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Abstract 

Prior to instruction, students often possess a common-sense view of motion, which is 

inconsistent with Newtonian physics.  Effective physics lessons therefore involve 

conceptual change.  To provide a theoretical explanation for concepts and how they 

change, the triangulation model brings together key attributes of prototypes, exemplars, 

theories, Bayesian learning, ontological categories, and the causal model theory.  The 

triangulation model provides a theoretical rationale for why coding is a viable method for 

physics instruction.  As an experiment, thirty-two adolescent students participated in 

summer coding academies to learn how to design Newtonian simulations.  Conceptual 

and attitudinal data was collected using the Force Concept Inventory and the Colorado 

Learning Attitudes about Science Survey.  Results suggest that coding is an effective 

means for teaching Newtonian physics.  
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Chapter 1: Introduction & Theory 

 Much progress has been made towards understanding how concepts function in 

particular contexts.  The Processing Motion project applies concepts research to a new 

methodology for physics education.  I will not describe every theory here, since this is 

not a big book of concepts, but such a book does exist (Murphy, 2002).  Although the 

empirical research on concepts tends to be fairly technical, an underlying theme of the 

current study is to synthesize the results into a format that can be readily utilized by 

classroom educators.  After all, classroom teachers do not necessarily need to worry 

about how to evaluate the Minkowski r-metric for the ith and jth stimuli within the kth 

category dimension.  But see Nosofsky (1986) if you are one of the teachers who does 

worry about such things; he provides a great explanation.  The primary goal of my project 

is to provide a strong theoretical approach to learning and to contribute data to the 

existing body of evidence pertaining to physics education. 

Significance of Study 

In 1980, Seymour Papert proposed giving students in the class of 2000, who 

would be in kindergarten in 1987, their own personal home computer (Papert, 1980). 

These students would be taught to code and their programs would provide a new medium 

for representing what they learned in the content areas. To paraphrase Papert, we want 

the students to program the computer, rather than the computer to program the students. 

As a member of the class of 2000, I can confirm that Papert’s proposal was not broadly 

implemented. Today, computers are in schools and computer applications are used 

frequently by students and teachers. However, Papert’s educational coding dream has 
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generally not come true. As we look for ways to improve physics instruction, it might be 

fruitful to revisit Papert’s ideas.  

Problem Statement 

 Despite considerable effort from educators and researchers, conceptual change 

continues to be a major obstacle, both in classrooms and experimental settings.  Various 

phenomena have been identified pertaining to conceptual change.  Various theories have 

been developed to posit causes and predict effects.  This study aims to consolidate a 

subset of the empirically successful theories related to concepts and conceptual change.  

The resulting approach, which I call the triangulation model, helps explain the effects 

emphasized by various concept theories and served as a framework to guide my 

educational methodology.  Broadly speaking, conceptual change is initiated by the 

triangulation of prior knowledge, hypothesis, and observation as described by Bayesian 

learning.  This is mostly unrelated to the counterfactual snake “triangulation method” 

found in Fodor (2008, p. 214).  As for how to design and implement this teaching 

methodology, I used the triangulation model to constrain the options.   

The resulting lessons emphasize teaching students how to develop their own physics 

simulations using the Processing coding language.  

Theoretical Framework 

 What follows looks like a literature review, and it is, but the present review is 

meant specifically to justify my theoretical framework.  A traditional lit review in its 

customary location can be found in Chapter 2. 

This study will engage with several theories related to conceptual change.  

Influenced by Piaget and Kuhn, Posner and his colleagues sought to describe the 
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conditions needed for people to accept a new concept.  They suggested that people must 

be dissatisfied with their current concept and the new concept must be intelligible, 

plausible, and useful (Posner, Strike, Hewson & Gertzog, 1982).  According to Posner et 

al. (1982), education should focus on experiences that challenge student concepts and 

then provide or facilitate the discovery of new concepts that make sense and demonstrate 

utility.  

Often citing Posner et al. (1982), a vast literature has developed on the nature of 

concepts.  If we are to understand conceptual change, it would be helpful to have a 

plausible account of concepts themselves.  The next section will look at the pieces vs. 

coherence debate, which concerns the psychological structure of concepts. 

 Pieces vs. coherence.  On one side of the debate, diSessa has focused on breaking 

down concepts into smaller constituents.  He suggests that concepts are built up from 

phenomenological primitives, or p-prims, which are gleaned directly from experience 

(diSessa, 1993).  When combined, p-prims allow us to make mechanistic inferences 

regarding our observations.  This “sense of mechanism” includes the ability to assess 

likelihoods, make predictions, and provide causal descriptions (diSessa, 1993, p. 106).  

However, p-prims do not naturally form a coherent system (diSessa, 2013).  In other 

words, we might conceptually organize p-prims in ways that are inconsistent or logically 

incompatible.  Overall, diSessa’s view is that concepts tend to be independent and 

fragmented.  But there are alternative models with bigger pieces. 

Chi and Slotta (1993) propose that concepts are organized into ontological 

categories.  These ontological categories are considered more coherent than diSessa’s p-

prims.  Slotta, Chi, and Joram (1995) suggest conceptual change involves learning a new 
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ontological category or updating the categorization of a concept.  And prior ontological 

commitments could interfere with new conceptual learning.  For example, naive 

physicists are known to place nonmaterial concepts such as force, heat, light, and voltage 

into substance-based categories (Reiner, Slotta, Chi, & Resnick, 2000).  If a student 

believes heat has the same properties as a liquid, this can result in confusion inside the 

physics classroom.  From this view, teachers should design lessons to prevent and repair 

categorical mistakes (Chi, 2013).    

 Vasniadou, Skopeliti, and Ikospentaki (2004) have methodological concerns 

about how conceptual theories are tested.  In a study on astronomical knowledge 

involving 72 early elementary students, they found the method of questioning 

significantly impacts the results.  In particular, when students are given options to choose, 

they are relatively good at choosing the scientific answer but their answers are less 

coherent overall.  When the choices are open-ended, student answers are less scientific, 

but are more consistent.  With this in mind, Framework Theory asserts a larger 

conceptual structure and seeks to explain the cases where incoherence is observed 

(Vosniadou & Skopeliti, 2013).  The central claim is that concepts are organized into a 

Framework Theory which contains ontological categories plus causal relationships 

(Vosniadou, 2013).  By emphasizing causality in the Framework Theory, Vosniadou has 

provided a mechanism for how concepts are used to make predictions and explanations.  

With p-prims, these abilities, including causality, emerge from pieces of concepts.  But in 

framework theory, causation is part of the concept.  Causal reasoning therefore plays a 

more fundamental role in Framework Theory.  Framework Theory explains observed 

incoherence with synthetic concepts (Vosniadou & Skopeliti, 2013).  Synthetic concepts 
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occur when logically incompatible concepts, like those from a valid scientific theory, are 

blended with a naive framework theory.  Synthetic conceptions represent a transitional 

phase between non-scientific and scientific theories.  In summary, people develop a 

framework theory which is internally consistent.  When exposed to formal scientific 

concepts, an incoherent synthetic model is produced, resulting in further misconceptions.  

If this cognitive dissonance is addressed, by instruction or otherwise, the framework 

theory can be discarded and replaced by a scientific theory.   

Theory theory takes it a step further by claiming that concepts essentially are 

scientific theories to begin with (Gopnik & Meltzoff, 1997).  Before discussing theory 

theory in detail, I will take a detour regarding another conceptual debate.  But first, a 

nuanced preview. 

 It is not always clear whether the amount of psychological coherence is a result 

of personal subjectivity or more objective fuzziness.  In a study with 64 undergraduate 

students, McCloskey and Glucksberg (1978) found that people are less consistent in their 

usage of a term when the item was less typical of its category.  For example, people are 

consistent with football as a member of the sports category, but are less consistent with 

chess.  I think when researchers focus on smaller pieces of knowledge, typicality effects 

could be driving the amount of coherence.  Less typical items are used more 

inconsistently, which makes concepts appear less coherent.  When viewed from a wider 

angle, inconsistent treatment of chess might look more coherent, because in some 

contexts it is sports-like and in other contexts, it is more typical of board games or other 

non-sport activities.  A related issue is the intransitivity of natural categories.  

Participants in the Hampton (1982) study agreed that car seats are chairs and that chairs 
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are furniture, but did not agree that car seats are furniture.  Thus, people were willing to 

categorize items based on typicality, even when it resulted in counterexamples to their 

category judgements.  These results suggest that many instances of incoherence are not 

random, but are influenced by the inclination to choose different categorization 

techniques based on the circumstances. 

 Likeness vs. likelihood.  After reading many literature reviews on concepts, I 

have identified the common pattern which is to cite Rosch (1975) as the beginning, then 

gloss over the middle, and conclude with a new theory that is better than the old ones.  

Since anything before 1975 is rarely mentioned and part of my target audience is 

classroom teachers who may be unfamiliar with this literature, I am going to go back a bit 

further.  

During the 1950’s at Lackland Air Force Base in Texas, Fred Attneave was 

conducting foundational research on concepts.  He was trying to discover if prior 

“prototype” learning would be transferred to categorization tasks involving new prompts 

(Attneave, 1957).  Attneave conducted two experiments, one with categories of letter 

pattern variations and one with categories of nonstandard shapes.  The results identified 

familiarity as a key factor in categorization and participants were better at categorizing 

new variations when the prototype was varied along the same dimensions as their 

training. 

Posner and Keele (1968) expanded Attneave’s findings on variation by 

discovering evidence that prototype concepts are abstracted from learned patterns.  Even 

when participants were not directly shown the prototype used to generate the variations, 

they still demonstrated categorical reasoning based on the central tendency of the set.  
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Participants could categorize new patterns just as quickly as patterns they had learned 

during training, suggesting that familiarity with the abstracted prototype is more 

important than familiarity with directly learned instances. 

 The theory that concepts are abstracted prototypes became prominent in 

psychological literature.  Using categories of schematic faces, Reed (1972) tested various 

quantitative models including Cue Validity, Proximity Algorithm, Average Distance, 

Prototype, and Weighted Features.  See Reed’s (1972) appendix for the equations.  I have 

provided a verbal description of each model’s categorization rule in Table 1.1.  Reed 

confirmed that abstracted prototypes are used for categorization tasks.  Specifically, the 

weighted prototype model correlated the best with experimental results.  However, the 

weighted average distance method also performed well.  In subsequent studies, this 

model inspired a leading contender, known as Exemplar Theory.  Overall, these results 

provide evidence that people perform categorization tasks by comparing the similarity of 

an object to category prototypes, but with emphasis on the features that readily 

distinguish the categories.  In other words, category features have unequal influence on 

determining category membership. 

Table 1.1.  Models from Reed (1972) Experiment 
 
Model Category Comparison Rule 
Cue Validity Frequency of category cues 
Proximity Algorithm Distance to nearest category member 
Average Distance Average distance to category members 
Weighted Average Distance 
 

Average distance to exemplars with weighted features 
 

Prototype Distance to average category member 

Weighted Features Prototype Distance to prototype with weighted features 
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 In every model tested by Reed (1972), the category features are quantitatively 

independent.  The equations multiply the weighting factors, but not the variables.  Each 

of these equations are fundamentally based on summation and sums cannot equal zero, 

unless all the variables are independently equal to zero.  The weighting factors help 

account for typicality effects, where some features are perceived as more typical of 

category members.  However, the weighting factors do not allow for interactions between 

the feature variables.  Medin and Schaffer (1978) contend that independent features pose 

a serious qualitative risk to the prototype theory.  Because in some categorization tasks, 

no matter how similar the other features, we want a single feature to be able to disconfirm 

a match.  With an additive model, high degrees of similarity in other features can 

override low similarity relative to a critical feature.  To solve this problem, they 

introduced the “context theory,” which is based on exemplars (Medin & Schaffer, 1978).  

Context theory assumes that people store specific examples, or exemplars, of category 

members.  New items are categorized based on their similarity to stored exemplars within 

a category.  Medin and Schaffer (1978) used a multiplicative rule to mathematically 

combine features.  As the similarity to an important feature approaches zero, the 

multiplied term also goes to zero, regardless of similarity within other dimensions.  In 

four experiments involving geometric forms and schematic faces, they found significant, 

but small quantitative improvements over the prototype theory’s additive model (Medin 

& Schaffer, 1978).  Although the original context model used binary values, it was later 

generalized by Nosofsky (1986) to allow for continuous variables. 

  To test models based on similarity, Smith and Minda (1998) performed 

experiments which asked participants to categorize pronounceable nonsense words and 
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bug drawings.  In trials with less category variation, the exemplar models were 

consistently better.  However, in trials with more category variation, the prototype model 

was favored in early learning and then switched to exemplar model as participants 

became more familiar with the stimuli.  Therefore, people might choose between 

prototypes and exemplars, depending on the context and their level of familiarity.  

However, the same researchers conducted a meta-analysis of 30 exemplar studies and 

found the evidence to be lacking in support of exemplar theory (Smith & Minda, 2000).  

In response, Nosofsky (2000) discovered irregularities with their meta-analysis, which 

raised further questions about the empirical state of exemplar theory.  Then, using a dot-

pattern categorization experiment, Smith (2002) found clear evidence in favor of 

prototype typicality gradients over exemplar theory.  Overall, the exemplar vs. prototype 

debate has not been decisively settled.  There is good evidence for and against both 

theories. 

After gaining some traction with exemplar theory, Douglas Medin partnered with 

Gregory Murphy in 1985 to produce a revolutionary alternative to similarity based 

concepts.  They suggest that concepts are substantially more coherent than similarity 

models can accommodate (Murphy & Medin 1985).  While similarity theories have 

accounted for important effects (e.g. typicality), they cannot explain how people choose 

which features to engage when making category judgments.  Also, attribute matching 

cannot explain the full organizational structure of concepts.  Murphy and Medin (1985) 

assert while similarity fails to explain conceptual coherence, theoretical knowledge is up 

to the task.  By using theories, people can organize concepts based on abstract 

relationships such as causality.  These relationships provide the ability to produce greater 
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coherence within conceptual structures.  While Murphy and Medin (1985) specifically 

distinguish conceptual theories from scientific theories, others suggest that conceptual 

coherence can rival that of science.  

 Gopnik and Meltzoff published Words, Thoughts, and Theories in 1997.  It 

explained the nature of theories; they are based on abstract notions of coherence, 

causality, and counterfactuals.  Also, theories can be used to predict, interpret, and 

explain.  The central claim is that conceptual development in children is substantially 

similar to the development of scientific theories.  Specifically, concepts and scientific 

theories share the same structure and function.  Theory theory therefore posits an 

equivalence between conceptual theories and scientific theories. 

 Initially, theory theory did not have a formal quantitative model, but this changed 

with the assertion that theoretical learning could be described with a Bayes nets causal 

model.   Theory theory advocates have proposed causal maps, which are mental 

representations of the causal relationships between objects in the world (Gopnik, 

Glymour, Sobel, Schulz, & Kushnir, 2004).  However, Bayes nets were not powerful 

enough to account for the ability to rapidly identify causal information from a limited 

number of observations.  Bayesian probabilistic inference, which is formulated from 

Bayes’ Theorem, does appear to capture this ability (Gopnik & Tenenbaum, 2007).  The 

Bayesian form of theory theory also allows for a unification with constructivism (Gopnik 

& Wellman, 2012).  In the past, theory theory had trouble explaining how learning builds 

on prior knowledge.  With Bayesian learning, prior knowledge is built directly into the 

model.   
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 Bayes’ Theorem can be written as P(H|E) = P(H|K) P(E|H) / P(E|K), where H = 

Hypothesis, K = Prior Knowledge, and E = Observed Evidence.  It computes the 

likelihood that a hypothesis is true, given some evidence.  Since this learning model 

typically assumes the probability of the evidence is constant, the denominator is often 

omitted, as it is simply a normalizing factor.  Symbolically, it is P(H|E) α P(H|K) P(E|H).  

Thus, [the probability of the hypothesis given some evidence] is proportional to [the 

probability of the hypothesis given your prior knowledge] times [the probability of 

observing the evidence given the hypothesis].  For a better explanation of causal learning, 

see Pearl (1988) and Pearl (2000).   

 Theory theory sounds promising, but what is the evidence that concepts include 

more than simple associations?  To start, Waldmann and Holyoak (1992) demonstrated 

that associative learning is not equivalent to causal learning in a study of university 

students in Germany.  Correlational evidence suggests pre-school children use 

counterfactual reasoning during pretend play (Buchsbaum, Bridgers, Skolnick, Weisberg, 

& Gopnik, 2012).  And in a study with 64 participants, Schultz and Bonawitz (2007) 

found that preschool children notice when evidence is confounded and are more likely to 

explore causally confounded toys than unconfounded toys.  Causation appears to play a 

significant role in adult reasoning too.  Rehder and Hastie (2001) found that causal 

knowledge affects how people perform categorization tasks.  Then, Rehder (2003a) 

performed three experiments to test the way people use causal knowledge with novel 

categories.  The results show support for causal model theory, which claims “people view 

causal relationships as being constituted by probabilistic causal mechanisms, rather than 

by relationships of necessity and sufficiency” (Rehder, 2003a, p. 1149).  In a related 
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experiment involving 108 university students, Rehder (2003b) compared the configural 

features prototype and exemplar fragments models with the causal model theory.  These 

models were designed to explain if and if so, how people use causal information to make 

category judgments in cases where there is a common-cause or common-effect.  Causal 

model theory claims that people judge the category membership of an item based on the 

likelihood that its features match the pertinent causal mechanism.  The Rehder (2003b) 

results show that causal-model theory correctly predicted there would be no higher-order 

interactions in the case of common causes and correctly predicted a discounting effect in 

cases involving common-effects.  Thus, when the first cause is paired with an effect, this 

changes the likelihood equation more than when a second cause is identified for the same 

effect.  In five additional experiments, Rehder (2006) found strong evidence for a causal 

preference over similarity during categorization tasks.  In other words, when people 

possess causal and similarity based information, they use the causal knowledge to a 

significantly greater extent.  In human reasoning, causation takes precedence over 

similarity.    

The significant accumulation of evidence on all sides of this debate has inspired 

Machery (2009) to suggest we might want to give up hope for discovering a single 

psychological mechanism to explain the phenomenon of concepts and that prototypes, 

exemplars, and theories represent fundamentally different kinds of concepts.  In my view, 

if similarity is part of the mechanism for determining likelihood, a single theory of 

concepts might still be tenable.  Piccinini and Scott (2006) have argued that while it is not 

wise to assume concepts are a single natural kind, the previous attempts to split concepts 

have not been fully justified.  In a follow up paper, Piccinini (2011) provides an 
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alternative distinction, namely between implicit and explicit concepts.  While both kinds 

can contain statistical and causal information, explicit concepts are unique in their ability 

to represent syntactic information.  

Words.  How do explicit concepts fit into this puzzle?  According to Fodor and 

Pylyshyn (2015), “that thoughts and sentences match up so nicely is part of why you can 

sometimes say what you think and vice versa” (p. 9).  If Piccinini (2011) is right about 

the connection between explicit concepts and language, we might have a solution to 

apparent shortcomings within the existing models.  Fodor and Pylyshyn (2015) have 

argued that concepts must compose to be able to form propositions.  In response to the 

need for a mechanism of composition, Fodor and Pylyshyn have rejected the models that 

posit concepts with intensions or meaning, because they do not include a mechanism for 

how concepts can be combined.  I agree that concepts need a mechanism of composition, 

but I do not believe the same mechanism needs to be responsible for storing and 

combining concepts.  Furthermore, I think explicit concepts can connect the dots between 

the statistical/causal models and Fodor’s linguistic solution to the problem of 

compositionality.  Although concepts are not words, words can serve as the mechanism 

by which concepts are mentally composed.  Thus, the linguistic mechanism, which is 

typically associated with tasks such as speaking, is also responsible for composing 

associative and causal information.  Items are represented as concepts in the mind and 

language gives us the ability to mentally combine these concepts.  In this formulation, 

explicit concepts can compose while implicit concepts cannot.  More precisely, the words 

that represent concepts explicitly in thought provide the means to combine concepts via 

syntactic rules. 
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 Syntactic rules are great because they have the ability to represent an infinite 

number of thoughts.  However, this strength is also a liability.  How does a finite brain 

find useful things to say amongst the infinite number of options?  Keil (1981) identified 

cognitive constraints as a method for discovering how people make sense of the world.  

He studied patterns in the way people in various age groups use predicates to span terms.  

For example, it makes sense to say a person can dream, but not that a rock can dream.  So 

the predicate dream spans people, but not rocks.  And it is not merely false to say that 

rocks dream, it seems impossible on a deeper level of reality.  After a series of impressive 

experiments, Keil (1989) realized predicate-term relationships could be used to infer the 

ontological categories people are committed to.  While syntactic rules give us a limitless 

mechanism to generate conceptual combinations, ontological constraints restrict the 

generative nature of syntax to help us identify meaningful combinations of words.  

Syntax need ontology like the fusion core of the sun needs gravity.  

Developmental Readiness.  What about how children go through developmental 

stages?  How can we tell if students are developmentally ready for the abstract 

knowledge described in this study?  Vygotsky and Piaget, both born in 1896, are perhaps 

the best known psychologists to propose developmental stages of the mind.  I do not use 

the word obvious lightly, but it is obvious that children become more mentally 

sophisticated as they grow older.  It is also obvious that children tend to develop 

physiologically as well.  And it is a quite reasonable hypothesis to suggest that 

psychological development is causally related to physiological development, or at least 

follows a similar pattern.  However, the correlation between the two may be spurious. 
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Fodor (1972) raised some important philosophical and methodological doubts 

about the underpinnings of Vygotskyan psychology.  Vygotsky’s developmental 

psychology is motivated by the Vygotsky blocks experiment where subjects are asked to 

classify blocks based on their attributes and the codes written on the blocks.  Since the 

effectiveness of classifying blocks improves throughout childhood and peaks in 

adulthood, Vygotsky claimed that children pass through various stages of development as 

they grow older.  The idea is that children struggle with simple block tests because they 

are not capable of forming the needed concepts.  But as Fodor (1972) points out, children 

can classify faces and words, which are far more abstract and complicated than blocks.  If 

children can perform sophisticated linguistic and facial recognition tasks, perhaps there is 

another variable involved which inhibits their block classification abilities.  

Susan Carey’s (1985) Conceptual Change in Childhood is an extensive rebuttal to 

Piaget’s theory of development.  After conducting multiple studies involving multiple age 

groups to find out how abstractions, biological concepts, and ontological categories 

develop in children, Carey rejects the existence of preoperational and concrete 

operational thinking.  Rather than positing “changes in the types of reasoning” Carey 

suggests mental development is produced by “changes in the nature and organization” of 

knowledge (Carey, 1985, p. 135).  Therefore, it is conceptual differences, not abstract 

reasoning abilities, that distinguish the judgements of children from adults.  As for how to 

discover these conceptual differences, Carey recommends “that our deepest ontological 

commitments are to be analyzed in terms of our theories of the world” (Carey, 1985, p. 

171).  According to this view, conceptual change is the reorganization of ontological 
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categories through differentiation, the splitting of categories, or coalescence, the merging 

of categories.   

In a series of experiments, each involving dozens of preschool children from ages 

3-5, Bullock, Gelman, and Baillargeon (1982) found that earlier studies relying on the 

verbal responses of children underestimated their cognitive abilities.  The preschooler’s 

explanations of events were often less advanced than their ability to make judgements or 

predictions.  And as they got older and their explanations improved, there was not a 

corresponding improvement in judgements or predictions, except in cases where they 

knew more about the scenario.  Although 3 year olds generally appeared to be less 

sophisticated than 4 and 5 year olds regarding causal mechanisms, there was evidence 

this resulted from a lack of knowledge and/or verbal abilities rather than a difference in 

reasoning style or the ability to evaluate causality.  In a later study, Gelman and 

Markman (1987) demonstrated that preschool children, given perceptual information and 

knowledge about category membership, favor category membership when making 

inferences.  Keil (1989) came to a related conclusion while studying predicate usage in 

children.  He started by reviewing and contributing to evidence that young children tend 

to describe items using a variety of characteristic features, but as children get older, they 

shift towards using a more concise list of defining features.  Keil (1989) discovered the 

characteristic to defining shift is more nuanced than previously thought.  He found no 

evidence that it was caused by a sudden change in cognitive strategy as the child entered 

a new stage of development.  Also, the data did not support the hypothesis that children 

are taught to focus on characteristic features rather than defining ones.  In fact, adults 

themselves display the same tendency to focus on superficial characteristics when they 
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lack theoretical knowledge about an item, especially without knowledge of an 

explanatory mechanism.  Chi, Feltovich, and Glaser (1981) also demonstrated that 

novices tend to focus on surface features while experts tend focus on abstractions.   

The point here is not to say there are no differences between experts and novices 

or adults and children, but rather to uncover less obvious ontological effects.  As 

evidenced by patterns in predicate usage and development, children sometimes as young 

as preschool and often in kindergarten demonstrate ontological commitments in their 

claims about which predicates span a given term (Keil 1989).  These ontological 

commitments imply that children are not solely focused on characteristic or surface 

features.  Once again, in cases where child reasoning is different than adults, it is not their 

cognitive structure or strategies that are different; it is primarily their theoretical 

knowledge or lack thereof which drives these effects.  

The Triangulation Model.  What are concepts?  We are now prepared to answer 

this question.  A concept is a theory of a category.  Categories are a set of items and  

concepts store the constraints used to delineate category membership.  Specifically, 

concepts are theoretical categories based on exemplars, abstractions (e.g. prototypes), and 

causal relationships.  Insofar as our prior knowledge is theoretical, it is also malleable.  

Theoretical knowledge can change when triangulated with observed evidence and 

hypothetical knowledge.  A hypothesis can be proffered without any evidence.  

Observations can be checked for similarity without a hypothesis.  But neither alone can 

change our mind.  As for the mind itself, I am not precisely sure what it is.  At the very 

least, it contains a likelihood calculator which requires three input parameters: theoretical 

knowledge, hypothetical knowledge, and observational evidence. 
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To unify the theories presented in this dissertation, I put forward the triangulation 

model, which is visualized in Figure 1.1 by connecting the three Bayesian inputs.  At the 

base of the triangle, categorization by similarity occurs when prior knowledge is 

compared to observational evidence.  Adding a hypothesis opens two additional 

interactions, giving us the ability to evaluate the probability of a hypothesis and the 

likelihood of the evidence given the hypothesis.  When combined, these abilities provide 

a mechanism for conceptual change.  Moreover, I believe overestimations of prior 

probability can explain synthetic conceptions (Vosniadou & Skopeliti, 2013) and 

ontological miscategorization (Reiner, Slotta, Chi, & Resnick, 2000).  If the prior 

probability is overestimated and we are shown evidence that follows from the hypothesis, 

this provokes the acceptance of incoherence into our prior knowledge.  From an 

educational standpoint, we often provide evidence to support a hypothesis.  If the 

evidence is good, we assume the students will accept the hypothesis.  However, from a 

cognitive standpoint, this might be backwards.  Students could take the hypothesis as 

given and agree the evidence follows, without properly evaluating whether the hypothesis 

is consistent with their prior knowledge.  This opens the door for mixing up categories 

that do not belong together.  

This model also predicts that similarity does not produce conceptual change.  In 

the absence of a hypothesis, new observations are judged based on similarity to prior 

knowledge.  New evidence that is sufficiently similar is accepted.  New evidence that is 

not similar is rejected.  I suggest this is the mechanism for confirmation bias.  When we 

include or exclude something from a category based on similarity, this does not change 

our underlying concept.  Asking whether an item belongs to a category based on 
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similarity is not a true test of the category.  To falsify a concept, we need to use 

likelihood instead of likeness.  Likelihood is a two-way street where confirmation and 

falsification are both possible outcomes.   

Figure 1.1. The Triangulation Model 

 

What exactly changes during conceptual change?  Conceptual change occurs by 

splitting or merging an ontological category, changing the ontological category of a term, 

updating the predicates that span a category, or revising the causal relationships between 

or within categories (Carey, 1985; Keil, 1989; Rehder, 2003b).  And new ontological 

hypotheses are evaluated in light of evidence and prior knowledge.  As a possible 

mechanism, Griffiths & Tenenbaum (2009) have proposed that prior knowledge 

influences causal induction by “identifying which relationships are plausible and 

characterizing the functional form of those relationships” (p. 707). 

The triangulation Model has compelling explanatory power.  For example, 

consider the categorization task prompted by “Is this piece of fruit an apple?”  Although 

Concepts	as	Theoretical	Categories
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Evidence

Prior	Knowledge

P(H|K) P(E|H)
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this is logically a yes/no question, from a mental standpoint, it might prompt us to 

evaluate the likelihood that it is an apple.  Because similarity often correlates with higher 

degrees of likelihood, it represents a reasoning shortcut.  Our mind can speed up the 

reasoning process by leaving out the hypothesis apex of the triangulation model.  In 

science, sometimes correlation meets our purpose and sometimes we need to work harder 

to find causation.  In our mind, we are faced with an analogous choice between likeness 

and likelihood, where likeness is a shortcut for assuming likelihood.  Scientists know 

causation takes precedence over correlation.  Rehder (2006) has shown the mind knows 

this too.  

Research Questions and Hypotheses 

Purpose: To determine the effects of using Processing sketches to help students think 
Newtonian.  
 

1. Will Force Concept Inventory results be the same for students who learn from 

coding physics simulations as compared to students from a traditional physics 

course?   

2. How will student attitudes about learning physics change during a coding 

academy?  Specifically, how will the simulations affect student recognition of real 

world connections and how will personal interest in physics be affected by the 

coding academy? 

Hypothesis 1: Coding students will perform equally well on the FCI as compared to 

students from a traditional learning environment. 

Hypothesis 2: Collectively, student personal interest in physics and ability to recognize 

real world connections will increase significantly during a coding academy. 
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Chapter 2: Literature Review 

 In this chapter, I will summarize evidence which supports the view that traditional 

physics instruction is ineffective at facilitating conceptual change.  Because of this 

literature, we now know a great deal about the knowledge people obtain by observing 

motion in daily life and how this knowledge develops in childhood.  Perhaps due to the 

predictability of physical interactions and the similarity in cognitive architecture between 

people, most of us end up knowing the same kinds of things about the way objects move.  

Fortunately for the job stability of physics teachers, the kinds of things people believe 

about motion are often in disagreement with Newton’s laws.  

 One way to address the gap between common sense and Newtonian physics is 

through interactive simulations.  In a two-year study involving 184 high school chemistry 

students, Pyatt and Sims (2011) found that students slightly prefer virtual to physical 

labs, but have a positive view of both, especially when the activity is inquiry-based.  

Zarcharia (2003) showed that teachers also have a favorable view of simulations, with or 

without being paired with laboratory experiments.  Favorability is a good start, but I will 

also review literature regarding the effectiveness of simulations and I will provide 

suggestions for how physics teachers can improve upon existing methods. 

Prior Novice Knowledge 

 With some areas of study, e.g. molecular orbital theory, our general experiences 

do not provide us with much relevant background knowledge.  But our everyday lives are 

immersed in experiences with motion.  This means novice physics students do not show 

up to class as blank slates; they arrive with knowledge about motion gained from 

personal experiences.   
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While analyzing results from the Demonstration, Observation and Explanation of 

Motion Test, Champagne, Klopfer, and Anderson (1980) found that “each student usually 

has a rich accumulation of interrelated ideas that constitute a personal system of 

common-sense beliefs about motion” (p. 1077).  The same year, McCloskey, Caramazza, 

and Green (1980) discovered that university students often believe objects can move in 

curved paths in the absence of an external force.  McCloskey and Kohl (1983) expanded 

the initial study with three additional experiments.  They found the same curvilinear 

misconception in paper/pencil tasks, while viewing computer simulations, and while 

working directly with a moving physical object.  Across a variety of contexts, in cases 

where Newton’s first law predicts straight line motion, students believed the object would 

follow a curved path.  McCloskey, Washburn, and Felch (1983) performed four more 

experiments to show the reverse could also be true, when students predict linear motion 

as Newton predicts curved motion.  Their experiments looked at beliefs about the path of 

an object dropped from a moving reference frame.  Newtonian physics has demonstrated 

how dropped objects with horizontal motion will follow a parabolic trajectory.  But 

across a variety of contexts, up to 60% of students believed the dropped object would fall 

straight to the ground (McCloskey, Washburn, & Felch, 1983). 

Halloun and Hestenes (1985a) developed and validated the Mechanics Diagnostic 

Test to study the common sense beliefs about motion among first time physics students at 

Arizona State University and a nearby high school.  Pre-test results were generally low, 

especially among high school students.  Test gains after taking a conventional physics 

course were generally small and not dependent on the instructor.  These results 

demonstrate how difficult it can be “to facilitate a transformation in the student’s mode of 
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thinking from his initial common sense knowledge state to the final Newtonian 

knowledge state of a physicist” (Halloun & Hestenes, 1985b, p. 1048).  In a related study, 

Halloun and Hestenes (1985b) interviewed 22 students one month after they took the 

Mechanics Diagnostic Test.  These interviews were used to develop a taxonomy of 

common sense beliefs about motion, organized into two categories, “principles of 

motion” and “influences on motion” (Halloun & Hestenes, 1985b, p. 1063).  For 

example, students often believe motion always has a cause and many further contend this 

cause is some kind of internal force.  Overall, Halloun and Hestenes (1985b, p. 1056) 

recommend looking beyond the term “misconception” by viewing student prior 

knowledge as a set of “alternative hypotheses to be evaluated by scientific procedures.”  

Tao and Gunstone (1999) developed the Force and Motion Microworld, a set of 

four computer simulations designed to address the alternative conceptions of 10th grade 

students in Australia.  Despite a relatively small sample size of 12 students, they 

identified some important ramifications for conceptual change.  First, regardless of 

engagement with conflicting evidence, students did not always experience conceptual 

change, especially without reflecting on the discrepancy.  Second, despite the eventual 

acceptance and usage of scientific conceptions among most participants, students 

continued to selectively apply their alternative conceptions in a context dependent way. 

Virtual Expert Knowledge 

 In a study of 250 non-biology major college students, Windschitl and Andre 

(1998) used two different cardiovascular simulations to show the difference between 

constructivist and objectivist learning.  The constructivist simulation emphasized 

exploration while the objectivist version emphasized confirmation.  Epistemological 
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survey results were compared to posttest results and while the constructivist group overall 

performed slightly better than the objectivist group, students with more advanced 

epistemological beliefs learned particularly well from the exploratory simulation 

(Windschitl & Andre, 1998).  Students who reported being motivated by factors unrelated 

to understanding the content tended to become frustrated with the constructivist 

simulation and performed better with confirmation learning.  Steinberg (2000) found 

similar mixed results while comparing an interactive simulation of air resistance with a 

traditional paper and pencil tutorial.  On the exam, he found no significant difference 

between the two groups.  However, a greater range of engagement was observed within 

the interactive group.  Steinberg (2000) reported that some students simply wrote down 

the answers provided by the computer without much investigation while other students 

delved deeper into the simulation and tried more complex experiments.  The behaviors 

identified by Steinberg (2000) seem to correspond well to the objectivist and 

constructivist attitudes identified by Windschitl and Andre (1998).   

 The Physics Education Technology project was created by Carl Wieman at the 

University of Colorado Boulder (PhET, 2017).  The PhET website has well over 100 

simulations spanning physics, chemistry, biology, earth science, and math.  In a 15-week 

study involving 231 students, Finkelstein, Adams, Keller, Kohl, Perkins, Podolefsky, 

Reid, and LeMaster (2005) showed PhET circuit simulations to be more effective than 

physical circuit labs at promoting conceptual understanding.  Moreover, in a follow up 

task, the simulation students outperformed the physical circuit students at actually 

constructing real circuits.  Zacharia (2007) had similar findings with 88 undergraduate 

students using electric circuit simulations.  In his study, students who learned from virtual 
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and real circuits demonstrated better conceptual understanding than students who studied 

real circuits alone.  When virtual circuits and real circuits were tested separately, students 

using the simulations outperformed the physical circuits group.  In a subsequent study 

with 62 undergraduate students, Zacharia, Olympiou, and Papaevripidou (2008) showed 

virtual and physical manipulatives to be equally effective during inquiry labs involving 

heat and temperature.  They also found evidence of virtual experiences enhancing 

physical labs based on a comparison of pre- and post-test results. 

Wieman, Adams, and Perkins (2008) suggest the following design strategies for 

simulations: an environment that is interactive, challenging, and dynamic without being 

overwhelming.  In terms of teaching strategies, Wieman, Adams, Loeblein, and Perkins 

(2010) recommend addressing prior knowledge, making connections to real-world 

experiences, and to encourage exploration.  After reviewing 79 studies, Scalise, Timms, 

Moorjani, Clark, Holtermann, and Irvin (2011) identified best practices for educational 

simulations.  In the inquiry cluster, they emphasize scientific questions, evidence, 

investigation, explanations, and justification.   

From here on, try to keep Wieman’s PhET project in mind.  We do not have to 

start from scratch when good ideas are already on the table. 
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Processing Motion 

 To Turtle.  In 1964, after spending five years working with Piaget in Geneva, 

Papert went to MIT and became the lead developer for the LOGO computer language 

(Papert, 1980).  LOGO was invented to program artificial turtles.  Papert described the 

turtle as “a computer-controlled cybernetic animal” (Papert, 1980, p. 11).  Some of these 

turtles were physical robots, but most were displayed virtually on computer screens.  

LOGO is primarily used as an educational tool for teaching students how to represent 

their ideas with code.  By typing the PD command, which stands for PENDOWN, and a 

motion command like FD x100, which commands the turtle to walk FORWARD 100 

pixels, users can draw geometric shapes on the screen.  With the right procedure, you can 

draw virtually any shape or pattern.  After LOGO’s inception, computers became faster, 

the syntax became richer, and people got better at coding.  By 1980, there was a textbook 

describing turtle vector graphics, 3D shapes, and even how to represent the curved space 

of general relativity (Abelson & diSessa, 1980).  

 Turtles are not restricted to geometry; they can also do dynamics.  Kolodiy (1988) 

showed how to teach projectile motion with LOGO turtles.  Then, with Papert as his 

doctoral advisor, Resnick (1994) produced StarLogo, a simulation language that can draw 

thousands of turtles on the same screen to represent massively parallel and highly 

decentralized systems of behavior.  He called StarLogo projects “microworlds” which are 

“specially designed to highlight (and make accessible) particular concepts and particular 

ways of thinking” (Resnick, 1994, p. 50).  Resnick has produced microworlds to help 

understand systems like ant colonies, traffic jams, and forest fires.  In these situations, 

large collections of simple localized interactions can give rise to complex patterns.  These 
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microworlds demonstrate how large-scale emergent phenomena can occur in the absence 

of a centralized cause. 

 Processing.  Processing was developed at MIT by Casey Reas and Ben Fry.  The 

first version was released in 2001.  As a language designed to generate and modify 

images, Processing gave new media artists greater control over their work (Reas & Fry, 

2006).  With an emphasis on imagery and a straightforward syntax, beginners can see 

quick results while using Processing.  Reas & Fry (2014) view software as a unique 

method of artistic expression because it can “produce dynamic forms, process gestures, 

define behavior, simulate natural systems, and integrate other media including sound, 

image, and text” (p. 1).  The present study needed a programming language that is simple 

enough to learn quickly and powerful enough to simulate Newtonian mechanics.  

Processing was up to the task. 

 Dan Shiffman is an associative arts professor at NYU, an author, a Director of the 

Processing Foundation, and the star of Coding Train on YouTube.  His book The Nature 

of Code is the definitive text on using Processing for simulations (Shiffman, 2012).  In 

the preface, Shiffman considers whether it is a science book or an art book.  He claims it 

is neither.  I believe it is both.  Many of the programs Shiffman writes are microworlds in 

the Resnick (1994) sense of the word.  Although these simulations are not representative 

of full blown reality, they visually depict natural behaviors with clarity and precision.  

Shiffman uses these exercises primarily to teach coding.  By emphasizing Newtonian 

thought, this approach can also be used to teach physics.   

Consider projectile motion and imagine tossing a ball from a roof.  Traditional 

instruction involves drawing diagrams and demonstrating how trigonometry can be used 
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to solve the problem.  Students might very well agree the diagrams and trigonometry are 

useful, but this does not address underlying misconceptions.  If students are asked to 

implement a projectile motion model using code, it offers a new view of the problem.  

Coding for a computer screen is inherently 2-dimensional.  If we draw a circle to 

represent the ball, we must use a line of code like this: 

ellipse(x, y, size, size); 

where size represents the pixel width and height of the ball.  The x variable represents the 

horizontal position and y represents the vertical position.  The code requires us to think 

about the horizontal and vertical motions independently.  If students believe the 

horizontal and vertical motions are both accelerated by a force, they could test this model 

with the following code: 

x += ax*t*t; 

y += ay*t*t; 

where a represents acceleration and t represents time.  Surprisingly, this will result in a 

straight diagonal path, which does not match experimental evidence.   

Figure 2.1. Diagonal Path 
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On the other hand, if students believe the horizontal motion is constant and vertical 

motion is accelerated by a downward force, they could test the model with: 

x += vx*t; 

y += 0.5*a*t*t; 

where vx represents horizontal velocity.  With this model, we get the expected parabola.   

Figure 2.2. Parabolic Path 

 

Computer simulations can therefore provide students with a way to test their ideas by 

visualizing mathematical models. 

 Before moving on, I would like to explain a full Processing sketch, to offer a 

better sense of the syntax.  The code is on the left and my comments follow // on the 

right. 

Figure 2.3. Example of Processing Sketch 

float d = 1;  //the first four lines all declare variables 
float a = 0;  //float variables can store decimals 
float j = 1;  //each variable is set to its initial value 
float k = PI/1000; 
 
void setup() {  //the setup function runs once 
  size(800, 800);  //sets the pixel size of the sketch window 
  background(0);  //sets the background color, 0 is black 
} 
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void draw() {    //draw function runs repeatedly 
  translate(width/2, height/2);  //moves origin to center 
  noStroke();     //turns off outline of shapes 
  d += j;      //addition equation 
  if(d > width/2 || d < 0){   //if statement, || means OR 
    j *= -1;     //multiply equation 
  } 
  a += k; 
  fill(255, 0, 255);    //sets shape color to pink 
  ellipse(d*cos(a), d*sin(a), 3, 3);   //ellipses with 3-pixel diameter 
  ellipse(d*sin(a), d*cos(a), 3, 3);   //trig controls emergent shape 
} 
 The preceding sketch will draw something that looks like an abstract flower 

pattern.  If you want to run the code, visit www.processing.org to download the freeware.  

I used Processing 3 for this study, but a newer version of Processing called P5.js is also 

available free of charge.  

 Teaching Physics with VPython.  Before summarizing this chapter, I will review 

two studies which used the VPython computer language.  These VPython studies were 

both in different contexts and had different designs, but they share an important similarity 

with the present study.  They involve using code to teach physics. 

 At a university in South Africa, Buffler, Pillay, Lubben, and Fearick (2008) 

conducted a study with 51 students.  Thirty-three of the students reported no previous 

experience with coding.  Students were taught how to control a simulated spaceship with 

VPython commands.  The students with no coding experience, sometimes with peer help, 

were able to complete the task after one afternoon of practice.  The results showed that 

students can quickly learn coding skills in the context of a physics lesson. 

 Also working with university students and VPython, researchers at Georgia Tech 

studied the results of 1357 students using code to complete homework problems during a 

one-semester physics course (Caballero, Kohlmyer, & Schatz, 2012).  One of the 14 
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Georgia Tech assignments was similar to the Buffler et al. (2008) spacecraft task.  They 

found no statistical difference between traditional homework question scores and coding 

scores, so students were able to express their physics knowledge with and without the 

coding environment.  They also confirmed that students with little or no prior coding 

experience could quickly learn how to work with VPython to solve physics problems. 

 The present study took place over two weeks, representing an intermediate 

between the two VPython studies which lasted one afternoon and one semester.  My 

students were younger and we used Processing instead of VPython, but these two 

VPython studies showed that inexperienced students can learn to code quickly in the 

context of a physics class.  Given the evidence I have reviewed regarding young 

children’s ability to think abstractly, it is reasonable to suggest teenagers would be able to 

complete abstract coding tasks like their university counterparts.       

Summary of Literature Review 

 As a physics teacher, I want to be able to teach my students Newtonian 

mechanics.  But mechanics is about everyday phenomena and students show up with 

theories about how motion works.  If this prior knowledge was generally consistent with 

Newton’s view, it would make my job easier, but it is not, so things are not so simple.  

Simulations have shown promise as a means to promote conceptual change.  Supported 

by the theoretical framework from Chapter 1, I aim to improve the educational benefits of 

simulations by asking students to write their own simulation code.  Coding represents a 

technique for bringing together hypothetical knowledge, prior knowledge, and 

observational evidence.  Shiffman has shown that physics helps when you are learning to 

code.  Papert and Resnick have shown it also works the other way around; code can help 
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you learn physics.  In Chapter 3, I will take the Papert-Resnick LOGO method, move it to 

the more powerful Fry-Reas-Shiffman Processing environment, and produce an 

educational sequence that is guided by PhET design principles and the triangulation 

model. 
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Chapter 3: Methodology 

 In his 1984 book Vehicles, Braitenberg imagines a variety of machines that are 

programmed to move and respond to their environment.  In successive chapters, the 

vehicles acquire more sophisticated sensors and more complex behaviors.  To the reader 

who follows along with Braitenberg’s recipe for inventing these machines, they are easy 

to understand.  But Braitenberg imagines trying to discern the inner workings of such 

machines by analyzing their behavior.  He claims this would be very difficult since 

different designs can produce the same effects.  Along these lines, Braitenberg (1984) 

states “when we analyze a mechanism, we tend to overestimate its complexity.  In the 

uphill process of analysis, a given degree of complexity offers more resistance to the 

workings of our mind than it would if we encountered it downhill, in the process of 

invention” (p. 20).  I believe coding can help students learn about motion by transferring 

analytical tasks to an inventive space.  Pre-made simulations give students a way to 

analyze laws of motion.  Coding provides a way to invent laws of motion. 

Educational Methodology 

 The triangulation model is a representation of Bayesian learning and similarity-

based reasoning.  It predicts conceptual change occurs primarily by evaluating 

hypothetical knowledge in light of evidence and prior knowledge.  This evaluation has 

two steps: determining the likelihood of the hypothesis given prior knowledge, P(H|K), 

and the likelihood of the evidence given the hypothesis, P(E|H).  It is important to note 

that P(H|E) has a higher standard than P(E|H) while P(H|K) determines how much higher.  

Suppose I leave a sandwich on the table and when I return the sandwich is gone and a 

dog is sitting in my chair.  A reasonable hypothesis would be the dog ate my sandwich.  
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However, it is possible someone else ate the sandwich or that it has been misplaced but 

not eaten.  So, P(H|E) is not unity.  But if the dog did eat my sandwich, the sandwich 

would in fact be gone, so P(E|H) is noticeably higher than P(H|E).  If I ignore P(H|K), I 

am going to expose myself to the fallacy that P(H|E) can be judged solely based on 

P(E|H), which will cause me to overestimate the likelihood of the hypothesis.  This is 

why prior knowledge plays such a big role in reasoning.   

 Teaching with pre-made simulations can provide mixed results because it is hard 

to guarantee students will take advantage of the interactivity to make connections to prior 

knowledge.  It is possible to watch a simulation and take it at face value without 

considering what you already know.  But when students are writing their own code, the 

process is inherently tied to interactivity and prior knowledge. Developing code requires 

careful thought and constant adjustment often while experimenting through trial and 

error. 

 On the following page, there is a guideline provided to students which explains 

how to write a simulation.  These steps were used to teach students how to think about 

simulations, but so long as they were reasoning based on prior knowledge and evidence, 

the steps were not strongly enforced.  I did not want something that looks like a 

worksheet to inhibit exploration.   

 During each coding academy, students were taught how to code a vector-based 

physics engine.  Then, students were asked to apply their physics engine to complete 

challenging projects.  Hake (1998) used a data set with 6000 students to show interactive-

engagement courses produce twice the conceptual gain of traditional courses as measured  
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Figure 3.1. Steps for designing a simulation model 

1. What phenomenon are you going to simulate?  Write a hypothesis about 
how it works. 

 
 
 
 
 
 
 
 

2. Translate your hypothesis into a math equation and define all variables.  
 
 
 
 
 

3. Insert your equation into a simulation and test it.  Does the simulated 
evidence match your hypothesis from Step 1? 

 
YES – Go to Step 4 

 

 
NO – Return to Step 2 

4. Does the hypothesis match what you knew about motion before the 
simulation? 

 
YES – Go to Step 6 

 

 
NO – Go to Step 5 

5. Should you revise what you know or revise the hypothesis? 
 

Knowledge – Go to Step 6 
 

 
Hypothesis – Return to Step 1 

6. Show your simulation to other people and ask if it is visually 
overwhelming. 

 
YES – Redesign, then go to Step 7 

 

 
No – Go to Step 7 

7. Discuss your simulation with other people.  What real world situations 
demonstrate this kind of motion?  Be specific and list your examples. 
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by the force concept inventory.  Given the highly interactive nature of the processing 

motion strategy, it is reasonable to expect some strong FCI scores.  However, most of the 

Hake (1998) samples resulted from a semester of instruction and my coding academies 

lasted only two weeks.  This put us at an ambitious time scale for seeing conceptual 

change. 

Experimental Methodology 

 Sample.  During summer 2017, thirty-two students participated in coding 

academies which were studied as part of this dissertation project.  The coding academies 

were held at two different inner-ring suburbs of a large city in Missouri.  None of the 

academies reached full capacity, so all students who applied to participate were invited to 

join.  

 I reached out to eight school districts and made extra efforts to sign up schools 

with higher poverty rates, identified by greater than 50% free or reduced lunch.  Since the 

coding academies were free to the schools and to the participants, it made sense to invite 

students who are less likely to have money for summer camps or academies.  The schools 

were recruited by emailing and calling district administrators or teachers and by 

following up with visits to their site.  I recruited participants by visiting their classroom 

and sharing paper or electronic promotional materials.  When possible, I brought a 

current student with me to provide a learner’s perspective of coding with Processing.  

The sign-up form contains the questions listed in Table 3.1.  Hudson and McIntire (1977) 

showed that mathematical ability correlates weakly with performance in physics class, so 

I will report the student’s background in math with my results. 
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Research Questions. 

1. Will Force Concept Inventory results be the same for students who learn from 

coding physics simulations as compared to students from a traditional physics 

course?   

2. How will student attitudes about learning physics change during a coding 

academy?  Specifically, how will the simulations affect student recognition of real 

world connections and how will personal interest in physics be affected by the 

coding academy? 

Table 3.1. Academy Sign Up Form  
1 What is your name? 
2 What is your email address? 
3 How old will you be on June 15, 2017? 
4 What is your parent/guardian’s name? 
5 What is your parent’s email? 
6 What school do you attend? 
7 Have you received credit for taking high school physics? 
8 Have you received credit for taking high school algebra? 
9 Have you received credit for taking high school geometry? 

10 Have you received credit for taking college level physics (including AP)? 

11 Are you fluent in any computer programming languages? 
12 Which academy location do you prefer?  
13 The academy will be at a school and supervised by a certified teacher, so 

participation will be as safe as attending summer school. In case of an 
unexpected accident, please provide emergency contact information here.  
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 Measuring Concepts.  The Mechanics Diagnostic Test (MDT) was designed to 

measure the conceptual understanding of physics students (Halloun & Hestenes, 

1985a/b).  The diagnostic test helped confirm how student conceptions are quite different 

from expert physicists.  MDT was also the precursor to the Force Concept Inventory 

(Hestenes, Wells, & Swackhamer, 1995) and the Mechanics Baseline Test (Hestenes & 

Wells, 1995).  The FCI contains 29 items with strong common sense distractors.  After 

administering the FCI to more than 2000 students, Hestenes, Wells, and Swackhamer 

(1995) suggest “pretest scores are so uniformly low for beginning physics students that 

further pretests are really unnecessary, except to convince diehard doubters or to check 

out the conceptual level of a new population” (p. 150).  Given the risk of a pretest 

interaction which would compromise the validity of the FCI results, I only administered a 

posttest at the end of the coding academy.  Henderson (2002) found no significant 

influence of pretest on posttest when they were administered a semester apart, but with 

the much shorter study duration, it is more likely that I would have seen a difference.  

Henderson (2002) also demonstrated that students generally take the FCI seriously even 

when it is ungraded.  He found a 2.8% drop in FCI scores in the case of being ungraded.  

About 1.9% of this reduction is identifiable in students who either refuse to take the test 

or leave the test mostly blank.  The coding academies were not for credit, which could 

have reduced scores a bit, but 2.8% seems like a fair price to pay. 

 The Mechanics Baseline Test (MBT) is a 26-item test designed for more 

advanced students than the FCI.  When Hestenes and Wells (1992) plotted FCI results vs. 

MBT results, they noticed data clustering which suggested students generally need to 

score 60% on the FCI to hit 60% on the MBT and the same thing occurs at 80%.  They 
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call the 60% mark a “conceptual threshold” and 80% a “mastery threshold” (Hestenes & 

Wells, 1992, 161).  As a historical note, the results of these tests inspired a search for 

better ways to teach physics.  Physics modeling is arguably the most important of the new 

methods of instruction and Hestenes (1996) provides an extensive summary. 

 After performing a factor analysis involving 145 high school students and 750 

university students, Huffman and Heller (1995) criticized the FCI for not factoring into 

the categories suggested by the authors of the test, namely kinematics, first law, second 

law, third law, superposition principle, and kinds of force.  In the high school sample, the 

third law dimension items correlated well and some of the kinds of force items were 

grouped by the analysis.  However, while studying a similar age group in Finland, 

Savinainen and Scott (2002) found students to be inconsistent with 3rd law problems.  In 

their study, students were twice as likely to get item 16 correct as item 15, but both 

belong to the 3rd law dimension.  Since item 15 involves acceleration and item 16 is a 

constant velocity problem, Savinainen and Scott (2002) suggest that students might have 

trouble generalizing 3rd law interactions.  This result implies that even the limited FCI 

groupings found by factor analysis may not hold in other samples.  With 647 students, 

Stewart, Griffin, and Stewart (2005) determined that context sensitivity is not responsible 

for the variations between student responses.  In Huffman and Heller’s (1995) university 

sample, four items grouped together, three of which were from the kinds of force 

category.  And the 3rd law category did not factor together in their university sample.  

Because most of the 29 items do not form statistical categories, Heller and Huffman 

(1995) propose that FCI items might be measuring subconceptual knowledge, but not a 

coherent force concept.  In response, Hestenes and Halloun (1995) advise analyzing the 
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FCI as a whole when given to students.  They also note the six conceptual dimensions 

were based on the expert physicist’s perspective and not the non-Newtonian perspective.  

And since the distractors are so powerful, they tend to reduce the coherence of student 

responses.  This view is supported by Savinainen and Viiri (2007) who interviewed 49 

high school students after taking an FCI posttest.  They discovered high conceptual 

coherence among students reaching mastery level (>80%) on the FCI.  In other words, the 

categories emerge as expertise increases.  Next, I will consider the Huffman and Heller 

(1995) results in terms of the triangulation model. 

 We are accustomed to categorizing objects based on the similarity of their 

superficial features.  But finding similarity between causal relationships is more 

difficult.  For example, it is not obvious the force pulling us towards the ground shares 

the same cause as the force keeping the earth in orbit around the sun.  Orbits and 

projectiles are superficially different, but they share the same cause.  I suggest the lack of 

theoretical knowledge to make this connection only makes the categories look incoherent.  

Although the FCI items form distinct factors if you possess the theoretical knowledge 

needed to see the causal similarity, the factors will not arise in samples where students 

lack the relevant theoretical knowledge.  More broadly, this mechanism could apply to 

the problem of transfer.  Transfer is difficult because it requires us to find abstract or 

causal similarity between two superficially different phenomena.  In my view, if we more 

often use similarity as a shortcut for causal reasoning, it would seem peculiar to look for 

similarity between two causal relationships that look nothing alike. 
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 Measuring Attitudes.  The second research question is aimed at determining how 

student attitudes are affected by learning to code Newtonian simulations.  Since they 

worked in a virtual environment, we might expect students to not recognize the 

connections to real-world applications.  However, by explicitly asking participants to 

draw information from their prior knowledge, this opens a path for students to make such 

connections.  

 The Views About Sciences Survey, or VASS, contains 30 items organized into six 

dimensions (Halloun & Hestenes, 1998).  The dimensions were verified by analyzing the 

responses of physics teachers and professors.  According to Halloun and Hestenes (1998), 

VASS can distinguish between “naive realists,” who are 22 times more likely to be 

passive learners, and “scientific realists,” who “believe the physical world cannot be 

known directly through sense perceptions, but only indirectly through theoretical 

constructions” (p. 572).  However, because VASS correlates well with the FCI, 

administering both instruments to the same sample may turn out to be an exercise in 

correlating results that are already known to correlate.  FCI gains have also been 

correlated to the Lawson Classroom Test of Scientific Reasoning (Coletta & Phillips, 

2004).  The Lawson test does not directly measure attitudes, but I think it could be used 

to infer ontological beliefs.  Regardless, I decided to look for other instruments to pair 

with the FCI. 

 The Maryland Physics Expectations survey (MPEX) is a 34-item instrument and 

like VASS, is also organized into six dimensions (Redish, Saul, & Steinberg, 1998).  

Unlike VASS, MPEX contains a reality link cluster which measures student ability to 

make physics connections to events outside the learning environment.  When Redish, 
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Saul, and Steinberg (1998) analyzed MPEX data from over 1500 students at six different 

universities, they found significant decreases in reality link scores after physics 

instruction.  In other words, taking a physics course can make students less likely to 

acknowledge affiliations between physics concepts and the real world.  Elby (2000) used 

the MPEX and the Epistemological Beliefs Assessment for Physical Science (EBAPS) to 

identify instructional practices that improve expectations and epistemological beliefs of 

physics students.  He found significantly more favorable results on the MPEX and 

EBAPS by embedding epistemology into class and homework, grading based on effort of 

explanations, and reducing textbook use and content coverage.  MPEX could certainly 

help answer my research questions about student attitudes, but there is a newer 

instrument which is better suited. 

 The Colorado Learning Attitudes about Science Survey (CLASS) was 

administered to over 5000 people and validated with interviews, reduced basis factor 

analysis, and a reliability study involving hundreds of college physics students (Adams, 

Perkins, Podolefsky, Dubson, Findelstein, & Wieman, 2006).  It contains 42 items and 8 

categories including real world connections, personal interest, sense making/effort, 

conceptual connections, applied conceptual understanding, problem solving general, 

problem solving confidence, and problem solving sophistication.  The real world 

connections and personal interest categories match the purpose of the present study, so I 

chose to administer CLASS to participants in the Processing Motion coding academies.  

Some of the items are not scored.  Item 31 is used to determine if people are reading the 

statements.  Items 7 and 41 did not pass the reliability test.  Items 7, 9, and 33 do not fit 
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into any of the categories.  Because these unscored items were included during validation 

and do not represent a major burden to participants, I left them in the survey. 

 CLASS has been adapted for use in biology (Semsar, Knight, Birol & Smith, 

2011) and experimental physics (Zwickl, Hirokawa, Finkelstein, & Lewandowski, 2014).  

The experimental physics version (E-CLASS) passes a variety of validity tests, but does 

not demonstrate strong factors like CLASS (Wilcox & Lewandowski, 2016).  Virtual 

simulations can be analogous to experiments, so I considered using E-CLASS for this 

study, but decided to stick with CLASS since the real world connections factor is 

important to my second research question.  Next, I will go over a few CLASS results that 

are relevant to my project. 

Brewe, Kramer, and O’Brian (2009) found positive attitude shifts while using 

modeling instruction with 45 introductory physics students.  Milner-Bolotin, Antimirova, 

Noack, and Petrov (2011) showed that taking physics in 12th grade correlates to more 

favorable CLASS results in absolute terms during college courses, but students who did 

not take physics 12 tend to have greater relative gains.  This is important to note, since 

none of the participants in the processing motion study have taken 12th grade physics.  

Also, in an experiment involving 176 high school students, Marušić and Sliško (2012) 

studied attitudinal change differences between groups learning from a 

reading/presenting/questioning method and an experimenting/discussion method.  The 

reading group saw overall 5.8% positive gains on CLASS with no statistically significant 

negative shifts.  The experiment group had five statistically significant positive 

categories, no negative shifts, and an overall 25.6% gain.  Lastly, where Elby (2000) 

found success by explicitly including epistemology into his lessons, Lindsey, Hsu, 
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Sadaghiani, Taylor, and Cummings (2012) measured significant attitudinal shifts with 

inquiry lessons focused on conceptual development.  This means lessons which implicitly 

address epistemological issues in science can change student attitudes.  That is good to 

know because my educational methodology is more focused on coding than 

epistemology.  But there is one epistemological issue that stands out.  Hammer (1994) 

found that some students do not realize that physical laws are supposed to be coherent.  

Thus, the lack of coherence in physics reasoning cited throughout this paper could be 

more of an epistemological misunderstanding than a conceptual one. 

 Limitations.  Regarding this research project, there are a few concerns related to 

validity.  Because the study includes self-selected volunteers, it is possible the sample is 

not fully representative of the broader population of students.  To the extent that my 

sample is not representative, this could impact the external validity of the results.  I also 

did not form a new control group.  However, people are uniformly ineffective at solving 

Newtonian physics problems, unless they have received strong training.  So long as the 

participants have not received similar training before joining the study, this means 

extraneous variables pose little threat to internal validity.  Given the ethical implications 

of withholding training from a control group, with little to be gained on the validity side 

and the possible risk of compensatory rivalry, it makes sense to use pre-existing data as a 

control. 

Where possible, I tried to isolate the programming effect as much as possible.  For 

example, if I had used instructional methods unrelated to programming during the 

experiment, it could be these methods that affected the FCI results instead of the 

programming method.  Traditional physics teaching involves lecturing, labs, textbook, 
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and homework problems.  In this study, large group lectures were primarily used for 

housekeeping and introducing programming concepts.  Neither of those are assessed on 

the Force Concept Inventory, so lectures should not have directly impact the 

results.  Instead, the Cain and Laird (2011) approach of Frequent Small Group Purposeful 

Talks were used and this approach is harder to separate from the results.  I had frequent 

conversations with individuals and small groups during the coding sessions.  These were 

in the context of programming, but I did receive questions about physics.  When possible, 

I answered by directing students to resource materials or to use the computer program 

itself to find the answer.  The resource materials can be viewed in the Appendix. 

 During the academies, there was no physical lab equipment, so this method will 

not impact the results.  And to the best of my knowledge, students did not spontaneously 

perform any lab experiments with ambient materials. 

 We did not use a physics textbook during the academy, but some supporting 

materials were provided regarding the laws of Newtonian physics and coding 

syntax.  Again, these can be found in the Appendix.  The reference materials played an 

integral role in the process of learning to code Newtonian simulations.  However, 

materials like this have been provided to countless people, many of whom did not 

become proficient at Newtonian physics, so it is unlikely that simply possessing a 

reference sheet increases your proficiency with the content. 

 Of the four traditional methods, writing code is the most similar to pencil and 

paper problem solving.  The methodology is superficially different, but the mathematical 

reasoning is essentially the same.  However, with traditional problem solving, it is 

common to focus on one instant in time.  For example, what was the velocity at t = 4.3 
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seconds?  With coding, we are compelled to figure out how each iteration through the 

code will affect the results of the equations.  We cannot merely focus on t = 4.3 s.  Code 

requires us to think about how the equations will interact for the duration of the 

program.  This gives coding an advantage over paper and pencil.  Regardless, coding a 

physics simulation requires problem solving.  

 The experimenter effect arguably poses the greatest threat to validity.  If the 

effects are unique to my personal style of instruction, the results may not generalize.  The 

best approach would be initiate a second study where other teachers try the same method.   
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Chapter 4: Results 

Pilot Academy 

 Approximately ten students wanted to sign up for a coding academy but were 

unavailable for the scheduled dates.  Four of these students were available the week 

before the first academy.  The computer lab was setup early at the first school and we 

were within the IRB approved dates, so I decided to hold a one week pilot academy prior 

to the full two week academies.  The pilot group included four girls with a mean age of 

13.5 years.  All four pilot students took a CLASS pre-survey and received the first half of 

the lessons.  Two of the students followed up after the full academy to work on the 

missed lessons.  This was done primarily as an independent study with email 

communication, but we met once again at the school so the students could take the 

CLASS post-survey.  The Force Concept Inventory was not administered to any of the 

pilot students.   

 The pilot academy provided early observations to help implement the coding 

lessons for the full academies.  The initial plan was to start by teaching the students to 

code one-dimensional physics equations and then build up to vector based equations.  

However, the coding students generally did not recognize the standard forms, so referring 

to them did not give us a good starting point.  It was easier to skip straight to the vector 

equations.  This approach contrasts with my prior 11 years of experience teaching high 

school physics.  On paper, my students often struggle with vector equations.  In this new 

context, with the same equations represented as code, students had no trouble using the 

first coordinate to manipulate x-values and the second coordinate for y-values.  For the 



	
	
PROCESSING MOTION 

	
52	

full academies, I did not introduce the textbook version of physics equations.  As soon as 

the students started moving objects on the screen, they were taught about vectors. 

 While writing simulation equations, I observed that students have a strong bias 

towards addition.  Their attempts to write motion equations almost universally start with 

addition.  Thus, the physics engine involving two equations position.add(velocity) and 

velocity.add(acceleration) were intuitive to the students.  In the context of coding, I also 

found students were better able to visualize and interpret adding a negative value as 

compared to my experiences in the classroom.  On paper, students seem more 

comfortable with subtraction than adding a negative, despite these operations being 

mathematically identical.  However, the coding students had no trouble adding negative 

values and predicting the reversing effect in their code. 

 Before moving to the full academies and the quantitative data, I want to describe 

two more important observations from the pilot.  First, it helps to ask students to 

regularly start new programs or sketches.  Otherwise, they tend to keep adding more and 

more code to an existing sketch and it loses coherence and purpose.  Second, it helps to 

ask students to type all their code, even when they are borrowing an idea from the 

teacher, other students, or the internet.  Students can learn a great deal from interacting 

with the code of others.  But if they simply copy and paste code, it does little to help them 

learn the syntax.  During the full academies, when I provided code, it was always given 

on paper and students were asked to type it and make changes or additions to meet a goal. 

Full Academies 

 Both academy locations were inner ring suburban high schools of a large city in 

Missouri.  The pilot and first academy took place at School 1.  The second academy took 
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place at School 2.  Table 4.1 summarizes publicly available data about both high schools 

(MO DESE, 2017).  Table 4.2 summarizes data about the student samples participating in 

the summer academies. 

Table 4.1. School Data   

2016/17 Enrollment Black White Other Free/Red. 
Lunch 

4 Yr Grad 
Rate 

ACT Disciplinary 
Action 

School 1 302 32.8 % 54.6 % 12.6% 51.5% 91.4% 20.4 2.3% 

School 2 841 88.6% 8.2% 3.2% 64.3% 86.0% 17.3 8.6% 

 
Table 4.2. Academy Data   

 
 The full academies were both two weeks long.  We met from 10:00 AM – 12:30 

PM on weekdays.  The attendance rate for the first academy was 89.2% and the second 

academy attendance rate was 84.7%. 

 Each academy session started with a short full group discussion.  On the first day, 

we discussed the basics of the academy.  This included reviewing computer 

hardware/software, the schedule, and expectations.  After the first day, each session 

began with a full group discussion that was question driven.  The list of questions is in 

Table 4.3.  Discussion questions were introduced in the sequence listed, but each day, I 

brought up previous questions as needed to remind students what we discussed on 

previous days.  Initially, I did not plan to discuss physics with the full group because I 

was concerned about compromising the focus on coding.  But during the pilot, students 

Summer 2017 Enrollment Black White Other Male Female 

Pilot at School 1 4 0 % 75 % 25% 0% 100% 

Academy at School 1 13 31% 69% 0% 69% 31% 

Academy at School 2 15 53% 20% 27% 80% 20% 
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were using physics terminology inconsistently, so I started asking the full group 

questions about the meanings of common physics terms.  The full-group discussions were 

primarily used to standardize the way terminology was used by students during the 

academies.  Discussions were also used to explore the analogy between pixels and 

position and the relationship between the computer frame rate and time.  Academy 

project descriptions can be found in the Appendix. 

 In addition to myself as instructor, there was a tech aide present at each session.  I 

hired two former students, each a recent high school graduate, at a rate of $10 per hour to 

help with the academies.  The tech aides helped resolve computer hardware/software 

malfunctions and generally helped the students troubleshoot technology problems.  I 

focused on coding instruction, but there was some overlap.  Tech aides also answered 

coding questions and I helped with technology problems from time to time.  I was not 

compensated for teaching the summer academies, except for being able to collect data.    

Table 4.3. Discussion Questions 

Question 1 What is coding? 

Question 2 Why would we want to represent the physical world on computers? 

Question 3 What is position? 

Question 4  What are pixels? 

Question 5  What is time? 

Question 6 What is velocity? 

Question 7 What is acceleration? 

Question 8 What is a vector? 

Question 9 What are forces? 
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Question 10 Is there a minimum distance or time in the real world? 

Question 11 Is there a minimum distance or time on the computer screen? 

 
Force Concept Inventory Results 

 Research Question 1: Will Force Concept Inventory results be the same for 

students who learn from coding physics simulations as compared to students from a 

traditional physics course?  I hypothesized that coding students would perform equally 

well on the FCI as compared to students from a traditional learning environment.  The 

results from the summer coding academies provide support for this hypothesis. 

 Of the 32 students who participated, 22 took the FCI.  The FCI was not 

administered to the 4 pilot students.  Two additional students withdrew from the academy 

for personal reasons.  One student left on vacation during the 2nd week and 3 others were 

absent on the final academy day but did not report the reason.  The mean FCI score from 

Academy 1 was 56.4 % and the mean for Academy 2 was 59.4%.  There was no 

statistically significant difference between the two academies.  The overall average was 

57.9%, which is significantly better than a 20% random guessing rate and near the 60% 

“conceptual threshold” described by Hestenes, Wells, and Swackhamer (1992, 161).  

Students who reach the conceptual threshold of 60% are more likely to succeed at more 

advanced topics.  The minimum score was 33.3% and the maximum score was 86.7%.  

The median was 58.3% with a standard deviation of 14.9.  Figure 4.1 shows the score 

distribution. 
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 The youngest participant was 11 and the oldest was 17.  There was no significant 

correlation between age and FCI score.  Figure 4.2 shows the relationship, or lack 

thereof, between age and FCI score. 

 

 The sample size is too small to expect significance while analyzing subgroups, 

but participants were asked about their prior experience taking algebra, geometry, 

physics, and AP physics courses.  None of the participants had taken AP physics.  Results 

from this study indicate that past classroom experience with physics, algebra, and 
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geometry have little or no effect on success during the coding academy.  In fact, students 

who reported taking physics performed slightly worse on the FCI.  This data is presented 

in Table 4.4. 

Table 4.4. Courses Taken Prior to Coding Academy 

Course % Taken Mean FCI 
With 

Mean FCI 
Without 

Significant at p < 0.05? 

Physics 41 54.1 60.5 No 

Algebra 82 58.5 55.0 No 
Geometry 59 58.7 56.7 No 

 
 To directly address the first research question, I will provide a comparison to data 

from Hestenes, Wells, and Swackhamer (1992).  They published data for 8 high schools 

and 5 colleges/universities.  Standard deviations were unavailable for 4 of these 

institutions, so they are not included in Table 4.5.  Present study data is labeled 

“Academy.” 

Table 4.5. Two-Tailed Comparison of Coding Academy and Traditional FCI Means 

Location Level n s FCI Mean t-stat p < 0.05? 

Academy 
HS/MS 

22 0.15 0.579 N/A 
N/A 

AZ Reg  HS 612 0.16 0.48 3.05 Yes 

Wells Reg HS 18 0.2 0.64 -1.08 No 

AZ Hon 
HS 

118 0.19 0.56 0.52 
No 

Wells Hon HS 30 0.15 0.78 -4.80 Yes 

AZ AP HS 33 0.18 0.57 0.20 No 

Van Heuvelen Univ 116 0.18 0.63 -1.43 No 

AZ State Reg Univ 139 0.18 0.63 -1.45 No 

Harvard Reg Univ 186 0.15 0.77 -5.69 Yes 
 
 In five out of eight locations where students were taught Newtonian physics in a 

traditional learning environment, no significant difference was found using a two-tailed 

test at p < 0.05.  One high school was found to be significantly lower at p < 0.01.  Wells 
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Honors and Harvard Honors were found to be significantly higher at p < 0.01.  These 

results indicate that a two-week coding academy can potentially have the same FCI 

posttest scores as compared to a semester of traditional instruction. 

 After being challenged on the factors, Hestenes and Halloun (1995) emphasized 

that the FCI test was designed to be analyzed as a whole and not broken down into 

factors, especially when administered to novices.  In this chapter, I have so far presented 

aggregated data in terms of full FCI results.  However, I will delve a bit deeper into the 

FCI before moving to the survey data.  Question 26 was answered correctly by 9% of 

participants and question 27 was answered correctly 95% of the time.  These two 

questions represent the single worst and single best results from the FCI test.  Notably, 

both questions are based on the same scenario from question 25, a woman applying a 

constant force to a box resulting in constant speed motion.  For reference, I will 

reproduce questions 26 and 27 from Hestenes, Wells, and Swackhamer (1992). 

26. If the woman in the previous question doubles the constant horizontal force that she 
exerts on the box to push it on the same horizontal floor, the box then moves: 

(A) With constant speed that is double the speed “vo” in the previous question. 
(B) With constant speed that is greater than the speed “vo” in the previous question, 

but not necessarily twice as great. 
(C) For a while with a speed that is constant and greater than the speed “vo” in the 

previous question, then with speed that increases thereafter. 
(D) For a while with an increasing speed, then with constant speed thereafter. 
(E) With continuously increasing speed. 

 
27. If the woman in question 25 suddenly stops applying a horizontal force to the box, 
then the box will:  

(A) Immediately come to a stop. 
(B) Continue moving at a constant speed for a while and then slow to a stop. 
(C) Immediately start slowing to a stop. 
(D) Continue at a constant speed. 
(E) Increase its speed for a while and then start slowing to a stop. 
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Since I did not interview the students, I do not specifically know what they were thinking 

on these two questions.  However, students were apparently able to identify the presence 

of a net force on question 27, but not on question 26.  This is something I would like to 

investigate further.            

CLASS Results 

 The Colorado Learning Attitudes about Science Survey (CLASS) has eight 

categories including real world connections, personal interest, sense making/effort, 

conceptual connections, applied conceptual understanding, problem solving general, 

problem solving confidence, and problem solving sophistication.  Survey results are 

measured against established expert responses on the instrument and are reported as 

percent favorable.  In a pre/post comparison for the participants in this study, there were 

significant positive gains in four categories at the 95% confidence level, non-significant 

gains in two categories, and a non-significant decrease in two categories.  These results 

are summarized in Table 4.6.  This data includes twenty students. 

Table 4.6. Two-Tailed CLASS Pre/Post Comparison 

Category Pre 
Academy 

Post 
Academy 

Gain/Loss t-stat p < 0.05? 

Overall 0.6563 0.7063 0.0500 -3.85 Yes 
Real World 0.8000 0.8688 0.0687 -3.58 Yes 

Personal Interest 0.7708 0.8542 0.0833 -2.94 Yes 
Sense Making 0.7607 0.8214 0.0607 -2.29 Yes 

Conceptual 
Connect. 0.5875 0.6375 0.0500 

-1.13 No 

Applied Concept. 0.5042 0.4750 -0.0292 0.73 No 
Prob. Solving 

Gen. 0.7536 0.7893 0.0357 
-1.49 No 

Prob. Solving 
Conf. 0.7417 0.8313 0.0896 

-2.61 Yes 

Prob. Solving 
Soph. 0.6550 0.6542 -0.0008 

0.02 No 
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 Four additional students took the pre and post surveys but were removed from the 

analysis because they answered question 31 incorrectly.  Question 31 on the survey is 

used to eliminate responses of people who are not reading the statements carefully.  This 

was the only question students asked me about while I was administering the survey.  

Some students joked about question 31 being so easy and some students were sincerely 

confused by it.  Two of the students who asked me about question 31 ultimately answered 

it incorrectly. 

In a study conducted by the developers of CLASS, Adams et al. (2006) provided 

data from a university physics course involving 397 participants.  Despite finding 

significant conceptual gains with force and motion, the group’s attitudes became less 

favorable in every category.  In a follow-up study with 1380 students, they showed that 

although personal attitudes tend to decrease in favorability while taking a physics course, 

students can often identify the expert answers on the CLASS survey (Gray, Adams, 

Wieman, & Perkins, 2008).  Academy pre/post data is reproduced in Table 4.7 along with 

the Adams et al. (2006) pre/post data.   

Table 4.7. Coding Academy and University Pre/Post CLASS Data 

 

Category Pre Academy Pre Univ 
Physics 

Post Academy Post Univ 
Physics 

Overall 0.6563 0.65 0.7063 0.59 
Real World 0.8000 0.72 0.8688 0.65 

Personal Interest 0.7708 0.67 0.8542 0.56 
Sense Making 0.7607 0.73 0.8214 0.63 

Conceptual Connect. 0.5875 0.63 0.6375 0.55 
Applied Concept. 0.5042 0.53 0.4750 0.47 

Prob. Solving Gen. 0.7536 0.71 0.7893 0.58 
Prob. Solving Conf. 0.7417 0.73 0.8313 0.58 
Prob. Solving Soph. 0.6550 0.61 0.6542 0.46 
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 Research Question 2: How will the simulations affect student recognition of real 

world connections and how will personal interest in physics be affected by the coding 

academy?  I hypothesized that collectively, student personal interest in physics and 

ability to recognize real world connections will increase significantly during the coding 

academy.  The hypothesis is supported by the preceding data.  The effect size was less 

than 10% for each category, but personal interest and real world connections did increase 

significantly during the academy.  Given the tendency for attitudes to become less 

favorable after taking a physics class, these results are promising. 

FCI and CLASS Relationship  

No significant relationship was found between the FCI and the CLASS survey.  

Chart 4.3 shows the lack of correlation between FCI results and CLASS post data for 

individual students.  Chart 4.4 shows the lack of correlation between FCI results and 

CLASS gains. 
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Chapter 5: Conclusion 

Quick Summary 

 The purpose of this study was to find out if Processing sketches could be used to 

teach physics.  To that end, I used the FCI to measure the conceptual understanding of 

students and the CLASS to measure their attitudinal changes regarding physics.  The FCI 

results show that coding can be as effective as traditional instruction, but requires less 

instructional time.  CLASS results show that student attitudes about physics become 

more favorable after learning to program simulations.  Real world connections, personal 

interest, sense making/effort, and problem solving confidence all increased significantly 

among the participants.  Overall favorability also increased significantly. 

Expected Results 

 Consistent with Hake (1998), this study adds to the body of evidence that 

interactive-engagement teaching methods are effective.  Although little research has been 

published on teaching high school physics by asking students to write simulations, this 

technique has many of the attributes of other interactive teaching methods.  For example, 

launching a projectile across a classroom is not altogether different than launching a 

projectile across a computer screen.  But with the computer program, each student gets 

their own experiment to customize at will.  And projectiles on a computer screen can be 

launched in a more haphazard way without any safety risks.  They can also be launched 

more rapidly to increase the number of observations. 

 Regarding attitudinal changes, I predicted that real world connections and 

personal interest would increase during the academies.  Since the labs were completed 

virtually, it was possible that students would not make connections to the physical world.  
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But consistent with Finkelstein et al. (2005), this study showed that virtual learning can 

translate to real world connections.  My hypothesis regarding personal interest was based 

on anecdotal evidence from my own experience as a classroom teacher.  I had previously 

noticed that coding makes some students more interested in physics and does not seem to 

dissuade the students who were already interested.  The survey data gathered during the 

coding academies of this study supports this view.   

Unexpected Results 

 With a small sample size, it is not surprising when results are not statistically 

significant.  However, I was surprised to see how small of a correlation there was 

between age and FCI scores.  With a greater potential for prior knowledge, I expected the 

older students to perform better, but the small correlation was negative.  In this study, 

younger students performed slightly better than older students.  On a related note, past 

experience with algebra, geometry, and physics were not significantly related to FCI 

scores.  And past experience taking a physics class was correlated with slightly lower FCI 

scores.  This would be interesting to investigate further.  I suspect the students who have 

taken physics may be more vulnerable to the distractors on the test, since they may 

recognize more of the vocabulary.  Since experts score well on attitudinal and conceptual 

tests, I expected to see a correlation between FCI and CLASS results, but there was none.  

There is not enough data to be conclusive, but these results suggest that conceptual 

learning in physics and attitudes about the subject may be unrelated for novice students.   

Coding in the Content Areas 

 As a practical matter, schools need a way to teach studnets how to code.  For 

affluent school districts, it may be possible to recruit, train, and compensate staff 
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members dedicated to teaching code for coding’s sake.  In districts with less financial 

resources, hiring new staff is a less plausible solution.  What if we could teach students to 

code without hiring new teachers?  What if those teachers were already on staff in our 

schools? 

 The results presented in Chapter 4 showed how computer programming can be an 

efficient method for teaching physics.  But there are some bigger implications here.  The 

students also learned about coding.  If students can learn about coding and physics while 

gaining more favorable attitudes, perhaps they could also learn to code in chemistry or 

math class.  Or use code to make maps in geography class.  Or code interactive non-linear 

stories in literature classes.   

Papert (1980) was ahead of his time when he suggested giving all children a 

computer and teaching them to code.  But we are now in a position to implement Papert’s 

vision in our schools.  Reading, writing, and arithmetic are alive and well in the content 

areas.  Now is the time to add programming to the list of fundamental skills used in the 

classroom.   

Theoretical Implications 

 In chapter 1, I traced multiple paths through the literature on concepts.  

Experimental evidence supports various theories on concepts which often seem 

contradictory and are presented as competing alternatives in the literature.  Yet, when 

mapped onto the Bayesian theory of learning, these alternatives look like different pieces 

of the same puzzle.  I called this combination the triangulation model.  The similarity-

based theories, such as prototypes and exemplars, can be viewed as a cognitive ability to 

compare attributes of concepts stored as prior knowledge to attributes of observed 
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evidence.  When hypothetical knowledge is added to the mix, Bayes’ theorem emerges, 

providing a mechanism for conceptual change. 

 The triangulation model defines concepts as theoretical categories, which are 

based on exemplars, abstractions (e.g. prototypes), and causal relationships.  Conceptual 

change occurs by splitting or merging an ontological category, changing the ontological 

category of a term, updating the predicates that span a category, or revising the causal 

relationships between or within categories (Carey, 1985; Keil, 1989; Rehder, 2003b).  By 

combining theories that describe the properties of individual concepts, the mental 

organization of concepts, and the dynamics of conceptual change, the triangulation model 

provides a broad view of conceptual learning. 

 As described in Chapter 2, students arrive in physics class with a non-Newtonian 

view of motion (Champagne, Klopfer, & Anderson, 1980).  Thus, teaching Newtonian 

physics requires conceptual change.  For conceptual change, students must revise their 

ontology and often their understanding of causal relationships.  To make these changes, 

the mind evaluates hypothetical knowledge given observational evidence and prior 

knowledge.  Following Bayes, the key to the triangulation model is incorporating 

hypothetical knowledge, prior knowledge, and evidence into the same activity.  When 

students only consider their prior knowledge, they are unlikely to accept inconsistent 

hypothetical knowledge in the absence of new evidence.  And when students see 

evidence that supports a hypothesis without considering how it relates to their prior 

knowledge, they are at risk of forming a synthetic concept instead of a coherent 

conceptual understanding (Vosniadou & Skopeliti, 2013).  In this experiment, coding 

simulations gave students everything they needed to change their mind about Newtonian 
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physics.  While developing their own physics simulations, students can readily test 

hypotheses against what they already know and what they are observing.  

I have emphasized the distinction between simulations and physical reality.  

However, there is a lesser explored distinction between the simulations running in our 

brain and the simulations running on a computer.  In a forthcoming paper, Piccinini (in 

press) sorts through various kinds of mental simulations on his path to naturalize 

intentionality.  I think this type of approach has implications for learning as 

well.  Although it would be difficult to study, it is possible there is a connection between 

the simulations students write in code and the simulations that run inside their brains to 

model the world around them.  It seems likely that student’s computer code could be used 

to evaluate their understanding of physics.  It is a bigger stretch, but still plausible, that 

the coding method is effective because the physics simulations we run in our brain can be 

updated by exploring the code for computer simulations.  Perhaps future research into 

mental simulations will elucidate this relationship.  

 For the processing motion study, the triangulation model provides an adequate 

explanation for why coding is beneficial to physics students.  But in the future, I would 

like to take a closer look at conceptual structures.  Earlier, I explored the combination of 

the Piccinini (2011) distinction between explicit and implicit concepts with the Fodor and 

Pylyshyn (2015) view on the relationship between thoughts and language.  In figure 5.1, I 

have mapped out how concepts could have different properties depending on whether 

they contain associative, causal, or syntactic information.  This figure also relates 

intensions to features and causality while extensions are assigned to syntax.  The solid 

arrows are my proposal for which conceptual structures can be caused by others.  For 
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example, a perception can contain information about surface features which could affect 

a concept.  But a concept cannot cause a perception.  The dashed arrow indicates that a 

word can represent, but not cause, an object.  And an explicit concept is an implicit 

concept with a word attached.  This could be a word from a language like English or the 

internal syntax used by the mind.  For example, we can think of an object without 

knowing the word for it.  To fully defend this view of concepts would require a project on 

a grander scale than my dissertation.  But since it developed during my dissertation 

research and I think it points towards how a more complete theory of concepts could 

develop, I decided to place it here at the end.  After all, the end of one thing is often the 

beginning of another. 

Figure 5.1. Conceptual Structures and Causal Connections 
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Appendix: Academy Projects 

Project 1: Where is my mouse? 
 
Background: The Processing window of your sketch is called a canvas.  It is a grid of 
pixels, often many thousands of pixels.  Each pixel has an (x, y) coordinate and the top 
left is (0, 0).  The x values get larger as you go to the right.  The y values get larger as 
you go down.  By controlling the color of the pixels on the canvas, you can essentially 
draw anything.   
 
Mission: To get warmed up, let’s type some code to learn about the (x, y) coordinates on 
your canvas.  Start with the sample code below and then tweak it.  You can, for example, 
change the background color, move the text, change the text color, or resize the text.  In 
future projects, you may find it useful to insert code like this to help you find points on 
the screen. 
 
void setup() { 
  size(800, 600);  
  background(100); 
}  
 
void draw() { 
  background(100); 
  if (mousePressed) { 
    textSize(25); 
    fill(0); 
    text(mouseX, 200, 200); 
    text(mouseY, 270, 200); 
  } 
} 
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Project 2: TO TURTLE 
 
Background: In 1980, Seymour Papert wrote a book called Mindstorms.  He proposed 
giving all kindergarteners in 1987 their own personal computer.  Papert encouraged 
teachers to get students to program computers rather than trying to have the computer 
program the students.  Here’s an excerpt: 

“My interest is in the process of invention of ‘objects to think with,’ objects in which there is an 
intersection of cultural presence, embedded knowledge, and the possibility for personal identification.  The 
Turtle is a computer-controlled cybernetic animal.  It exists within the cognitive minicultures of the ‘LOGO 
environment,’ LOGO being the computer language in which communication with the Turtle takes place.  
The Turtle serves no other purpose than of being good to program and good to think with.  Some Turtles 
are abstract objects that live on computer screens.  Others, like the floor Turtles shown in the frontispiece 
are physical objects that can be picked up like any mechanical toy” (p. 11).   
 
Mission: In honor of Dr. Papert, let’s design a turtle made out of code.  It can be as 
simple or abstract as you like.  But instead of LOGO, we will use Processing. 
 
Quick Reference: The main functions in P3 look like this: 
 
void setup(){ 
 //Code goes here.  Setup runs once. 
} 
void draw(){ 
 //Code goes here.  Draw runs repeatedly, typically 30 times per second. 
} 
 

2D Shape Parameter 1 2 3 4 5 6 7 8 

arc x y width height start angle stop angle Mode (opt)  

ellipse x y width height     

line x1 y1 x2 y2     

point x y       

quad x1 y1 x2 y2 x3 y3 x4 y4 

rect x y width height r (opt)    

triangle x1 y1 x2 y2 x3 y3   

 
You can make a custom shapes using beginShape(); followed by a list of vertices with 
vertex(x, y); finishing with endShape(CLOSE);. 
 
You can color shapes with fill(r, g, b); and the outline of shapes with stroke(r, g, b);.  To 
change the thickness of the outline, use strokeWeight(px); 
 
See http://processing.org/reference/ for a full reference page with richer descriptions. 
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Project 3: Vehicles 
 
Background: In his 1984 book Vehicles, Valentino Braitenberg describes a series of 
machines that use motors to move and sensors to interact with the world.  Here is an 
excerpt where Braitenberg explains the design process: 

“It is also quite easy to observe the full repertoire of behavior of these machines - even if it goes 
beyond what we had originally planned, as it often does.  But it is much more difficult to start from the 
outside and to try to guess internal structure just from the observation of behavior...when we analyze a 
mechanism, we tend to overestimate its complexity.  In the uphill process of analysis, a given degree of 
complexity offers more resistance to the workings of our mind than it would if we encountered it downhill, 
in the process of invention” (p. 20). 

Instead of looking at someone else’s simulation, or reading their code and trying 
to make sense of it, we are going to use our creativity to write our own code.    
 
Mission 1: Check out Maciek Albrecht’s vehicles that were inspired by Braitenberg.  
Design your own vehicle and draw it with code. 
 
Mission 2: Vehicles are often capable of moving.  Follow the steps for designing a 
simulation and write code to sketch a simple vehicle that can move in a straight line at a 
constant speed.  After you get the math figured out, rewrite your code using vectors. 
 
Mission 3: Move the background function to setup() and remove it from draw().  Then we 
can trace the path of moving objects.  As we make new projects, pay attention to how 
different kinds of motion make different kinds of paths. 
 
Quick Reference:  When you are working with 2 or more dimensions, vectors are 
incredibly helpful.  See https://processing.org/reference/PVector.html for the full story.  
But in P3, you declare and initialize a vector like this:   

PVector position = new PVector(5, 8); 
 
This will reduce the total number of lines, because vectors can store the x and y 
coordinates together.  When you need to refer to the x-component only, simply type .x 
after the name of the vector: 
   position.x = 2; 
 
If your object goes off the screen and you want it to show up on the other side, try 
something like this: 

if( position.x > width ){ 
position.x = 0; 
} 

 
Math Operations Addition Subtraction Multiplication Division 

Arithmetic  x += 2; x -= 2; x *= 2; x /= 2; 

Vector position.add(x, y); position.sub(x, y); position.mult(2); position.div(2); 
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Project 4: Acceleration 
 
Background: In 1678, Newton gave science a detailed theory of motion that is strongly 
supported by evidence.  In the absence of an unbalanced force, objects have a constant 
velocity (no speeding up, slowing down, or changing direction).  Unbalanced forces 
cause an object to speed up, slow down, or change direction.  Changes in velocity are 
always in the same direction as an unbalanced force.  The amount of change in velocity is 
directly proportional to the size of the force and inversely proportional to the mass of the 
object.  Lastly, every force in the universe has a companion force of equal strength, but in 
the opposite direction.  Keep Newton in mind as you make simulations of motion.  If you 
can represent Newtonian ideas with code, your simulations will look more like real 
motion. 
 
Mission 1: Last time, we made a position vector to control the location of our objects.  
Now, let’s make a velocity vector to control the speed and direction.  If you can figure 
out how to code acceleration, your objects will be able to speed up and slow down.  Do 
not forget to turn off the background sometimes so you can see the motion paths.  It 
really helps you visualize how stuff moves. 
 
Mission 2: Make a simulation of an object falling in a gravitational field.  Can you 
simulate the gravity on multiple planets in one sketch? 
 
Mission 3: Make a simulation of an object falling through a fluid like air or water.  If 
your code works, now the objects will have a terminal velocity.  Can you simulate two 
different materials in one sketch?  For example, imagine a ball falling through the air and 
then slowing down as it lands in some water.  Air friction is surprisingly complicated to 
calculate.  But for the purpose of a simulation, air drag at low speeds is typically 
proportional to the velocity (and in the opposite direction).  At high speeds, air drag is 
typically proportional to the velocity squared (still in the opposite direction).  So make 
sure your model of air friction is responsive to the velocity vector. 
 
Quick Reference: During a simulation, it is cool to display the vector values on the screen 
while objects are moving around.  If you put something in quotes in the text function, P3 
will display exactly what you type.  If you enter a variable without quotes, P3 will display 
the current value of the variable stored in memory.  Here are some sample lines for the 
horizontal component of the velocity vector: 
 
  text("Horizontal Velocity", 100, 80); 
  text(velocity.x, 100, 100); 
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Project 5: Projecting Projectiles 
 
Background:  We now know the position of an object can be changed by adding the velocity 
vector.  And the velocity can be changed by adding the acceleration vector.  Galileo figured out 
that projectiles are a combination of constant velocity in one dimension with accelerated motion 
in the other dimension.  He also figured out a super sweet pattern with accelerated objects (see 
below).  This table uses the acceleration due to gravity on earth, but the same pattern emerges 
with any constant acceleration.   
 
Galileo Pattern 

Total Time (s) 1 2 3 4 5 6 7 

Total Dist (m) 9.8 29.4 49 68.6 88.2 107.8 127.4 

Dist / 9.8 1 3 5 7 9 11 13 

Cumulative 1 4 9 16 25 36 49 

 
Mission 1: Make a simulation with position, velocity, and acceleration vectors.  Experiment with 
combinations of constant velocity in one dimension and constant acceleration in the other.  Use 
positive and negative values of each to see what happens.  Try to connect the motions you see on 
the screen to motions you have observed in real life. 
 
Mission 2: Turn off the background in draw() and experiment with making cool curved paths.  Or 
use transparency instead of background to see motion blue… 

fill(0, 50); 
rect(0, 0, width, height); 
 

Mission 3: Launch projectiles on a curved path from one corner and hit other corners of your 
canvas. 
 

 
Project 6: Collisional Colliding 
 
Background: There are two types of collisions, elastic and inelastic.  With perfectly elastic 
collisions, the kinetic energy is constant.  With inelastic collisions, some of the kinetic energy is 
converted to other forms of energy, so the speed of an object tends to be reduced after a collision.   
 
Mission 1: Make an object bounce off the wall (edge of canvas) without losing any speed 
(elastic).  Then Make an object bounce off the wall and subsequently lose speed (inelastic). 
 
Mission 2: Simulate two objects bouncing off each other. 
 
Quick Reference: If you want an object to bounce off the edge, try something like this: 

if( position.x > width ){ 
velocity.x *= -1; 
} 

If you want fast acceleration without fast velocity, make a speed limit like…velocity.limit(15); 
And if it comes up, try noCursor(); to hide your mouse cursor. 
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Project 7.1: Rocketeer Part 1 
 
Background: Rockets in outer space can move around without air drag (since there is 
very little air).  They can move in any direction, but like all objects, can only accelerate in 
one direction at a time (based on the net force).  Rockets moving through air do 
experience air drag.  The faster they go, the greater the air impedes their motion.  Air 
friction is always in the opposite direction of the velocity and therefore tends to reduce 
the speed of moving objects. 
 
Mission 1: Sketch a rocket whose acceleration can be controlled with the keyboard. 
 
Mission 2: Add a ground to the sketch for the rocket to land on. 
 
Mission 3: Add some more physics.  Possible ideas...air friction, ground friction, gravity. 
 
Mission 4: Introduce some background changes as the rocket increases elevation.  For 
example, maybe the sky could go from being blue to black as you enter space.  Or maybe 
the ground could disappear as the rockets get farther from it. 
 
Quick Reference: Based on our interactivity project, this type of control system seems to 
work well... 
 
 if (keyPressed) { 
    if (keyCode == UP) { 
      velocity.y -= acceleration.y; 
    } 
    if (keyCode == DOWN) { 
      velocity.y += acceleration.y; 
    } 
    if (keyCode == LEFT) { 
      velocity.x -= acceleration.x; 
    } 
    if (keyCode == RIGHT) { 
      velocity.x += acceleration.x; 
    } 
  } 

 
 
Project 7.2: Rocketeer Part 2 
 
Mission 1: Customize the backgrounds for each stage, including adding new shapes.  See 
comments in code for where to add them.  Also, include acceleration controls.  See 
previous project if you forgot how. 
 
Mission 2: Add interactive elements to stages, customize mover, and change acceleration 
for each stage.
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int stage = 0; 
PVector position = new 
PVector(300, 500); 
PVector velocity = new PVector (0, 
0); 
PVector acceleration = new 
PVector(0.1, 0.1); 
 
void setup() { 
  size(1000, 700); 
  noStroke(); 
} 
 
void draw() { 
  if (stage == 0) { 
    background(200); 
    fill(0); 
    textSize(25); 
    text("Make Gamer", 200, 200); 
    textSize(15); 
     text("Press Enter to Enter", 200, 
300); 
     text("Then Use Arrow Keys", 
200, 350); 
    fill(200); 
    velocity.set(0, 0); 
    if (keyPressed && key == 
ENTER) {              
      stage = 1; 
    } 
  } else if (stage == 1) { 
    background(0, 0, 
position.y*255/(9*height/10));  
//fading bground 
     //add background shapes here 
    fill(50, 0, 50);             //fill for 
ground 
    if (position.x < 0) { 
      position.x -= velocity.x;    
      velocity.x *= -.5;             
//inelastic bounce 
    } 
  } else if (stage == 2) { 
    //add new background 
    //add new background shapes 
    //add new fill for ground 

  } else if (stage == 3) { 
    background(200); 
    //add new background shapes 
    //add new fill for ground 
    if (position.x > width) { 
      position.x -= velocity.x; 
      velocity.x *= -.5;         //inelastic bounce 
    } 
  } 
  pushMatrix(); 
  if (position.y < height/6) { 
    translate(0, height/10-
position.y+height/15);   //ground moves 
down when you go up 
  } 
  rect(0, 9*height/10, width, height/10);  
//Ground 
  popMatrix(); 
 
  if (position.x > width) { 
    position.x = 0; 
    stage += 1;             //increase stage on 
right 
  } 
  if (position.x < 0) { 
    position.x = width; 
    stage -=1;                    //decrease stage on 
left 
  } 
  if (position.y > 9*height/10) { 
    position.y = 9*height/10; 
    velocity.mult(.9); 
  } 
  if (position.y < height/15) { 
    position.y = height/15; 
    velocity.y*=0.1; 
  } 
 
//Enter your acceleration controls here 
 
  position.add(velocity);     //velocity 
Equation 
  fill(200, 0, 0); 
  ellipse(position.x, position.y, 25, 25);   
//Mover 
}
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Project 8: Bouncer 
 
Background: In the collision project, we learned how to bounce objects based on their 
position.  Now, let’s learn how to make them bounce off other objects based on color.   
 
Mission 1: Add bouncer objects to your previous projects, especially the rocket sketch. 
 
Mission 2: Make these objects do something other than bouncing.  For example, maybe if 
you hit one, game over. 
 
Quick Reference: First, at the very top, declare a color variable to work with… 
 
color bounce = color(0, 0, 0); 
 
Then, in one of your stages, draw a shape with a unique red fill parameter… 
 
fill(1, 200, 0); 
rect(400, 400, 50, 50); 
 
Lastly, get the pixel color at the location of your object.  In this example, the get() 
function requires us to round position variables, since they are float variables and we 
need int variables.  Be sure to put this code in before you draw an object at the location.  
Otherwise, it will just get the color of your object and not of the background shapes.  If 
you move inside a shape with the unique red parameter, in this case any shape with red 
set to 1 or 251, the object will bounce off with a significant force.  You can do the same 
thing with the green() or blue() functions. 
 
bounce = get(round(position.x), round(position.y)); 
  if (red(bounce) == 1 || red(bounce) == 251) { 
    velocity.mult(-3); 
  } 
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Project 9: Cannon 
 
Background: This is a follow up to our projectile project.  This time, we are going to add 
interactivity to control the initial velocity of the launch.  After projectiles are launched, the only 
forces are gravity and air drag (if air is present).  The reference code is a simulated cannon that 
sets the launch angle based on mouseY and the initial speed based on mouseX.  It launches when 
you click the mouse.  The projectile will launch at the angle shown by the line in the lower left 
corner.  To reset, click the mouse again.   
 
Mission 1: Tweak the visuals of the reference code.  And try turning off the background in 
draw().  You can make some nice parabolas with this one. 
 
Mission 2: Tweak the numbers in the reference code.  Avoid changing math related radians and 
degrees.  You can change the speed of a projectile, but you cannot change the number of radians 
in a degree.  By the way, Processing (and most mathematicians) use radians instead of degrees.  
The conversion is pretty straightforward.  180 degrees is equal to 3.14 radians  One more thing.  
You will notice a % symbol in the code.  It does not mean percent.  It stands for modulo, which 
divides the first number by the second number and then returns the remainder.  For example, 10 
% 2 = 0, 10 % 3 = 1, and 10 % 4 = 2. 
 
Mission 3: Add air friction to the simulation. 
 
Mission 4: Add a target to the simulation. 
 
Quick Reference: 
PVector cannon; 
float radians; 
float degrees = 0; 
int integer = 0; 
PVector position = new PVector(0, 0); 
PVector velocity = new PVector(0, 0); 
PVector acceleration = new PVector(0, 
.098); 
 
void setup() { 
  fullScreen(); 
  background(0); 
} 
void draw() { 
  background(0); 
  if (integer % 2 < 1) { 
    fill(0); 
    noStroke(); 
    rect(100, 60, 200, 50); 
    fill(255); 
    position.set(0, height); 
    radians = 3.14*degrees/180; 
    cannon = 
PVector.fromAngle(radians); 
    degrees = 90*mouseY/height+270; 
    cannon.setMag(mouseX/2); 

    text("degrees", 100, 80); 
    text(360-degrees, 100, 100); 
    text("x", 180, 80); 
    text(cannon.x, 180, 100); 
    text("y", 240, 80); 
    text(abs(cannon.y), 240, 100); 
    stroke(0, 200, 0); 
    strokeWeight(10); 
    pushMatrix(); 
    translate(0, height); 
    line(0, 0, cannon.x, cannon.y); 
    popMatrix(); 
    velocity.x = cannon.x/30; 
    velocity.y = cannon.y/30; 
  } 
  if (integer % 2 > 0) { 
    noStroke(); 
    fill(random(150, 255), 0, 0); 
    ellipse(position.x, position.y, 20, 20); 
    position.add(velocity); 
    velocity.add(acceleration); 
  } 
} 
void mouseClicked() { 
  integer++; 
}
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Project 10: Empire State Coin Drop 
 
Background: There is a myth that a penny dropped from the Empire State Building would 
be fatal if it hit a passerby on the sidewalk below.  This turns out to be false, but it is an 
interesting idea for an experiment.  Since we do not have an Empire State Building and it 
is not a particularly safe experiment anyway, let’s simulate this event. 
 
Mission 1: Sketch the Empire State Building and add a projectile motion simulator to the 
top. 
 
Mission 2: Add a building across the street so your projectile will bounce off. 
 
Mission 3: Add a target on the ground. 
 
Quick Reference: The Empire State Building has 6,500 windows.  You do not need to 
draw all of them, or even a quarter of them, but drawing windows one by one is a tedious 
process.  Luckily, we can use a for loop to solve the problem.  A single for loop can draw 
a line of windows like this... 
 
  for (int x = 0; x < 7; x++) { 
    rect(100+x*50, 200, 20, 30); 
  } 
 
Use a nested for loop to make a full grid... 
 
  for (int x = 0; x < 7; x++) { 
    for (int y = 0; y < 5; y++) { 
      rect(100+x*50, 200+100*y, 20, 30); 
    } 
  } 
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Project 11: Advanced 
 
Background: There are lots of ways to proceed from here.  Below, you will see three 
missions to help you continue your coding journey. 
 
Mission 1: There are more 3D Primitives in P5.js, which you should check out too.  But 
P3 has two important volumetric shapes, sphere and box.  First, be sure to add “P3D” to 
the size function like this… 
 
size(800, 600, P3D); 
 
Next, box takes three parameters for the (x, y, z) dimensions.  And sphere takes one 
parameter for radius.  Use the translate and rotate functions to move 3D shapes. 
 
Mission 2:  Sign up for an account on Open Processing and save any code you want to 
keep.  Switch to Processing.js mode to use P3 syntax. 
 
Mission 3: In programming, classes store a set of functions with relevant variables and 
parameters.  For example, if you design a car object that will drive under certain 
conditions, you may want to make a car class.  This will give you the ability to quickly 
make copies of the car without rewriting all the functions.  The basics are available 
here… 
 
https://processing.org/reference/class.html 
 
https://processing.org/reference/Object.html 
 
Additional Resources:  
 
www.openprocessing.org                 
 
http://shiffman.net/ 
 
http://natureofcode.com/book/ 
 
https://www.youtube.com/user/shiffman 
 
http://formandcode.com/ 
 
https://www.kadenze.com/courses/introduction-to-programming-for-the-visual-arts-with-
p5-js/info 
 
https://www.kadenze.com/courses/the-nature-of-code/info 
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