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ABSTRACT 
 
 
 

This thesis was written by Colvin, Benjamin, A. in partial fulfillment of the 

requirements for a PhD. in Chemistry with an emphasis in Biochemistry, in December, 

2017, at The University of Missouri – Saint Louis. The work described within was 

performed while under the mentorship of Michael R. Nichols, PhD. Historically, research 

in the Nichols Lab focuses on the fundamental biochemistry of Alzheimer’s Disease 

(AD) and the involvement of amyloid protein aggregate pathology in neurodegeneration 

and dementia. Amyloid aggregates are protein polymers comprised of non-native-fold 

monomers with characteristic backbone-backbone cross-β-sheet secondary structures. 

The proteins known to undergo this pathological conformational change are collectively 

called amyloids, after the eponymous Amyloid- β protein, one of two amyloid proteins 

found in AD pathology, alongside the Tau protein. 

One defining characteristic of Nichols Lab studies is thorough biophysical 

analysis.  This is particularly difficult as amyloid protein aggregate solutions are 

inherently polydisperse, and highly sensitive to starting conditions. Sensitivity to starting 

conditions means that it is difficult to generate repeatable data; two aliquots taken from 

the same stock monomeric solution often have significantly different aggregate profiles 

after incubation. Polydispersity makes 3D structural determination by traditional methods 

such as X-ray crystallography difficult or impossible. Polydispersity also presents a 

challenge in deciphering pathology. Different aggregate isoforms are known to illicit 

different cellular responses.  Therefore, in cellular and animal studies alike, purified, 
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well-characterized single isoform solutions often provide more meaningful results than 

bulk aggregate solutions.  

As amyloid systems are refractory to many common research paradigms, the 

researcher must be clever and often apply uncommon methods to gain insight into their 

nature. The work herein takes this approach in studies of three different amyloid systems.  

First, oligomers are purified from bulk solution via SEC chromatography.  In-line with 

this, MALS allows determination of absolute molecular weights for the isolated species.  

Then the isolated species are characterized via a number of methods, such as dye-binding 

assays, CD spectrophotometry,  and conformation/isoform specific immunochemical 

assays. 

I adapted the methods developed by the group of Rakez Kayed for generation of 

2N4R tau oligomers from monomeric 2N4R tau via templating interaction with 

preformed oligomeric seeds. The method itself required modification due to the starting 

material, and significant preformed aggregates were present, which required additional 

steps to remove. I examined the extent of seeding when 2N3R is used as the monomeric 

pool, and analyzed the results with SEC-MALS and Western blot. Although the 

molecular weight profiles of the seeded and unseeded control were similar, I noted an 

elution volume shift in the seeded sample.  This suggests a conformational change as a 

result of the seeding.  Upon SDS-PAGE and Western blot analysis of the seeded and 

unseeded control with T22 antibody, which is specific for 2N4R oligomers, I detected no 

binding in either preparation.  However, when the same preparations were probed with 

Tau-5 antibody, which recognizes both isoforms and has no conformational specificity, 

bands appeared corresponding to monomer, dimer/trimer and apparent tetramer in the 



xiv 
 

oligomer peak fractions of the seeded preparation, and to a lesser extent in the unseeded 

preparation.  Taken together, the Western blot results suggest that the SDS-resistant 

2N3R oligomer which was formed differs in conformation from the 2N4R oligomer used 

to generate the T22 antibody. 

The second project described in this dissertation is a biophysical study of 

protofibril formation in two-isoform mixtures of Aβ42 and Aβ40 monomer.  First,  

multiple incubation conditions were tested for generation of soluble HMW oligomers.  

Incubation at 37 ºC for 24 h in aCSF (pH 7.8) resulted in formation of insoluble fibril 

with very little soluble oligomer remaining.  When the aggregation was performed in the 

same buffer at lower ionic strength under the same conditions (low-salt aCSF) the 

resulting solution was highly enriched with protofilaments.  When Tris-HCl (pH 7.8) was 

used as the incubation buffer, the result was 91% fibril, with a 9% population of classic 

curvilinear protofibrils. 

Selecting the low-salt aCSF method, 40 µM total Aβ monomer solutions were 

prepared which were all-Aβ42, all-Aβ40, or had Aβ42/Aβ40 ratios of 4:1, 1:1, or 1:4.  

Additionally all-Aβ42 monomer solutions were prepared at the same concentration Aβ42 

as in the mixed solutions (32, 20, or 8 µM).  After incubation, decreasing β-sheet content 

by ThT dye binding correlated with decreasing Aβ42 content, and the decrease was 

accentuated in the presence of Aβ40.  Upon SEC purification, I noted a decreased 

protofibril % yield as Aβ40 concentration increases; in the all-Aβ42 preparations no trend 

was detected.  There was no strong change in molecular weight between the all-Aβ42 

preparations and the mixture preparations, as assessed by MALS in-line with SEC.  I 

noted that protofibrils generated at lower Aβ42 concentrations had detectable -helical 
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secondary structure as measured by CD, and this phenomenon was accentuated when 

Aβ40 was present. 

Using a novel C-terminal selective ELISA, I probed the incorporation of each 

isoform into the protofibrils generated.  The protofibrils were overwhelmingly Aβ42, 

suggesting very little Aβ40 is recruited during rapid protofibril formation.  This held true 

even when the two isoforms were mixed at a 1:1 molar ratio. 

Contrary to earlier results, when the Aβ42 concentration is held constant at 20 µM 

and only the Aβ40 concentration is varied, no trend is observed in protofibril % recovery.  

However, I did note a reduced protofibril β-sheet contribution when Aβ40 is present, and 

CD also revealed an increased -helical characteristic. 

The final project was characterization of a novel anti-serum, dubbed AbSL, 

generated against Aβ42 protofibrils.  The tests demonstrated significant specificity for 

Aβ42 protofibrils over Aβ42 monomer or fibril, in both dot-blot and indirect ELISA 

formats.  I also demonstrated AbSL indirect ELISA selectivity for Aβ42 protofibrils over 

Aβ40 protofibrils. 

In order to probe the AbSL specificity epitope, a series of ELISA assays were  

performed with additional antibodies, Ab9 and Ab5, both N-terminal sequence-selective, 

and Ab2.1.3, which recognizes the C-terminal of Aβ42.  The results indicated partial 

overlap between the AbSL conformational epitope and the N-terminal 16 amino acid 

sequence recognized by Ab9. 
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CHAPTER 1. 

INTRODUCTION. 
 

 
 

1.1 The cost of Alzheimer’s disease dementia. 

Alzheimer’s disease (AD) is the most common form of dementia, and the sixth 

leading cause of death in the United States. One in three seniors dies with AD or another 

dementia. Not considering the emotional costs to the 5 million in this country living with 

the disease, and their families, AD and other dementias will cost the economy $236 

billion this year (http://www.alz.org). 

1.2 The classic Alzheimer’s disease histopathology. 

First described over a century ago (Alzheimer et al. 1995) AD is associated with 

two histopathological characteristics upon post-mortem examination of brain tissue: 

extracellular neuritic amyloid-β (Aβ) plaques (or senile plaques) and intracellular tau 

neurofibrillary tangles (NFTs) (Figure 1.1A) (Grundke-Iqbal et al. 1986, Selkoe 1991). 

Clinically, AD manifests as progressive dementia and neurodegeneration (Selkoe 2001). 

The plaques consist of deposits of Aβ peptide, aggregated to form the characteristic 

insoluble fibril structures. Diseases which involve Aβ aggregates such as these 

characteristic senile plaques found in Alzheimer’s are referred to as amyloidoses. The 

term amyloid is a bit of a misnomer- from the greek root amulon, which means starch. 
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The amyloid quaternary structure, as a class, was defined >150 years previous by the 

Pathologist Virchow, relating his early observation of starch-like blue staining of the 

material when treated with iodine solution (Titford 2010). The modern gold-standard 

staining test for amyloid is Congo Red, which displays characteristic ‘apple green’ 

birefringence in cross-polarized light (Figure 1.1B) (Jin et al. 2003). NFTs are composed 

of paired helical filaments of aggregated tau protein, which is also considered an 

Amyloid protein. Current thinking suggests AD is a multiple-amyloid disorder, not only 

in terms of histopathology, of etiopathogenesis as well– that is, both Aβ and tau 

contribute to pathology in AD. 
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Figure 1.1 The quintessential Alzheimer’s Disease histology. 

 

(A) In vivo there are characteristic histopathological hallmarks associated with AD. 
Silver stain (modified Bielschowsky) of a 6 µm paraffin embedded section of 
amygdala from an AD patient post-mortem. Dark staining areas are NFT. Senile 
plaque in the center noted with letter A. Indicated with , Surrounding the plaque are 
“dystrophic” or structurally abnormal neurites. Normal neurons indicated with  are 
present further from the inclusion. (B) Congo Red stain of a paraffin embedded 10 
µm section from the midtemporal gyrus of an AD patient post-mortem. (I) Section 
stain under linearly polarized white light. (II) Section stain placed between crossed 
polarizers, revealing characteristic “apple green” birefringence. Panel A is from 
Selkoe 1991, and panel B is from Jin et al 2003. 
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1.3 Amyloid aggregation. 

The amyloid aggregate state, inherently a consequence of interactions between 

protein backbones (cross β-sheet), has high thermodynamic stability and resistance. 

Theoretical and experimental evidence support the concept that proteins may form 

amyloid aggregates under conditions where they are partially or completely unfolded, and 

that the amyloid state is an alternative low energy state to a protein’s native fold, 

common all protein (Arosio et al. 2015). 

Amyloid aggregation is similar to the well-studied crystal growth and polymer 

gelation processes, possessing a pseudocrystalline growth pattern (Dobson 1999). A 

monomer solution will exist for some time, the lag phase, until nucleation occurs, 

initiating the elongation phase, which continues until the solution is sufficiently depleted 

of monomer. An aggregating solution of amyloid is polydisperse, containing monomers, 

insoluble fibrils (in suspension and deposited) and a range of oligomeric species. Low 

molecular weight (LMW) oligomer includes dimer, trimer, tetramer, up to dodecamer. 

HMW oligomer group certainly includes species such as large globular oligomers, 

protofibrils, protofilaments; these species are made up of dozens, if not hundreds, of 

monomers.  

1.4 Genetic evidence for the involvement of Amyloid-β in AD pathology. 

AD manifests clinically as progressive dementia and pathologically as 

neurodegeneration. There are two broad classes of the disease, based on the extent to 

which genetic predispositions are identified, and the age of disease on-set. Sporadic 
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(SAD), or late-onset AD is the most common form of the disease, and occurs after 60 

years of age. There is no specific genetic link, although there are some risk factors which 

have been identified. The greatest known risk factor is the E4 allele of the gene which 

encodes the apolipoprotein APOE. Individuals who express the ApoE4 isoform have an 

increased risk for late-onset AD. Familial AD (FAD), also called early-onset AD 

(EOAD), is quite rare, and occurs due to multiple different mutations, usually identified 

do to the prevalence of the disorder within a small population of people. AD with onset 

between 30 and 60 years of age is characterized as EOAD (Selkoe 2001, Zlokovic 2013). 

Genetic studies of EOAD cases strongly implicate the Aβ peptide as a primary 

effector of AD pathology (Hardy 1997). Aβ peptide is a product of sequential proteolytic 

cleavage of the amyloid precursor protein (APP), a 770 amino acid single-pass 

transmembrane protein (Kang et al. 1987), with a relatively short 30 minute half-life 

(Weidemann et al. 1989). APP is translocated to the cell membrane where it is oriented 

with its N-terminal domain extracellular, and C-terminal cytoplasmic. At this point, APP 

is proteolytically cleaved differentially along one of two pathways: the -pathway or the 

β-pathway (Selkoe 2001, O'Brien et al. 2011). The -pathway (or non-amyloidogenic 

pathway) is not associated with AD. This pathway involves sequential cleavage first by 

-secretase in the extracellular region, then by -secretase, within the cell membrane. -

secretase cleaves within the Aβ peptide region of the APP protein, yielding the non-

amyloidogenic p3 fragment (Hardy 1997, Selkoe 2001). In the amyloidogenic cleavage 

sequence, APP is first cleaved by β-secretase to form a membrane-associated 99 amino 

acid segment. Then imprecise cleavage by γ-secretase produces multiple isoforms of the 

Aβ peptide between 38 and 43 residues long (Selkoe 2001). The two most predominant 
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isoforms of Aβ are Aβ(1-40) (Aβ40) and Aβ(1-42) (Aβ42). Aβ40 is more abundant in 

CSF, however Aβ42 is more hydrophobic and more prone to aggregation than the 40 

amino acid peptide and makes up the core of the plaques (Figure 1.2) (Axelsen et al. 

2011).  

All described genotypes leading to EOAD involve APP. Either the APP gene 

itself is affected, or APP processing via altered secretase function. The most straight-

forward example is Down’s syndrome (DS), or trisomy of chromosome 21 (trisomy-21). 

Individuals with DS possess an extra copy of chromosome 21, and the APP gene lies on 

this chromosome. This leads to the over-expression of APP (Rumble et al. 1989). By 

their 40th year, individuals with full trisomy-21 invariably develop AD neuropathology 

(Aβ plaques and tau tangles) sufficient for a histopathological diagnosis of AD 

(Wisniewski et al. 1985, Head et al. 2012), and suffer a drastically increased rate of AD-

related clinical dementia (Head et al. 2012).  

There are more than 20 APP mutations which have been identified in cases of 

EOAD. These mutations tend to do one of two things: either they enhance overall 

production of Aβ by causing a preference for the β-pathway of APP proteolysis, or they 

alter the -secretase cleavage site, leading to more Aβ42 production, over Aβ40 (Hardy 

1997, Selkoe 2001). The final group of EOAD-associated mutations occur in one of the 

two presenilin genes, and alter the -secretase complex, again increasing Aβ42 

production, over Aβ40. 
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Figure 1.2 Pathways of APP processing. 

This cartoon represents the amyloidogenic pathway of APP processing. APP 
undergoes one of two pathways of proteolytic cleavage. One results in generation of 

the Aβ peptide, while the other does not. If APP is sequentially cleaved by -

secretase and -secretase, the non-amyloid p3 fragment does not readily undergo 

amyloid aggregation. However, if APP is cleaved first by β-secretase followed by -
secretase, then an Aβ peptide isoform is the result. The figure is from Axelsen et al. 
2011. 
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1.5 The Amyloid Cascade Hypothesis. 

That the histopathological and genetic evidence both indicated the involvement of 

APP and its cleavage product Aβ in AD pathogenesis, and particularly the prevalence of 

histopathology and ageing-related dementia in cases of trisomy-21 (Selkoe 1991, Masters 

et al. 2012), was critical in the formation of early AD etiological theory (Hardy et al. 

1992). Early in the 1990s, a number of articles presented similar viewpoints (Hardy et al. 

1992), (Selkoe 1991), (Hardy et al. 1991), (Beyreuther et al. 1991) on the predominant 

role of Aβ in AD pathology. What came to be called the Amyloid Cascade Hypothesis 

(ACH) posited that Aβ deposition in plaques is the cause of all AD pathology, with NFT, 

vascular and neuronal damage, and clinical dementia resulting from this event (Hardy et 

al. 1992). 

In the 25 years since it was first presented, the ACH has had significant 

challenges, multiple alternative hypotheses have been presented, and the ACH has been 

refined and expanded. 25 years of research has greatly expanded the AD literature, and 

current thinking is quite a bit more nuanced. The modern ACH (Figure 1.3) presents a 

view of AD pathology where tau protein and Aβ peptide can both mediate pathology, and 

interplay between the two ultimately leads to disease. Additionally, the role of pathologic 

oligomeric Aβ and tau has come to the fore. Furthermore, in light of the sustained 

neuroinflammatory response in AD, the role of glial-cell derived indirect neuropathology 

must also be considered (Karran et al. 2016). 
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Figure 1.3 A modern Amyloid Cascade Hypothesis. 

This diagram is an example of a modern recasting of the Amyloid Cascade 
Hypothesis. Aggregation of Aβ remains a primary event in pathology. In some cases, 
Aβ directly induces pathology, such as the neuroinflammatory response. In others, Aβ 
acts indirectly, inducing Tau mediated pathology. And in a third axis, Tau 
dysfunction may lead to pathology independent of Aβ. The figure is from Karran and 
De Strooper 2016. 
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1.6 Modeling AD progression. 

The shift in perspectives is also reflected at the clinical level, in biomarker-based 

modeling of AD progression.  Biomarkers are signs of pathology which can be measured 

in vivo in a human patient, and there is much interest in correlating changes in these signs 

with changes in disease symptoms and severity.  One of the most widely known and 

accepted models of AD biomarker change and clinical progression was put forth by Dr. 

Clifford Jack and colleagues (Jack et al. 2013).  The model is shown in Figure 1.4.  There 

are multiple major AD biomarkers, and can be divided into two categories: measures of 

Aβ deposition, and measures of neurodegeneration.  Aβ deposition is monitored by assay 

of the cerebro-spinal fluid (CSF) Aβ42, as well as amyloid imaging by positron emission 

tomography (PET).  Neurodegeneration is monitored by CSF total tau and 

phosphorylated tau, hypometabolism via fluoroxyglucose PET, and brain atrophy via 

structural MRI.  The most advanced model also incorporates histological findings, which 

would be below detection via biomarker assays.  The model posits that tau, not Aβ, 

abnormalities arise first, then Aβ abnormalities act to accelerate the rate of tau pathology, 

and the two work in concert to bring about the neurodegeneration and increasing mental 

impairment associated with later stages in AD progression.  This positions tau a1s a 

major player alongside Aβ in the biological mechanisms which underlie AD. 
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Figure 1.4 Integrated model of AD progression. 

 

Below the detection threshold, biomarkers cannot detect pathological changes, 
however this model incorporates histological findings suggesting tauopathy precedes 
Aβ pathology.  However, once Aβ pathology reaches a certain level, it begins to 
accelerate the rate of tauopathy increase. Once this process occurs, measures of 
cognitive impairment begin to increase. The figure is from Jack et al 2013. 
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1.7 Non-Aβ amyloid diseases. 

In contrast to Aβ, the microtubule associated protein (MAP) tau is not linked with 

any EOAD genotypes. However, aggregated tau deposits have been identified in other 

non-Aβ neurodegenerative disorders, for example, Parkinson’s disease (PD) (Galpern et 

al. 2006), dementia with Lewy bodies (DLB) (Galpern et al. 2006), frontotemporal 

dementia and parkinsonism linked to chromosome 17 (FTDP-17) (Buee et al. 1999), 

Pick’s disease (PiD) (Feany et al. 1996, Buee et al. 1999, Zhukareva et al. 2002), 

progressive supranuclear palsy (PSP) (Feany et al. 1996, Buee et al. 1999), corticobasal 

degeneration (CBD) (Feany et al. 1996, Buee et al. 1999), and recently Huntington’s 

disease (HD) (Fernandez-Nogales et al. 2014). PD and DLB belong to the 

synucleinopathy group of diseases. They both involve aggregates of -synuclein, another 

amyloid protein, as well as tau (Galpern et al. 2006). FTDP-17, PiD, PSP and CBD are 

tauopathies, containing tau aggregates, and no other detected amyloid pathologies. 

FTDP-17 is of particular interest, as it is a strictly familial disorder; families with FTDP-

17 have mutations in the gene which encodes tau protein (Buee et al. 1999). 

1.8 Tau, a microtubule-associated protein. 

Microtubules are one of the three structural systems, along with actin and 

intermediate filaments, which compose the eukaryotic cytoskeleton. Among other 

functions, dynamic networks of microtubules are essential for cell shape and intracellular 

trafficking. -tubulin and β-tubulin (each ~50 kDa, with ~50% sequence identity) form 

heterodimeric subunits which polymerize non-covalently to form MTs (Weisenberg et al. 
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1968, Burns 1991, Desai et al. 1997). Microtubules are inherently polar with regards to 

polymerization rates, having a fast growing “plus” end and a slower growing “minus” 

end. β-subunits orient longitudinally to form protofilaments, and these are associated 

laterally to form a 25 nm diameter hollow cylinder (Desai et al. 1997). 

The primary locations tau is expressed are the central and peripheral nervous 

system. It is also found in other tissues, to a lesser extent (Gu et al. 1996). In a healthy 

nervous system, tau is most often found associated with axons, but it is also detected in 

dendrocytes (Morris et al. 2011). Tau is a MAP involved in assembling and stabilizing 

microtubules in neuronal cells (Weingarten et al. 1975, Buee et al. 1999, Buee et al. 

2000).  In humans, there are 6 well-studied isoforms of the tau protein, generated by 

alternative splicing of mRNA transcripts of the MAPT gene located on chromosome 17 

(Figure 1.4). The alternative splicing involves exons 2, 3, and 10. There is also alternative 

splicing of exons 6 (Wang et al. 2007), 4a, and 8, but these isoforms are not yet well-

studied (Morris et al. 2011), and only expressed in peripheral tissue (Wang et al. 2016). 

Exons 2 and 3 code 29 (N1) and 58 (N2) residue N-terminal inserts, respectively. Exon 

10 codes R2, a 31 amino-acid insert, the second in a series of four (R1-R4) microtubule-

binding domain repeats (R1-R4), with R4 being the most C-terminal domain. Translation 

of alternatively spliced mRNA results in tau isoforms between 352 and 441 amino-acids 

in length, with no N-terminal inserts (0N), the 29 amino-acid N1 insert (1N), both N-

terminal inserts (2N), and either three (3R) or four (4R) microtubule binding repeats 

(Goedert et al. 1989, Lee et al. 1989, Billingsley et al. 1997, Buee et al. 1999). 

The tau protein can be divided into 3 regions: the N-terminal portion, the proline-

rich portion, the microtubule-binding repeats (MTBRs) region (Kolarova et al. 2012). 
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The N-terminal comprises ~120 amino acids in the largest (2N) isoforms. This region is 

also referred to as the projection domain, as is projects from the surface of the 

microtubule into the cytoplasm. It may interact with the plasma membrane, or other 

cytoskeletal elements such as actin (Kolarova et al. 2012). The extreme N-terminal 

region, amino acids 2-18, comprise the recently discovered phosphatase-activating 

domain (PAD), which is important for early events in tau pathology (Kanaan et al. 2011). 

The next region is the proline-rich region, which contains seven PXXP motifs. These 

serve as binding sites for signaling proteins, such as the tyrosine kinase FYN, which 

contain SH3 domains (SRC family non-receptor tyrosine kinases) (Lee et al. 1998). The 

MTBR region contains the 3 (3R) to 4 (4R) repeat segments responsible for interaction 

with microtubules (Buee et al. 1999). 
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Figure 1.5 The tau protein 

The MAPT gene codes for the 6 canonical splice variants of the Tau protein.  The 
isoforms are distinguished by the presence of 0, 1, or 2 N-terminal repeats, coded by 
exons 2 and 3, and 3 or 4 microtubule binding repeat regions. Exon 10 codes for repeat 
region R2, which is present in the 4R isoforms and absent in the 3R. This dissertation 
is primarily concerned with the 2N3R and 2N4R isoforms, the most common found in 
adult human brain. The splice pattern coding convention will be used, which labels the 
isoforms by their number of N and R regions, providing more meaningful names. This 
differs from the NCBI ID numbering system, as well as the Uniprot system, which 
ascribes each isoform a letter. The figure is from Johnson and Stoothoff 2004. 
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1.9 Tau phosphorylation. 

The longest tau isoform contains 79 potential Ser or Thr, and five Tyr 

phosphorylation sites, of which approximately 30 are phosphorylated under non-

pathological conditions. In contrast to Aβ, whose native non-pathological function 

remains unclear, tau pathology involves loss-of-function effects, as well as putative gain-

of-function toxic effects (Morris et al. 2011). It has long been known that tau is sufficient 

to promote microtubule (MT) nucleation and elongation in vitro (Weingarten et al. 1975), 

and this was the first function assigned to the tau protein. Microtubules are dynamically 

unstable, which means polymerization and depolymerization coexist at the ends of the 

microtubules, and the growth or shrinking of the microtubule is dependent on their 

relative rates. MAPs such as tau can associate with and control the dynamics of 

microtubules (Hirokawa et al. 2005). Tau associates directly with microtubules, 

enhancing polymerization, and reducing depolymerization in vitro (Drubin et al. 1986). 

The binding of tau to microtubules is controlled by the phosphorylation state of tau. 

Dephosphorylation of tau increases binding of tau to microtubules, and indeed increases 

microtubule polymerization (Lindwall et al. 1984). Normal neurons have approximately 

10:1 tubulin to tau ratio; neuronal tau concentration is ~2 µM, and most tau is found 

associated with MTs (Butner et al. 1991, Khatoon et al. 1992).  

Hyperphosphorylated tau (AD P-tau) the main component of the NFTs found in 

AD (Braak et al. 1991, Buee et al. 2000). AD P-tau has a much higher amount of 

phosphorylation.  Compared to normal tau, which contains 2-3 mols phosphate per mol 
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tau, AD P-tau has mol ratio of 5-9 mol phosphate per mol tau (Kopke et al. 1993). Not 

only does AD P-tau have reduced MT binding capability, when AD P-tau is added to a 

mixture of normal tau and tubulin, MT assembly is inhibited. This suggests both a loss-

of-function and a gain-of-function effect, in that AD P-tau cannot bind MT, yet gains the 

ability to interact with normal tau and prevent its microtubule-promoting activity (Alonso 

et al. 1994). 

As alluded to above, mounting evidence suggests that native tau likely functions 

as more than just a MT stabilizing protein (Morris et al. 2011). In cell culture and in vivo 

in mouse hippocampus, tau co-localizes with the most unstable and highest turnover MTs 

(Kempf et al. 1996, Fanara et al. 2010), and siRNA knockdown of tau in primary culture 

is neither lethal nor does it modify MT number or polymerization (King et al. 2006, 

Qiang et al. 2006). This suggests that in vivo tau may not function primarily as a MT 

stabilizer. Furthermore, numerous binding partners have been identified for tau in the 

intervening years since the initial studies with tau and MT, and tau may have multiple 

functions, such as modulation of axonal transport, as well as cell signaling (Morris et al. 

2011). 

As I have hopefully demonstrated, both Aβ and tau are implicated in the 

etiopathogenesis of AD. These amyloid proteins have complex biochemistries. 

Unraveling the intricacies of their behaviors, both the morphological and kinetic aspects 

of their aggregation pathways, and how those aggregates can induce neuropathological 

changes, will be essential in building a full picture of AD at the cellular level, which will 

inform future therapeutic development endeavors. In the remaining chapters of this 

dissertation, I will first describe the methods used in the novel research presented in the 



18 

 

following results chapter.  Each results chapter will be prefaced by an introduction which 

will describe the problem the research is targeting, as well as a summary of current 

knowledge and questions which makes the research important.



19 

 

CHAPTER 2. 

METHODS. 

2.1 Preparation of tau oligomers. 

The general protocol for preparing tau oligomers via seeding is described here. 

Some modifications were made, and those are described in the text as appropriate. Figure 

3.2 provides a summary of the tau oligomer preparation. An aliquot pellet of purified 

recombinant tau, generated as described in (Margittai and Langen 2004) was dissolved in 

30 µL 8 M Urea, freshly prepared. The sample was then diluted to 1 mL with 1X PBS 

(pH 7.4), vortexed briefly (3 s, medium speed), transferred to a 10 kDa molecular weight 

cut-off 3 mL Slide-a-lyzer dialysis cassette (Thermo Scientific), and dialyzed overnight at 

4 ºC against 1X PBS (pH 7.4). After dialysis, the sample (~1 mL) was transferred to a 

new Eppendorf tube, and concentration was determined by BCA assay, and absorbance at 

280 nm. The sample was then diluted to 1 mg/mL. Aliquots of the solution were stored at 

-20 ºC until use. 

For oligomerization reaction experiments, 300 µL tau stock was diluted to 0.3 

mg/mL with 1X PBS (pH 7.4), yielding a total volume of 1 mL. At this point, there was 

an optional step, which involved incubation of the aliquot at room temperature for 24-48 

h with stirring. This was reported to improve reproducibility. Then, to initiate seeded 
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oligomerization, 7 µL of 0.3 mg/mL oligomer seed solution was added, and the solution 

mixed for 1 min by gentle pipetting. The mixture was incubated at 25 ºC with gentle 

shaking on an orbital shaker for 1 h to allow formation of oligomers. 

2.2 Microplate BCA protein concentration assay. 

The bicinchoninic acid (BCA) assay measures reduction of Cu2+ by the peptide 

bond between amino acid residues. The reduced Cu1+ product is chelated by two BCA 

molecules. The adduct appears violet in solution and absorbs in the green with an 

aborbance maximum of 562 nm. To measure tau sample protein content, a bovine serum 

albumin (BSA) standard curve was created, using stock BSA standard (Thermo 

Scientific) with a concentration of 2 mg/mL as the upper limit. BSA standard was serially 

diluted with 1X PBS (pH 7.4) to create standards with concentrations of 1500, 750, 375, 

150, 75, and 15 µg/mL. The 0 mg/mL blank was 1X PBS (pH 7.4) alone. Samples and 

standards were added into wells of a 96-well-plate in the desired number of replicates. 

BCA working reageant (WR) was prepared by mixing BCA reagent A (Thermo 

Scientific) and BCA reagent B (Thermo Scientific) in a 50:1 ratio. 100 µL WR was 

added to each assay well. An adhesive plastic cover was placed on the plate, which was 

incubated at 37 ºC for 30 min in a water bath. The plate rested on a support submerged in 

the waterbath, and care was taken to ensure the water level of the bath was below the top 

of the assay plate. After incubation, the plate was allowed to cool for 30 min on the 

benchtop. Then absorbance measurements were performed at 562 nm in a SpectraMax 

340 absorbance plate reader (Molecular Devices, Union City, CA). Readings were 

averaged and blank corrected for mean absorbance in the 1X PBS blank wells. A linear 
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regression curve was derived from the BSA standard absorbances, which was used to 

estimate protein content in the tau samples. In cases were the sample absorbances were 

below the standard curve range, the assay was repeated with a larger sample volume, and 

a dilution factor applied in the calculations. 

2.3 Protein determination by 280 nm absorbance. 

Absorbance readings were performed in a quartz cuvette with a pathlength of 1 

cm. Spectra of samples in 1X PBS (pH 7.4) were recorded from 200 to 400 nm. A 

background spectrum was also recorded from 1X PBS. Baseline was subtracted, and the 

sample absorbances observed at 280 nm. Beer’s Law, 

ଶ଼଴ܣ
ଶ଼଴ൈ݈ߝ

ൌ ܿ (1) 

was used to calculate concentrations from absorbance, pathlength and calculated molar 

absorptivities of 7500 M-1 cm-1 and 7375 M-1 cm-1 for 2N4R and 2N3R tau, respectively. 

2.4 Aβ preparation. 

2.4.1 Processing and aliquoting. 

Synthetic, lyophilized Aβ (W. M. Keck Biotechnology Resource Laboratory, Yale 

School of Medicine, New Haven, CT) was received and stored at -20 ºC until use. 

Processing of the lyophilate began with dissolution in 100% hexafluoroisopropanol 

(HFIP) purchased from Sigma-Aldrich, Saint Louis, MO). HFIP is a fluorinated solvent 

commonly used to prevent aggregation, as it forces proteins into an -helical 

conformation. The resulting 1 mM Aβ solution was divided into 1 mg (dry weight) 
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aliquots in sterile microcentrifuge tubes. The aliquots were placed in the fume hood 

uncovered at room temperature to allow overnight evaporation of the HFIP. The aliquots 

were then vacuum-centrifuged to complete the removal of any remaining residual HFIP. 

The result was a thin “peptide film” coating the bottom and lower portion of the tubes. 

The HFIP-processed aliquots were then stored at -20 ºC, over desiccant, until use.  

2.4.2 Preparation of Aβ42/40 mixtures. 

HFIP-processed aliquots of Aβ42 and Aβ40 were resuspended in 100% HFIP to 

concentrations of 1 mM, and allowed to incubate sealed for 1 h to ensure thorough 

dissolution. Amounts were combined which would yield the desired Aβ42/Aβ40 dry 

peptide ratios with total a Aβ concentration of 200 µM. For the 4:1 Aβ42/Aβ40 ratio, 160 

µL 1 mM Aβ42 (0.72 mg) was combined with 40 µL 1 mM Aβ40 (0.17 mg). For the 1:1 

Aβ42/Aβ40 ratio, 100 µL 1 mM Aβ42 (0.45 mg) was combined with 100 µL 1 mM Aβ40 

(0.43 mg). For the 1:4 Aβ42/Aβ40 ratio, 40 µL 1 mM Aβ42 (0.18 mg) was combined 

with 160 µL 1 mM Aβ40 (0.69 mg). The mixed solutions were prepared in 

microcentrifuge tubes, and placed in the fume hood uncovered to allow evaporation of 

solvent overnight. The next day, the ratio mixtures were vacuum centrifuged to remove 

residual HFIP. The resulting HFIP-processed ratio preparations were stored over 

desiccant at -20 ºC until use. 

For monitoring of aggregation in the SEC purified monomer fractions derived 

from these mixtures, mixed monomer fractions were diluted with aCSF to a total Aβ 

concentration of 40 µM, and supplemented with 0.05% sodium azide (NaN3), a 

preservative commonly used in extended incubations to inhibit bacterial growth. The 
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mixtures were incubated at room temperature for multiple weeks, and provided material 

for numerous measurements over the course of the incubation. 

2.4.3 Preparation of Aβ protofibrils. 

Protofibrils were prepared as described previously (Paranjape et al. 2013). An 

HFIP-processed aliquot was dissolved in 50 mM NaOH, which yielded a 2.5 mM Aβ 

solution. NaOH is used to ensure the pH of the solution does not approach the isoelectric 

point of Aβ (calculated pI = 5.3), which would promote undesirable formation of 

aggregates (Teplow 2006). For spontaneous formation of protofibrils, the solution was 

then diluted with artificial cerebrospinal fluid (aCSF) to 250 µM Aβ. aCSF is a 

carbonate-phosphate buffer system designed by the Nichols lab, suitable for biophysical 

as well as cell culture work with Aβ (Paranjape et al. 2013). The aCSF consisted of 15 

mM NaHCO3, 1 mM Na2HPO4, 130 mM NaCl, and 3 mM KCl, adjusted to pH = 7.8 

with HCl, and filtered (0.22 µm) through a bottle-top vaccum filter. For convenience, this 

buffer was often prepared as a pH-adjusted 10X stock. When needed the stock was 

diluted to the working concentration, and then final pH adjustment was performed, 

followed by filtration, before use. Immediately before analysis, the PF solution was 

centrifuged for 10 min at 18,000 x g to ensure no insoluble aggregates were present. 

Protofibrils were then purified by SEC. 

2.4.4 Preparation of Aβ42 oligomers. 

A slightly modified version of the method developed at the LaDu Lab (Stine et al. 

2003) was used to prepare Aβ42 oligomers. HFIP-processed Aβ was dissolved in 

sufficient 100% dimethyl sulfoxide (DMSO) to yield a 5 mM solution of Aβ. DMSO is 
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another solvent commonly used in the field. It prevents aggregation at high 

concentrations, however at lower concentrations promotes it. The DMSO solution was 

then diluted to 100 µM in cold aCSF (pH 7.8). The buffered solution was then incubated 

at 4 ºC for 24 h. Immediately before analysis, the oligomer solution was centrifuged for 

10 min at 18,000 x g to ensure no insoluble aggregates were present. Oligomer was then 

purified by SEC. 

2.4.5 Preparation of purified Aβ42 monomers. 

When higher concentration solutions of pure monomer were desired, HFIP-

processed peptide was dissolved in a solution of 6 M guanidine hydrochloride (GuHCl) 

and 10 mM NH4OH. Then centrifuged for 10 min at 18,000 x g, and purified via SEC as 

described below in section 2.5. 

2.4.6 SEC-purified monomer Aβ42/40 aggregation reactions. 

Aβ42 and Aβ40 fractions, freshly purified separately as described above, were 

combined at the desired amounts and diluted with aCSF to 40 µM total Aβ composed of 

the desired ratios of Aβ42 and Aβ40. Preparations were incubated at 37 ºC for 24 h 

without agitation. The preparations were then centrifuged for 10 min at 18,000 x g, and 

fractionated via SEC as described above. 

2.5 Size-exclusion chromatography (SEC). 

After final centrifugation, proteins prepared for fractionation via SEC were 

injected onto a Superdex 75 HR 10/30 (GE Healthcare) attached to an AKTA FPLC 

system (GE Healthcare). The column had been coated previously with 2 mg bovine 

serum albumin (BSA) in the selected running buffer, prepared from a 7.5% solution of 
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BSA fraction V (Sigma) to limit non-specific binding of the sample to the column matrix. 

Elution was performed at room temperature with a flow rate of 0.5 mL/min in the 

selected running buffer. When further analysis was to be performed after SEC separation, 

0.5 mL fractions were collected and placed immediately on ice. Determinations of 

concentration were performed in-line by UV absorbance at 280 nm. The extinction 

coefficient used for Aβ was 1450 cm-1 M-1. For 2N4R tau it was 7500 cm-1 M-1, and for 

2N3R it was 7375 cm-1 M-1. When MALS determination of molecular weight was 

desired, the MALS instrument was connected in-line between the UV detector and the 

fraction collector. 

2.6 Multi-angle light scattering (MALS). 

Measurements were performed at room temperature and in-line with SEC, flow of 

0.5 mL/min. Astra 4.90.08 (Wyatt Technology) software received data at the factory-set 

transmission rate from fixed angle detectors 4-16 at the read head of the DAWN DSP 

(Wyatt Technology). The instrument takes a K12 quartz flow cell and vertically polarized 

helium-neon laser. The Debye formalism of the Rayleigh-Debye-Gans approximation for 

large anisotropic particles was used to plot the data (Wyatt 1993, Ogendal 2013): 

ܴఏ
ܿܭ

ൌ  ሻߠௐܲሺܯ
(2)

Here, the scattering intensity, or Rayleigh ratio (R) is defined in terms of the molecular 

weight (MW) of the scatterer and form factor P(). K is an optical constant: 
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Where dn/dc is the change in the refractive index of the solution, n, with change in 

solute concentration, c, with units: g/mL. The refractive index of the pure solvent is n0, 0 

is the wavelength of the incident light in a vacuum (632.8 nm for the laser), and NA is 

Avogadro’s number. 

The form factor, P(),  

ܲሺߠሻ ൌ 1 െ ቆ
ଶߨ16

ଶߣ3
ቇܴ௚ଶ sinଶ ൬

ߠ
2
൰ (4) 

relates to the size and shape of the light scattering particles, and accounts for scattering 

intensity changes with respect to scattering angle  as a result of destructive interference 

of the scattered light across the surface of an anisotropic (non-spherical) scatterer. As  

goes to zero, P() goes to 1. The form factor depends on the radius of gyration, Rg, which 

encodes the particle’s shape. If equation 3 is substituted into equation 1 the result 
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is a linear equation with R/Kc as a function of sin2(/2). Plotting the results for various 

detector angles   yields a line with slope Rg, and y-intercept equal to MW. 

I regularly performed normalization of the MALS detector array using high-purity 

BSA monomer. A small enough molecule (generally 10 nm is considered the limit) such 

as BSA monomer has a light scattering form factor P() = 1, and light scattering becomes 

angle independent; it is an isotropic scatterer. This is important for the normalization 

process. The signal received at each detector is measured, and correction factors are 

calculated to adjust for detector-detector differences. When determining the molecular 
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weight of an unknown, the correction factors are applied to the detected signal, to 

generate a Rayleigh ratio for each detector, which is required for calculation of molecular 

weight. 

2.7 Care and maintenance of MALS instrumentation 

The MALS detector normalization process should be performed regularly, since 

the condition of the flow cell will change with time, even when the most fastidious care 

and maintenance schedules are observed, such as storage in pure organic solvent, and 

frequent cleaning. Even with frequent flow-through of cleaning solutions such as dilute 

nitric acid, or detergents specifically designed for removal of protein from quartz optics, 

microscopic bubbles or even resistant deposits can arise which alter the scattering of light 

among the detectors. Detectors should always be normalized after the cell is removed for 

the most thorough available cleaning procedures. Though removing and cleaning the flow 

cell by hand is delicate, time consuming work, it occasionally becomes necessary. Even if 

the cell is removed and cleaned before each measurement (a risky proposition, as it 

contains multiple small, high-precision, i.e. expensive, components), there remains the 

possibility that slight changes in alignment of the cell with the incident light beam will 

alter scattering. Finally, changes in the sample buffer system should also always be 

accompanied by a new normalization, as different buffers will change the light scattering 

pattern as well. One recommendation arising from this project was regular normalization 

checks with an additional molecular weight standard. Such practices can also be 

informative when dealing with unknown, complex sample systems such as amyloid 

aggregates. 
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2.8 Dynamic light scattering. 

Dynamic light scattering was used to determine hydrodynamic radii (RH). A 

DynaPro Titan instrument (Wyatt Technology) was used. Measurements were taken at 

room temperature in a quartz cuvette. Data was collected at a 90º angle to the incident 

light, with a 5 s averaging time. Autocorrelated light intensity data (>25 acquisitions per 

sample) were used to calculate particle diffusion and converted to RH with the Stokes-

Einstein equation. 

2.9 Thioflavin T (ThT) fluorescence. 

Assessment of ThT binding by Aβ samples was performed as described in 

Nichols, et al. (Nichols et al. 2002). Aβ was diluted with aCSF (pH 7.8) containing ThT 

such that both Aβ and ThT arrived at a final concentration of 5 µM. Samples were 

transferred to a fluorescence cuvette, and measurements were made on a Cary Eclipse 

fluorescence spectrophotometer. The excitation wavelength was 450 nm. Fluorescence 

emission was scanned from 460 nm to 520 nm, and the intensity readings were integrated 

from 470 nm to 500 nm, and corrected against a buffer baseline. 

2.10 Electron microscopy. 

10 µL of SEC-purified Aβ or tau suspension was applied to a 200-mesh Formvar-

coated copper grid (Ted Pella, Inc.), and held suspended above the benchtop with a pair 

of reverse tweezers for 10 min to allow for adsorption. Grid was washed three times by 

placing the sample side in contact with three droplets of water. The grid was then stained 

with a droplet of 2% uranyl acetate for 10 min. Excess stain solution was removed with a 

Kim wipe applied gently to the edge of the grid, and allowed to air dry. Visualization of 
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the deposited sample was performed on a JEOL JEM-2000 FX transmission electron 

microscope operated at 200K eV. 

2.11 Circular dichroism. 

CD spectra were acquired on a nitrogen purged JASCO J-1500 equipped with a 

Peltier heating system and coolant (water) circulation pump. A 1 mm path-length fused 

quartz cuvette (200 µL sample volume) was used to acquire the majority of the spectra. 

In some cases, a low volume Micro-sampling disc was used. This apparatus was able to 

suspend a small drop (12 µL) of solution between two fused quartz windows at a fixed 

distance. The path-length for the Micro-sampling disc was also 1 mm. 

Most often spectra were acquired by averaging three to four successive 

wavelength scans from 260 nm to 190 nm, with a data pitch 1 nm, data integration time 

of 4 s, scan speed of 50 nm/min, and 2 mm band and slit widths. Raw spectral data was 

recorded in , deg, and converted to mean residue ellipticity [], deg cm2 dmol-1 with the 

equation 

ሾߠሿ ൌ ൈߠ
ܹܴܯ
10ൈ݈ൈܿ

 (6) 

where MRW is the mean residue weight of Aβ42 (4514.1 g/mol)/42 residues, l is the path 

length in cm, and c is the concentration in g/cm3.  

2.12 Aβ C-terminal selective ELISA. 

Aβ42/Aβ40 ratios in SEC fractions of mixed isoform preparations were 

determined by comparing the Aβ42 concentration as estimated against an Aβ42 standard 

curve, using an Aβ42-specific ELISA, with the Aβ40 concentration as estimated against 
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an Aβ40 standard curve, using an Aβ40-specific ELISA.  Briefly, 96-well-plates were 

coated overnight at 25 ºC with 100 µL 5 µg/mL monoclonal Ab2.1.3 (Aβ42 specific) or 

Ab13.1.1 (Aβ40 specific) capture antibody (Mayo).  Then the wells were washed three 

times with cold phosphate-buffered saline (PBS) containing 0.05% Tween-20 wash 

buffer, and blocked with 300 µL PBS with 1% BSA, 5% sucrose and 0.05% NaN3 

blocking buffer for 1 h at 25 ºC, followed by a single wash. 50 µL 20 mM Tris (pH 7.3) 

with 150 mM NaCl, 0.1% BSA, and 0.05% Tween 20 sample diluent was added. All Aβ 

samples and standards were diluted first to 10 μM in aCSF, then 1 μM in 8 M GuHCl to 

induce disaggregation or “relaxation” of highly fibril-like structures. Further dilutions 

were made as necessary in PBS containing 0.1% BSA. 50 µL amounts of diluted standard 

or sample were added to the wells, followed by incubation at 25 ºC for 2h. After three 

washes, 100 µL 0.123 µg/mL Ab5-HrP in 20 mM Tris with 150 mM NaCl and 0.1% 

BSA was added, and incubated at 25 ºC for 2 h. After a final three washes, detection was 

performed with 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2. The peroxidase reaction 

was stopped by the addition of 1% H2SO4 solution. The optical density of each sample 

was analyzed at 450 nm with a reference reading at 630 nm using a SpectraMax 340 

absorbance plate reader (Molecular Devices, Union City, CA). The concentration of 

Aβ40 and Aβ42 in the experimental samples was calculated from Aβ standard curves of 

1000-10000 pM. When necessary, samples were diluted to fall within the standard curve. 

I performed a significant amount of additional work to develop this method for 

our use. Important elements of that work, including detection antibody conjugation, 

antibody concentration selection, and tests to ensure no cross-reactivity between isoform-

specific antibodies, are described in the subsections below. 
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2.12.1 Ab5-HrP conjugation. 

Monoclonal Aβ antibody (gift from Mayo Clinic Jacksonville) Ab5 was 

conjugated to horseradish peroxidase (HrP), based on the method of G. B. Wisdom 

(Wisdom 2005). The reaction mechanism is described in Figure 2.1A, and the protocol is 

described here.  Briefly, 2 mg HrP (Sigma) was dissolved in 400 μL water, then 

incubated at room temperature for 20 minutes with 100 μL of 0.1 M sodium periodate on 

an orbital shaker protected from light. The enzyme was then dialyzed at 4°C against 1 

mM sodium acetate buffer, pH 4.4 overnight. Ab5 was received at a concentration of 1.77 

mg/mL in PBS.  A 200 μL aliquot was diluted with 300 μL of 10 mM sodium carbonate 

buffer, pH 9.5. A 190 μL aliquot (0.95 mg) of the dialyzed HrP solution was diluted with 

10 μL of 200 μM sodium carbonate buffer, pH 9.5, and immediately added to the Ab5 

solution. The mixture was incubated for 2 h at room temperature on an orbital shaker. 50 

μL of 4 mg/mL sodium borohydride solution, freshly prepared, was added, and the 

mixture was incubated at 4°C for 2 h on an orbital shaker. 

The conjugates were purified on a Tricorn Superdex 75 10/300 GL column (GE 

Healthcare) using an AKTA FPLC system (GE Healthcare) (Figure 2.1B). Prior to 

injection of the conjugate solution, the Superdex 75 column was coated with sterile 

bovine serum albumin (Sigma) to prevent any non-specific binding of antibody to the 

column matrix. The absorbance of each fraction was assessed at 280 nm (protein) and 

403 nm (HrP heme groups) (Figure 2.1C) in a 1 cm quartz cuvette. This would allow us 

to quantify the Ab5 concentration in the void peak fraction, using some information 

provided by the HrP manufacturer.  The math involved is described in the following 

subsection.   
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2.12.2 Ab5-HrP concentration determination. 

The included peak maximum (fraction 18) 280 nm Absorbance, A280, was 53.64 

mAU, and the 408 nm Absorbance, A408, was 93.37 mAU.  It may be shown by 

rearranging Beer’s Law that the ratio between these two, Z/R, is also the ratio of their 

extinction coefficients 280 and 480.  

൬
ܼ
ܴ
൰
ଵ଼
ൌ
ଶ଼଴,ு௥௉ܣ
ସ଴଼,ு௥௉ܣ

ൌ
53.64 ܷܣ݉
93.37 ܷܣ݉

ൌ 0.57 ൌ
ଶ଼଴,ு௥௉ߝ
ସ଴଼,ு௥௉ߝ

 (7) 

There are two assumptions which must be made: pure HrP and HrP conjugated to Ab5 do 

not have significantly different extinction coefficients, and Ab5 has a typical IgG 

extinction coefficient: 1.36 mL mg-1 cm-1.  Then the 408 nm absorbance in the void peak 

maximum (fraction 14) may be used to calculate the 280 nm absorbance due to HrP in 

that fraction.  Then substituting and rearranging Beer’s Law, to calculate the 

concentration of Ab5 in the void peak fraction: 

஺ܿ௕ହ,ிଵସ ൌ
ଶ଼଴,௧௢௧ܣ െ ସ଴ଷ,ிଵସܣ ∙ ቀ

ܼ
ܴቁிଵ଼

ࣟଶ଼଴,஺௕ହ ∙ ℓ
 

 
404.9 െ 123.9 ∙ 0.57 

1.36 ܮ݉
݉݃ ∙ ܿ݉ ∙ 1ܿ݉

ൌ 0.247݉݃ ൗܮ݉  

(8) 

The Ab5 concentration of the void peak fraction was 0.247 mg/mL, with side fractions of 

0.057, 0.146, and 0.035 mg/mL. 
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Figure 2.1 Ab5-HrP conjugation. 

 

(A) Ab5-HrP conjugation mechanism. HrP Monosaccharides are oxidized with 
periodate to produce aldehydes, which react with amino groups on the antibody to 
form Schiff bases. These are reduced with borohydride to form stable linkages. (B) 
Purification of conjugate via SEC, monitored at 280 nm. Void peak is Ab5-HrP 
conjugate. Included peak is unconjugated HrP.  (C) Fractions were collected and 
absorbance measured at 280 nm (protein, red) and 403 nm (HrP heme, blue). 

conjugate  

                

free HRP 
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2.12.3 Assay antibody concentration selection and validation. 

I designed a series of experiments to determine appropriate capture and detection 

antibody dilutions for ELISA determination of isoform concentrations in mixtures of 

Aβ42/Aβ40. First I selected a standard curve range based on the total Aβ concentration 

range determined in-line with SEC via 280 nm absorbance, and considered what would 

be convenient for dilution, keeping in mind that linearity and sensitivity were both 

important. I settled on 2400 pM to 150 pM for the standard curves used in method 

development. Based on conversations with workers at Mayo Clinic, 5-10 µg/mL would 

be sufficient for the capture antibodies.  Therefore, the next step was to determine a good 

working concentration for the Ab5-HrP conjugate detection antibody. I prepared five sets 

of wells with 10 µg/mL Ab2.1.3 capture antibody and Aβ42 standard curve dilutions. 

Then the Ab5-HrP peak fraction, with an Ab5 concentration of 2.47 mg/mL, was applied 

at dilutions of 1:500, 1:1000, 1:2000, 1:5000, and 1:10000. The results are shown in 

Figure 2.2A. Based on these results, it was decided that 1:2000 was an appropriate 

dilution. At this dilution, the Ab5 concentration was 0.123 µg/mL. When side fractions 

were used instead of the peak fraction, they were diluted to this concentration from the 

stock concentrations given above. 

Next I confirmed the specificity of Ab2.1.3 for Aβ42, and Ab13.1.1 for Aβ40 

(Figure 2.2B).  For these experiments, Aβ42 standard curve dilutions were added to wells 

coated with either 100 µL 5 µg/mL Ab2.1.3 or Ab13.1.1, and the same for Aβ40 standard 

curve dilutions. Detection was performed with 100 µL 0.123 µg/mL Ab5-HrP conjugate 

and TMB substrate as usual.  The results are compared in Figure 2.2B. 
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During my initial development work and investigation, I noted a significant 

reduction in standard curve response which seemed to correlate with time from monomer 

standard purification. To address this issue, which would seriously complicate my future 

attempts to measure isoform content in aggregated unknown samples, I considered 

strategies to induce disaggregation of aged monomer. I found that if the standard and 

sample preparations included an intermediate dilution step into the chaotropic agent 

GuHCl, I could rescue the signal response in aged monomer samples. 
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Figure 2.2. C-terminal Aβ ELISA method development. 

 

(A) Assay dilution selection for ab5-HrP detection antibody conjugate. Wells were 
prepared using 100 µL 10 µg/mL ab2.1.3, Aβ42 standard curves (150 to 2400 pM) 
were prepared as described in section 2.10. Aβ C-terminal selective ELISA. Ab5 was 
prepared in the same diluent as described in section 2.10, was prepared across a range 
of dilutions. (B) Test for cross-reactivity was performed using the assay protocol 
described in section 2.10, except for combinations where the antigens were plated on 
the non-specific antibody, as indicated in the legend. 
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2.13 Aβ indirect ELISA. 

Except where noted in the text, this was the method we followed to perform 

indirect ELISA of Aβ samples with the novel AbSL anti-serum.  Aβ (previously diluted 

to 2 µM in eluent) samples and standards were diluted into 0.05 M sodium bicarbonate 

(pH 9.6) coating buffer.  50 µL volumes were added to wells of a 96-well immunoplate in 

the desired number of replicates.  The plate was sealed and incubated overnight at 25 ºC.  

coating solution was removed, and wells were washed once with >150 µL 1X PBS (pH 

7.4) and 0.2% (v/v) Tween 20 wash buffer. 150 µL 1X PBS (pH 7.4), 0.2% (v/v) Tween 

20 and 10% (w/v) dry milk blocking buffer was added to each well, plate was sealed, and 

incubated at 25 ºC for 1 h.  Wells were washed three times as described above, then 100 

µL dilute primary antibody in 1X PBS (pH 7.4), 0.2% (v/v) Tween 20 and 5% (w/v) dry 

milk antibody diluent was added, plate was sealed, and incubated at 25 ºC for 1 h.  Wells 

were washed four times as described above, and 100 µL dilute secondary antibody in 

antibody diluent was added, plate was sealed, and incubated at 25 ºC for 2 h.  Wells were 

washed four times as described above.  100 µL active TMB substrate solution was added 

in each well.  After 3 minutes TMB reaction was stopped by addition of 100 µL 1 M 

H2SO4.  The absorbance at 450 nm was measured in a platereader, with an additional 

measurement at 630 nm subtracted to correct for well-well differences in the plate 

material. 

2.14 Aβ dot blot. 

Nitrocellulose membrane (Hybond-P, Amersham Biosciences) was soaked in 

milliQ water for 2 min, then removed and allowed to dry in air for 20 min. 2 µL of 
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sample was allowed to adsorb for 20 min. Membrane was placed in an appropriately-

sized dish with 5 mL 1X PBS (pH 7.4), 0.01% (v/v) Tween 20, and 10% (w/v) dry milk 

blocking buffer, and incubated with gentle shaking for 1 h. Blocking buffer was decanted, 

and replaced with 5 mL dilute primary antibody in 1X PBS (pH 7.4) 0.2% (v/v) Tween 

20, and 5% (w/v) dry milk antibody diluent, and membrane was incubated with gentle 

shaking for 1 h. Antibody was decanted, and membrane was washed three times with 5 

mL portions of 1X PBS (pH 7.4) and 0.2% (v/v) Tween 20 wash buffer, with gentle 

shaking for 5 min each wash cycle, replacing the wash buffer after each 5 min cycle. 

Final wash was decanted and replaced with 5 mL dilute secondary antibody in antibody 

diluent described above, and membrane was incubated for 1 h with gentle shaking. Dilute 

secondary antibody was decanted, and membrane was washed three more times as 

described above. Final wash was decanted and replaced with 6 mL ECL substrate 

(Pierce), and membrane was incubated for 1 min with vigorous shaking. Membrane was 

removed from dish and pressed lightly between two sheets of filter paper to remove 

excess solution, then placed between to protective sheets of transparent plastic.  

Chemiluminescence was visualized on X-ray film.  All steps were performed at 25 ºC.
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CHAPTER 3. 

CHARACTERIZATION OF SEEDED TAU OLIGOMERS. 

3.1 Introduction. 

3.1.1 The basics of tau protein aggregation. 

Several neurodegenerative diseases, including AD, present characteristic tau 

aggregation pathology (Wang et al. 2016). Native tau is primarily a disordered protein, 

with only small regions of significant secondary structure (Mukrasch et al. 2009). The 

microtubule binding region (MTBR) is essential for native microtubule binding 

functionality, and pathologically-linked paired helical filaments (PHF) which make up 

the characteristic tau inclusions (NFT) found in AD brain (Wischik et al. 1988). Two 

hexapeptide sequences, 275VQIINK280 and 306VQIVYK311 at the beginning of the R2 and 

R3 repeat inserts are necessary and sufficient to initiate PHF aggregation. The 

hexapeptides readily undergo amyloid aggregation to form β-sheet structures in solution, 

and their aggregates efficiently seed aggregation of full-length tau into PHF (von Bergen 

et al. 2000). 
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3.1.2 Tau pathology in AD. 

Insoluble tau appears to be relatively inert, and not directly toxic; switching off 

tau expression in mouse model of tauopathy rescues cognitive deficits, even though NFTs 

remain (Santacruz et al. 2005, Sydow et al. 2011, Van der Jeugd et al. 2012). Indeed, 

insoluble aggregated tau may exert a neuro-protective effect, by sequestering soluble tau 

oligomers (Alonso Adel et al. 2006). Nonetheless, and despite partial compensation by 

other microtubule associated proteins (MAP) such as MAP1A, normal tau function is 

required to avoid pathology. Tau knockout mice also have cognitive deficits; reduction of 

available tau via incorporation into NFTs is a clear loss-of-function in AD (Lei et al. 

2014). 

Because all pathologies associated with tau cannot be ascribed to NFTs, much 

interest has been turned to oligomeric tau as the primary active species in tauopathies. 

The role of oligomeric tau in AD pathology remains an area of debate and active 

research, but it has been implicated in multiple AD neuropathological processes. These 

involve loss-of-function effects, but certainly involve toxic gain-of-function effects 

(Guerrero-Munoz et al. 2015). Tau oligomers have been found at very early stages of 

AD, prior to clinical symptom onset (Maeda, Sahara et al. 2007, Lasagna-Reeves, 

Castillo-Carranza et al. 2012). AD brain is greatly enriched for tau oligomers, compared 

to control (Himmelstein, Ward et al. 2012). Oligomeric tau, applied extracellularly, is 

taken up into cells causing increased calcium levels. When oligomeric tau is injected into 

mice, mitochondrial and synaptic dysfunctions occur (Berger, Roder et al. 2007, 
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Lasagna-Reeves, Castillo-Carranza et al. 2011).  In addition, improper localization of tau 

from the axon to dendrites may promote synaptic dysfunction in an oligomeric tau-

dependent manner (Guerrero-Munoz et al. 2015). 

Various pathogenic forms of tau have been shown to inhibit anterograde kinesin-

mediated fast-axonal transport (Combs et al. 2016). This inhibition appears mediated by 

conformational changes associated with oligomerization (Cox et al. 2016). An N-terminal 

phosphatase-activating domain (PAD) becomes exposed upon aggregation, which 

activates protein phosphatase 1 (PP1), which in turn activates glycogen synthase kinase 

3β (GSK3).  Active GSK3 phosphorylation of kinesin mediates release of cargo, 

disrupting transport.  The 4R tau isoforms demonstrate more extensive exposure of the 

PAD region upon oligomerization than the 3R isoforms, however both types can mediate 

this transport inhibition.  The authors used arachidonic acid to induce oligomerization.  

The 4R isoforms formed a range of filaments up to around 600 nm in length, as well as 

globular oligomeric species.  On the other hand, induced oligomerization of the 3R 

isoforms with arachidonic acid resulted in an oligomer population primarily comprised of 

the globular species, with filamentous species occurring rarely.   

3.1.3 Prion-like spreading of tau pathology. 

An important aspect of tau pathology in AD is the stereotypical pattern of tau 

pathology “spreading” along neuronal connections as the disease proceeds (Clavaguera et 

al. 2009, Frost et al. 2009, Guo et al. 2011, Goedert et al. 2014, Polanco et al. 2015) 

(Figure 3.1). This concept of tau spreading was originally conceived as a post-mortem 

tool for diagnosis to describe the extent of the disease. It has since gained much support 
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from studies on the cellular scale. Today, tau spreading via intercellular transfer is 

backed-up significant experimental evidence (prion-like propagation). According to this 

model, tau aggregate “seeds” formed intracellularly, are released into the extracellular 

space, are taken up into nearby, synaptically connected cells, and induce additional 

aggregate formation via templated conformational change. 

The Kayed Lab (Lasagna-Reeves et al. 2012) immunoprecipitated tau oligomers 

from AD brain, then injected them into the hippocampus of WT transgenic human tau 

mice. After a year, tau positive inclusions were found both at the injection and distal 

regions of the brain. This property has also been demonstrated in a transgenic mouse 

model (Clavaguera et al. 2009). The authors developed a transgenic mouse line which 

expresses the P301S tau mutant form, which causes familial frontotemporal dementia in 

humans (Spillantini et al. 2000). They took brain extracts from these mice, and injected 

them into the hippocampi of transgenic WT human tau mice, and observed insoluble tau 

inclusions both at the site of injection and at distant areas which were connected 

synaptically to the injection site. A later study (Liu et al. 2012) in another mouse model 

lends further support to this concept. 

On a cellular level, the mechanisms of tau exit from and uptake into, as well as 

translocation within, neuronal cells have been studied. In one work (Saman et al. 2012) 

cerebrospinal fluid (CSF) from mild-AD patients was analyzed, as well as conditioned 

media from neuron-like cells with inducible tau expression. AD CSF and the media were 

enriched for phosphotau-positive exosomes. The pattern of phosphorylation was 

consistent with that found in early AD, and both monomeric and oligomeric (but not 

insoluble fibrillar) tau was present. This suggests a secretory pathway for release of 
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pathological tau into the extracellular space. Interestingly the same pathway has been 

implicated for propagation of misfolded prion protein (PrPSc) (Vella et al. 2007). Wu and 

co-workers (Wu et al. 2013) showed that LMW tau oligomers and small fibrils (but not 

monomer or long fibrils) are endocytosized at the somatodrendritic and axon 

compartments of neurons, and can be transported in anterograde and retrograde fashions. 

Another study (Holmes et al. 2013) further refined the model for uptake, showing that 

small fibrillary tau seeds, at least, are taken up in a heparin sulfate proteoglycan (HSPG) 

binding-dependent manner. Escape from macropinosomes and endosomes may occur via 

direct interaction of tau with the cell membrane; pore formation by other amyloid 

aggregates has been proposed (Kayed et al. 2004, Relini et al. 2004), and oligomeric tau 

can permeabilize artificial membrane liposomes (Flach et al. 2012). Finally, in a recent 

study, the same group explored further the size dependence of tau aggregate uptake and 

seeding (Mirbaha et al. 2015). All aggregate sizes between n=1 and n=100 (n=100 were 

largest they characterized) bound the cell surface in a HSPG dependent manner. 

However, only trimer and larger aggregates, up to n=100 were taken up into the cell. 

Furthermore, only the oligomers which were taken up into the cell could seed further 

aggregation intracellularly. These results, carried out using recombinant tau constructs, 

were verified further using AD brain-derived aggregates. 

Despite this well-structured model, much debate remains concerning the spread of 

tau pathology. Kim, et al. (Kim et al. 2015) demonstrated tau pathology spreading 

dependent on a dimeric conformation of the P301L mutant form of tau, found in some 

familial FTD. This seems to contradict the conclusion of the previously cited study, 

where trimeric tau was the minimal oligomer. Michel, et al. (Michel et al. 2014) showed 
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that the presence of extracellular monomeric tau alone was sufficient to induce spreading 

of tau pathology, placing release of tau from the cell upstream of tau oligomerization. 

Compare this to various other studies, such as (Tepper et al. 2014) who demonstrated 

phosphorylation-dependent aggregation, or (Hu et al. 2014) where intracellular tau 

aggregation was induced via treatment with Aβ42.  
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Figure 3.1 Braak staging of tauopathies. 

 

Spreading of tau inclusions as AD progresses. First described by Heiko Braak in 
1991, based on a large sample set of post-mortem human AD and control brains. 

Later Braak described similar phenomenon in PD with -synuclein spreading. In 
AD, NFT histology is present mainly in the transentorhinal region during Braak 
stage I and II. In stage III and IV NFTs appear in the limbic regions such as 
hippocampus. By Braak V and VI, the NFTs are present in a large portion of the 
neocortex. The figure is from Goedert et al. 2014. 
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3.1.4 Identified tau oligomers in vivo and in vitro. 

The Kayed Lab developed a novel method for generation of neurotoxic tau 

oligomer (Lasagna-Reeves et al. 2010, Lasagna-Reeves et al. 2011). They used 

preformed Aβ or -synuclein seeds to form tau oligomers in tau monomer solution, 

paralleling work by other groups (Hu et al. 2014) on the spreading of tau pathology. 

Isolated tau oligomers generated in this fashion were capable of seeding oligomerization 

when added to fresh monomer solutions, and this capability is retained through multiple 

seeding-purification cycles. The oligomers were identified as apparent trimers based on 

SDS-PAGE and SEC. The oligomers generated were neurotoxic in cell culture, and in 

vivo cause synaptic and mitochondrial dysfunction, when injected into WT mice. 

However, a large number of other soluble tau oligomer species have been 

identified, and it is sometimes difficult, based on the techniques used, to determine if two 

different species are actually just subtle variations on one conformation (Cowan et al. 

2013). 

Wille and co-workers. (Wille et al. 1992) generated dimeric, rod-like species in 

vitro from recombinant tau constructs. Inspection with EM gave an estimated length of 

22-25 nm, which is consistent with the repeat region of PHF. The Takashima group 

(Sahara et al. 2007) described two different apparent dimers. They differed in that one 

depended on inter-molecular disulfide bridges between microtubule binding regions. 

Both forms were identified in vitro as well as in a transgenic mouse model, and described 

as 140 kDa small soluble oligomers. Apparent dimeric/trimeric species have been 

generated and characterized in vitro in addition to those described above. Dimers have 

been reported with molecular weights of 180 kDa (Patterson et al. 2011), and 130 kDa 
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(Makrides et al. 2003), while trimers have been described with molecular weights of 120 

kDa (Lasagna-Reeves et al. 2010). Small oligomers of apparent dimer/trimer size have 

also been isolated from human AD brain (Henkins et al. 2012). The size estimations in 

the above studies were done based on electrophoretic mobility, SEC, or at best 

interrogation with EM or AFM. To our knowledge, no one has made size measurements 

on small tau oligomers using light scattering techniques. 

3.1.5 Templated oligomerization. 

The 120 kDa apparent trimers described by the Kayed Lab (Lasagna-Reeves et al. 

2010) are particularly interesting. SEC-purified recombinant Full-length human tau 

isoform 2N4R monomer (Margittai et al. 2004, Margittai et al. 2006) was seeded with 

small amounts of A11-positive (indicating spherical oligomeric amyloid conformation) 

Aβ or -synuclein oligomers. The resulting tau oligomers could also be used to seed tau 

monomer in the same manner as the Aβ or -synuclein oligomers, even after multiple 

successive seeding cycles. (Figure 3.2). The initial ratio of seed to monomer was 1:140, 

which agrees with other amyloid seeding experiments from the literature, including other 

heterogenous seeding reactions (Jarrett et al. 1993, Kelly 2000, O'Nuallain et al. 2004). 

SEC elution of the 2N4R tau oligomer yielded an estimated molecular weight of 

150-190 kDa, while SDS-PAGE gave an estimated molecular weight of ~120 kDa. Both 

indirect measures of molecular weight were consistent with a trimeric species. Bis-ANS 

binding assays revealed a large increase in hydrophobicity at the oligomer surface, 

compared to monomeric and fibrillar tau. In addition, circular dichroism measurements 

indicated high β-sheet content when compared to monomeric tau, which is 
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characteristically random-coil. Despite their high β-sheet content, the tau oligomers did 

not bind Congo red or thioflavin T, two common probes known to bind amyloid filament-

like structural motifs. Others (Sahara et al. 2007) have noted that LMW tau oligomers do 

not bind these dyes. However, in that case the oligomers were formed via heparin 

induction, and the authors described them as dimeric; the Kayed lab identifies their 

oligomers as trimeric. The oligomer populations also appeared to have some degree of 

polydispersion, and this was borne out in TEM and AFM imaging. This polydispersion 

can be explained by the stochastic nature of amyloid aggregation; it is well known that 

replicate aggregation reactions often will aggregate at quite different rates, and it is 

challenging to generate time dependent aggregation data with low standard error 

measures (Teplow 2006). Finally, if the seeding incubation time is extended beyond what 

is stated in the methods, the oligomers will continue to aggregate and form filamentous 

structures. 
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Figure 3.2 Generation of tau oligomer via seeding. 

 

Recombinant Tau pellet was reconstituted in fresh 8 M Urea followed by overnight 
dialysis. Concentration was determined via BCA and normalized to 1 mg/mL. 300 µL 
aliquots were taken and stored at -20 ºC. For seeding, an aliquot was thawed, diluted 
to 0.3 mg/mL (1 mL), and seeds added. The aliquot was then shaken on an orbital 
shaker for 2 h.  This was followed by centrifugation (in some cases; not included in 
method as published), and SEC elution. 
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3.1.6 Challenges in the study of tau oligomer. 

Much of the challenge in determining the specifics of oligomeric tau-related 

pathology stems from experimental methodology. Many different preparations are used, 

and different tau isoforms, and characterization of generated species is often not 

thorough. The methods used to assay toxicity suffer from similar problems; results in cell 

culture may differ from primary neuron, or in vivo (Wang and Mandelkow 2016), 

making it difficult to draw complete conclusions. 

For the identification of therapeutic targets, as well as understanding amyloid 

disease processes at the molecular level, it is vital that researchers strive to develop 

material preparations which yield well defined, homogeneous (or at least well 

characterized) aggregate species. There are numerous examples of why this is so 

important. When studying the biophysics or kinetics of aggregation in vitro in monomeric 

amyloid solutions, it is very important to begin with pure monomer starting solution. Pre-

existing aggregates alter the aggregation profile by acting as seeds, which can shorten or 

eliminate the lag phase. Additionally, the templating phenomenon noted in some amyloid 

systems creates the possibility of different conformational trajectories in the aggregated 

solution. These can interact in different ways with signaling, and other cellular 

mechanisms, therefore thorough characterization becomes critical for cell and in vivo 

studies as well. 
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To extend the biophysical analysis of tau oligomers generated via their novel 

seeding model, a collaboration was initiated with the Kayed Lab. The first objective was 

to replicate their original published results (summarized in section 3.1.5) and expand 

them with the additional analytical options we have at our disposal. Then the scope of the 

analysis would be broadened to include alternate tau isoforms and seed types, in an 

attempt to determine any differences between oligomer morphology, and/or seeding 

potential.  An important component of the analysis, which distinguishes the Nichols Lab 

from many others in the field, is experience with molecular weight determination via 

MALS in-line with SEC (SEC-MALS). DLS can probe hydrodynamic radius, and yield 

another complementary measure of molecular size. Tau dimers and trimers are well 

reported in the literature, with overlapping size ranges. It is currently unclear if these two 

species truly represent different oligomerization states, or more subtle conformational 

changes within a single aggregate structure (Cowan et al. 2013). The hope is this work 

will help clarify these important questions about the biophysics of tau. 
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3.3 Results. 

3.3.1 Instrument and sample preparation validations. 

Valid methods are required for valid data. Importantly, the SEC-MALS system 

must be able to resolve monomeric and oligomeric tau species, and yield accurate 

molecular weight data. To confirm that the normalization procedures generated proper 

correction factors, and assess the column for appropriateness, I employed another protein 

standard, yeast Alcohol Dehydrogenase (yADh) (SigmaAldrich), a highly structured, 

anisotropic scatterer. This well-characterized oxidoreductase enzyme plays an 

indispensable role in the production of Beer, a substance which is highly prized by many 

graduate students. yADh is a homotetramer, and each subunit is 347 amino acids long.  

The deposited structure (4W6Z) of the asymmetric unit has a calculated molecular weight 

of 149.5 kDa, within  the estimated molecular weight range of the tau oligomers 

generated at the Kayed Lab (Lasagna-Reeves et al. 2010). When subjected to SEC-

MALS analysis (Figure 3.3), the resulting molecular weight profile across the yADh peak 

appeared bimodal. Measured molecular weight was 168 kDa when the entire elution peak 

was considered. However, if only the tailing side was considered, the measured 

molecular weight was 162 kDa. This second value may be more accurate. Since 

functional yADh is a tetramer, it is reasonable to ascribe the leading-edge increase to a 

limited amount of supramolecular assembly. Although the theoretical and experimental 

molecular weights differ by an appreciable amount, I considered the two close enough to 

accept the validity of my molecular weight measurements. I did so on grounds that the 
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difference was sufficiently small compared to the molecular weight of a 2N4R or 2N3R 

tau monomer that it would not hamper resolution of differing tau oligomer states. 

Molecular weights are summarized in Table 3.1. 

Next, there is evidence in the literature of a cysteine-dependent tau dimer, and it 

has been observed both in vitro and in vivo in mouse models (Sahara et al. 2007). 

Cysteine-dependent apparent tau dimers might be relevant to our in vitro system, either as 

preformed species in the monomer pool, or forming spontaneously in parallel to the 

seeded oligomerization reaction, either of which could alter aggregation outcomes. 

Dithiothreitol (DTT), a well-known reducing agent, was used in the preparation of my 

recombinant tau protein, and might induce this change in aggregation profile. To test this 

hypothesis, I added an excess of DTT to a reconstituted monomer aliquot prior tocould 

perturb their activity in a manner detectable by SEC-MALS. To investigate this 

possibility, 300 µM aliquots of monomeric 2N3R tau were treated with either DTT (2 

mM) or buffer, and allowed to incubate at room temperature with shaking for 2 h prior to 

SEC injection.  The results are summarized in Figure 3.4. Both tau peaks were centered 

on fraction 18.  The (+)DTT preparation peak had a MALS determined molecular weight 

of 55 kDa, while the molecular weight of the (-)DTT preparation was 59 kDa. The late 

eluting putative DTT peak of the (-)DTT preparation eluted at the same fraction as a 

much larger peak in the (+)DTT preparation, further confirming it is indeed DTT which 

remains after dialysis. Molecular weights are summarized in Table 3.1. 
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Figure 3.3 Validation of MALS detector normalization with yeast alcohol 
dehydrogenase. 

 

1 mg yADh was dissolved in 1 mL 1X PBS (pH 7.4).  After 10 min centrifugation at 18,000 x 
g, the sample was immediately injected onto the column.  SEC-MALS was performed as 
described in the methods.  For clarity, only every third molecular weight data point is 
displayed.  The point of inflection at approximately fraction 18.7 (arrow) was taken to indicate 
the divide between monomeric and aggregating yADh.  Only the monomeric portion, 
identified as Peak 2, was included in molecular weight calculations.  The calculated molecular 
weight was 162 kDa.  The theoretical molecular weight, derived from the best deposited 
structure available on pdb (4W6Z) was 150 kDa.  The 12 kDa error, approximately one fourth 
the molecular weight of a 2N4R monomer (45.9 kDa) was deemed acceptable for detection of 
different tau oligomer states. 



55 

 

 

Figure 3.4 2N3R tau sample preparation with DTT. 

 

A 300 µL aliquot of 1 mg/mL 2N3R tau was diluted with 700 µL 1X PBS (pH 7.4).  The 
aliquot was stirred overnight, then sub-aliquoted into fresh tubes.  To one half was added 10 
µL of 100 mM DTT in buffer, while to the other was added buffer alone.  At room 
temperature they were autoswirled for 2 h then centrifuged for 10 min at 18,000 x g, and the 
supernatants subjected to SEC-MALS analysis as described in the methods. 
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Table 3.1 Validation experiments molecular weight summary. 

The molecular weight data from yADh and 2N3R tau (+/-) DTT 
validation experiments are summarized below. 

Preparation Molecular weight (kDa) 

yADH (theoretical) 149.5 

yADH (measured – full peak) 168  

yADH (measured – tailing half) 162 

(+)DTT 55 

(-)DTT 59 
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3.3.2 2N4R tau seeded with cross-linked oligomer. 

Although DTT was shown not to cause detectable changes in aggregation, it did 

nonetheless lead to complications in the earliest attempts at biophysical characterization. 

Oligomeric seeds, previously crosslinked with disuccinimidyl suberate (DSS), were used 

to initate a 2N4R tau oligomerization reaction. The 2N4R tau sample was prepared and 

seeded as described in the methods, then injected onto the column for SEC-MALS 

purification and analysis. The resulting SEC profile was unexpected (Figure 3.5A). There 

were two included peaks. The first peak eluted around fraction 18. The calculated 

injected mass, based on UV absorbance, was 342 µg. Whereas if the calculations were 

made using the results of a bicinchonic acid (BCA) protein assay, the injected mass was 

much lower, 95 µg. The second peak eluted late, around fraction 40, essentially an entire 

column volume, indicating a very small species. Residual DTT would explain both the 

protein assay differences, and this large second peak, as DTT absorbs UV strongly at 280 

nm. Further details are related in below in section 3.5 Technical discussion. This included 

peak was also very large, indicating either a highly absorbing species or high 

concentration in the injected sample.  

Further analysis of the purified tau was limited by the low concentration in the 

void fraction. ThT and bis-ANS dye binding (Figure 3.5B and 3.5C) were elevated above 

the baseline, indicating presence of β-sheet content, and hydrophobic surface exposure. 
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Figure 3.5 Purification of 2N4R seeded with 2N4R cross-linked seeds. 

 

(A) 7 µL of 0.3 mg/mL 2N4R crosslinked seeds was added to 1 mL previously 
dialyzed recombinant 2N4R Tau monomer.  The solution was pipetted to mix for 1 
min, then incubated at 25 ºC on an orbital shaker for 1 h, and subjected to SEC 
analysis. Inset: an expansion of the Tau peak.   (B) ThT and (C) bis-ANS 
fluorescence spectra of Tau peak fraction 19 (blue), DTT fraction 41 (red), and 1X 
PBS (pH 7.4) running buffer (black).  For ThT measurements, 4 uL 0.1 mM ThT was 
added to 66 µL of sample.  Bis-ANS spectra were acquired from mixture of 7 µL 0.1 
mM bis-ANS and 63 µL of sample. 
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3.3.3 Reconstitution and characterization of a 2N3R tau pellet. 

My experiments with 2N4R were intended to replicate the Kayed Lab results 

described above.  However, the amount of 2N4R material available hampered those 

initial efforts. Therefore, I turned my attention to the recombinant 2N3R tau material we 

received. In addition, some differences between 2N3R and 2N4R aggregation have been 

noted in the literature (described above) yet only 2N4R has been studied in the current 

paradigm of templated oligomerization. 

The recombinant 2N3R monomer was prepared as described in the methods, with 

some modifications due to the findings described in the previous section. The solubilizing 

Urea volume was increased from 30 µL to 75 µL, and incubated at room temperature 

overnight to ensure maximal denaturation of the material, and the dialysis period was 

extended, and included an additional buffer change. 

In this case, the BCA protein concentration assay result was 1.22 mg/ml, within 

the expected range of 1-3 mg/mL, as reported to us by the Kayed Lab at UTMB. The UV 

absorbance measurement, however, was again much higher, at 4.32 mg/mL, despite the 

extended dialysis. Taking the BCA result to be correct, I normalized the sample 

concentration to 1 mg/mL. The resulting sample volume was sufficient for 3.5 aliquots of 

300 µL each. A 300 µL aliquot was taken, and I performed the seeding procedure as 

described in the methods, using non-crosslinked 2N4R seeds. 

The SEC profile this time was more in-line with the expected results (Figure 

3.6A). The void peak eluted at fraction 18. The total eluted protein was 187 µg. Given the 

injected mass was 300 µg, the recovery was 62%, in good agreement with past 

experiences using the Superdex 75 column. The late eluting peak appeared in this 
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preparation as well, however it was greatly reduced. Fractions through the void peak 

were collected, and UV absorbance and BCA assays were performed to determine if their 

results would still diverge post-SEC. In this case, they were in relatively good agreement 

(Figure 3.6A).   

The peak fraction (#18) did bind bis-ANS to some extent (Figure 3.6B), 

indicating some hydrophobic surface exposure, but it did not bind ThT (not shown), 

indicating no β-sheet content. CD measurements agreed (Figure 3.6C); no classic β-sheet 

or -helix structure was detected. For this preparation, Dr. Nichols performed DLS 

analysis to determine the hydrodynamic radius (RH) of the peak fractions (Figure 3-6D). 

The main peak fraction 18 had RH ~90 nm, while fraction 19 was markedly decreased, RH 

~40 nm. 

These RH values were larger that might be expected; for comparison, Aβ PF have 

RH ~6-8 nm (Walsh et al. 1997). There is no satisfying explanation for this, note 

however, a drastic reduction in both light scattering intensity and RH from fraction 19 to 

18 (Figure 3-6C). DLS measurement of fractions 20-22 may have indicated a continuing 

downward trend.  This is also hinted at upon comparison of the BCA and U/V assay data 

presented in Figure 3.6A. There is a greater disagreement between the two methods in 

fractions 18 and 19 than the following fractions, which can be attributed to increasingly 

large molecule light scattering in the leading fractions.    
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Figure 3.6 Characterization of 2N3R Tau seeded with uncross-linked 2N4R 
oligomer. 

 

(A) 7 µL of 0.3 mg/mL 2N4R seeds was added to 1 mL 0.3 mg/mL previously 
dialyzed recombinant 2N3R Tau monomer.  The solution was incubated at 25 ºC on 
an orbital shaker for 1 h before SEC analysis. Concentration determination of 
collected fractions was performed via 280 nm absorbance in a 1 cm quartz cuvette, 
and BCA assay, as described in the methods. Results of in-line UV trace and fraction 
UV absorbances were converted to µM using a path-length of 0.5 cm and a calculated 
2N3R Tau extinction coefficient of 7375 M-1 cm-1. In-line concentration trace was 
overlaid with fraction determinations, and their volumes were adjusted graphically 
until all were aligned. (B) bis-ANS fluorescence spectra of Tau peak fraction 19 
(blue) and 1X PBS (pH 7.4) running buffer (black). Bis-ANS spectra were acquired 
from a mixture of 7 µL 0.1 mM bis-ANS and 63 µL of sample. (C) DLS 
measurements were taken at 25 ºC in a quartz cuvette. Data was collected at a 90º 
angle to the incident light, with a 5 s averaging time. (D) CD spectra were collected 
between 400 and 190 nm, with a data integration time of 2 s and a scan speed of 200 
nm/min in a 1 mm quartz cuvette. Each sample was scanned twice and the spectra 
averaged. 
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3.3.4 SEC-MALS comparison of seeded 2N4R and unseeded 2N4R. 

In my previous trials, including those described above, I was surprised that I had 

not yet detected more than a single peak I could ascribe to tau. The Kayed Lab (Lasagna-

Reeves et al. 2010) reported two fully resolved peaks, one at an estimated molecular 

weight consistent with trimer, the other monomer. They utilized a TSK-GEL G3000 

SWXL (30 cm x 7.8 mm) column for their elutions, which is a HMW-designed column 

suitable for fractionation up to 500 kDa. On the other hand, I used a GE Superdex 75 

10/300 GL. The upper limit of this column is much lower; material larger than 70 kDa 

will elute in the void peak. However, 2N4R tau, the largest isoform, had a calculated 

molecular weight of 45.9 kDa, while the other target isoform, 2N3R tau, had a molecular 

weight of 42.6 kDa. Because of this, I conjectured that the Superdex 75 column should 

provide sufficient separation of monomer from oligomer (trimer) to be detectable at the 

minimum as a shoulder on the trailing edge of the void peak, if not fully resolved. 

Therefore I set out to replicate precisely the preparation described they described 

(Lasagna-Reeves et al. 2010), and compare the results directly with unseeded monomer 

(Figure 3.7). 

Figure 3.7A displays the results of one unseeded 2N4R tau preparation compared 

directly with 2N4R tau seeded with uncrosslinked 2N4R tau oligomer. The two 

preparations were subjected to SEC-MALS in tandem, with the injection of the second 

preparation following that of the first by less than 1.5 h. Multiple unexpected outcomes 

are evident in these results. No monomer peak resolved in either preparation. For the 
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seeded preparation, the three “peaks” identified in the legend had mean molecular 

weights of approximately 10,710 kDa (peak 1), 340 kDa (peak 2), and 92 kDa (peak 3). 

For the unseeded preparation, those peaks had mean molecular weights of 10,280 kDa, 

1,062 kDa, and 212 kDa, respectively (molecular weight data is summarized in Table 

3.2). The monomeric preparation displayed higher molecular weights throughout the 

included peak, unexpectedly even higher than the seeded preparation. Also evident is a 

high molecular weight “void shoulder” on the included peaks of both preparations. The 

molecular weights of the species present in this peak are far too large to represent 

trimeric tau, as assessed by MALS.  Figure 3.7B is an overlay of the same SEC elution 

UV absorbance data as presented in 3.7A, as well as the raw data from the 90º (right-

angle) light scattering detector of the MALS instrument. This data is presented as 

qualitative evidence for the large size and small amount of this large aggregate present in 

the preparations. Larger particles scatter light much more efficiently than smaller ones, 

thus much less is necessary to result in a strong light scattering signal. Figure 3.7C is a 

TEM image which was generated from a 2N3R monomer preparation which presented a 

SEC-MALS profile very similar to Figure 3.7A. That 2N3R monomer preparation also 

had a high molecular weight void shoulder. The void shoulders appear to be composed of 

large, amorphous, likely insoluble aggregates, possibly consisting of many smaller 

aggregates.  

The void shoulders do not completely resolve from the included peak, 

confounding molecular weight determinations of smaller species with partially 

overlapping elutions. To eliminate this issue, future preparations would include an 

additional centrifugation step prior to injection onto the SEC column. 



64 

 

  

Table 3.2 SEC-MALS comparison of seeded and unseeded 
2N4R Tau. 

The molecular weight data presented in Figure 3.7 (below). 2N4R tau 
was prepared with or without non-crosslinked 2N4R tau oligomer seeds. 

Preparation Molecular weight (kDa) 

2N4R (+)seed - peak 1 10,710 

2N4R (+)seed - peak 2 340 

2N4R (+)seed - peak 3 92 

2N4R (+)seed - peak 1 10,280 

2N4R (+)seed - peak 2 1,062 

2N4R (+)seed - peak 3 212 
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Figure 3.7 SEC-MALS comparison of 2N4R seeded and unseeded 
preparations. 

 

(A) Post-dialysis recombinant 2N4R Tau monomer aliquots (0.3 mg/mL), one 
seeded with 7 µL uncrosslinked 2N4R Tau seed, the other not, were prepared as 
described in the methods and analyzed via SEC-MALS within 1.5 h of each other.  
(B) The same experiment is presented as in panel A, with the SEC in-line 280 
absorbance overlaid with the 90º (right angle) detector voltage readings.  (C) 2N3R 
monomeric preparation which displayed similar high molecular weight void 
shoulder.  EM image of void peak fraction.  (D) Digitally embiggened view of the 
same EM.  May be suggestive of clumped LMW oligomers. 
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3.3.5 Detection of 2N3R oligomers and intriguing elutions. 

Although no separate monomer and oligomer peaks could be detected, prior data 

hinted that tau oligomers were formed. These hints included the large difference in RH 

seen between fractions in Figure 3.6C, subtle differences in secondary structure seen in 

3.6D, and divergent elution rates for species of the same molecular weight seen in 3.7A. 

These observations led me to refine my methods and analysis, to detect subtle differences 

which might indicate seeding-dependent changes in solutions of monomeric tau. This 

time I focused on the 2N3R tau isoform. I performed several experiments which not only 

allowed me to validate my procedures, but improve them. With these results in hand I 

returned to the generation and characterization of seeded tau oligomers. The 2N3R 

isoform was more appealing, for reasons which are touched upon in the discussion 

section which completes this chapter.  

The yADh-MALS validation test described above (Section 3.3.1) was precipitated 

in large part by the strange results of a previous seeding experiment (Figure 3.8) shown 

below. The objective was nucleation of 2N3R oligomer formation via seeding with 

oligomers of the 2N4R isoform. 2N3R tau samples with or without uncrosslinked 2N4R 

seeding were compared via SEC-MALS and SDS-PAGE. 

The unseeded preparation peak absorbance maximum was shifted back from the 

seeded peak (Figure 3.8A). The low molecular weight peak was elevated above monomer 

in both preparations, indicating that the MALS molecular weights may not be accurate in 

this case. However, the molecular weight profiles (summarized in Table 3.3) were 

essentially the same across the peaks, despite their differing elution rates.  
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I performed SDS-PAGE western blot analysis on these preparations as described 

in the methods. Staining was performed using two primary antibodies: T22 (Figure 3-

8B), generated against the 2N4R oligomers described above and in previous work 

(Lasagna-Reeves et al. 2010, Lasagna-Reeves et al. 2012), and Tau-5, a common general 

antibody for tau, which is neither conformation nor isoform specific. The T22 antibody 

did not bind any visible bands, except a very low molecular weight species close to the 

loading dye in unseeded fractions 17 and 18. The Tau-5 antibody, on the other hand, 

bound multiple species in both preparations. There was no staining in the lanes for 

fraction 15 or 16. The low molecular weight band seen in unseeded preparation fractions 

17 and 18 using T22 was also faintly detected by Tau-5. In addition, bands were detected 

at 50, 150 and 200 kDa. These approximate molecular weights correspond to monomer, 

dimer/trimer, and tetrameric tau, respectively. The same bands were detected in the 

seeded preparation, including lighter bands in the higher molecular size fractions 15 and 

16.  

The disparity between the peak maximum elution rates and molecular weight 

profiles was intriguing, and relevant to our interest in differences in seeding between tau 

isoforms. MALS makes absolute measures of molecular weight based on First Principles. 

SEC elution, however, probes molecular size, which is a related but different 

measurement influenced by protein folding; SEC determined molecular weights cited in 

the literature are estimates generated by comparison with ‘well-behaved’ standard 

proteins. A difference between the two may therefore indicate conformational change, if 

one conformation is more extended, or the surface exposure significantly different. 
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As a follow-up to this experiment, I performed another seeding preparation with 

2N3R and un-crosslinked 2N4R seeds. I made additional method modifications, this time 

to clarify any differences between the seeded and unseeded preparations. This involved 

additional steps to remove pre-existing material, and inhibit spontaneous aggregation 

over the time course of the protocol. The differences between the new protocol and the 

protocol used in Figure 3.8 are highlighted in Table 3.6. 

The results are reported in Figure 3.9, and molecular weight summaries are given 

in Table 3.5. The modified protocol succeeded in enhancing the peak fraction elution rate 

difference between seeded and unseeded samples (Figure 3.9A).  280 nm absorbance 

maxima were separated by approximately a full fraction volume (0.5 mL). Importantly, 

the molecular weight profiles were similar. I performed Western blot analysis on these 

preparations as well. The T22 antibody stain (Figure 3.9B) again did not detect any 

oligomeric species. When Tau-5 (Figure 3.9C) was used to probe the membrane, tau was 

only detected in fractions 17 and 18 of the seeded preparation. In those fractions, 

monomer, dimer/trimer and tetramer were detected. This replicated the results of the 

previous 2N3R seeding experiment (Figure 3.8). It should be noted that the Western blots 

displayed in Figures 3.10 and 3.11 both suffered from missing fraction 19. Later we 

performed an alignment experiment to determine a volume correction, applied to align 

the reported volume at the MALS flow cell with the volume at the fraction collector. In 

future experiments using the same instrument setup, the following calculations will allow 

conversion between volumes at the SEC in-line 280 nm absorbance detector, VSEC, the 

corrected volume at the MALS detector VMALS, norm, and the correct fraction, Fnorm. 
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ௌܸா஼ ൅ ∆ ெܸ஺௅ௌ ൌ ெܸ஺௅ௌ,௡௢௥௠ 

The MALS delay volume, VMALS, is established during detector normalization 

by aligning the BSA peak volume at the in-line 280 nm absorbance detector with the light 

scattering peak volume at the in-line MALS detector array. In practice, it is necessary that 

these two detection points are separated by some length of chromatography tubing.  This 

results in an inherent amount of uncertainty in VMALS. The volume is always recorded 

by the DAWN DSP MALS instrument as volume slice increments due to the digital-

analog conversion required to interface with the AKTA FPLC.  
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Table 3.3 SEC-MALS comparison of seeded and 
unseeded 2N3R Tau. 

The molecular weight data of 2N3R Tau prepared with or 
without non-crosslinked 2N4R Tau oligomer seeds, data from 
Figure 3.7. 

Preparation Molecular weight (kDa) 

2N3R (+)seed - HMW 280 

2N3R (+)seed - LMW 135 

2N3R (-)seed - HMW 272 

2N3R (-)seed - LMW 142 
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Figure 3.7 Characterization of 2N3R Tau monomer seeded with 2N4R Tau 
oligomer. 

 

(A) Unseeded 2N3R vs Seeded 2N3R SEC-MALS analysis.  The aliquot to be seeded 
was pre-stirred at 25 ºC for 24 h, prior to addition of 7 µL 2N4R Tau seed.  Then both 
seeded and unseeded preparations were incubated at 25 ºC with orbital shaking.  The 
unseeded preparation was centrifuged at 18,000 x g for 10 min and immediately 
analyzed with SEC-MALS. The seeded preparation remained on the bench-top at 25 
ºC for approximately 1 h until elution of the unseeded preparation had completed, 
then it too was centrifuged at 18,000 x g for 10 min and immediately analyzed with 
SEC-MALS.  (B) T22 and (C) Tau-5 antibody stained Western blots of fractions 
collected from the elutions in panel A.  Membrane was first probed with T22 
antibody, then chemically stripped, and re-probed with Tau-5 antibody.  The gel and 
developed film were scanned at the same resolution then overlaid in Adobe 
Photoshop.  The gel layer was placed on top with the color blend mode selected, and a 
+50 saturation adjustment layer applied.  This allowed visualization of the molecular 
weight marker bands without modification of the luminosity values of the film layer. 
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Table 3.4 SEC-MALS comparison of seeded and 
unseeded 2N3R Tau. 

The molecular weight data of 2N3R Tau prepared with or 
without non-crosslinked 2N4R Tau oligomer seeds, data from 
Figure 3.8 (below). 

Preparation Molecular weight (kDa) 

2N3R (+)seed - HMW 117 

2N3R (+)seed - LMW 62 

2N3R (-)seed - HMW 93 

2N3R (-)seed - LMW 62 

 



73 

 

  
Figure 3.8 Characterization of 2N3R Tau monomer seeded with 2N4R Tau 

oligomer. 

 

(A) Unseeded 2N3R vs Seeded 2N3R SEC-MALS analysis.  A single 1 mL aliquot 
was centrifuged at 17,000 x g for 10 min. The supernatant was removed and split into 
two 500 µL half-aliquots prior to addition of 7 µL 2N4R Tau seed.  Seed or vehicle 
was added, and both halves were incubated at 4 ºC overnight.  The seeded half was 
incubated at 25 ºC with orbital shaking for 2h, then centrifuged at 18,000 x g for 10 
min and immediately analyzed with SEC-MALS. The unseeded half was maintained 
at 4 ºC for approximately 1 h until elution of the unseeded preparation had completed, 
then it to was centrifuged at 18,000 x g for 10 min and immediately analyzed with 
SEC-MALS.  (B) T22 and (C) Tau-5 antibody stained Western blots of fractions 
collected from the elutions in panel A.  Membrane was first probed with Tau-5 
antibody, then chemically stripped, and re-probed with T22 antibody.  The gel and 
developed film were scanned at the same resolution then overlaid in Adobe 
Photoshop.  The gel layer was placed on top with the color blend mode selected, and a 
+50 saturation adjustment layer applied.  This allowed visualization of the molecular 
weight marker bands without modification of the luminosity values of the film layer. 
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Table 3.5 2N3R seeded oligomerization reactions preparation 
protocol comparison. 

The 2N3R seeded vs unseeded comparisons displayed in Figures 
3.7 and 3.8 were prepared in a similar fashion, but there were key 
differences.  The preparation methods are summarized below 
stepwise with key differences noted. 

Figure 3.7 Step Figure 3.8 

Thawed -1 -- 

Pre-stirred for 24 h. 0 Thawed 

No centrifugation after 
pre-stir. 

1 Centrifuged – visible pellet. 

Began with two 
aliquots. 

2 Split single aliquot. 

Added seed or vehicle. 2a Added seed or vehicle. 

Did not incubate 
overnight. 

3 Incubated overnight at 4C. 

Both aliquots were 
shaken on orbital shaker 
for 2 h. 

4 
Only seeded aliquot was 
shaken; unseeded remained at 4 
ºC. 

Centrifuged unseeded, 
injected. 

5 Centrifuged seeded, injected. 

Waited 1 h. 6 Waited 1 h. 

Centrifuged seeded, 
injected. 

7 Centrifuged unseeded, injected. 
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3.4 Results discussion. 

Over the course of the project, we began to turn more attention to seeded 2N3R 

oligomerizations. There were multiple reasons. 2N3R is known to be less fibrillogenic 

than 2N4R, which provides both challenges and opportunities. Our collaborators had not 

yet explored seeded oligomerization of 2N3R isoform, and there is a lot of room for 

novel research. Challenging in that the slower kinetics may preclude detection of the 

expected endpoint without adjusting the experiment timescale, or the reaction system 

could be dominated by different pathways which were eclipsed by the rapid kinetics of 

2N4R seeded oligomerization. Indeed, the 2N3R isoform may not physically be a valid 

target for templating by the specific seeds we applied. Finally, practical considerations 

played a significant role. The 2N3R aliquots we received were larger, and therefore we 

had more flexibility in our experimental approach. 

A large amount of the time and resources dedicated to this project went to method 

transfer and development. Eventually refined my experimental approach enough to detect 

some interesting phenomena. It appears that 2N4R tau oligomeric seeds may induce a 

conformational change in 2N3R tau. The evidence for this is the different rates of SEC 

elution for species with the same molecular weight, as determined via inline MALS 

measurement. Another important observation was the lack of binding detected between 

the tau oligomer-specific antibody T22 and low molecular weight 2N3R tau oligomers. In 

our hands, T22 could not bind 2N3R oligomers to an extent detectable with Western 

blotting. T22 is a polyclonal antibody raised in mouse against aggregates generated from 

2N4R. There are two possible explanations for the lack of binding. 2N3R oligomers 

could have a fundamentally different fold unrecognized by T22, or the conformational 
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epitope recognized by T22 involves the second repeat region of the tau protein, which is 

not present in the 2N3R isoform. 

In all, I overcame multiple technical hurdles, and generated what I believe to be 

2N3R oligomers via templated seeding with 2N4R preformed seeds. SDS-PAGE 

revealed a significant band of SDS-resistant oligomer at approximately 120 kDa, 

consistent with the 2N4R oligomers reported by the Kayed Lab. I also noted differences 

between seeded and unseeded elution rates which, when combined with MALS, may 

indicate conformational changes. 

This project is by no means complete, but the work described above should 

provide an excellent groundwork for rapid progress in the future. The first objective 

should be transfer of the SEC purification to a column better suited to resolve molecular 

weights of 50 kDa and above. Felicitously, the Nichols Lab has recently acquired a 

column with a much greater molecular weight range, which is quite suitable for this task. 

The seeded 2N3R tau experiment described in Figure 3.8 should be repeated on the new 

column, to confirm or reject the apparent conformational change detected. The 

experiments should be performed with full volume samples; another issue encountered in 

this project was the low purification yield. This often led to difficulties for additional 

analysis of the purified fractions. A conformational change may be detectable by dye 

binding such as bis-ANS for hydrophobic surface exposure, or ThT for β-sheet structure. 

Circular dichroism can also provide secondary structural information.  
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3.5 Technical discussion. 

3.5.1 Protein concentration determination. 

A 2N4R pellet, generated as described in (Margittai et al. 2004) was dissolved in 

30 µL 8 M Urea, diluted with 1X PBS (pH 7.4), and dialyzed overnight at 4 ºC against 

1X PBS (pH 7.4). After dialysis, the sample concentration was determined by BCA assay 

and absorbance at 280 nm (concentration determinations are summarized in Table 3.1), 

and then stored at -20 ºC. There was a large difference between the results of the two 

assays used to assess concentration: 0.316 mg/mL per the BCA assay, and 1.27 mg/mL 

per the 280 nm absorbance assay. 

For seeding, the sample was thawed, and centrifuged for 10 min at 18,000 x g, 

which yielded a small pellet. Therefore, the concentration determinations were then 

performed again. Both assays were repeated. This time, the BCA result was 0.316 

mg/mL, and the UV absorbance was 1.14 mg/ml. This confirmed my earlier results, and 

because the values were slightly lower, indicated the presence of some amount of Urea-

resistant material in the pellet. Ultimately, since the UV absorbance reading was within 

the literature range of 1-3 mg tau per pellet (Margittai et al. 2004), I used the post-spin 

value 1.14 mg/mL for further dilution calculations. 

The BCA assay is a colorimetric method involving two reactions: first, Cu2+ 

provided by copper sulfate is reduced to Cu+ by protein in the sample, then Bicinchoninic 

acid chelates the Cu+ at a 2:1 ratio. This chelation complex is purple in color and has a 

strong absorption at 562 nm. The analyte is measured along-side a standard curve of 

known concentrations, to calculate a close approximation of the analyte concentration. 

The standard most commonly used in this procedure is BSA, a globular protein 
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comprised of 607 amino acids, weighing 66.5 kDa. The primary effector of Cu2+ 

reduction is the peptide bond itself.  This has implications for the importance of amino 

acid composition of the analyte compared to the standard. 

The peptide bond density for 1 mg of each protein can be calculated from the 

amino acid count and molecular weight. For BSA this is 5.49  1018 peptide bonds per 

mg, while for 2N4R tau, it is 5.78  1018 peptide bonds per mg, a ~5% higher density. All 

other things being equal, this would lead to an overestimation of tau concentration. Since 

dissolving the pellets as described in the literature source into 1 mL buffer would yield a 

solution with  1 mg/mL tau protein, this could not explain the low BCA assay result of 

0.316 mg. 

The peptide bond is not the only part of protein involved in Cu2+ reduction. 

Certain amino acid side-chains are also capable of performing this chemistry. Those 

include cysteine, tyrosine and tryptophan (Pierce Protein Assay Handbook). ProtParam 

(www.expasy.org) was used to rapidly tally their content in BSA and 2N4R tau. BSA has 

a total of 69 of these residues; 2N4R tau has only 7. This difference could lead to 

underestimation of the sample protein concentration. However, because the question now 

required considerations of the kinetics of reactions at each of the different residues, as 

well as their solvent accessibility, which was not information readily available to me, this 

line of investigation was left incomplete. 

Another potential source of variation is incompatible components in the buffer 

system, particularly reducing agents, which can also interact with Cu2+. The recombinant 

tau protein pellets were stored in a 5 mM DTT solution (see methods). However, while 

DTT is a potent reducing agent, the amount in the storage solution should be low enough 
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that there is not significant interference ((Pierce protein assay handbook)Pierce protein 

assay handbook). Furthermore, the dialysis step is performed specifically to obviate these 

issues. 

Next I turned our attention to the UV/Vis concentration determination. I noted 

that in its oxidized form, DTT absorbs strongly in the UV, with a local absorbance 

maximum around 280 nm (Cleland 1964). Others have noted that high enough 

concentrations of DTT will interfere with UV absorbance determinations of protein 

concentration (Stoscheck 1990), but again, due to the dialysis step, this was not a 

concern. 

My investigation into possible confounding factors related to the methods left me 

without a conclusive explanation for the differences in their outcomes. I noted possible 

sources of variation in the BCA assay, relating to differences between the sample and 

standard proteins, but could not draw conclusions without significantly more inquiry on 

that subject. The UV absorbance measurement did not appear influenced by the presence 

of DTT. Because the UV absorbance measurement of 1.27 mg/mL agreed with the 

expected concentration range from the literature, 1-3 mg/mL (Margittai et al. 2004), I 

decided to use that value in planning our next steps. It appears now that I selected the 

wrong assay. 

In the case of the first 2N4R pellet, if instead of using the UV absorbance 

concentration determination, I used the BCA result, the injected mass onto the SEC 

column becomes 95 µg, and the recovery rises to 43%, which is comparable to the 

recoveries often seen when purifying Aβ with the same column and settings. 
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3.5.2 Sample preparation. 

I drew some conclusions about the sample preparations and methods from these 

earliest studies of tau. Some of the pellet material did not go into solution, even after 

overnight incubation in 8M Urea. This could be due to the presence of insoluble, resistant 

fibrillar species, or simpler sources, such as insufficient denaturant, insufficient 

incubation time or lack of agitation during incubation. Future experiments would 

incorporate this knowledge to maximize the amount of material for seeding in the 

monomer pool. 

The major problem encountered in the first experiment with 2N4R, and confirmed 

in following experiments, was the large discrepancy between the two assays we used to 

assess protein concentration. I decided to rely on the BCA assay for that determination in 

the future, since the concentration measured by that method made sense based on the 

SEC protein recovery. It now appears plausible that the preparation of the 2N4R tau 

pellets deviated in some fashion from the published method (Margittai et al. 2004). The 

published method called for precipitation of recombinant tau from the running buffer 

used in the final purification step- elution on a SEC column. It appears the pellets 

received were aliquoted at that point, prior to precipitation, so that reconstitution of a 

pellet in 1 mL sample buffer would yield a tau concentration near 300 µg/mL, convenient 

for addition of seed to initiate the oligomerization reaction. However, I consider this to be 

a limitation, as it would be preferable to compare seeded preparations with unseeded 

preparations taken from the same reconstituted pellet solution. This would eliminate the 

any potential error due to variations in the reconstitution procedure, or indeed the pellet 

source. 
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The cause of the misleading UV absorbance-based concentration determination, it 

seems, was DTT remaining in the sample solution post-dialysis. In the future, I would 

increase the duration of dialysis, and add a buffer change step, however DTT would 

consistently still elute at detectable levels. Eventually I therefore ran a control experiment 

which provided evidence that it was not interfering to a detectable extent with our 

aggregation reactions (Figure 3.3B). 

3.5.3 Preformed aggregates. 

Another pernicious issue I encountered was the repeated presence of “void 

shoulder” peaks such as those described in Figure 3.8. And more broadly, the presence of 

pre-formed, Urea resistant aggregates in the monomer solutions. Preformed aggregates 

are present even in commercially available synthetic protein, and are of special concern 

in the study of amyloid aggregation (Stine et al. 2003). I have experienced this issue 

previously in the Nichols Lab. Chapter 4 of this dissertation describes the 

characterization of protofibrils formed from Aβ42/Aβ40 mixtures. Concerns over 

preformed aggregates led to a significant amount of additional work. As part of that 

process, I found that even when I eluted synthetic Aβ42 under denaturing conditions, a 

sizable amount of resistant aggregated material remained. For the project described in 

this chapter, pre-formed aggregates were obviously a large concern. My goal was to 

observe seeded oligomerization under controlled conditions. Without monomer solutions 

highly purified of existing aggregates, oligomerization initiated due to added seeds could 

be obscured by seeding initiated due to template-competent species already present. It 

was not until very late in the project that I devised methods which removed enough 
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aggregate from the unseeded preparations to detect differences between seeded and 

unseeded solutions.  

3.5.4 Care and maintenance of MALS instrumentation 

The MALS detector normalization process should be performed regularly, since 

the condition of the flow cell will change with time, even when the most fastidious care 

and maintenance schedules are observed, such as storage in pure organic solvent, and 

frequent cleaning. Even with frequent flow-through of cleaning solutions such as dilute 

nitric acid, or detergents specifically designed for removal of protein from quartz optics, 

microscopic bubbles or even resistant deposits can arise which alter the scattering of light 

among the detectors. Detectors should always be normalized after the cell is removed for 

the most thorough available cleaning procedures. Though removing and cleaning the flow 

cell by hand is delicate, time consuming work, it occasionally becomes necessary. Even if 

the cell is removed and cleaned before each measurement (a risky proposition, as it 

contains multiple small, high-precision, i.e. expensive, components), there remains the 

possibility that slight changes in alignment of the cell with the incident light beam will 

alter scattering. Finally, changes in the sample buffer system should also always be 

accompanied by a new normalization, as different buffers will change the light scattering 

pattern as well. One recommendation arising from this project was regular normalization 

checks with an additional molecular weight standard. Such practices can also be 

informative when dealing with unknown, complex sample systems such as amyloid 

aggregates. 

  



83 

 

 

 

CHAPTER 4. LARGE SOLUBLE Aβ OLIGOMERS. 

4.1 Introduction. 

4.1.1 Aβ aggregation, and aggregate pathologies. 

The classic Amyloid Cascade Hypothesis, which focused on insoluble Aβ 

deposits, could not explain many aspects of AD pathogenesis. Yet, despite this failing, 

over the years a large and difficult to refute body of evidence still identified Aβ with AD 

pathology. For example, consider again trisomy 21, or Down’s Syndrome. Individuals 

with trisomy 21 have three copies of chromosome 21, and they invariably develop AD. 

This is thought to be the result of an extra copy of the APP gene, which resides on 

chromosome 21. In 1998 Prasher, et al. (Prasher et al. 1998) related the case study of a 

78-year-old woman with a rare variant of Down’s Syndrome with only partial trisomy-

21. The break was positioned such that the third chromosome 21 copy lacked the APP 

gene. Thus, the woman possessed the normal gene dosage for APP, yet still presented 

much of the Down’s Syndrome phenotype. The reader will no doubt immediately 

recognize that this woman represents, in some sense, a negative-control for AD 

dependence on APP gene dosage in humans. Indeed, for the five years prior to her death 

at age 78, neuropsychological evaluations of this incredible individual reported no signs 
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of decline in memory, attentiveness, language, cognition or adaptive skills. MRI six 

months before her death revealed no evidence of AD-related cerebral or lobar atrophy of 

the brain. Upon her death, post-mortem investigation concluded that AD neuropathology 

was absent. No AD-related damage was apparent in her brain, and histological staining 

revealed no presence of Aβ or tau deposits. Because of this and numerous other lines of 

evidence, Aβ remains the target of a large amount of research. Many have turned to 

exploration of the behaviors of soluble oligomeric assemblies in vivo and in vitro.  

Excluding the insoluble fibril, Aβ exists as polydisperse soluble aggregates, 

including monomer; a number of oligomers; protofibrils which could be characterized as 

HMW oligomers, but possess characteristic fibril-like properties; and protofilaments, 

which are still soluble, but possess yet more fibril-like properties (Mizuno 2012, Nichols 

et al. 2015). Aβ aggregation, like all amyloid aggregation, proceeds via a nucleated, 

crystallization-like process. Initially during the lag phase, the population is primarily 

monomeric. Eventually the unstructured or weakly -helical (Bartolini et al. 2007) 

monomers undergo spontaneous conformational change and non-covalent interactions 

occur between monomers (Jarrett et al. 1993), forming oligomeric seeds. Some studies 

have linked this stage with a transient increase in -helical structure detectable by 

circular dichroism (Walsh et al. 1997, Kirkitadze et al. 2001). This marks the beginning 

of the elongation phase, during which β-sheet content increases as aggregates grow 

larger. At the plateau phase, when the monomer is sufficiently depleted, β-sheet 

dominates the secondary structural content.  

The pathology of Alzheimer’s disease (AD) is complex. Activities vary by 

aggregation state, and pathogenesis likely includes a direct neuronal toxicity axis, as well 
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as an indirect axis of neuronal toxicity mediated by neuroinflammation. Oddly enough, 

wild-type monomeric Aβ42 may function in a neuroprotective capacity, supporting 

developing neurons under nutritional deprivation conditions, and protecting mature 

neurons from excitotoxic stress (Giuffrida et al. 2009). LMW oligomeric Aβ species 

(dimers or trimers) localize at, and insert into, the neuronal lysosomal membrane, 

possibly inducing membrane labilization and related cytotoxicity (Liu et al. 2010). 

Dimeric Aβ directly induces hyperphosphorylation of tau protein resulting in cytoskeletal 

microtubule degradation and neuritic dystrophy (Jin et al. 2011). A 56 kDa dodecamer 

(Aβ*56) is detectable in human AD brain. In a mouse model of AD, extracellular 

accumulation of Aβ*56 in aged animals, or injection into young animals, causes memory 

deficits in a cell-death independent fashion (Lesne et al. 2006). Interaction between the 

plasma membrane and extracellular spherical oligomeric species (diameter 2-5 nm, MW 

≈ 90 kDa, ~24 monomer subunits), but not LMW oligomers or fibrils, causes an increase 

in ion permeability (Kayed et al. 2004). Neuronal cell studies have demonstrated 

disruption of Ca2+ homeostasis in this manner (Demuro et al. 2005), which is a well-

characterized apoptotic trigger (Berridge et al. 1998), and induces increased cellular 

production of additional Aβ42 (Pierrot et al. 2004). These very same spherical oligomers, 

but not LMW oligomers or fibrils, also cross-seed aggregation of tau into a neurotoxic 

tau oligomer (trimer) capable of seeding additional tau oligomerization (Lasagna-Reeves 

et al. 2010). Protofibrils are essentially non-toxic to microglia (Paranjape et al. 2012) and 

neuronal cells (Nichols, M. R. and Colvin, B. A., unpublished data), however they elicit 

large inflammatory responses from glial cells (Paranjape et al. 2012). In summary, 
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soluble Aβ species mediate a range of deleterious effects including disruption of 

homeostasis, cell trafficking, and inflammation. 

Synthetic Aβ peptides have been an indispensable tool for in vitro studies 

establishing the kinetics and biophysics of amyloid aggregation. Allowing researchers to 

recapitulate Aβ fibrillogenesis in controlled conditions, in vitro studies have led to the 

development of the crystal-like nucleated three phase model of amyloid aggregation 

described above. Control of nucleation, rate of elongation, and formation of specific 

oligomers can be ascribed to multiple factors, including pH, ionic strength, temperature 

and agitation (Lambert et al. 1998, Harper et al. 1999, Nichols et al. 2002, Chromy et al. 

2003, Stine et al. 2003), not to mention seeding with pre-formed aggregates, such as what 

is described above for tau protein (Wu et al. 2010).  

It is well established that Aβ is generated by sequential cleavage of APP by β-

secretase followed by -secretase (De Strooper et al. 2010) resulting in isoforms 37 to 43 

amino acids in length (Selkoe 2004). The two most common isoforms are Aβ42 and 

Aβ40, with Aβ40 the most common (Selkoe 2000). Both of these are found in circulation 

as well as in the cerebrospinal fluid (Hansson et al. 2010). The sequence difference 

between the two is small, with Aβ42 possessing a pair of C-terminal hydrophobic 

residues absent in Aβ40, yet there are profound biophysical properties between the two. 

Aβ42 is well established as far more prone to aggregation into fibrils (Jarrett et al. 1993). 

These differences seem linked to AD pathology. As stated previously, all mutations 

leading to EOAD do one of two things: they either increase overall Aβ production, or 

enhance production of Aβ42 over Aβ40 (Hardy 1997, Selkoe 2001). Furthermore, 

although Aβ40 is more common in circulation, it is Aβ42 which primarily comprises the 
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core of the senile plaques found in AD brain (Gravina et al. 1995). Further mouse model 

and cell culture studies support the idea that the Aβ42/Aβ40 ratio, and not overall Aβ 

level, drives AD pathology (Scheuner et al. 1996, Bentahir et al. 2006, Deng et al. 2006, 

Kim et al. 2007). 

Despite the likely importance of the Aβ42/Aβ40 ratio in AD etiopathogenesis, 

surprisingly little work has been done in the field of amyloid aggregation which utilized 

mixtures of the two isoforms. Jan, et al. (Jan et al. 2008) reported that monomeric Aβ40 

inhibited fibril formation from Aβ42 monomers and protofibrils. Shorter lag times/faster 

aggregation rates have also been reported as the Aβ42/Aβ40 ratio increases (Yan et al. 

2007, Kuperstein et al. 2010). Two mechanisms have been posited to mediate this effect. 

Aβ40 may act as “caps” on Aβ42 aggregates, preventing elongation (Yan et al. 2007). 

Alternatively, Aβ40 may slow the rate of Aβ42 aggregation by so-called “non-

productive” interactions (Pauwels et al. 2012). 

Understanding the kinetics of amyloid aggregation, as well as the effects that 

solution conditions have on aggregation pathways will grant researchers greater control 

over in vitro studies, and enhance interpretation of in vivo findings. This is one of the 

major research goals of the Nichols Lab. The studies described below resulted in 

contributions to a pair of published journal articles (Nichols et al. 2015, Terrill-Usery et 

al. 2016). In Nichols et al. 2015, the subject of interest was a comparison of different 

HMW soluble aggregates of Aβ42. Terrill-Usery et al. 2016, on the other hand, was 

focused on co-aggregation of the Aβ42 and Aβ40 isoforms. What both projects had in 

common was the need to develop a new experimental paradigm. amyloids are well 

known for their ability to undergo templated conformational change mediated by pre-
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formed seeds. It became apparent that projects would greatly benefit if the starting 

solutions were pure monomeric solutions, something rarely done in the field due to the 

increased costs and complexity of experimental design.  

The work began with development of new methods for generating populations of 

high molecular weight soluble oligomers from SEC-purified monomer. Using the new 

methods, buffer- and temperature- dependence of aggregation was investigated. This 

groundwork was then leveraged to improve the analysis of protofibril formation in 

Aβ42/Aβ40 mixed solutions. Throughout both projects I made heavy use of multiple 

classic techniques for the study of amyloid aggregation, including SEC-MALS, CD 

spectrophotometry, dye binding and TEM imaging. 
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4.2 Results. 

4.2.1 Influence of buffer on purified Aβ42 monomer aggregation. 

The monomer fraction enrichment preparation was used to generate stock 

solutions for these studies (see methods).  Synthetic Aβ42 was reconstituted with 10 mM 

NH4OH in 6 M GuHCl, an alkaline, chaotropic solution which restricts the extent of rapid 

aggregation, thus increasing the monomer yield upon SEC purification. After 

centrifugation at 18,000 x g for 10 min and purification, monomer fractions were placed 

on ice. Purified monomer was then diluted to 40 µM for the aggregation reactions. 

Amyloid aggregation is well known for sensitivity to solution conditions such as ionic 

strength, or pH, therefore elutions and aggregation reactions were performed under 

multiple buffer conditions to examine their varying effects. Reactions were performed in 

siliconized tubes to prevent adsorption, at 37 ºC in a water bath with a flotation pad. At 

certain time points aliquots were removed from the reactions for ThT measurement. This 

would allow estimates of lag phase duration. Purified monomer did not bind ThT (Figure 

4.1A), and upon immediate repurification under the same conditions there was no 

material in the void volume (Figure 4.1B). Figure 4.1A gives the endpoint total ThT 

fluorescence and supernatant ThT fluorescence after centrifugation for 10 min at 18,000 

x g for three buffer conditions. Figure 4.1B is the corresponding repurification SEC 

profiles of the supernatants. Two conditions demonstrated significant void volume peaks 

upon post-incubation repurification. In-line MALS analysis of those samples is presented 
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in Figure 4.1C and 4.1D. Their peak void volume contents were also visualized with 

TEM, and representative images are shown in Figure 4.3E and 4.3F. 

The aggregation reaction carried out in aCSF (pH 7.8) at 37 ºC had a lag phase > 

4 h, but aggregated rapidly upon longer incubation (21 h). The endpoint ThT 

fluorescence was absent in the supernatant post-centrifugation (Figure 4.1A). Minimal 

material was found in the void or included peaks after SEC repurification of the 

supernatant. This indicates that between 4 and 21 h aggregation proceeded rapidly to 

insoluble fibril formation under the applied reaction conditions.  

Increased ionic strength enhances aggregation and fibrillization (Nichols et al. 

2002), therefore an aCSF (pH 7.8) with NaCl concentration reduced from 130 mM to 30 

mM (low salt aCSF) was prepared and used to perform another aggregation reaction as 

described above. In this case the lag phase was likely longer (> 8 h). After 25 h 

incubation, there was significant ThT fluorescence, and ~90% remained in the 

supernatant after centrifugation, indicating soluble aggregates with significant β-sheet 

structure (Figure 4.1A). There was a large SEC void volume upon SEC repurification 

(Figure 4.1B). 

A commonly utilized buffer for Aβ studies is Tris-HCl (Walsh et al. 1997, Walsh 

et al. 1999, Nichols et al. 2002), which was used here to compare with aggregation in 

aCSF-based buffers. After overnight incubation at 37 ºC, only 9% of the ThT 

fluorescence remained in the supernatant (Figure 4.1A), and both SEC void and included 

peak sizes were reduced compared to the low salt aCSF preparation (Figure 4.1B), 

however enough material remained for comparison with the in-line MALS results of the 

low salt aCSF sample (Figure 4.1C and 4.1D).  
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The low salt aCSF-formed aggregates had a molecular weight range between 

3394 and 2961 kDa, with a mean of 3044 kDa, or approximately 674 Aβ42 monomers. 

The Tris-HCl-formed aggregates had a significantly lower molecular weight, which 

ranged from 2133 to 1386 kDa, with a mean of 1533 kDa, or approximately 340 

monomers. The lower molecular weight measured in the Tris-HCl sample was not 

expected, considering the larger amount of insoluble fibril material, based on pre-/post-

centrifugation ThT fluorescence measurements (Figure 4.1A). Measured Rg values 

agreed with Mw values. The low salt aCSF aggregates had Rg ranging from 59 to 58 nm, 

with a mean of 59 nm, while the Tris-HCl aggregates had Rg ranging from 43 to 37 nm, 

with a mean of 39 nm. 

The two preparations described above presented intriguing morphologies when 

imaged via TEM. The low salt aCSF preparation resulted in thin, extended (> 1 µm in 

length) protofilament structures (Figure 4.1E) while the Tris-HCl aggregates were classic 

curvilinear protofibrils, between 50 and 100 nm in length (Figure 4.1F). 
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Figure 4.1 Monomer aggregation reactions in varied buffer conditions. 

 
(A) Aβ42 monomers purified by SEC in different buffers were diluted to 40 µM.  
ThT measurements were taken of the monomer before (Aβ mon) incubation at 37 ºC.  
Endpoint fluorescence measurements were made at 21 h for aCSF (pH 7.8) 
monomers, 25 h for low salt aCSF (pH 7.8) monomers and 32 h for 50 mM Tris-HCl 
(pH 7.8) monomers.  Total ThT measurements were made before centrifugation at 
18,000 x g for 10 min, followed by supernatant ThT measurements.  Results are 
baseline-corrected for buffer plus ThT in absence of Aβ.  (B) 0.5 mL supernatants 
from the reactions were repurified by SEC with in-line 280 nm absorbance (mAU) 
quantitation.  The black trace is re-injected freshly purified Aβ42 monomer in aCSF.  
Green is the aCSF reaction, red is the low salt aCSF reaction, and blue is the Tris-HCl 
reaction.  (C) and (D) Mw and Rg, respectively, determined by in-line SEC-MALS of 
low salt aCSF (—, mAU; , Mw or Rg) and Tris-HCl (---, mAU; , Mw or Rg) 
reactions.  Every fourth MALS data point shown, for clarity.  (E) TEM of low salt 

aCSF peak fraction at 35,000 (F) TEM of Tris-HCl peak fraction at 59,000. 
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4.2.2 Influence of temperature in low ionic strength aggregations. 

The low salt aCSF preparation described above was repeatable; I performed a 

second preparation which also generated protofilaments with characteristic long, slender 

morphologies and similar Mw and Rg. However, the rapid kinetics of formation 

obfuscated to some extent the ability to observe the smaller protofibrillar or oligomeric 

species which were the study target. 

Therefore, additional 40 µM reactions of purified Aβ42 monomer were performed 

in low salt aCSF, this time at temperatures of 4 ºC and 20 ºC, to compare with the 37 ºC 

reaction (Figure 4.2). These aggregation reactions both proceeded much more slowly 

than the higher temperature, with the 20 ºC falling in-between, as expected. The reactions 

were monitored by ThT fluorescence through the nucleation step and into elongation 

(Figure 4.2A). Then the samples were centrifuged for 10 min at 18,000 x g, a final ThT 

measurement was performed on the supernatants, and they were subjected to analysis by 

SEC-MALS (Figure 4.2B and 4.2C). At both 20 ºC and 4 ºC, the majority of the ThT-

positive material remained soluble (92% and 68%, respectively). The 20 ºC SEC void 

volume Mw and Rg profiles were 2478 to 2281 kDA (mean of 2357 kDa, estimated 522 

monomer subunits), and 59 to 58 nm (mean of 59 nm). The 4 ºC SEC void volume Mw 

profile was 6779 to 3140 kDA (mean of 4324 kDa, estimated 958 monomer subunits), 

and and the Rg profile was 59 to 58 nm (mean of 58 nm). ThT fluorescence of the peak 

fractions (fraction 16) from the three different temperatures were very similar, and the 

differences correlated with the different Aβ42 concentrations of 7 µM for 37 ºC, 6 µM 

for 20 ºC, and 5 µM for 4 ºC (Figure 4.2D). 
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I utilized CD spectrometry to probe secondary structure in the regular aCSF 

insoluble fibrils, compared to the soluble aggregates formed in the low salt aCSF at 

various temperatures (Figure 4.2E). The acquired CD spectra allowed estimations of 

secondary structure with the CONTINLL module of the well-known CDPro software 

package. As expected, the Fibrils formed in full aCSF were β-sheet enriched: 8% helix, 

63% sheet/turn, and 29% random coil. Interestingly, the estimated secondary structures of 

the low salt aCSF-formed protofilaments had significant increases in -helix content. The 

37 ºC preparation was 45% helix, 25% sheet/turn, and 30% random coil. The 20 ºC 

preparation was 34% helix, 34% sheet/turn, and 32% random coil. The slowest forming 4 

ºC preparation was 24% helix, 54% sheet/turn, and 22% random coil. The trend appears 

to be decreasing helical content with decreasing temperature. However, even formed at 4º 

C, the low salt aCSF protofilaments contained more helical content than the 37 ºC full 

aCSF fibrils. 
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Figure 4.2 Temperature-dependent kinetics, but similar secondary structures. 

 

(A) ThT measurements made over time on 40 µM low salt aCSF solutions of SEC-
purified Aβ42 monomers incubated at 37 ºC (), 20 ºC (), and 4 ºC ().  Closed 
symbols mark ThT measurement of supernatant at final time point, after 10 min 
centrifugation at 18,000 x g.  Remaining panels refer to void peak of the SEC elutions 
generated from these supernatants. (B) Mw and (C) Rg were determined from data 
collected in 0.167 mL slices from the full width at half-maximum void peak volumes 
of the 20 ºC (—, ) and 4 ºC (---, ) reactions.  (D) ThT measurements of void peaks 
at 7, 6, and 5 µM, for 37 ºC, 20 ºC, and 4 ºC conditions, respectively.  Since 
concentrations were low, 10 µM ThT was mixed 1:1 with sample to enhance 
fluorescence.  (E) CD spectra acquired from void peaks of 37 ºC (red), 20 ºC (blue), 
and 4 ºC (green) conditions; 7, 6, and 5 µM concentrations, respectively, were used for 
the mean residue ellipticity (MRE) calculations. The CD spectrum of the 37 ºC full 
aCSF preparation described in Figure 3.1 (black) was acquired prior to centrifugation, 
and 40 µM was used for MRE calculation.  
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4.2.3 The Aβ42/Aβ40 ratio influences rapid protofibril formation. 

The new methods described above provide means to generate defined soluble 

aggregates from strictly monomeric starting material. This is an important new method 

because it avoids any effects which preformed aggregates may have upon the aggregation 

reaction. I used these methods to advance an earlier project initiated by Shana Terrill-

Usery (Terrill-Usery et al. 2016) examining aggregation outcomes in mixed-isoform 

(Aβ42/Aβ40) solutions. As the Aβ42 content in the mixtures was replaced with an 

equimolar amount of Aβ40, the relative PF yield decreased and the monomer yield 

increased. An isoform-specific ELISA indicated that isoform content in the PF fractions 

tracked with isoform content in the starting mixtures. Equimolar (5 µM) dilutions of 

protofibrils formed at each Aβ42/Aβ40 ratio were tested for ability to bind ThT. The 

analysis revealed decreasing ThT binding fluorescence as the Aβ42/Aβ40 ratio 

decreased. This suggested a conformational change in the ThT binding site which either 

had reduced affinity for, or altered the interaction with, ThT. Below 100/100 Aβ42/Aβ40 

ratio, the extent of ThT fluorescence was essentially baseline. These results imply that 

isoform ratio influences the extent of aggregation, aggregate secondary structure, and 

isoform content. As interesting as this earlier work was, a serious weakness was the use 

of isoform mixtures generated in HFIP (see Methods 2.4.1 to 2.4.3). 

As part of this project, I performed several purifications where HFIP-treated Aβ 

peptide was reconstituted in 6 M GuHCl with 10 mM NH4OH, to enhance monomer 
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yields and suppress rapid PF formation. It is well known that this monomer purification 

protocol does not result in complete elution of the aliquot as monomer. It simply shifts 

the balance, compared to the protofibril preparation, which is useful when larger 

monomer pools are desired for various cellular or biophysical studies. Even in the case of 

pure Aβ40, a much less aggregative isoform than Aβ42, material is always recovered in 

the void volume- approximately 7% of the overall recovery. For Aβ42 the void volume 

recovery is more variable, and larger, though always less than about 50%. This 

phenomenon was suggested as a possible confounding element in the experimental 

design, because these aggregates could possibly be present in the peptide film, as 

opposed to rapidly formed upon resuspension. An objective of this project was to probe 

isoform content in formed protofibrils using an Aβ C-terminal specific ELISA assay I 

developed specifically for this purpose. In the context of the isoform mixtures, which 

were originally created by mixing HFIP solutions of pure Aβ42 and pure Aβ40, if more 

aggregates were already present in the Aβ42 HFIP solution, then the ELISA would over-

estimate the Aβ42 contribution to protofibrils formed in the mixture. 
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4.2.4 Aβ40 as a potential inhibitor of Aβ42 aggregation. 

To investigate the possibility that Aβ40 may modulate Aβ42 aggregation, I 

performed additional studies where the mixtures were generated from freshly SEC-

purified Aβ42 and Aβ40 monomer. HFIP-processed Aβ42 and Aβ40 dry peptide films 

were resuspended in 6 M GuHCl with 10 mM NH4OH, and purified on Superdex 75 SEC 

column as described in the methods. Collected fractions were immediately placed on ice. 

Calculated contributions of Aβ42 and Aβ40 were designed so that the total Aβ 

concentration was 40 µM. The Aβ42 and Aβ40 monomers were purified in and diluted 

with the same low salt aCSF buffer (pH 7.8) described previously (30 mM NaCl as 

opposed to 130 mM NaCl for the full aCSF). As shown above, this preparation inhibits 

fibril formation, and enhances formation of protofilaments. The low salt aCSF 

preparation was chosen, instead of the Tris-HCl preparation also described in previous 

work. While the Tris-HCl preparation resulted in a population of soluble aggregates with 

bona-fide protofibril morphology by TEM, that population was not large; 91% of the 

material was insoluble fibril. This made it impractical or impossible to generate high 

enough concentrations at large enough volumes to be of use for comparative aggregaton 

studies.  

The ThT binding fluorescence of these mixed SEC-monomer solutions was 

assessed after incubation for 24 h at 37 ºC (Figure 4.3A). Increased fluorescence 

correlated with increased Aβ42/Aβ40 ratio. The all Aβ42 solution exhibited the most 

fluorescence. The mixtures fell in line by Aβ42/Aβ40 ratio, and the all-Aβ40 solution 
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exhibited the least fluorescence. The relative reduction in ThT fluorescence was greatest 

between the all-Aβ42 solution and the 4:1 Aβ42/Aβ40 mixture. This suggested that it was 

the presence of the Aβ40, not the reduction in Aβ42 content, which limited the 

aggregation. 

To test this hypothesis, I prepared a second set of SEC-purified monomer, this 

time using only Aβ42, at the same concentrations of Aβ42 as in the 40 µM total Aβ 

mixtures, but omitted the Aβ40 portion. This all-Aβ42 set had Aβ42 concentrations of 40, 

32, 20, and 8 µM. The measured ThT fluorescence results from this set are shown in 

Figure 4.3B. The overall trend remained the same, with ThT fluorescence decreasing 

with decreasing Aβ42 concentrations. Importantly, however, there was a much smaller 

difference in the decrease between 40 and 32 µM Aβ42 preparations in the all-Aβ set the 

analogous preparations in the mixtures set (Figure 4.3A). 

After 24 h incubation at 37 ºC and measurement of ThT fluorescence, the 

Aβ42/Aβ40 set preparations and the all-Aβ42 set preparations were each centrifuged at 

17,000 x g for 10 min and the supernatants analyzed by SEC-MALS. Because amyloid 

aggregation is particularly susceptible to variability, special care was taken to create an 

experimental design with minimal temporal differences between the preparations. 

Incubations of the preparations in each set were begun on the same day, and they were 

analyzed the next day in the same staggered order at scheduled times to minimize the 

effects of instrumental and environmental changes within each set. The results of the 

post-incubation SEC analyses are displayed in figure 4.4.  

Protofibril formation decreases with decreasing Aβ42/Aβ40 ratio. The all-Aβ40 

preparation of the mixtures set was essentially monomeric; the void volume in-line 280 
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nm absorbance signal was at baseline, unless I squinted really-hard (Figure 4.4A). The 

remaining preparations show a clear trend in void volume peak size. When integrated 

peak recoveries are compared, this trend is amplified (Figure 4.4B). By contrast, the all-

Aβ42 set follows no such clear trend, with relative PF recoveries greater even in the low 

concentration 8 µM preparation (Figure 4.4C and 4.4D). 
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Figure 4.3 ThT fluorescence in Aβ monomer solutions is influenced by Aβ40 
content. 

 

Solutions of Aβ42 with (A) or without (B) Aβ40 were incubated for 24 h at 37 ºC.  
Aliquots taken from the samples were diluted 1:10 in 5 µM ThT, and fluorescence 
measurements were made. 
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Figure 4.4 Effect of Aβ42 concentration when Aβ40 is absent. 

 

(A) SEC-purified monomer solutions of Aβ42 and Aβ40 were combined to a total of 40 
µM Aβ.  Mixtures were incubated at 37 ºC for 24 h, then centrifuged for 10 min at 
18,000 x g and supernatants fractionated by SEC.  (B) Amount of recovered material in 
protofibril and monomer peaks from panel A, as a percentage of total recovery.  (C) 
SEC-purified monomer solutions of Aβ42 prepared at the same Aβ42 concentrations as 
in panel A, but without any Aβ40.  Incubation and analysis was the same as in panel A. 
(D) Analogous to panel B, for panel C. 
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4.2.5 Subtle inhibitory effect of Aβ40 on Aβ42 conversion to protofibril. 

Light scattering data from all preparations was recorded in-line with SEC 

fractionation. Detection of scatterers in the void volume was possible for  20 µM Aβ42 

preparations. For the remaining preparations, the signals were insufficient for reliable 

determination of molecular weight. Results from the  20 µM Aβ42 preparations are 

given in Figure 4.5A. The all-Aβ42 preparations demonstrated some degree of increased 

polydispersity across their void volume peaks, and the molecular weights were slightly 

increased, compared to the Aβ42/Aβ40 mixture set (Table 4.1). The differences may be 

evidence that the all-Aβ preparations experienced faster aggregation, since the process is 

inherently a stochastic one. However, the small number of samples in this case limits the 

usefulness of such interpretations. 

A small perturbative effect associated with the presence of Aβ40 was more clearly 

revealed when we probed ensemble secondary structural content in the preparations with 

 20µM Aβ42 preparations by CD spectrophotometry (Figure 4.5B). The mixtures (32/8 

and 20/20) have significant -helical characteristic compared to the 40/0 preparation, 

suggesting β-sheet formation is not as extensive. This effect is also present in the all-

Aβ42 32 and 20 µM preparations. Furthermore, the -helical contribution is not as large 

in the absence of Aβ40, which suggests that both reduction of Aβ42 content, and the 

presence of Aβ40 both reduce the extent of aggregation. 
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Figure 4.5 Subtle Aβ40 effects on protofibril polydispersity and conformation. 

 

MALS (panel A) and circular dichroism (B) analysis associated with mixture sets in 
Figure 4.4A (left panels) and 4.4C (right panels).  (A) MALS analysis of protofibril 
peaks performed in-line with SEC fractionation in Figure 4.4, performed as described 
in the methods.  MALS-determined weight-averaged molecular weights (full width 
half max) are summarized in table 5-1.  (B) Circular dichroism spectra acquired from 
the protofibril peak fractions collected in Figure 5-5.  Reported in units of mean 
residue ellipticity. 
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Table 4.1 Summary of molecular weight data from Figure 4.5. 

Results of the MALS determined molecular weight measurements in Figure 
4.5 are summarized below. 

Aβ42 (µM) Aβ42 (µM) Mw(Da) Aβ42 (µM) Aβ42 (µM) Mw(Da) 

40 0 2.95  106 40 -- 4.21  106 

32 8 3.13  106 32 -- 4.64  106 

20 20 2.92  106 20 -- 5.25  106 
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4.2.6 Protofibrils formed from Aβ42/Aβ40 solution mixtures are primarily Aβ42. 

A direct probe of Aβ40 content in protofibrils formed in Aβ42/Aβ40 mixtures 

would certainly be helpful in clarifying the interactions between the two isoforms in 

mixed solutions. Therefore, I developed a novel C-terminal selective ELISA assay for 

isoform content in protofibrils. The assay relies on capture with Ab13.1.1, which is 

selective for the C-terminal of Aβ40, or Ab2.1.3, which selects for Aβ42. Detection is 

made with HrP-conjugated Ab5, which recognizes the first 16 N-terminal amino acids on 

Aβ. In this experimental paradigm, a sample generated in a mixed isoform monomer 

solution was applied to an Ab2.1.3-coated well, and to an Ab13.1.1 coated well. The 

relative extent of binding was quantified via detection with Ab5; being N-terminal 

specific, Ab5 has equal affinity for both isoforms. The isoform-specific binding for the 

sample was compared to standard curves generated with single-isoform monomer 

solutions to regularize for differences between Ab13.1.1/Aβ40 and Ab2.1.3/Aβ42 

binding affinities. I used the ELISA to directly compare Aβ42/Aβ40 content of the initial 

aggregation solutions and resulting protofibril peaks of the Aβ42/Aβ40 mixture set in 

Figure 4.5A. The results are related in Table 4.2. 

 The ELISA data strongly suggests that Aβ42 was strongly favored for 

incorporation into protofibrils. This was especially evident in the 20/20 mixture, which 

ELISA confirmed was near 1:1 for the two isoforms. In that case, only trace amounts of 

Aβ40 were detected in the protofibril peak. 
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Table 4.2 ELISA-determined Aβ42/Aβ40 molar ratios. 

Results of the C-terminal selective ELISA determination of isoform incorporation into 
protofibrils formed in Aβ42/Aβ40 monomer mixtures, as described in the methods. 

Aβ42/Aβ40 mixture (µM) Aggregation solution Protofibril peak 

40/0 >10 >10 

32/8 3.0 ± 0.62 >10 

20/20 1.4 ± 0.19 >10 

8/32 0.8 ± 0.06 ND 

0/40 <0.01 ND 
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4.2.7 When Aβ42 concentration remains fixed, increasing Aβ40 does not strongly 

affect protofibril formation. 

That Aβ40 incorporation into protofibrils is minimal limits the mechanisms by 

which it can exert an influence on the rate of protofibril formation. To examine the Aβ40-

related effects while controlling for effects due to Aβ42 concentration, mixed solutions 

were prepared where Aβ42 was held at a constant 20 µM, and only Aβ40 was varied. The 

lowest Aβ42/Aβ40 ratio we could generate was 20/56. This was limited by the volume of 

monomeric material recoverable at a high enough concentration to make mixtures of 

sufficient volume for subsequent SEC-MALS analysis. Ratios of 20/40, 20/20, 20/10, and 

20/0 were also examined. The mixtures were prepared and analyzed under the same 

protocols and with the same care as described in Section 4.3.3. The results are shown in 

Figure 4.6. 

The monomer recovery increased with increasing Aβ40 as expected, as Aβ40 is 

less aggregation-prone than Aβ42 (Figure 4.6A), and this in turn affected the percent 

recovery ratio (Figure 4.6C). At the studied Aβ42 concentration, the effect of increasing 

Aβ40 concentration on the protofibril peak was minimal (Figure 4.6A and 4.6D).  

However, a noticeable decrease in ThT fluorescence occurred in the protofibril peak with 

addition of Aβ40, suggesting reduced β-sheet content (Figure 4.6E). This was 

corroborated with CD (Figure 4.6F), which also revealed the presence of -helical 

characteristics in the protofibril peaks generated in high-Aβ40 mixtures (20/56 shown). 
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Figure 4.6 Weak concentration dependence of Aβ40 effects at constant Aβ42. 

 

(A) and (B) Void and included peak 280 nm absorbance traces, respectively, from 
Aβ42/Aβ40 monomer mixtures prepared and handled in the same manner as 
described in Section 4.3.3, at fixed Aβ42 concentration with varying Aβ40 
concentration.  The legend identifies the preparations by µM Aβ42/Aβ40. (C) The 
relative recoveries from void and included peaks, on a molar basis. (D) Integrated 
peak areas from panel A. (E) ThT fluorescence of the protofibril peaks in panel A, 
measured as described in the methods.  (F) Circular dichroism spectra, in units mean 
residue ellipticity, generated from the protofibril peaks of the 20/0 and 20/56 
preparations. 



110 

 

 

4.3 Discussion. 

The tau project related in the previous chapter and both projects described in this 

one are similar in the eventual need to come to terms with the problem of imperfect 

starting material. In each case, concerns over preformed aggregates lead to additional 

experimental work. The results of that work may validate, or even improve upon or 

expand the prior analysis, but that does not mitigate the challenge posed to the researcher, 

and the questions they must ask even before beginning an experiment. That these issues 

arose so frequently in this dissertation (2 out of 3 projects) is not happenstance. It is a 

fundamental challenge pervasive within the field of study (Teplow 2006). Many workers 

side-step the issue, using aggregate preparations designed to be highly polydisperse. But 

that is not a choice when exploring the biophysics of specific aggregates, or the 

interactions of specific aggregates with living systems, which is crucial information for 

development of therapeutic strategies to combat AD. 

Precautions taken against the influence of preformed aggregates on experimental 

preparations commonly include HFIP pre-treatment, high-alkaline conditions, and 

denaturing conditions. Even so, resistant aggregates may remain even after the most 

strident treatments, and these aggregates can form at times when intervention is out of the 

researcher’s hands, such as during synthesis or lyophilization. Therefore, beginning with 

freshly purified monomer is the only way to demonstrably be certain to avoid the issue of 

preformed aggregates. 
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My studies of purified Aβ42 monomer aggregration reactions revealed that low 

concentration reactions proceeded through an extended lag phase before nucleation. After 

nucleation, elongation was rapid and the material quickly converted to fibril. However, 

the aggregation rate could be modulated by altering the buffer solution, the ionic strength, 

and temperature. At low ionic strengths, the same material which proceeded to fibril 

instead converted to protofilaments with molecular weights of around 3000 kDa, the 

equivalent of 665 monomers, and Rg values of 60 nm. These protofilaments had 

significantly different secondary structure compared to fibrils: enhanced -helix content, 

and reduced β-sheet. Changing the buffer system entirely led to a two-component system, 

which was primarily fibril, but had a significant population of classic curvilinear 

protofibrils, morphologically identical to the protofibrils which formed rapidly when 

HFIP-processed Aβ42 peptide film was reconstituted under alkaline conditions. 

Applying what this about protofibril and protofilament formation in purified 

monomer solutions, I explored the influence of isoform mixtures on protofibril formation. 

The study of amyloid aggregation in such mixed systems is an area where the literature is 

much lacking. This is especially pertinent as the in vivo environment in which these 

processes occur is certainly a heterogenous system. 

My primary results with mixed solutions of purified monomer correlated with 

studies using HFIP-processed peptide films. In both cases, when total Aβ concentration 

was held constant, decreasing the Aβ42/Aβ40 ratio lead to a lower protofibril yield. This 

is concomitant with a decreasing β-sheet structure in the aggregation mixtures just prior 

to SEC-purification, as determined by dye-binding. When the purified protofibrils were 

probed for secondary structure with CD, a reduced β-sheet characteristic was noted along 
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with an increasing -helical content. Interestingly, when Aβ42 was prepared at the same 

concentrations in the absence of Aβ40, only the secondary structural changes resulted, 

not the reduced protofibril yield. A closer comparison indicated that the presence of Aβ40 

accentuated the reduced β-sheet and increased -helical components. 

Based on C-terminal selective ELISA results, it appeared unlikely that Aβ40 

exerted its effects via high levels of direct incorporation, as only low amounts were 

detected in the purified protofibrils. One could posit a scenario where addition of Aβ40 or 

Aβ42 onto a growing nucleus occur at roughly the same rate, but then Aβ40 inhibits 

additional aggregation. However, that would likely require a high degree of incorporation 

of Aβ40 in the aggregates, which was shown not to be the case by the C-terminal-

selective ELISA results. That said, it is certainly possible that trace involvement is 

responsible via a “capping” mechanism of some sort.  

The presence of significant -helical content in protofibrils is odd, as they are 

considered to possess a secondary structure enriched for the cross-β-sheet inter-molecular 

hydrogen bonds characteristic of fibrils. It is not unheard of, however. Some important 

early work by Teplow and Selkoe (Walsh et al. 1999, Kirkitadze et al. 2001) on the 

nucleation step and rapid protofibril formation identified a transient -helical state before 

elongation. This state persisted longer in Aβ40 aggregation than Aβ42. Therefore, it is at 

least possible that the -helical content increase indicates stabilization of this transient 

state in mixtures of Aβ42/Aβ40.
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CHAPTER 5. A NOVEL ANTIBODY FOR Aβ42 PROTOFIBRIL. 

5.1 Introduction. 

5.1.1 The mammalian immune system  

For narrative purposes this introduction begins with a description of the 

mammalian immune system. Numerous thorough reviews (Chaplin 2010) and textbook 

treatments of this subject are available. The immune system is the well-known 

evolutionarily conserved system of cells which protect the host organism from diverse 

exogenous threats to homeostasis and normal function. Threats from toxic or allergenic 

substances, as well as constantly evolving pathogenic microbial assault are extremely 

diverse. To achieve protection against such a broad range of threats requires properly 

functioning systems for identification of pathogens and toxins as distinct from host cells 

in ways that provide for elimination of threats without excessive damage to the host’s 

tissue or its resident population of beneficial commensal microbes. However, some tissue 

damage is certainly involved in clearance of infected host cells. In mammals the immune 

system can be broadly divided into two functions: adaptive and innate immunity.  These 

functions are performed for the most part by different cell types, however there is 
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significant inter-play between the responses, with part of the adaptive response involved 

in ramping-up the innate response. 

5.1.2 Innate immunity. 

Innate immunity is encoded at the germline of the host. It includes hard-wired 

functions such as the mucociliary system which shields the epithelia of the respiratory, 

genitourinary and gastrointestinal tracts. It is also responsible for detection and rapid 

response to a broad number of exogenous threats. This is achieved by expression of 

conserved receptors which can detect structural features shared by many microbes and 

toxins, so called pathogen anger-associated molecular patterns (PAMPs). 

5.1.3 Adaptive immunity. 

If the innate immune system response is a front-line, broadly applied defense, the 

adaptive immune system is specific and secondary. After exposure for the first time to a 

new toxin or pathogenic microbial product – what are called antigens, the adaptive 

system expresses receptor molecules tailored for highly specific recognition of distinct 

pathogens. These receptors are termed antibodies, and are generated via somatic 

rearrangement of germ-line genetic code, potentially allowing specific recognition of an 

astonishing number of different antigens. This potential has been adopted as an essential 

research tool for the biochemist or molecular biologist. Antibodies can be generated with 

high specificity for, essentially, whatever the researcher’s molecule of interest may be. 

The full adaptive response to an antigen allows increased recruitment of innate and 

adaptive immune effectors to the site of the threat. It also Fires the Big Guns, so to speak, 

of the immune response, such as the colorfully named Natural Killer Cells, and the 
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colorlessly named Complement System, both of which exert powerful cytotoxic 

functions, including destruction of infected host cells. 

5.1.4 Macrophages. 

Macrophages are a component cell of the innate immune system. They are 

phagocytic cells which assist in removing pathogens and dead cells and debris (Franco et 

al. 2015). They also respond to PAMPs such as lipopolysaccharide (LPS), which are 

exogenous, as well as endogenous indicators of cell damage - danger associated 

molecular patterns (DAMPs) such as ATP and extracellular matrix proteins, and other 

immune cell signaling molecules. Dependent on the mixture of signals a resting 

macrophage receives, their activation will occur along different pathways, dubbed M1 

and M2, and have different phenotypes, which appear geared for different, contrary, 

functions (note: this is a greatly simplified view!). The M1 activation phenotype is pro-

inflammatory, while the M2 response is anti-inflammatory, and more active in 

phagocytosis and clearance (Franco et al. 2015). This is a simplified view, sufficient for 

framing the important aspects below. There are many detailed reviews of the subject 

available. 

5.1.5 The neuroinflammatory response. 

 In the brain, the resident immune cell type is the microglial cell, which are 

similar to macrophages, and the similarity carries even to their activation states; the M1 

and M2 states of microglia are pro-inflammatory and anti-inflammatory. Interestingly, 

Aβ can cause activation of microglial cells along the M1 pathway, as we, among others, 
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have shown (Terrill-Usery et al. 2014). A summary of microglial dysfunction in AD is 

provided in Figure 5.1A (Heneka et al. 2015). 

DAMPs, including Aβ PF are recognized by the TLR4/CD14 complex, which 

causes translocation of NF-B from the cytosol to the nucleus, initiating transcription of 

mRNA coding for pro-inflammatory signals, including TNF- and pro-IL-1β (Figure 

5.1B). Secretion of mature IL-1β requires a secondary signal to process the pro form. As 

we have shown previously, Aβ PF may initiate this signaling as well. A complete 

understanding of this second signal pathway is still elusive, and an area of active 

research. Indeed, the author devised a series of experiments on this subject in his 

dissertation proposal. It likely involves Aβ PF phagocytic uptake into the cell via a 

phagocytic process, followed by lysosomal damage and release of Cathepsin B from the 

lysosomal compartment (Halle et al. 2008). Result is assembly of the NLRP3 

inflammasome complex, a multimeric complex composed of multiple subunits each of 

NLRP3, ASC, and pro-caspase-1. The active NLRP3 inflammasome permits the auto-

catalytic cleavage of pro-caspase-1 into caspase-1. Caspase-1 in turn mediates cleavage 

of pro-IL-1β into the mature form for secretion. There is also evidence from in vivo 

studies of inflammation which highlights the importance of this pathway in AD 

pathology. APP/PS1 mice (a widely employed mouse model of AD), when crossed with 

knock-outs for either NLRP3 or Caspase-1 genes (Nlrp3-/- or Casp1-/-), generated progeny 

with reduced AD pathology and cognitive defects (Schroder et al. 2010). 

The presence of cytokines, particularly IL-1β, reduces phagocytosis of Aβ 

deposits (Koenigsknecht-Talboo et al. 2005). This may constitute a vicious cycle which 

maintains the neuroinflammatory response. Furthermore, increased IL-1β release may 
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play an active role in neurodegeneration. IL-1β appears to induce neuronal tau 

phosphorylation in a MAPK-p38 pathway-dependent manner. This also results in reduced 

synaptophysin production, which is a neuronal synaptic protein. It is interesting to note 

that this is one of multiple instances where tau has been implicated as a mediator of Aβ-

induced pathology in AD. This link may explain the observed deleterious effects at the 

synapse which occur prior to outright neuronal death (Li et al. 2003)  

The Aβ PF aggregate species is important for induction of AD neuroinflammatory 

pathology, and therefore a possible therapeutic target. The full pathway by which this 

occurs is not fully understood. Adding to these facts the deep experience the Nichols Lab 

has with generation and characterization of Aβ PFs, there was an excellent opportunity to 

explore the potential of an antibody generated against the PF aggregate, first as a research 

tool, but perhaps as the first step in a translational science project in the future. With 

funding received through a UM system grant, Pacific Immunology was contracted to 

generate a polyclonal mouse antibody against Aβ PF generated and purified by the 

Nichols Lab. The remainder of this chapter details a large amount of the work 

characterizing this antibody, named AbSL, in terms of specificity for PF over other Aβ 

species, and suitability for use in both immunoblot and ELISA formats. Additional work 

was performed to elucidate the nature of the AbSL epitope via competition assays with 

other Aβ-specific antibodies. The work was performed myself and two excellent 

undergraduate researchers, Elizabeth Ridgeway and Victoria Rogers, who’s work I 

directed, while providing guidance in experimental technique and data analysis. A 

manuscript for journal submission is also currently being assembled describing these 

results. 
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Figure 5.1 Aβ and microglial pathology in AD. 

 

(A) Overview of microglial role in AD pathology.  The early response to increased 
Aβ is phagocytosis and clearance.  As neuroinflammation becomes chronic, 
microglial phagocytosis is reduced.  IL-1β signaling results deleterious effects at the 
neuronal synapse and cytoskeletal levels, ultimately contributing to neuronal death.  
(B) Overview of induction of IL-1β signaling by Aβ protofibril (PF).  Aβ PF activates 

the TLR4 receptor complex signaling pathway, resulting in NF-B translocation into 
the nucleus and pro-IL-1β production.  Aβ PF is also internalized into microglia, 
where it induces the secondary signal necessary for NLRP3 inflammasome-mediated 
cleavage of pro-caspase 1 into caspase-1, which in-turn cleaves pro-IL-1β, resulting 
in mature IL-1β which is then secreted. Panel A is from Heneka et al. 2013, and panel 
B is based on Terrill-Usery et al. 2014. 
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5.2 Results. 

Aβ42 protofibrils were generated in the Nichols Lab from HFIP-processed dry 

peptide film (see methods), and then characterized and isolated via SEC. The purified 

protofibril was shipped overnight on ice to Pacific Immunology (CA) where generation 

of the antibody was performed. Two New Zealand White rabbits, designated PAC10079 

and PAC10080 (PAC79 and PAC80), were immunized with 0.2 mg each of Aβ42 

protofibrils in Freund’s complete adjuvant. Pre-immunization serum was also obtained, 

and there were three subsequent immunizations of 0.2 mg Aβ42 protofibrils. A total of 5 

immune bleeds (B1-B5) were received, along with one pre-immune bleed (PB), and a 

final exsanguination bleed (B6) from each rabbit. 

5.2.1 Titer determinations. 

My initial trials of the anti-sera in immunosorption and blotting formats were 

promising, so formal indirect ELISA anti-PF antibody titers were determined (Figure 

5.2). Aβ protofibril was added to the wells of a 96-well-plate and incubated overnight at 4 

ºC. The following day the adsorbed protofibril was probed with increasingly dilute anti-

serum. The pre-immune bleed was also employed as a control. Bleeds from rabbit PAC79 

remained constant after the first immunization bleed (Figure 5.2A), while bleeds from 

rabbit PAC80 demonstrated a continual increase in titer over the course of the 

immunizations (Figure 5.2B). Antibody titers for the antiserum ranged from 2,500 to 

>5,000. Figure 5.2C provides a schematic of the indirect ELISA configuration we 

utilized, which is further detailed in the methods. It was decided that the new antiserum 
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would be named AbSL, to honor the University of Missouri – Saint Louis campus, and, 

for the author, at least, because he was AbSoLutely thrilled about the project. 
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Figure 5.2 Indirect ELISA to determine antisera titers against Protofibril Aβ42. 

Representative titer ELISA results for bleeds from Pacific Immunology rabbits (A) 
PAC79 and (B) PAC80.  2 µM purified Aβ42 protofibril in aCSF buffer (pH 7.8) was 
diluted to 80 nM in 50 mM sodium bicarbonate (pH 9.6) coating solution.  50 µL (18 
ng Aβ42) was added to each well, and incubated overnight at 4 ºC.  Wells were 
washed once with 0.2% v/v Tween in 1X PBS (pH 7.4).  Then 150 µL blocking 
buffer (10% w/v dry milk in wash buffer) was added to each well, and incubated for 1 
h at 25 ºC followed by 3 washes.  The four antibody bleeds (B1-B4) as well as the 
pre-bleed (PB) were prepared across a dilution range from 1/50 to 1/20,000 in 
antibody diluent (0.2% v/v Tween, 5% w/v dry milk in 1X PBS). Dilutions were 
added to triplicate wells, along with triplicate controls of antibody diluent alone, and 
incubated for 1 h at 25 ºC.  Wells were washed four times with wash buffer, and 100 
µL 1:1000 dilution of anti-rabbit IgG-HRP conjugate secondary antibody in antibody 
diluent was applied to each well, and incubated for 2 h at 25 ºC.  Wells were washed 
four times with wash buffer, followed by quantification of detection with TMB 
substrate.  Each data point in panels A and B is the mean absorbance of two sets of 
triplicate determinations each set generated by a different worker. (C) Cartoon 
describing the indirect ELISA format used in panels A and B. 
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5.2.2 Selective affinity of AbSL for Aβ42 protofibril conformation. 

 Aβ42 protofibril affinity of the anti-serum in an indirect ELISA was next 

compared with the its affinity towards Aβ42 monomer and fibril in the same format 

(Figure 5.3). A great degree of selectivity over a sizeable Aβ42 concentration range was 

seen for Aβ42 protofibrils over Aβ42 monomer (Figure 5.3A and 5.3B). A slightly 

reduced, though still highly significant, selectivity over Aβ42 fibrils was also revealed 

(Figure 5.3B). For comparison, a second set of experiments was performed in parallel, 

but in place of AbSL, Ab9 was used (Figure 5.3C). Ab9 is a general antibody for Aβ, 

which recognizes the N-terminal region of the peptide, without conformational specificity 

beyond accessibility. In this case, Ab9 showed no preference for any of the Aβ42 species, 

beyond slightly reduced binding to fibril, which is likely due to inaccessibility of the 

epitope sequence due to the denser packing found in fibrils.   

Selectivity was also explored in a dot-blot format (Figure 5.4). Again, in this case 

AbSL demonstrated excellent specificity for Aβ42 protofibril over monomer (5.4A and 

5.4B), and reduced though still obvious selectivity for Aβ42 protofibril over fibril (5.4B). 

Ab9 was again used as a control to ensure proper loading of Aβ42 species onto the blot 

membrane. 
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Figure 5.3 Indirect AbSL ELISA selects strongly for Aβ42 PF. 

 

2 µM purified Aβ42 protofibril was diluted in carbonate buffer across a range of 
concentrations.  Indirect ELISA was carried out as described in Figure 5-2 and 
Methods. (A) shows detection with 1:2000 dilution of AbSL at a lower Aβ42 
concentration range, while (B) shows detection with 1:10000 dilution of AbSL at a 
higher overall range of Aβ42.  (C) shows detection with 1:2000 dilution of Ab9, a non-
aggregate specific anti-Aβ antibody, across the same range as panel A, for comparison.  
Where error bars are present (panels B and C), data points represent avg +- SEM for n 
= 3 ELISA determinations.                              
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Figure 5.4 AbSL is selective for protofibril in a dot blot format. 

 

 (A) Aβ42 monomer (Mon) or protofibril (PF) (SEC-purified) diluted into aCSF (pH 
7.8), then 2 µL of each dilution was applied to nitrocellulose membrane (total mass 
Aβ42 in ng as indicated below each column), and incubated for 20 min at 25 ºC to 
allow adsorption into membrane matrix.  Membranes were blocked with 5 mL 1X 
PBS (pH 7.4) with 0.01% v/v Tween 20 and 10% w/v dry milk (blocking buffer) for 1 
h at 25 ºC with gentle shaking. Blocking buffer was then decanted and replaced with 5 
mL 1:1000 dilution of AbSL in 1X PBS with 0.2% v/v Tween 20 and 5% w/v dry 
milk (antibody diluent), and the membrane was again shaken gently for 1 h at 25 ºC.  
Primary antibody solution was decanted, and membrane was washed with 1X PBS 
with 0.2% w/v Tween 20 (wash buffer) X3 for 5 min gentle shaking cycles at 25 ºC.  
5 mL of 1:1000 antirabbit IgG-HrP conjugate in antibody diluent was added and the 
membrane was gently shaken for 1 h at 25 ºC.  After another 3-wash sequence, ECL 
substrate (Pierce) was applied and incubated for 1 min with vigorous shaking at 25 ºC.  
Chemiluminescence was visualized with X-Ray film.  (B) Prepared and annotated as 
described in panel A, with addition of fibril (Fib) (generated from SEC-purified 
monomer) spots.  In this case 1:1000 dilution of AbSL was compared with 1:1000 
dilution of Ab9, both prepared as described in panel A. 
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5.2.3 Selective affinity of AbSL for Aβ42 over Aβ40 protofibril. 

Both Aβ42 and Aβ40 may form protofibril structures in solution, though Aβ40 

requires much longer incubation times. In the past, many workers have taken advantage 

of the slow Aβ40 kinetics to investigate subtle events during aggregation which were 

difficult or impossible to probe using the more fibrillogenic Aβ42. Therefore, I asked if 

AbSL displayed any selectivity for protofibrils generated from Aβ42 over Aβ40 

protofibrils. Using the same indirect ELISA paradigm as described above, the AbSL 

binding affinity for Aβ42 protofibril was compared to that for Aβ40 protofibril (Figure 5-

5). Assuming a one-site saturation model, regression fitting was used to estimate 

equilibrium dissociation (Kd) and maximum binding sites (Bmax). The Kd for Aβ40 was 

approximately four-fold greater (16 ng/well vs 4 ng/well) suggesting a significant degree 

of selectivity for Aβ42 protofibrils. 
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Figure 5.5 AbSL has less affinity for Aβ40 protofibrils than Aβ42 protofibrils. 

 

2 µM purified Aβ40 and Aβ42 protofibrils in aCSF buffer (pH 7.8) were diluted in 50 
mM sodium bicarbonate (pH 9.6) coating solution, so that 50 µL would deliver 18, 
13.5, 10.8, 9, 6.75, 4.5, 1.8, or 0.9 ng load per well.  Wells were loaded in triplicate 
for each concentration for both Aβ40 and Aβ42, then incubated over night at 4 ºC.  
Wells were washed once with 0.2% v/v Tween in 1X PBS (pH 7.4).  Then 150 µL 
blocking buffer (10% w/v dry milk in wash buffer) was added to each well, and 
incubated for 1 h at 25 ºC followed by 3 washes.  The four antibody bleeds (B1-B4) 
as well as the pre-bleed (PB) were prepared across a dilution range from 1/50 to 
1/20,000 in antibody diluent (0.2% v/v Tween, 5% w/v dry milk in 1X PBS). 
Dilutions were added to triplicate wells, along with triplicate controls of antibody 
diluent alone, and incubated for 1 h at 25 ºC.  Wells were washed four times with 
wash buffer, and 100 µL 1:1000 dilution of anti-rabbit IgG-HRP conjugate secondary 
antibody in antibody diluent was applied to each well, and incubated for 2 h at 25 ºC.  
Wells were washed four times with wash buffer, followed by quantification of 
detection with TMB substrate.  Data points and error bars represent avg +- SEM for n 
= 3 ELISA determinations.                              
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5.2.4 Probing the AbSL epitope. 

To gain information about the AbSL conformational epitope, a series of capture 

ELISA experiments were developed, using AbSL in conjunction with other Aβ 

antibodies. Figure 5.6A provides an overview of the ELISA experiments in cartoon form. 

The antibodies employed, their host animals, and specificities are summarized in Table 

5.1, based on information from their developer, the Mayo Clinic. 

The Aβ antibodies used, in addition to AbSL, were Ab2.1.3, Ab9, and HrP-

conjugated Ab5 (Ab5-HrP). When AbSL was used as the primary detection antibody, 

antirabbit IgG-HrP (IgG-HrP) was used for secondary detection. The antibodies Ab2.1.3 

and Ab5-HrP were used previously, along with Ab13.1.1 (Aβ40-selective, not used here), 

to quantify Aβ42/Aβ40 isoform contribution to protofibrils generated in mixed monomer 

solutions. To generate monoclonal Ab2.1.3, immunization was performed in mouse 

against a peptide consisting of the C-terminal 12 amino acid sequence of Aβ42: Aβ(35-

42). After hybridoma fusion and colony amplification, the monoclonal antibody was then 

selected with full length Aβ42. Ab5 and Ab9 antibodies were generated in a similar 

fashion. The Ab5 immunogen was Aβ42 fibril with monoclonal selection with Aβ(1-16). 

For Ab9, Aβ(1-16) was both the immunogen and monoclonal selection screen. 

In addition to the AbSL indirect ELISA, 280 nm absorbance signals were seen 

well above baseline for three of the configurations tested. Those were Ab2.1.3 capture 

with Ab5 detection (Ab2.1.3-Ab5), Ab2.1.3 capture with AbSL detection (Ab2.1.3-

AbSL), and Ab9 capture with AbSL detection (Ab9-AbSL). Ab9 capture with Ab5 

detection was not significantly above baseline, as expected, as both were raised against 

Aβ(1-16). The Ab2.1.3-Ab5 positive result was also as expected, based on their epitopes, 
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one being C-terminal and the other N-terminal. Ab2.1.3-AbSL and Ab9-AbSL were both 

positive results, however the Ab9-AbSL absorbance was attenuated, which may indicate 

some sequence overlap between the AbSL conformational epitope, and the Ab9 N-

terminal sequence epitope.  

This possible AbSL-Ab9 epitope overlap was explored further using indirect 

ELISA competition assays (Figure 5.7). As controls, Aβ42 was detected with Ab9, then 

secondary detection was performed with anti-mouse IgG-HrP, the positive control, or 

anti-rabbit IgG-HrP, the negative control. When Aβ42 was detected with a mixture of 

AbSL and Ab9, and then anti-rabbit secondary detection was performed for AbSL, the 

absorbance signal decreased with increasing Ab9 concentration, until a minimum plateau 

was reached. This indicated partial competition for epitope binding. If the entire Ab9 

sequence epitope was involved in the conformational epitope of AbSL, one would expect 

a continued decrease in AbSL binding with increasing Ab9 concentration, until AbSL 

was entirely competed off the binding site. 

For a final probe of the suspected AbSL-Ab9 epitope overlap, the Ab2.1.3-AbSL 

and Ab9-AbSL capture antibody ELISAs were repeated across a range of Aβ42 

protofibril concentrations (Figure 5.8). The binding curve was reduced when Ab9 was 

used as capture, but superposition of the curves revealed similar shapes. This 

corroborated the evidence for partial overlap between AbSL and Ab9 epitopes. 
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Figure 5.6 ELISA-style probe of AbSL epitope sequence involvement. 

 

A) Immunosorbance systems examined in (B) are depicted in the cartoon.  SEC-
purified Aβ42 protofibril (Aβ42 PF, curving black arrays) concentration was 0.08 µM 
in sodium bicarbonate coating solution (pH 9.6) 50 µL was added into sample wells 
(18 ng Aβ42 per well).  Antibodies were diluted into 1X PBS (pH 7.4).  AbSL (red) 
dilution was 1:1000, Ab 2.1.3 (blue) was 1.7:1000, Ab9 (green)was 1:5000, Ab5-HrP 
(orange) was 1:2000 and antirabbit IgG-HrP (IgG-HrP, gray) was 1:1000.  The 
antibody loading volumes were all 100 µL per well. (B) First, Aβ42 PF samples were 
added to [AbSL] wells and incubated overnight at 25 ºC.  The next day, all remaining 
assay steps were performed in the same 96-well-plate, as described in the methods. 
Quantification was colourimetric via HrP-catalyzed oxidation of TMB substrate.  100 
µL 1 M H2SO4 was added to quench reaction.  Absorbance was measured at 450 nm 
on the platereader along with 630 nm absorbance, which was subtracted to adjust for 
optical differences between the wells themselves.  Background controls (Black bars) 
were wells where the Aβ42 PF sample was replaced with coating solution alone.  
Each control data point is the mean of n = 2 replicates ± SEM.  Sample data is mean 
of n = 4 replicates ± SEM. 
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Table 5.1 Summary of antibodies used in Figure 5.6. 

Antibody Host Immunization Monoclonal screen 

AbSL Rabbit Aβ42 protofibril n/a; anti-serum 

Ab9 Mouse Aβ(1-16) Aβ(1-16) 

Ab5-HrP Mouse Fibrillar Aβ42 Aβ(1-16) 

Ab2.1.3 Mouse Aβ(35-42) Aβ42 

IgG-HrP Goat Rabbit IgG n/a; polyclonal 
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Figure 5.7 AbSL vs. Ab9 cis-competition ELISA. 

 

Aβ42 protofibrils were adsorbed overnight into wells of a 96-well immunoplate.  
Indirect ELISA was performed as described in the methods.  Primary detection was 
performed with either Ab9 alone (1:2,500-1:50,000 dilutions) or Ab9 (same dilutions) 
mixed with AbSL, as indicated.  AbSL was fixed at 1:1000 dilution.  Secondary 
detection was performed with anti-rabbit IgG-HrP or anti-mouse IgG-HrP as 
indicated.  Ab9 with anti-rabbit IgG-HrP secondary detection was performed as a 
negative control, as Ab9 was raised in mouse.  The axes are both measures of 
absorbance, so that all conditions are visible. 
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Figure 5.8 AbSL vs. Ab2.1.3 trans-competition capture ELISA.

Capture antibodies of Ab2.1.3 or Ab9 were plated overnight in 96-well 
immunoplate wells, followed by addition of the indicated amounts of Aβ42 
protofibril.  Then detection was performed on both conditions with AbSL primary 
detection and anti-rabbit IgG-HrP secondary detection.  The right panel shows the 
same data as the left panel, plotted on different y-axis scales to overlay the 
absorbances measured under each condition, and highlight the similarity of the 
curves. 
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5.3 Discussion. 

I prepared Aβ42 protofibrils which were used to inoculate a pair of rabbits for 

generation of anti-serum. I characterized the anti-serum, which contained a high titer of 

antibody which recognized Aβ42 protofibrils. 

I further evaluated the anti-serum for specific binding to the Aβ42 protofibril 

conformational epitope. I found it to be highly selective compared to both either 

monomer or fibril Aβ42 in both indirect ELISA and dot-blot formats. I also revealed a 

high degree of selectivity for Aβ42 protofibrils, over protofibrils formed from the other 

common Aβ isoform, Aβ40. 

Finally, I probed the Aβ42 protofibril epitope itself in a series of ELISA formats, 

both capture and indirect. I found solid evidence which pointed to no involvement of the 

C-terminal region comprised of amino acids 25-42. On the other hand, the competition 

experiments using N-terminal sequence specific antibody Ab9 suggested a partial overlap 

between the conformational epitope of AbSL and the N-terminal 1-16 amino acid 

sequence of Aβ. 

Additional work will include affinity purification of the anti-serum into a 

polyclonal antibody with improved affinity for Aβ42 protofibril, as well as 

characterization. This could be followed by generation of a monoclonal version using the 

same Aβ42 protofibril immunogen, if results are promising. Beyond that, the sky is the 

limit. A recent paper (Wang et al. 2016) showed administration of novel anti-Aβ 

oligomer 11A5 mixed with N-terminal Aβ antibody 6E10 improved cognitive deficits in 
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a mouse model of AD. Furthermore, a different antibody treatment for AD, aducanumab, 

is currently showing great promise in human clinical trials. The success of aducanumab 

especially demonstrates the potential of antibody-based therapies for amyloid diseases. 

The monoclonal antibody mAb158, raised in mouse, is selective for Aβ protofibril 

(Englund et al. 2007). A humanized version of mAb158, BAN2401, is another new 

example of an antibody-based potential therapy for AD (Logovinsky et al. 2016).  

While this is certainly beneficial as a research tool, given the apparent importance 

of the chronic neuroinflammatory pathology to the overall progression of AD, I believe 

that AbSL may hold promise as a potential therapeutic, as demonstrated by the current 

interest in BAN2401. The neuroinflammatory axis of AD pathology appears to involve 

not only Aβ induced effects, but also the tau protein as well (Li et al. 2003). Likely there 

are other pathways by which AD neurodegeneration proceeds, but neuroinflammation is 

certainly a major component, making my work here a significant step in the right 

direction in the fight against AD. 
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