparations demonstrated some degree of increased 

polydispersity across their void volume peaks, and the molecular weights were slightly 

increased, compared to the Aβ42/Aβ40 mixture set (Table 4.1). The differences may be 

evidence that the all-Aβ preparations experienced faster aggregation, since the process is 

inherently a stochastic one. However, the small number of samples in this case limits the 

usefulness of such interpretations. 

A small perturbative effect associated with the presence of Aβ40 was more clearly 

revealed when we probed ensemble secondary structural content in the preparations with 

 20µM Aβ42 preparations by CD spectrophotometry (Figure 4.5B). The mixtures (32/8 

and 20/20) have significant -helical characteristic compared to the 40/0 preparation, 

suggesting β-sheet formation is not as extensive. This effect is also present in the all-

Aβ42 32 and 20 µM preparations. Furthermore, the -helical contribution is not as large 

in the absence of Aβ40, which suggests that both reduction of Aβ42 content, and the 

presence of Aβ40 both reduce the extent of aggregation. 
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Figure 4.5 Subtle Aβ40 effects on protofibril polydispersity and conformation. 

 

MALS (panel A) and circular dichroism (B) analysis associated with mixture sets in 
Figure 4.4A (left panels) and 4.4C (right panels).  (A) MALS analysis of protofibril 
peaks performed in-line with SEC fractionation in Figure 4.4, performed as described 
in the methods.  MALS-determined weight-averaged molecular weights (full width 
half max) are summarized in table 5-1.  (B) Circular dichroism spectra acquired from 
the protofibril peak fractions collected in Figure 5-5.  Reported in units of mean 
residue ellipticity. 
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Table 4.1 Summary of molecular weight data from Figure 4.5. 

Results of the MALS determined molecular weight measurements in Figure 
4.5 are summarized below. 

Aβ42 (µM) Aβ42 (µM) Mw(Da) Aβ42 (µM) Aβ42 (µM) Mw(Da) 

40 0 2.95  106 40 -- 4.21  106 

32 8 3.13  106 32 -- 4.64  106 

20 20 2.92  106 20 -- 5.25  106 
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4.2.6 Protofibrils formed from Aβ42/Aβ40 solution mixtures are primarily Aβ42. 

A direct probe of Aβ40 content in protofibrils formed in Aβ42/Aβ40 mixtures 

would certainly be helpful in clarifying the interactions between the two isoforms in 

mixed solutions. Therefore, I developed a novel C-terminal selective ELISA assay for 

isoform content in protofibrils. The assay relies on capture with Ab13.1.1, which is 

selective for the C-terminal of Aβ40, or Ab2.1.3, which selects for Aβ42. Detection is 

made with HrP-conjugated Ab5, which recognizes the first 16 N-terminal amino acids on 

Aβ. In this experimental paradigm, a sample generated in a mixed isoform monomer 

solution was applied to an Ab2.1.3-coated well, and to an Ab13.1.1 coated well. The 

relative extent of binding was quantified via detection with Ab5; being N-terminal 

specific, Ab5 has equal affinity for both isoforms. The isoform-specific binding for the 

sample was compared to standard curves generated with single-isoform monomer 

solutions to regularize for differences between Ab13.1.1/Aβ40 and Ab2.1.3/Aβ42 

binding affinities. I used the ELISA to directly compare Aβ42/Aβ40 content of the initial 

aggregation solutions and resulting protofibril peaks of the Aβ42/Aβ40 mixture set in 

Figure 4.5A. The results are related in Table 4.2. 

 The ELISA data strongly suggests that Aβ42 was strongly favored for 

incorporation into protofibrils. This was especially evident in the 20/20 mixture, which 

ELISA confirmed was near 1:1 for the two isoforms. In that case, only trace amounts of 

Aβ40 were detected in the protofibril peak. 
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Table 4.2 ELISA-determined Aβ42/Aβ40 molar ratios. 

Results of the C-terminal selective ELISA determination of isoform incorporation into 
protofibrils formed in Aβ42/Aβ40 monomer mixtures, as described in the methods. 

Aβ42/Aβ40 mixture (µM) Aggregation solution Protofibril peak 

40/0 >10 >10 

32/8 3.0 ± 0.62 >10 

20/20 1.4 ± 0.19 >10 

8/32 0.8 ± 0.06 ND 

0/40 <0.01 ND 
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4.2.7 When Aβ42 concentration remains fixed, increasing Aβ40 does not strongly 

affect protofibril formation. 

That Aβ40 incorporation into protofibrils is minimal limits the mechanisms by 

which it can exert an influence on the rate of protofibril formation. To examine the Aβ40-

related effects while controlling for effects due to Aβ42 concentration, mixed solutions 

were prepared where Aβ42 was held at a constant 20 µM, and only Aβ40 was varied. The 

lowest Aβ42/Aβ40 ratio we could generate was 20/56. This was limited by the volume of 

monomeric material recoverable at a high enough concentration to make mixtures of 

sufficient volume for subsequent SEC-MALS analysis. Ratios of 20/40, 20/20, 20/10, and 

20/0 were also examined. The mixtures were prepared and analyzed under the same 

protocols and with the same care as described in Section 4.3.3. The results are shown in 

Figure 4.6. 

The monomer recovery increased with increasing Aβ40 as expected, as Aβ40 is 

less aggregation-prone than Aβ42 (Figure 4.6A), and this in turn affected the percent 

recovery ratio (Figure 4.6C). At the studied Aβ42 concentration, the effect of increasing 

Aβ40 concentration on the protofibril peak was minimal (Figure 4.6A and 4.6D).  

However, a noticeable decrease in ThT fluorescence occurred in the protofibril peak with 

addition of Aβ40, suggesting reduced β-sheet content (Figure 4.6E). This was 

corroborated with CD (Figure 4.6F), which also revealed the presence of -helical 

characteristics in the protofibril peaks generated in high-Aβ40 mixtures (20/56 shown). 
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Figure 4.6 Weak concentration dependence of Aβ40 effects at constant Aβ42. 

 

(A) and (B) Void and included peak 280 nm absorbance traces, respectively, from 
Aβ42/Aβ40 monomer mixtures prepared and handled in the same manner as 
described in Section 4.3.3, at fixed Aβ42 concentration with varying Aβ40 
concentration.  The legend identifies the preparations by µM Aβ42/Aβ40. (C) The 
relative recoveries from void and included peaks, on a molar basis. (D) Integrated 
peak areas from panel A. (E) ThT fluorescence of the protofibril peaks in panel A, 
measured as described in the methods.  (F) Circular dichroism spectra, in units mean 
residue ellipticity, generated from the protofibril peaks of the 20/0 and 20/56 
preparations. 



110 

 

 

4.3 Discussion. 

The tau project related in the previous chapter and both projects described in this 

one are similar in the eventual need to come to terms with the problem of imperfect 

starting material. In each case, concerns over preformed aggregates lead to additional 

experimental work. The results of that work may validate, or even improve upon or 

expand the prior analysis, but that does not mitigate the challenge posed to the researcher, 

and the questions they must ask even before beginning an experiment. That these issues 

arose so frequently in this dissertation (2 out of 3 projects) is not happenstance. It is a 

fundamental challenge pervasive within the field of study (Teplow 2006). Many workers 

side-step the issue, using aggregate preparations designed to be highly polydisperse. But 

that is not a choice when exploring the biophysics of specific aggregates, or the 

interactions of specific aggregates with living systems, which is crucial information for 

development of therapeutic strategies to combat AD. 

Precautions taken against the influence of preformed aggregates on experimental 

preparations commonly include HFIP pre-treatment, high-alkaline conditions, and 

denaturing conditions. Even so, resistant aggregates may remain even after the most 

strident treatments, and these aggregates can form at times when intervention is out of the 

researcher’s hands, such as during synthesis or lyophilization. Therefore, beginning with 

freshly purified monomer is the only way to demonstrably be certain to avoid the issue of 

preformed aggregates. 
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My studies of purified Aβ42 monomer aggregration reactions revealed that low 

concentration reactions proceeded through an extended lag phase before nucleation. After 

nucleation, elongation was rapid and the material quickly converted to fibril. However, 

the aggregation rate could be modulated by altering the buffer solution, the ionic strength, 

and temperature. At low ionic strengths, the same material which proceeded to fibril 

instead converted to protofilaments with molecular weights of around 3000 kDa, the 

equivalent of 665 monomers, and Rg values of 60 nm. These protofilaments had 

significantly different secondary structure compared to fibrils: enhanced -helix content, 

and reduced β-sheet. Changing the buffer system entirely led to a two-component system, 

which was primarily fibril, but had a significant population of classic curvilinear 

protofibrils, morphologically identical to the protofibrils which formed rapidly when 

HFIP-processed Aβ42 peptide film was reconstituted under alkaline conditions. 

Applying what this about protofibril and protofilament formation in purified 

monomer solutions, I explored the influence of isoform mixtures on protofibril formation. 

The study of amyloid aggregation in such mixed systems is an area where the literature is 

much lacking. This is especially pertinent as the in vivo environment in which these 

processes occur is certainly a heterogenous system. 

My primary results with mixed solutions of purified monomer correlated with 

studies using HFIP-processed peptide films. In both cases, when total Aβ concentration 

was held constant, decreasing the Aβ42/Aβ40 ratio lead to a lower protofibril yield. This 

is concomitant with a decreasing β-sheet structure in the aggregation mixtures just prior 

to SEC-purification, as determined by dye-binding. When the purified protofibrils were 

probed for secondary structure with CD, a reduced β-sheet characteristic was noted along 
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with an increasing -helical content. Interestingly, when Aβ42 was prepared at the same 

concentrations in the absence of Aβ40, only the secondary structural changes resulted, 

not the reduced protofibril yield. A closer comparison indicated that the presence of Aβ40 

accentuated the reduced β-sheet and increased -helical components. 

Based on C-terminal selective ELISA results, it appeared unlikely that Aβ40 

exerted its effects via high levels of direct incorporation, as only low amounts were 

detected in the purified protofibrils. One could posit a scenario where addition of Aβ40 or 

Aβ42 onto a growing nucleus occur at roughly the same rate, but then Aβ40 inhibits 

additional aggregation. However, that would likely require a high degree of incorporation 

of Aβ40 in the aggregates, which was shown not to be the case by the C-terminal-

selective ELISA results. That said, it is certainly possible that trace involvement is 

responsible via a “capping” mechanism of some sort.  

The presence of significant -helical content in protofibrils is odd, as they are 

considered to possess a secondary structure enriched for the cross-β-sheet inter-molecular 

hydrogen bonds characteristic of fibrils. It is not unheard of, however. Some important 

early work by Teplow and Selkoe (Walsh et al. 1999, Kirkitadze et al. 2001) on the 

nucleation step and rapid protofibril formation identified a transient -helical state before 

elongation. This state persisted longer in Aβ40 aggregation than Aβ42. Therefore, it is at 

least possible that the -helical content increase indicates stabilization of this transient 

state in mixtures of Aβ42/Aβ40.
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CHAPTER 5. A NOVEL ANTIBODY FOR Aβ42 PROTOFIBRIL. 

5.1 Introduction. 

5.1.1 The mammalian immune system  

For narrative purposes this introduction begins with a description of the 

mammalian immune system. Numerous thorough reviews (Chaplin 2010) and textbook 

treatments of this subject are available. The immune system is the well-known 

evolutionarily conserved system of cells which protect the host organism from diverse 

exogenous threats to homeostasis and normal function. Threats from toxic or allergenic 

substances, as well as constantly evolving pathogenic microbial assault are extremely 

diverse. To achieve protection against such a broad range of threats requires properly 

functioning systems for identification of pathogens and toxins as distinct from host cells 

in ways that provide for elimination of threats without excessive damage to the host’s 

tissue or its resident population of beneficial commensal microbes. However, some tissue 

damage is certainly involved in clearance of infected host cells. In mammals the immune 

system can be broadly divided into two functions: adaptive and innate immunity.  These 

functions are performed for the most part by different cell types, however there is 
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significant inter-play between the responses, with part of the adaptive response involved 

in ramping-up the innate response. 

5.1.2 Innate immunity. 

Innate immunity is encoded at the germline of the host. It includes hard-wired 

functions such as the mucociliary system which shields the epithelia of the respiratory, 

genitourinary and gastrointestinal tracts. It is also responsible for detection and rapid 

response to a broad number of exogenous threats. This is achieved by expression of 

conserved receptors which can detect structural features shared by many microbes and 

toxins, so called pathogen anger-associated molecular patterns (PAMPs). 

5.1.3 Adaptive immunity. 

If the innate immune system response is a front-line, broadly applied defense, the 

adaptive immune system is specific and secondary. After exposure for the first time to a 

new toxin or pathogenic microbial product – what are called antigens, the adaptive 

system expresses receptor molecules tailored for highly specific recognition of distinct 

pathogens. These receptors are termed antibodies, and are generated via somatic 

rearrangement of germ-line genetic code, potentially allowing specific recognition of an 

astonishing number of different antigens. This potential has been adopted as an essential 

research tool for the biochemist or molecular biologist. Antibodies can be generated with 

high specificity for, essentially, whatever the researcher’s molecule of interest may be. 

The full adaptive response to an antigen allows increased recruitment of innate and 

adaptive immune effectors to the site of the threat. It also Fires the Big Guns, so to speak, 

of the immune response, such as the colorfully named Natural Killer Cells, and the 
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colorlessly named Complement System, both of which exert powerful cytotoxic 

functions, including destruction of infected host cells. 

5.1.4 Macrophages. 

Macrophages are a component cell of the innate immune system. They are 

phagocytic cells which assist in removing pathogens and dead cells and debris (Franco et 

al. 2015). They also respond to PAMPs such as lipopolysaccharide (LPS), which are 

exogenous, as well as endogenous indicators of cell damage - danger associated 

molecular patterns (DAMPs) such as ATP and extracellular matrix proteins, and other 

immune cell signaling molecules. Dependent on the mixture of signals a resting 

macrophage receives, their activation will occur along different pathways, dubbed M1 

and M2, and have different phenotypes, which appear geared for different, contrary, 

functions (note: this is a greatly simplified view!). The M1 activation phenotype is pro-

inflammatory, while the M2 response is anti-inflammatory, and more active in 

phagocytosis and clearance (Franco et al. 2015). This is a simplified view, sufficient for 

framing the important aspects below. There are many detailed reviews of the subject 

available. 

5.1.5 The neuroinflammatory response. 

 In the brain, the resident immune cell type is the microglial cell, which are 

similar to macrophages, and the similarity carries even to their activation states; the M1 

and M2 states of microglia are pro-inflammatory and anti-inflammatory. Interestingly, 

Aβ can cause activation of microglial cells along the M1 pathway, as we, among others, 
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have shown (Terrill-Usery et al. 2014). A summary of microglial dysfunction in AD is 

provided in Figure 5.1A (Heneka et al. 2015). 

DAMPs, including Aβ PF are recognized by the TLR4/CD14 complex, which 

causes translocation of NF-B from the cytosol to the nucleus, initiating transcription of 

mRNA coding for pro-inflammatory signals, including TNF- and pro-IL-1β (Figure 

5.1B). Secretion of mature IL-1β requires a secondary signal to process the pro form. As 

we have shown previously, Aβ PF may initiate this signaling as well. A complete 

understanding of this second signal pathway is still elusive, and an area of active 

research. Indeed, the author devised a series of experiments on this subject in his 

dissertation proposal. It likely involves Aβ PF phagocytic uptake into the cell via a 

phagocytic process, followed by lysosomal damage and release of Cathepsin B from the 

lysosomal compartment (Halle et al. 2008). Result is assembly of the NLRP3 

inflammasome complex, a multimeric complex composed of multiple subunits each of 

NLRP3, ASC, and pro-caspase-1. The active NLRP3 inflammasome permits the auto-

catalytic cleavage of pro-caspase-1 into caspase-1. Caspase-1 in turn mediates cleavage 

of pro-IL-1β into the mature form for secretion. There is also evidence from in vivo 

studies of inflammation which highlights the importance of this pathway in AD 

pathology. APP/PS1 mice (a widely employed mouse model of AD), when crossed with 

knock-outs for either NLRP3 or Caspase-1 genes (Nlrp3-/- or Casp1-/-), generated progeny 

with reduced AD pathology and cognitive defects (Schroder et al. 2010). 

The presence of cytokines, particularly IL-1β, reduces phagocytosis of Aβ 

deposits (Koenigsknecht-Talboo et al. 2005). This may constitute a vicious cycle which 

maintains the neuroinflammatory response. Furthermore, increased IL-1β release may 
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play an active role in neurodegeneration. IL-1β appears to induce neuronal tau 

phosphorylation in a MAPK-p38 pathway-dependent manner. This also results in reduced 

synaptophysin production, which is a neuronal synaptic protein. It is interesting to note 

that this is one of multiple instances where tau has been implicated as a mediator of Aβ-

induced pathology in AD. This link may explain the observed deleterious effects at the 

synapse which occur prior to outright neuronal death (Li et al. 2003)  

The Aβ PF aggregate species is important for induction of AD neuroinflammatory 

pathology, and therefore a possible therapeutic target. The full pathway by which this 

occurs is not fully understood. Adding to these facts the deep experience the Nichols Lab 

has with generation and characterization of Aβ PFs, there was an excellent opportunity to 

explore the potential of an antibody generated against the PF aggregate, first as a research 

tool, but perhaps as the first step in a translational science project in the future. With 

funding received through a UM system grant, Pacific Immunology was contracted to 

generate a polyclonal mouse antibody against Aβ PF generated and purified by the 

Nichols Lab. The remainder of this chapter details a large amount of the work 

characterizing this antibody, named AbSL, in terms of specificity for PF over other Aβ 

species, and suitability for use in both immunoblot and ELISA formats. Additional work 

was performed to elucidate the nature of the AbSL epitope via competition assays with 

other Aβ-specific antibodies. The work was performed myself and two excellent 

undergraduate researchers, Elizabeth Ridgeway and Victoria Rogers, who’s work I 

directed, while providing guidance in experimental technique and data analysis. A 

manuscript for journal submission is also currently being assembled describing these 

results. 
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Figure 5.1 Aβ and microglial pathology in AD. 

 

(A) Overview of microglial role in AD pathology.  The early response to increased 
Aβ is phagocytosis and clearance.  As neuroinflammation becomes chronic, 
microglial phagocytosis is reduced.  IL-1β signaling results deleterious effects at the 
neuronal synapse and cytoskeletal levels, ultimately contributing to neuronal death.  
(B) Overview of induction of IL-1β signaling by Aβ protofibril (PF).  Aβ PF activates 

the TLR4 receptor complex signaling pathway, resulting in NF-B translocation into 
the nucleus and pro-IL-1β production.  Aβ PF is also internalized into microglia, 
where it induces the secondary signal necessary for NLRP3 inflammasome-mediated 
cleavage of pro-caspase 1 into caspase-1, which in-turn cleaves pro-IL-1β, resulting 
in mature IL-1β which is then secreted. Panel A is from Heneka et al. 2013, and panel 
B is based on Terrill-Usery et al. 2014. 
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Figure 5.3 Indirect AbSL ELISA selects strongly for Aβ42 PF. 

 

2 µM purified Aβ42 protofibril was diluted in carbonate buffer across a range of 
concentrations.  Indirect ELISA was carried out as described in Figure 5-2 and 
Methods. (A) shows detection with 1:2000 dilution of AbSL at a lower Aβ42 
concentration range, while (B) shows detection with 1:10000 dilution of AbSL at a 
higher overall range of Aβ42.  (C) shows detection with 1:2000 dilution of Ab9, a non-
aggregate specific anti-Aβ antibody, across the same range as panel A, for comparison.  
Where error bars are present (panels B and C), data points represent avg +- SEM for n 
= 3 ELISA determinations.                              
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Figure 5.4 AbSL is selective for protofibril in a dot blot format. 

 

 (A) Aβ42 monomer (Mon) or protofibril (PF) (SEC-purified) diluted into aCSF (pH 
7.8), then 2 µL of each dilution was applied to nitrocellulose membrane (total mass 
Aβ42 in ng as indicated below each column), and incubated for 20 min at 25 ºC to 
allow adsorption into membrane matrix.  Membranes were blocked with 5 mL 1X 
PBS (pH 7.4) with 0.01% v/v Tween 20 and 10% w/v dry milk (blocking buffer) for 1 
h at 25 ºC with gentle shaking. Blocking buffer was then decanted and replaced with 5 
mL 1:1000 dilution of AbSL in 1X PBS with 0.2% v/v Tween 20 and 5% w/v dry 
milk (antibody diluent), and the membrane was again shaken gently for 1 h at 25 ºC.  
Primary antibody solution was decanted, and membrane was washed with 1X PBS 
with 0.2% w/v Tween 20 (wash buffer) X3 for 5 min gentle shaking cycles at 25 ºC.  
5 mL of 1:1000 antirabbit IgG-HrP conjugate in antibody diluent was added and the 
membrane was gently shaken for 1 h at 25 ºC.  After another 3-wash sequence, ECL 
substrate (Pierce) was applied and incubated for 1 min with vigorous shaking at 25 ºC.  
Chemiluminescence was visualized with X-Ray film.  (B) Prepared and annotated as 
described in panel A, with addition of fibril (Fib) (generated from SEC-purified 
monomer) spots.  In this case 1:1000 dilution of AbSL was compared with 1:1000 
dilution of Ab9, both prepared as described in panel A. 
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5.2.3 Selective affinity of AbSL for Aβ42 over Aβ40 protofibril. 

Both Aβ42 and Aβ40 may form protofibril structures in solution, though Aβ40 

requires much longer incubation times. In the past, many workers have taken advantage 

of the slow Aβ40 kinetics to investigate subtle events during aggregation which were 

difficult or impossible to probe using the more fibrillogenic Aβ42. Therefore, I asked if 

AbSL displayed any selectivity for protofibrils generated from Aβ42 over Aβ40 

protofibrils. Using the same indirect ELISA paradigm as described above, the AbSL 

binding affinity for Aβ42 protofibril was compared to that for Aβ40 protofibril (Figure 5-

5). Assuming a one-site saturation model, regression fitting was used to estimate 

equilibrium dissociation (Kd) and maximum binding sites (Bmax). The Kd for Aβ40 was 

approximately four-fold greater (16 ng/well vs 4 ng/well) suggesting a significant degree 

of selectivity for Aβ42 protofibrils. 
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Figure 5.5 AbSL has less affinity for Aβ40 protofibrils than Aβ42 protofibrils. 

 

2 µM purified Aβ40 and Aβ42 protofibrils in aCSF buffer (pH 7.8) were diluted in 50 
mM sodium bicarbonate (pH 9.6) coating solution, so that 50 µL would deliver 18, 
13.5, 10.8, 9, 6.75, 4.5, 1.8, or 0.9 ng load per well.  Wells were loaded in triplicate 
for each concentration for both Aβ40 and Aβ42, then incubated over night at 4 ºC.  
Wells were washed once with 0.2% v/v Tween in 1X PBS (pH 7.4).  Then 150 µL 
blocking buffer (10% w/v dry milk in wash buffer) was added to each well, and 
incubated for 1 h at 25 ºC followed by 3 washes.  The four antibody bleeds (B1-B4) 
as well as the pre-bleed (PB) were prepared across a dilution range from 1/50 to 
1/20,000 in antibody diluent (0.2% v/v Tween, 5% w/v dry milk in 1X PBS). 
Dilutions were added to triplicate wells, along with triplicate controls of antibody 
diluent alone, and incubated for 1 h at 25 ºC.  Wells were washed four times with 
wash buffer, and 100 µL 1:1000 dilution of anti-rabbit IgG-HRP conjugate secondary 
antibody in antibody diluent was applied to each well, and incubated for 2 h at 25 ºC.  
Wells were washed four times with wash buffer, followed by quantification of 
detection with TMB substrate.  Data points and error bars represent avg +- SEM for n 
= 3 ELISA determinations.                              
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5.2.4 Probing the AbSL epitope. 

To gain information about the AbSL conformational epitope, a series of capture 

ELISA experiments were developed, using AbSL in conjunction with other Aβ 

antibodies. Figure 5.6A provides an overview of the ELISA experiments in cartoon form. 

The antibodies employed, their host animals, and specificities are summarized in Table 

5.1, based on information from their developer, the Mayo Clinic. 

The Aβ antibodies used, in addition to AbSL, were Ab2.1.3, Ab9, and HrP-

conjugated Ab5 (Ab5-HrP). When AbSL was used as the primary detection antibody, 

antirabbit IgG-HrP (IgG-HrP) was used for secondary detection. The antibodies Ab2.1.3 

and Ab5-HrP were used previously, along with Ab13.1.1 (Aβ40-selective, not used here), 

to quantify Aβ42/Aβ40 isoform contribution to protofibrils generated in mixed monomer 

solutions. To generate monoclonal Ab2.1.3, immunization was performed in mouse 

against a peptide consisting of the C-terminal 12 amino acid sequence of Aβ42: Aβ(35-

42). After hybridoma fusion and colony amplification, the monoclonal antibody was then 

selected with full length Aβ42. Ab5 and Ab9 antibodies were generated in a similar 

fashion. The Ab5 immunogen was Aβ42 fibril with monoclonal selection with Aβ(1-16). 

For Ab9, Aβ(1-16) was both the immunogen and monoclonal selection screen. 

In addition to the AbSL indirect ELISA, 280 nm absorbance signals were seen 

well above baseline for three of the configurations tested. Those were Ab2.1.3 capture 

with Ab5 detection (Ab2.1.3-Ab5), Ab2.1.3 capture with AbSL detection (Ab2.1.3-

AbSL), and Ab9 capture with AbSL detection (Ab9-AbSL). Ab9 capture with Ab5 

detection was not significantly above baseline, as expected, as both were raised against 

Aβ(1-16). The Ab2.1.3-Ab5 positive result was also as expected, based on their epitopes, 
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one being C-terminal and the other N-terminal. Ab2.1.3-AbSL and Ab9-AbSL were both 

positive results, however the Ab9-AbSL absorbance was attenuated, which may indicate 

some sequence overlap between the AbSL conformational epitope, and the Ab9 N-

terminal sequence epitope.  

This possible AbSL-Ab9 epitope overlap was explored further using indirect 

ELISA competition assays (Figure 5.7). As controls, Aβ42 was detected with Ab9, then 

secondary detection was performed with anti-mouse IgG-HrP, the positive control, or 

anti-rabbit IgG-HrP, the negative control. When Aβ42 was detected with a mixture of 

AbSL and Ab9, and then anti-rabbit secondary detection was performed for AbSL, the 

absorbance signal decreased with increasing Ab9 concentration, until a minimum plateau 

was reached. This indicated partial competition for epitope binding. If the entire Ab9 

sequence epitope was involved in the conformational epitope of AbSL, one would expect 

a continued decrease in AbSL binding with increasing Ab9 concentration, until AbSL 

was entirely competed off the binding site. 

For a final probe of the suspected AbSL-Ab9 epitope overlap, the Ab2.1.3-AbSL 

and Ab9-AbSL capture antibody ELISAs were repeated across a range of Aβ42 

protofibril concentrations (Figure 5.8). The binding curve was reduced when Ab9 was 

used as capture, but superposition of the curves revealed similar shapes. This 

corroborated the evidence for partial overlap between AbSL and Ab9 epitopes. 
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Figure 5.6 ELISA-style probe of AbSL epitope sequence involvement. 

 

A) Immunosorbance systems examined in (B) are depicted in the cartoon.  SEC-
purified Aβ42 protofibril (Aβ42 PF, curving black arrays) concentration was 0.08 µM 
in sodium bicarbonate coating solution (pH 9.6) 50 µL was added into sample wells 
(18 ng Aβ42 per well).  Antibodies were diluted into 1X PBS (pH 7.4).  AbSL (red) 
dilution was 1:1000, Ab 2.1.3 (blue) was 1.7:1000, Ab9 (green)was 1:5000, Ab5-HrP 
(orange) was 1:2000 and antirabbit IgG-HrP (IgG-HrP, gray) was 1:1000.  The 
antibody loading volumes were all 100 µL per well. (B) First, Aβ42 PF samples were 
added to [AbSL] wells and incubated overnight at 25 ºC.  The next day, all remaining 
assay steps were performed in the same 96-well-plate, as described in the methods. 
Quantification was colourimetric via HrP-catalyzed oxidation of TMB substrate.  100 
µL 1 M H2SO4 was added to quench reaction.  Absorbance was measured at 450 nm 
on the platereader along with 630 nm absorbance, which was subtracted to adjust for 
optical differences between the wells themselves.  Background controls (Black bars) 
were wells where the Aβ42 PF sample was replaced with coating solution alone.  
Each control data point is the mean of n = 2 replicates ± SEM.  Sample data is mean 
of n = 4 replicates ± SEM. 
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Table 5.1 Summary of antibodies used in Figure 5.6. 

Antibody Host Immunization Monoclonal screen 

AbSL Rabbit Aβ42 protofibril n/a; anti-serum 

Ab9 Mouse Aβ(1-16) Aβ(1-16) 

Ab5-HrP Mouse Fibrillar Aβ42 Aβ(1-16) 

Ab2.1.3 Mouse Aβ(35-42) Aβ42 

IgG-HrP Goat Rabbit IgG n/a; polyclonal 

 



131 

 

  

Figure 5.7 AbSL vs. Ab9 cis-competition ELISA. 

 

Aβ42 protofibrils were adsorbed overnight into wells of a 96-well immunoplate.  
Indirect ELISA was performed as described in the methods.  Primary detection was 
performed with either Ab9 alone (1:2,500-1:50,000 dilutions) or Ab9 (same dilutions) 
mixed with AbSL, as indicated.  AbSL was fixed at 1:1000 dilution.  Secondary 
detection was performed with anti-rabbit IgG-HrP or anti-mouse IgG-HrP as 
indicated.  Ab9 with anti-rabbit IgG-HrP secondary detection was performed as a 
negative control, as Ab9 was raised in mouse.  The axes are both measures of 
absorbance, so that all conditions are visible. 
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Figure 5.8 AbSL vs. Ab2.1.3 trans-competition capture ELISA.

Capture antibodies of Ab2.1.3 or Ab9 were plated overnight in 96-well 
immunoplate wells, followed by addition of the indicated amounts of Aβ42 
protofibril.  Then detection was performed on both conditions with AbSL primary 
detection and anti-rabbit IgG-HrP secondary detection.  The right panel shows the 
same data as the left panel, plotted on different y-axis scales to overlay the 
absorbances measured under each condition, and highlight the similarity of the 
curves. 
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5.3 Discussion. 

I prepared Aβ42 protofibrils which were used to inoculate a pair of rabbits for 

generation of anti-serum. I characterized the anti-serum, which contained a high titer of 

antibody which recognized Aβ42 protofibrils. 

I further evaluated the anti-serum for specific binding to the Aβ42 protofibril 

conformational epitope. I found it to be highly selective compared to both either 

monomer or fibril Aβ42 in both indirect ELISA and dot-blot formats. I also revealed a 

high degree of selectivity for Aβ42 protofibrils, over protofibrils formed from the other 

common Aβ isoform, Aβ40. 

Finally, I probed the Aβ42 protofibril epitope itself in a series of ELISA formats, 

both capture and indirect. I found solid evidence which pointed to no involvement of the 

C-terminal region comprised of amino acids 25-42. On the other hand, the competition 

experiments using N-terminal sequence specific antibody Ab9 suggested a partial overlap 

between the conformational epitope of AbSL and the N-terminal 1-16 amino acid 

sequence of Aβ. 

Additional work will include affinity purification of the anti-serum into a 

polyclonal antibody with improved affinity for Aβ42 protofibril, as well as 

characterization. This could be followed by generation of a monoclonal version using the 

same Aβ42 protofibril immunogen, if results are promising. Beyond that, the sky is the 

limit. A recent paper (Wang et al. 2016) showed administration of novel anti-Aβ 

oligomer 11A5 mixed with N-terminal Aβ antibody 6E10 improved cognitive deficits in 
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a mouse model of AD. Furthermore, a different antibody treatment for AD, aducanumab, 

is currently showing great promise in human clinical trials. The success of aducanumab 

especially demonstrates the potential of antibody-based therapies for amyloid diseases. 

The monoclonal antibody mAb158, raised in mouse, is selective for Aβ protofibril 

(Englund et al. 2007). A humanized version of mAb158, BAN2401, is another new 

example of an antibody-based potential therapy for AD (Logovinsky et al. 2016).  

While this is certainly beneficial as a research tool, given the apparent importance 

of the chronic neuroinflammatory pathology to the overall progression of AD, I believe 

that AbSL may hold promise as a potential therapeutic, as demonstrated by the current 

interest in BAN2401. The neuroinflammatory axis of AD pathology appears to involve 

not only Aβ induced effects, but also the tau protein as well (Li et al. 2003). Likely there 

are other pathways by which AD neurodegeneration proceeds, but neuroinflammation is 

certainly a major component, making my work here a significant step in the right 

direction in the fight against AD. 
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