Interactions Between Amyloid-beta and Microglial Cells

Lisa Gouwens
University of Missouri-St. Louis, lkpbn7@mail.umsl.edu

Follow this and additional works at: https://irl.umsl.edu/dissertation

Part of the Other Chemistry Commons

Recommended Citation

This Dissertation is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Dissertations by an authorized administrator of IRL @ UMSL. For more information, please contact marvinh@umsl.edu.
INTERACTIONS BETWEEN AMYLOID-BETA AND MICROGLIAL CELLS

by

Lisa K. Gouwens

MS, Biochemistry & Biotechnology, University of Missouri-St. Louis, 2011
MEd, Secondary Education, University of Arkansas-Monticello, 2001
BS, Biology, University of Arkansas-Monticello, 1998

A Dissertation
Submitted to the Graduate School
of the
University of Missouri – Saint Louis

In partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Chemistry
with an emphasis in Biochemistry

December 2017

University of Missouri – Saint Louis

Saint Louis, Missouri

Advisory Committee

Michael R. Nichols, PhD (Chairperson)
Cynthia M. Dupureur, PhD
Wesley R. Harris, PhD
Bethany K. Zolman, PhD
for

Willis Eugene Gouwens

Robert Veld Gouwens

Donald Lee Gouwens

and their families
ACKNOWLEDGEMENTS

None of this would be possible without my advisor, Dr. Michael Nichols. I’ve been around UMSL for a long time, therefore I appreciate your limitless patience. Thank you for being a great teacher and mentor.

Members of the advisory committee, Drs. Dupureur, Harris, and Zolman, have all taught courses in which I was a student. In those classrooms, I grew to respect and admire you. I’m so grateful to you all for being part of my committee. In addition, I treasure the mentoring from Dr. Dupureur as we worked together in the biochemistry teaching lab. Many thanks!

What a privilege it’s been to work with everyone in the Nichols Lab. Geeta, Shana, and Kelley, you were there in my first year and I thought I’d never know as much as you all about Ab. Priyanka, you were a longsuffering partner in biochemistry lab and my first friend at UMSL. Sanjib, we discovered that the third decimal place is important when betting a beer on who has the best R^2 value on a standard curve. Ben, I’ll always remember your epic skills with Photoshop. Mudar and Nathan, microvesicles are nearly invisible, and difficult to work with, but you persevered. Victoria and Fatima, I truly enjoyed our time in the Golden Age of the lab. Nyasha, together we learned that food in certain hotel restaurants can be delicious but is ridiculously overpriced. Next time, let’s just order pizza.
I would also like to thank Dr. David Osborn of the Microscope Imaging and Spectroscopy Technology Lab at UMSL. Your help with imaging Aβ and microvesicles was invaluable and I enjoyed working with you.

Throughout my life I’ve been blessed with excellent science teachers, starting with Ms Gifford in 4th Grade at St. Anne Elementary. Going to school in the evening seemed like a silly idea until I saw the moon and stars through a telescope. Thank you for showing me the beauty of the universe. Science got hold of me for good when I learned about photosynthesis in high school biology class; thank you, Mr. Kelly. At UAM, Dr. Eric Sundell, Dr. Walt Godwin, and Dr. Morris Bramlett were instrumental in demonstrating both how to conduct science and how to teach.

As for my family, it would take countless pages to recount all of the joy each of you brings into my life. I love you. Your support and encouragement have sustained me during this journey. Thank you!
TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. iii
LIST OF TABLES.. vii
LIST OF FIGURES... viii
LIST OF ABBREVIATIONS... ix
ABSTRACT .. xi

CHAPTER 1: INTRODUCTION .. 1
 1.1 Alzheimer’s disease overview ... 1
 1.2 Amyloid beta 42 (Aβ42) .. 2
 1.3 Microglia ... 6
 1.3.1 Inflammation and microglia ... 6
 1.3.2 Cellular uptake of extracellular material .. 8
 1.3.3 Internal trafficking of material in microglia ... 10
 1.3.4 Microglial P2X7 receptors ... 10
 1.4 Microvesicles ... 12

CHAPTER 2: METHODS ... 15
 2.1 Aβ preparation ... 15
 2.1.1 Aβ aliquot lyophilization ... 15
 2.1.2 Preparation of Aβ monomers, protofibrils, and fibrils ... 16
 2.1.3 Fluorescent labeling of Aβ .. 16
 2.1.4 Size exclusion chromatography (SEC) ... 20
 2.2 Characterization of fluorescently labeled Aβ ... 21
 2.2.1 Fluorescence measurements .. 21
 2.2.2 Absorbance measurements .. 23
 2.2.3 Aβ concentration calculations ... 23
 2.2.4 Electron microscopy .. 26
 2.2.5 Dynamic light scattering ... 28
 2.3 Cell Culture ... 32
 2.3.1 BV-2 microglia culture .. 32
 2.3.2 Primary microglia isolation and culture ... 33
 2.4 Microglial AF488-Aβ uptake experiments .. 34
 2.4.1 Aβ treatment for ELISA and confocal LSM analysis ... 34
 2.4.2 Aβ treatment for fluorescence plate reader and dot blot analysis 35
 2.4.3 BV-2 microglia cell binding assay .. 36
 2.5 Fluorescence quantification for AF488-Aβ-treated microglia .. 36
 2.6 Immuno-detection of Aβ and confocal microscopy .. 39
 2.6.1 Preparation of fixed cells for microscopy .. 39
 2.6.2 Confocal microscopy .. 40
 2.7 Immuno-dot blot ... 42
 2.8 ELISA .. 43
2.9 Microvesicle generation and isolation from BV-2 and primary microglia ... 44
2.10 Fluorescence measurements of microvesicles ... 46
2.11 Confocal LSM imaging of microvesicles ... 46
2.12 Preparation of microvesicles for resin-embedded TEM ... 47
2.13 BCA Assay ... 48

CHAPTER 3: Aβ INTERACTIONS WITH MICROGLIAL CELL SURFACES ... 49
3.1 Binding of distinct Aβ conformers .. 49
3.2 Time-dependence of Aβ42 interaction with BV-2 cell surfaces ... 53
3.3 Effect of temperature on Aβ42 binding to BV-2 cell surfaces ... 55
3.4 Effect of Aβ42 concentration on binding to BV-2 cell surfaces .. 57
3.5 Correlation of Aβ42 binding and BV-2 activation .. 60

CHAPTER 4: SELECTIVE INTERNALIZATION OF Aβ BY MICROGLIA ... 64
4.1 Comparison of unlabeled and fluorescently-labeled Aβ42 monomer, protofibril, and fibril interactions with BV-2 and primary microglia .. 65
4.2 Time dependent internalization of AF488-Aβ by primary microglia ... 67
4.3 Effect of AF488-Aβ concentration on primary microglial uptake .. 72
4.4 Non-saturable Aβ uptake in primary microglia ... 73
4.5 Colocalization analysis of AF488-Aβ with lysosomes ... 80

CHAPTER 5: MICROVESICLES ... 86
5.1 Microvesicles from BV-2 microglia ... 86
 5.1.1. A488-Annexin V visualization of BV-2 microvesicles ... 87
 5.1.2. Bicinchoninic acid protein assay of BV-2 microvesicles ... 88
 5.1.3. Dynamic light scattering characterization of BV-2 microvesicles .. 91
 5.1.4. Transmission electron microscopy of resin-embedded BV-2 microvesicles .. 93
 5.1.5 Tracking microvesicles with NBD C6-HPC fluorescence ... 96
5.2 Characterization of microvesicles from primary microglia ... 99
5.3 Overall conclusion ... 101

BIBLIOGRAPHY .. 103
VITA ... 114
LIST OF TABLES

CHAPTER 2 METHODS
 2.1 Stoichiometry of protofibril and monomer peak fractions ..27

CHAPTER 3 Aβ INTERACTIONS WITH MICROGLIAL CELL SURFACES
 3.1 Aβ internalization in BV-2 and other cell lines ...58

CHAPTER 4 AF488-Aβ INTERNALIZATION BY PRIMARY MICROGLIA
 4.1 Primary microglia internalization of Aβ experiments ...74
 4.2 Lysosome colocalization experiments ...82
LIST OF FIGURES

CHAPTER 1 INTRODUCTION
1.1 Aβ and APP .. 3
1.2 Aβ aggregation ... 4
1.3 Microglial activation and cytokine production 7
1.4 Mammalian cell uptake .. 9
1.5 Lysosomes .. 11
1.6 Microvesicles ... 13

CHAPTER 2 METHODS
2.1 Structure of Alexa Fluor® 488 tetrafluorophenyl ester 18
2.2 Labeling reaction mechanism for Aβ and amine-reactive AF488-TFP 19
2.3 Representative UV trace for SEC elution overlaid with fluorescence measurements of fractions 22
2.4 AF488 absorbs at 280 nm .. 24
2.5 Comparison of UV-Vis absorbance measurement methods 25
2.6 Transmission electron micrographs of unlabeled Aβ and AF488-Aβ42 29
2.7 Dynamic light scattering ... 31
2.8 Plate reader fluorescence, AF488-Aβ 38
2.9 Confocal laser scanning microscopy 41

CHAPTER 3 Aβ INTERACTIONS WITH BV-2 MICROGLIAL CELL SURFACES
3.1 Binding of distinct species of Aβ 50
3.2 Time dependence of surface binding to BV-2 microglia 54
3.3 Temperature effect on surface binding to BV-2 microglia 56
3.4 Aβ42 concentration dependence of cytokine secretion by BV-2 microglia ... 61
3.5 Correlation of Aβ42 binding and BV-2 cell activation 63

CHAPTER 4 AF488-Aβ INTERNALIZATION BY PRIMARY MICROGLIA
4.1 AF488 fluorophore does not affect primary microglial interaction with Aβ 66
4.2 Internalization of AF488-Aβ by primary microglia 68
4.3 Primary microglia take up AF488-Aβ protofibrils, but not AF488-Aβ monomers, in a time dependent manner .. 71
4.4 Concentration dependent internalization of AF488-Aβ by primary microglia 77
4.5 Competition/saturation images and quantitation 79
4.6 Lysosome colocalization ... 85

CHAPTER 5 MICROVESICLES
5.1 AF488-Annexin V visualization of microvesicles from BV-2 cells 89
5.2 BCA assays .. 91
5.3 Dynamic light scattering analysis of microvesicles 93
5.4 TEM of resin-embedded BV-2 microvesicles 94
5.5 NBD C6-HPC fluorescence indicates the presence of microvesicles 97
LIST OF ABBREVIATIONS

Aβ42 – amyloid beta 1-42
aCSF – artificial cerebrospinal fluid
AD – Alzheimer’s disease
AF488 – Alexa Fluor® 488
AF488-Aβ42 – Alexa Fluor® 488 amyloid beta 1-42
AF488-TFP – Alexa Fluor® 488 tetrafluorophenyl ester
APP – amyloid precursor protein
BCA – bicinchoninic acid
Bz-ATP – 2’(3’)-O-(4-Benzoylbenzoyl)adenosine 5’-triphosphate triethylammonium salt
CSF – cerebrospinal fluid
DAMP – danger associated molecular pattern
DLS – dynamic light scattering
DMEM – Dulbecco’s modified Eagle’s medium
ELISA – enzyme-linked immunosorbent assay
FITC – fluorescein isothiocyanate
IL-1β – interleukin 1β
MALS – multi-angle light scattering
MIST – microscope imaging and spectroscopy technology
MV – microvesicle
NBD C6-HPC – 2-(6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl-1-
hexadecanoyl-sn-glycero-3-phosphocholine

PAMP – pathogen associated molecular pattern

PC – phosphatidylcholine

PRR – pattern recognition receptor

PS – phosphatidylserine

R_{H} – hydrodynamic radius

SEC – size exclusion chromatography

TEM – transmission electron microscopy

ThT – thioflavin T

TLR – toll-like receptor

TNFα – tumor necrosis factor α

UV – ultraviolet

ZEN – Zeiss Efficient Navigation
ABSTRACT

Gouwens, Lisa K. Ph.D., University of Missouri-St. Louis, December 2017. Interactions between amyloid-beta and microglial cells. Major Professor: Michael R. Nichols.

Alzheimer’s disease (AD), the most common cause of dementia, is a neurodegenerative condition characterized by loss of memory and intellectual abilities. Intracellular plaques of aggregated amyloid-beta (Aβ) protein are a well-known pathology associated with AD. Although symptoms usually appear late in life, the accumulation of Aβ begins decades earlier and causes activation of microglia, the brain’s immune cells. The ensuing inflammation contributes significantly to neurodegeneration. Determination of the particular form of Aβ that causes the most damage in the brain is one of the major questions in the AD field. My research focused on the interactions of microglia with monomers, protofibrils, and fibrils of Aβ. I found that protofibrils, not monomers or fibrils, bind to microglial surfaces, and I confirmed earlier reports that protofibrils elicit a proinflammatory response from microglia. These results were consistent regardless of changing conditions such as temperature, incubation time and Aβ concentrations.

Another aspect of my research was to investigate how microglia internalize different forms of Aβ. The distinction between monomers and protofibrils may have
physiological significance in AD, yet there are few reports in the literature in which these two forms of Aβ are examined separately. Monomers and protofibrils were carefully separated by size exclusion chromatography before cell treatments, which sets apart this work from research done in other labs. Multiple conditions and strategies, including a novel quantitation method for internalized Aβ, demonstrated that microglia favor internalization of protofibrils over monomers. Further experiments determined that microglia are capable of internalizing protofibrils in high amounts without degradation. A significant amount of Aβ protofibrils remain in the cytoplasm and are not routed to lysosomes, contradicting reports in the literature.

A third research objective involves the study of microvesicles released from microglia. Microvesicles may have a role in AD by transporting Aβ within the brain. I conducted experiments in which microglia were stimulated to produce microvesicles, and carried out assays to both confirm the presence of and visualize microvesicles. The studies described here contribute to the understanding of the interactions between microglia and Aβ, potentially leading to a possible treatment or cure for AD.
CHAPTER 1: INTRODUCTION

1.1 Alzheimer’s disease overview

As the number of people affected by Alzheimer’s disease (AD) continues to grow, investigations into the basic biochemistry and cellular aspects of this neurodegenerative disorder continue. Ultimately fatal, AD currently afflicts over 5 million people in the United States, and this number is expected to increase to 16 million by 2050, according to the Alzheimer’s Organization (March 2015 Fact Sheet). Tens of millions of people worldwide are victims of AD (World Health Organization), and this tally is expected to triple by 2050.

In most cases, AD manifests itself late in life, with loss of memory, difficulty recalling new information, and loss of intellectual abilities. These symptoms were associated with extracellular plaques of amyloid beta (Aβ) and intraneuronal tau tangles, first described by Dr. Alois Alzheimer in 1907 (Stelzmann, et al., 1995). Yet, the buildup of Aβ and tau begins decades before the manifestation of symptoms (Selkoe, 2011). While tau is an integral component of the disease process, the aggregation of Aβ between brain cells precedes the formation of tau tangles within neurons (Selkoe and Hardy, 2016). What follows is dysfunction in a variety of cell types in the brain (vascular cells, pericytes, astrocytes, oligodendrocytes, and neurons), including Aβ clearance dysfunction and inflammation in microglia (discussed below), as a response to or consequence of Aβ build-up in the brain (De Strooper and Karran, 2016).
1.2 Amyloid beta 42 (Aβ42)

Aβ is a peptide that is derived from a large transmembrane protein, up to 770 amino acids in length, known as amyloid precursor protein [APP; (Wilkins and Swerdlow, 2016)]. The functions of APP include neuronal development, intracellular transport, signaling, and homeostasis (van der Kant and Goldstein, 2015). Figure 1.1A shows a schematic for APP with labels for the transmembrane domain as well as the sites of cleavage for α-, β, and γ-secretases (Selkoe, 2011). Sequential cleavage by β-secretase then γ-secretase results in the formation of the Aβ peptide, which can be 36-42 amino acids in length (van der Kant and Goldstein, 2015). It is the 42-residue peptide that aggregates, causing the well-known pathology of intercellular plaques in AD (Jarrett, et al., 1993).

The Aβ42 monomer is a disordered peptide with a molecular weight of 4.514 kDa. The amino acid sequence, shown in Figure 1.1B, is color-coded to show residue properties. The aggregation process shown in Figure 1.2 begins during the rate-limiting nucleation phase and is followed by assembly of the aggregation nuclei via non-covalent interactions (Jarrett, et al., 1993) to form soluble dimers, trimers and so on, which results in a solution of polydisperse soluble oligomers (Bitan, et al., 2003; Kayed, et al., 2003; Mittag, et al., 2014). Nucleation dependent polymerization is characterized by a lag phase, which is then followed by rapid aggregation (Jarrett and Lansbury, 1993). Subsequent steps lead to the formation of soluble protofibrils (Harper, et al., 1999; Mittag, et al., 2014; Walsh, et al., 1997, 1999) and insoluble fibrils(Harper, et al., 1997). The protofibril-to-fibril conversion can occur via monomer addition to protofibril ends,
Figure 1.1. Aβ and APP. (A) APP processing (Selkoe, 2011) (B) Aβ42 schematic with one letter abbreviations for residues.
Figure 1.2 Aβ aggregation. Monomers are disordered peptides. The pathways which do not lead to aggregation (annulus, dodecamer, and amylospheroid) are distinct from the pathway which results in fibril aggregation via protofibrils. From Figure 1, Roychaudhuri, et al. (2009).
the joining of protofibril tips to one another, and lateral association of protofibrils (Harper, et al., 1999; Nichols, et al., 2002). Aβ42 fibrils make up the dense cores of intercellular plaques (Terry, et al., 1964) with soluble Aβ on the periphery of the plaques (Koffie, et al., 2009).

Protofibrils are fibril precursors (Harper, et al., 1997; Walsh, et al., 1997) that have beta sheet structure (Nichols, et al., 2015; Walsh, et al., 1999). Though protofibrils are not as stable as fibrils (Kheterpal, et al., 2003; Walsh, et al., 1999), they resemble fibrils in thioflavin T (ThT) binding and circular dichroism (Walsh, et al., 1999). Protofibril lengths have been reported as <200 nm (Walsh, et al., 1997), and our measurements of protofibril lengths have been consistent with that, ranging from 50 ± 16 nm to 78 ± 35 nm (Nichols, et al., 2015; Paranjape, et al., 2012). Reported diameters for protofibrils vary from 4-6 nm (Harper, et al., 1997). The hydrodynamic radius (R_H) of protofibrils, measured by dynamic light scattering (DLS), has been reported to be 10-50 nm (Walsh, et al., 1997), and our measurements of 21±6 nm (Paranjape, et al., 2012), 21.9 ± 4.0 nm (Paranjape, Terrill, and Gouwens, et al., 2013), and 23.6 ± 3.3 nm (Nichols, et al., 2015) fall into that range. Analyzed by SEC with in line multi-angle light scattering (MALS), protofibril molecular weights (M_W) ranged from 200-2600 kDa, with an average of 884±302 kDa, (Nichols, et al., 2015). We are particularly interested in protofibrils because they have been shown to be toxic to neurons (Walsh, et al., 1999), disrupt ion channels (Ye, et al., 2003), and inhibit long-term potentiation in the hippocampus (O'Nuallain, et al., 2010). Additionally, results from our lab have shown that the soluble protofibrils of Aβ42 are responsible for the activation of macrophages
and microglia that results in the production of cytokines (Ajit, et al., 2009; Paranjape, et al., 2012; Paranjape, Terrill, and Gouwens, 2013).

1.3 Microglia

During early embryonic development, hematopoietic stem cells give rise to microglial cells, which migrate to the central nervous system [CNS, (Ransohoff and Cardona, 2010)]. Microglia are macrophages in the CNS, shaping neural circuits during development and throughout life (Banati and Graeber, 1994; Frost and Schafer, 2016; Ji, et al., 2013); Microglia are also involved in surveillance of the intercellular space, cleaning up dead cells and debris, and responding to threats (Kettenmann, et al., 2011). Activated microglia can be found near plaques in AD brain (McGeer, et al., 1987; Meyer-Luehmann, et al., 2008), along with proinflammatory cytokines (Dickson, et al., 1993), and have been observed accumulating rapidly around new plaques (Meyer-Luehmann, et al., 2008).

1.3.1 Inflammation and microglia

The microglial inflammatory response, illustrated in Figure 1.3, is implicated in several CNS diseases (Frankola, et al., 2011). Though labeled “resting”, microglia use their many branches to actively read their surroundings (Kettenmann, et al., 2011). The exogenous signals that initiate inflammatory pathways, such as microbial infection, are pathogen-associated molecular patterns (PAMPs), which are molecular patterns not present in the host tissues (Tang, et al., 2012). Pattern recognition receptors (PRRs) such as toll like receptors (TLRs) sense and respond to PAMPs, initiating cell signaling pathways in an attempt to mitigate the problem (Tang, et al., 2012). Similarly, when they sense danger-associated molecular patterns (DAMPS), which are endogenous signals
Figure 1.3 Microglial activation and TNFα production (Frankola, et al., 2011).
indicating injury not related to an infection (Tang, et al., 2012), such as Aβ, microglia become activated and produce proinflammatory cytokines, including tumor necrosis factor α (TNFα) and interleukin-1β (IL-1β) (Patel, et al., 2005). Chronic inflammation is thought to be partly responsible for neurodegeneration in AD, having a significant impact before symptoms appear (McGeer and McGeer, 1998). A variety of microglial receptors are involved in AD pathology. The receptors known to elicit proinflammatory responses when stimulated by fibrillar Aβ include a complex of CD36, α6β1-integrin, and integrin associated CD47 (Bamberger, et al., 2003); CD14 (Fassbender, et al., 2004); toll-like receptor (TLR) 2 and TLR4 (Reed-Geaghan, et al., 2009); CD36 (El Khoury, et al., 2003; Moore, et al., 2002); and a CD36-TLR4-TLR6 complex (Stewart, et al., 2010). Others include complement receptors, Fc receptors that bind the constant domain of immunoglobulin, formyl peptide receptors 1 and 2, receptor for advanced glycation end products, nod-like receptor protein, CD33, scavenger receptor A, and triggering receptor expressed by myeloid cells (Doens and Fernández, 2014).

1.3.2 Cellular uptake of extracellular material

Mammalian cells ingest materials by way of phagocytosis or pinocytosis. Figure 1.4 provides an illustration of general mammalian cell uptake. Only pathogens and large particles are ingested through phagocytosis, which requires receptors. Of the five forms of pinocytosis, macropinocytosis does not require receptors. In this type of internalization, cell surface membranes produce waves, or ruffles, that extend into the extracellular space and then reconnect with the plasma membrane, bringing into the cell any particles that are in the surrounding medium (Conner and Schmid, 2003).
Figure 1.4 Mammalian cell uptake (Conner and Schmid, 2003).
Receptors known to be involved with Aβ-microglial uptake of extracellular material include scavenger receptors (Paresce, et al., 1996); a complex of CD36, α6β1-integrin, and CD47 (Koenigsknecht and Landreth, 2004); complement receptor 3 (CR3, Mac-1) signal regulatory protein β1 (SIRPβ1) (Gaikwad, et al., 2009); and P2Y4 (Li, et al., 2013). Surface receptors such as toll like receptors (TLRs) have been shown to be involved in the activation of microglia as they interact with Aβ42 (reviewed in Su, et al., 2015). Mandrekar, et al. (2009) demonstrated that microglia take up soluble Aβ via fluid-phase macropinocytosis, which is not mediated by receptors.

1.3.3 Internal trafficking of material in microglia

Most cells have lysosomes, acidic organelles that break down misfolded proteins and other unwanted material. Material can be routed to lysosomes through the pathways illustrated in Figure 1.5. Once ingested substances are internalized, they become part of a vesicle known as an early endosome (EE), which develops into a late endosome (LE)/multivesicular body (MVB). An alternative is that the LE becomes a recycling endosome (RE) which moves the material out of the cell. Some material will become part of the endolysosome (EL), which is formed when the LE/MVB fuses with a lysosome. Normally, unwanted material would be degraded within the acidic lysosome. As discussed in Chapter 4, this is not always the case for microglia interacting with Aβ.

1.3.4 Microglial P2X7 receptors

Characterized in 1996 (Surprenant, et al., 1996), P2X7 receptors are found in all types of immune cells, including microglia (Burnstock and Knight, 2004; Chen and Brosnan, 2006). With regard to AD, the presence of P2X7 receptors is increased in
Figure 1. Delivery to lysosomes. Lysosomes (L) are terminal compartments of the endocytic and autophagic pathways (AP). Newly synthesized lysosomal proteins are delivered to them from the trans-Golgi network (TGN) via early endosomes (EE), recycling endosomes (RE), and late endosomes/multivesicular bodies (LE/MVB). Following lysosome fusion with late endosomes to form an endolysosome (EL), lysosomes are re-formed by a maturation process.

Figure 1.5 Lysosomes (Luzio, et al., 2014)
microglia near plaques in a mouse model of AD (Parvathenani, et al., 2003) and in human AD brains (MClarnon, et al., 2006; Takenouchi, et al., 2010). P2X$_7$ receptors respond to ATP at millimolar concentrations, and at even lower concentrations for the agonist 2’,3’-(benzoyl-4-benzoyl)-ATP (BzATP) (Surprenant, et al., 1996). In response to ATP and/or LPS, microglia release inflammatory cytokines such as TNFα (Hide, et al., 2000) and IL-1β (Brough, et al., 2002; Ferrari, et al., 1997; Rampe, et al., 2004). The cytokine release has been shown to occur through microvesicle production (Bianco, et al., 2005).

1.4 Microvesicles

An important aspect of intercellular communication is the release of membrane-bound packets of cytoplasm from cells (Budnik, et al., 2016). These extracellular vesicles can be categorized by size and origin into two groups: exosomes are 30-100 nm in diameter and part of larger multi-vesicular bodies, and microvesicles are 100-1000 nm in diameter and form as buds from the cell surface (Budnik, et al., 2016). As shown in Figure 1.6 (top), microvesicles are complex, having varied receptors and cargoes. The budding process is also illustrated in Figure 1.6 (bottom), and of special interest for my work is the externalization of phosphatidylserine (PS), which can be used in experiments to verify the presence of microvesicles.

Microvesicles have various roles outside of direct AD involvement. THP-1 monocytes, immune cells in the bloodstream, release IL-1β via microvesicles (MacKenzie, et al., 2001). Microglia also release microvesicles carrying cytokines when stimulated with ATP (Bianco, et al., 2005). In 2009, Bianco and colleagues demonstrated
Figure 1.6 Microvesicles. Top: Structure. Bottom: formation from plasma membrane. Note the externalization of phosphatidylserine. (Hugel, et al., 2005)
the release of microvesicles from astrocytes and further showed that the mechanism proceeds through a p38 MAPK cascade and requires acid sphingomyelinase. Microglia-to-neuron signaling was demonstrated by Antonucci, et al. (2012), and microvesicle stimulation of neuronal activity was shown by Turola, et al. (2012). The usefulness of microvesicles in identifying neuroinflammation caused by multiple sclerosis and measuring reduction of neuroinflammation through treatment was reported by Verderio, et al. (2012).

With regard to microvesicles in AD, and from microglia in particular, there are interesting findings. Bianco, et al. (2005) demonstrated that microglia shed microvesicles when stimulated with ATP, and that the microvesicles contain the cytokine IL-1β. Microvesicles from microglia can interact with fibrillar Aβ and convert it to a soluble and more toxic Aβ form (Joshi, et al., 2014). Studies of human cerebrospinal fluid revealed that the combination of microvesicles and Aβ42 is toxic to human brain cells and contributes to the spread of neurodegeneration through the AD brain (Agosta, et al., 2014). The effect of microglial microvesicles on Aβ42 aggregation and the role of microvesicles in Aβ42 trafficking within and between cells are growing areas of research emphasis. Chapter 5 describes the work done to connect microvesicle production with Aβ stimulation in microglia.
CHAPTER 2: METHODS

2.1 Aβ preparation

The Aβ42 peptide used in my experiments was supplied by the same group under two different company names. They were known as the Large Scale Peptide Synthesis Laboratory in the W.M. Keck Biotechnology Resource Laboratory, Yale School of Medicine (Yale, New Haven, CT). In June, 2013, the lab ceased operation under that name, and in May of 2014 began work as the ERI Amyloid Laboratory, LLC (ERI, Oxford, CT). The ERI Amyloid Laboratory is our current Aβ peptide supplier. Of the seven labeled preparations, the first three were from Yale, and the last 4 were from ERI. There were no significant differences between the peptide batches. The sequence and purity of all Aβ peptide shipments were confirmed by mass spectrometry at ERI.

2.1.1 Aβ aliquot lyophilization

Aβ42 was obtained in lyophilized form and stored at -20 °C. Nucleation of amyloid proteins leads to rapid aggregation and occurs quickly in a concentrated solution (Jarrett and Lansbury, 1992), so dissociating any pre-formed Aβ seeds is necessary to prevent aggregation. To prepare monomeric aliquots, the peptide was dissolved in 100% hexafluoroisopropanol (HFIP) (Sigma-Aldrich, St. Louis) at 1 mM and separated into 1 mL aliquots in sterile, siliconized microcentrifuge tubes. The tubes were then left uncovered, at room temperature, overnight in a fume hood to evaporate the HFIP. On the following day, the aliquots were vacuum-centrifuged to remove any residual HFIP. A
thin film of Aβ was deposited on the inside walls of the microcentrifuge tubes, which were then stored in dessicant at -20 °C.

2.1.2 Preparation of Aβ monomers, protofibrils, and fibrils

A modified (without glucose) artificial cerebrospinal fluid (aCSF) was used to prepare Aβ solutions. The composition of our aCSF is 15 mM NaHCO₃, 1 mM Na₂HPO₄, 130 mM NaCl, 3 mM KCl, pH 7.8. This aCSF solution was designed to mimic the ionic strength of cerebrospinal fluid and cell culture medium while leaving out the supplements that might interfere with spectroscopy and retaining the cell compatibility of growth medium (Paranjape, Terrill, and Gouwens, et al., 2013). The solution of Aβ42 monomers and protofibrils was prepared by dissolving lyophilized Aβ42 (1 mg) in 50 mM NaOH to yield a 2.5 mM Aβ42 solution, which was then diluted to 250 µM Aβ42 in prefiltered (0.22 µm) artificial cerebrospinal fluid. To allow protofibril formation, the Aβ42 solution was incubated at room temperature for 30 min - 4 h. The wide range of incubation times was necessary as some of the aliquots required more time to form soluble aggregates. At this point, unlabeled Aβ42 was purified by size exclusion chromatography (SEC) as described in 2.1.4 below. Peptide to be fluorescently labeled underwent the procedure described in 2.1.3. Fluorescently-labeled Aβ4 fibrils were prepared by leaving monomer preps at 4 °C for two or more weeks; usually fibrils form after two weeks.

2.1.3 Fluorescent labeling of Aβ

In some experiments with microglia, I conducted immunofluorescence assays to determine the location of Aβ42 on or in treated cells (Paranjape, et al., 2012; Paranjape, Terrill, and Gouwens 2013). However, direct labeling with a fluorophore is a more
efficient method for tracking microglial interactions with Aβ42. This strategy has been used by many research groups (for example, Fu, et al., 2012; Halle, et al., 2008; Li, et al., 2012; Liu, et al., 2010; Mandrekar, et al., 2009; Paresce, et al., 1997). Alexa Fluor® 488 carboxylic acid, 2,3,5,6-tetrafluorophenyl ester (AF488-TFP, Life Technologies) is an amine-reactive fluorophore that has been used to label soluble oligomers of Aβ42 (Jungbauer, et al., 2009). The structure of AF488-TFP is shown in Figure 2.1. In their experiments, Jungbauer and colleagues compared oligomers labeled before aggregation to oligomers labeled after aggregation. Their work showed that allowing the peptide to aggregate before conducting the labeling experiment, rather than labeling monomers first and allowing them to aggregate, produced soluble, labeled Aβ oligomers that are most similar to unlabeled Aβ oligomers. Therefore, I used a solution containing both monomers and protofibrils, prepared as described above, for the labeling reaction.

Attaching a fluorescent label directly to the peptide had several advantages. The direct fluorescence meant that I could visualize Aβ42 both on and in cells without the risk of non-specific interactions between antibodies and non-target proteins. The strength of the fluorescence allowed visualization of Aβ42 even at low concentrations of 0.5, 1 and 2 µM. Less time was required for completing experiments, and I had the option of imaging live cells.

There are three primary amine groups in the Aβ42 monomer which can potentially interact with AF488-TFP: lysine-16, lysine-28, and the N-terminus. Each of these is a nucleophile that can attack the carbonyl carbon located between the tetrafluorophenyl group and the fluorophore of A488-TFP. The reaction mechanism for the Aβ N-terminal amine is shown in Figure 2.2.
Figure 2.1 Structure of Alexa Fluor® 488 tetrafluorophenyl ester (Life Technologies).
Figure 2.2 Labeling reaction mechanism for Aβ and amine-reactive AF488-TFP. I drew this mechanism using ChemDoodle® software (Version 7.0.1, iChemLabs.)
The manufacturer’s protocol calls for dissolving the protein to be labeled in 1 mL of sodium bicarbonate buffer pH 8.3, dissolving the dye in dimethylsulfoxide or dimethylformamide at 10 mg/mL, and then combining the two solutions. A conversation with an Invitrogen support technician confirmed that if the pH was 8.0 or higher, the labeling reaction would proceed in our aCSF buffer. The NaOH/aCSF solution in which the peptide was prepared has a pH of 8.2.

To conduct the labeling reaction, 500 µL of an Aβ42 solution with both protofibrils and monomers was added to 100 µg of AF488-TFP dry powder in the original tube from the manufacturer, mixed gently by pipet, and transferred to a 1.8 mL glass vial containing a 5-mm magnetic stir bar. A second 500 µL volume of Aβ42 solution was added to the original tube to capture any remaining powder, then transferred to the glass vial. The Aβ/AF488-TFP mixture was gently stirred for 1 h at 25°C. After stirring, the solution was transferred to a siliconized microcentrifuge tube prior to chromatographic separation.

2.1.4 Size exclusion chromatography (SEC)

Before SEC, the AF488-Aβ monomer+protofibril solution underwent centrifugation at 17,000 x g for 10 minutes to pellet any non-soluble fibrils that may have formed. Both unlabeled and fluorophore-labeled Aβ42 centrifugation supernatants were fractionated on a Tricorn Superdex 75 10/300 GL column (GE Healthcare) using an AKTA FPLC system (GE Healthcare). Prior to injection of the Aβ42, the Superdex 75 column was coated with sterile bovine serum albumin (Sigma) to prevent any non-specific binding of Aβ42 to the column matrix. 1 mL of the sample was loaded, either
Aβ42 or AF488-Aβ was eluted at 0.5 mL min⁻¹ in aCSF, and 0.5 mL fractions were collected and immediately placed on ice. Elution was monitored in-line by UV absorbance (A₂₈₀), and concentrations of unlabeled Aβ42 were determined from these absorbance values. A representative UV trace, combined with fraction fluorescence measurements, for AF488-Aβ is shown in Figure 2.3. AF488-Aβ42 concentrations were determined as described below in Section 2.2.3. Shana Terrill-Usery, Sanjib Karki, Ben Colvin, and Nyasha Makoni all assisted me with SEC.

2.2 Characterization of fluorescently labeled Aβ

2.2.1 Fluorescence measurements

AF488 has a maximum emission at 525 nm (Life Technologies). Measuring the fluorescence of each 0.5 mL fraction which can be used to confirm labeling success. If the fluorescence of the fractions lines up with the peaks on the inline trace then it is reasonable to assume that the labeling was successful. AF488-labeled Aβ42 fluorescence in SEC fractions was determined using a Cary Eclipse fluorescence spectrophotometer. Emission scans of 500-600 nm were obtained with an excitation wavelength of 495 nm. The resulting curves were integrated from 505-550 nm to produce relative fluorescence units (RFU), shown in Figure 2.3 as red circles. The integrated fraction fluorescence values align well with the SEC trace peaks, which confirms the association of the fluorophore with the peptide.
Figure 2.3 Representative UV trace for SEC elution overlaid with fluorescence measurements of fractions. SEC trace (blue line) and fraction fluorescence (red circles) showing peaks for protofibrils, monomers, and unincorporated AF488-TFP (AF dye). (Gouwens, et al., 2016)
2.2.2 Absorbance measurements

An inline UV trace identified the fractions containing Aβ42. For unlabeled Aβ42, this trace is used to determine the concentration of peptide in each fraction. However, the inline UV overvalued the concentrations in each fraction of AF488-Aβ because the AF488 fluorophore absorbs at 280 nm. Manual measurements of UV absorbance were taken to use in calculations. AF488-Aβ chromatography samples were scanned from 600 to 220 nm on a Cary 50 (Varian) UV/Visible spectrophotometer. Figure 2.4 contains a representative scan of a fraction containing unincorporated AF488-TFP in aCSF that is typical of the seven labeled preps. The large peak near 500 nm is due to the fluorophore, Aβ42 has no absorbance at those wavelengths. A low amount of absorbance is visible at 280 nm (0.1 AU), and because of that I needed to calculate AF488-Aβ concentrations (see Section 2.2.3). Confirmation that using the manual absorbance measurements for calculations would be accurate came from comparing the A_{280} manual measurements to the inline UV absorbance, as is shown in Figure 2.5. Absorbance measurements of peak fractions (red circles) of protofibril, monomer, and unreacted AF488-TFP all fall on the line obtained from the inline trace (blue line). This indicates that both methods of assessing UV absorbance agree.

2.2.3 Aβ concentration calculations

Since Aβ42 and the AF488 label both contribute to total absorbance ($A_{280,\text{tot}}$), AF488-Aβ42 concentrations were obtained after subtraction of the fluorophore absorbance at 280 nm ($A_{280,\text{AF488}}$) from $A_{280,\text{tot}}$. The contribution of AF488 to $A_{280,\text{tot}}$ is described by the relationship $A_{280,\text{AF488}} = A_{494,\text{AF488}} \times 0.11$, where $A_{494,\text{AF488}}$ is the absorbance of the fluorophore at 494 nm (Life Technologies). Concentrations of AF488-
Figure 2.4 AF488 absorbs at 280 nm. The large peak at 494 nm is due to the unconjugated AF488 fluorophore. The absorbance at 280 nm is equal to 11% of the absorbance at 494 nm.
Figure 2.5 Comparison of UV-Vis absorbance measurement methods. Absorbance values at 280 nm measured by SEC inline UV (blue line) and manual UV spectrophotometry of 0.5 mL fractions (red circles). Representative data from one of the seven labeled preps.
Aβ in sample preparations were determined using \(A_{494,\text{AF488}} \) and \(A_{280,\text{tot}} \) from the absorbance scans and the following calculation derived from Beer’s Law (\(A = \varepsilon l c \)):

\[
C_{\text{AF488-Aβ}} = \frac{[A_{280,\text{tot}} - (A_{494,\text{AF488}} \times 0.11)]}{[\varepsilon_{280,\text{Aβ}} \times l]}
\]
(Equation 1)

where \(l \) is the path length (1 cm) and \(\varepsilon_{280,\text{Aβ}} \) is the extinction coefficient at 280 nm for Aβ 1450 M\(^{-1}\) cm\(^{-1}\) (Nichols, et al., 2002). Unincorporated AF488-TFP concentrations were determined using an extinction coefficient at 494 nm of 71,000 M\(^{-1}\) cm\(^{-1}\) (Life Technologies). The AF488:Aβ42 stoichiometry was then obtained. Table 2.1 provides a summary of the labeling stoichiometry of peak protofibril and monomer fractions. In protofibrils, lysine-16, lysine-28, and some N-termini may not be accessible to the fluorophore, so it was expected that there would be a lower labeling stoichiometry for protofibrils than monomers. For the seven AF488-Aβ42 preparations used in my experiments, the average AF488:Aβ42 ratio was 0.14 \(\pm \) 0.03 for protofibrils, and 0.50 \(\pm \) 0.08 for monomers. The three-fold higher stoichiometry of labeling for monomers was meaningful for data interpretation.

2.2.4 Electron microscopy

SEC-purified Aβ solutions, both labeled with Alexa Fluor® and unlabeled, containing protofibrils or fibrils (10 µL) were applied to a 200-mesh Formvar-coated copper grid (Ted Pella, Inc.) Samples were allowed to adsorb for 10 min at 25 °C, followed by removal of excess sample solution. Grids were washed three times by placing the sample-containing side of the grid down on a droplet of water. Heavy metal staining was done by incubation of the grid, sample side down, on a droplet of 2% uranyl acetate (Electron Microscopy Services, Hatfield, PA) for 5-10 min, removal of excess
Table 2.1 Stoichiometry of protofibrils and monomer peak fractions. Average fluorophore:protofibril = 0.14 ± 0.03. Average fluorophore:monomer = 0.50 ± 0.08. Calculated as described in Methods 2.2.3.

<table>
<thead>
<tr>
<th>PREP</th>
<th>FLUOR., µM</th>
<th>Aβ, µM</th>
<th>FLUOR:Aβ</th>
<th>PREP</th>
<th>FLUOR., µM</th>
<th>Aβ, µM</th>
<th>FLUOR:Aβ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.1</td>
<td>37</td>
<td>0.11</td>
<td>1</td>
<td>19</td>
<td>51</td>
<td>0.37</td>
</tr>
<tr>
<td>2</td>
<td>3.9</td>
<td>45</td>
<td>0.09</td>
<td>2</td>
<td>22</td>
<td>58</td>
<td>0.38</td>
</tr>
<tr>
<td>3</td>
<td>3.4</td>
<td>47</td>
<td>0.07</td>
<td>3</td>
<td>13</td>
<td>27</td>
<td>0.48</td>
</tr>
<tr>
<td>4</td>
<td>3.7</td>
<td>26</td>
<td>0.14</td>
<td>4</td>
<td>17</td>
<td>50</td>
<td>0.34</td>
</tr>
<tr>
<td>5</td>
<td>4.6</td>
<td>32</td>
<td>0.14</td>
<td>5</td>
<td>20</td>
<td>39</td>
<td>0.51</td>
</tr>
<tr>
<td>6</td>
<td>3.9</td>
<td>20</td>
<td>0.20</td>
<td>6</td>
<td>16</td>
<td>25</td>
<td>0.64</td>
</tr>
<tr>
<td>7</td>
<td>4.3</td>
<td>18</td>
<td>0.24</td>
<td>7</td>
<td>21</td>
<td>28</td>
<td>0.75</td>
</tr>
</tbody>
</table>
solution, and air drying. Affixed samples were visualized by Dr. David C. Osborn with a JEOL JEM-2000 FX transmission electron microscope operated at 200 keV.

Visualizing the AF488-Aβ42 protofibrils with transmission electron microscopy allowed me to verify that they had the same length and curvilinear morphology as the unlabeled Aβ42 protofibrils. Figure 2.6 shows the similarities between both labeled and unlabeled Aβ42 protofibrils and fibrils. While the AF488-Aβ concentration (38 µM) used for preparing the TEM grid makes for a crowded image (Panel B), the morphology of the protofibrils is unmistakable (compare Panels A and B) and was not affected by the attachment of the fluorophore. Similarly, the label did not affect aggregation, as monomers were able to aggregate into fibrils. The image shows fibrils formed from monomers after 53 days at 4 °C, but fibrils formed in other labeled monomer samples in as little as two weeks at 4 °C.

2.2.5 Dynamic light scattering

Hydrodynamic radius (R_H) measurements of Aβ protofibrils, and of microvesicles, were made at room temperature with a DynaPro Titan instrument (Wyatt Technology, Santa Barbara, CA). Samples (30 µL) were placed directly into a quartz cuvette and light scattering intensity was collected at a 90° angle using a 10-s acquisition time. Particle diffusion coefficients were calculated from auto-correlated light intensity data and converted to R_H with the Stokes-Einstein equation. Average R_H values were obtained with Dynamics software (version 6.7.1). Histograms of percent intensity vs. R_H were generated by Dynamics data regularization, and intensity-weighted or mass-weighted mean R_H values were derived from regularized histograms. Figure 2.7
Figure 2.6 Transmission electron micrographs of unlabeled Aβ42 and AF488-Aβ42. (A) Unlabeled protofibrils, 10 μM; (B) AF488-protofibrils, 38 μM; (C) Fibrils formed from unlabeled monomers, 10 μM; (D) Fibrils formed from AF488-monomers, 37 μM. A and C scale bars = 100 nm (Paranjape, Terrill, and Gouwens, et al., 2013); B and D scale bars = 50 nm (Gouwens, et al., 2016).
demonstrates the similar hydrodynamic radii for both unlabeled Aβ and AF488-Aβ protofibrils. The mean R\(_H\) for unlabeled protofibrils (average of five preps) formed in aCSF was reported as 21.9±4.0 nm (Paranjape, Terrill, and Gouwens, et al., 2013) and for AF488-Aβ protofibrils formed in aCSF the mean R\(_H\) = 16 nm, range = 5-50 nm (Gouwens, et al., 2016). While I have conducted DLS measurements for other investigations, the measurements of Aβ42 were made by Dr. Nichols and we discussed the data.

DLS was also used to determine microvesicle size. Again, measurements were made by Dr. Nichols and there were subsequent discussions of the data. Microvesicle characterization by DLS is discussed in Section 5.1.3 of Chapter 5.
Figure 2.7 Dynamic light scattering (DLS). Protofibrils were analyzed by DLS immediately after SEC isolation. Representative regularized histograms of percent intensity vs. hydrodynamic radius are shown. \textit{Left:} Histogram for unlabeled protofibrils prepared in aCSF, mean $R_H = 23$ nm (Paranjape, et al., 2013). \textit{Right:} Histogram for AF488-protofibrils in aCSF, mean $R_H = 16$ nm (Gouwens, et al., 2016).
2.3 Cell Culture

2.3.1 BV-2 microglia culture

BV-2 cells are an immortalized murine microglial cell line derived from primary murine microglia by stable transfection with the J2 virus, a v-raf/v-myc oncogene-carrying retrovirus (Blasi, et al., 1990). Our BV-2 cells were provided by Dr. Gary Landreth, Case Western Reserve University, and were maintained in Dulbecco’s modified Eagle’s medium (DMEM, 4.5 g/L glucose, Hyclone) containing 50 U/mL penicillin, 50 µg/mL streptomycin, 50 µM β-mercaptoethanol, and 5% heat inactivated fetal bovine serum (FBS, Hyclone) in 75 cm² flasks (Corning). BV-2 cells were used for their ease of culture, to make initial observations comparing them to primary cells, and for the optimization of microglia-Aβ interactions. After thawing, 1.5 mL BV-2 cells (1e6 cells/mL) are added to 5 mL growth medium and centrifuged at 500xg for 7 min. The supernatant is removed by vacuum aspiration, then the cell pellet is resuspended in 10 mL growth medium and the cell solution is added to a T75 cell culture flask (Corning).

Cells are passaged twice weekly as follows. Growth medium is removed and, after rinsing with 1 mL sterile PBS, 1 mL 0.25% Trypsin (Sigma) is added to the flask to dislodge adherent cells from the bottom of the flask. The cells are then incubated for 7 min at 37 °C. 9 mL of growth medium is added to the flask, and from that volume 3 mL are transferred to a 15-mL conical tube, which is centrifuged at 500xg for 7 min. For the first passage after thawing, 3 mL are spun down, and for the second passage 1 mL is spun down. The amounts centrifuged will then alternate between 3 mL and 1 mL in order to keep the BV-2 concentration at an optimal level.
2.3.2 Primary microglia isolation and culture

Primary murine microglia were obtained from wild-type (WT) C57BL/6 (Harlan Laboratories). Care and breeding of the C57BL/6 parent mice were done at the University of Missouri-St. Louis Animal Facility. Isolation of microglia was conducted as described in Esen and Kielian (2007) and Paranjape et al. (2012). 3-4-day-old mouse pups were euthanized with an overdose of inhaled isoflurane (Fisher Scientific). Brains were isolated and meninges were removed under sterile conditions. Brain tissue was minced using sharp-edged forceps, resuspended in 0.5% trypsin (Hyclone), and incubated at 37 °C with shaking for 20 min to allow further dissociation of the tissue. Subsequently, the tissue was resuspended in complete DMEM containing 10% FBS, 4 mM L-glutamine, 100 U/mL penicillin, 0.1 mg/mL streptomycin and 0.25 µg/mL amphotericin-B (Fisher Scientific), OPI medium supplement (oxaloacetate, pyruvate, insulin, Sigma), and 0.5 ng/mL recombinant mouse granulocyte-macrophage colony-stimulating factor (GM-CSF, Invitrogen). The cell suspension was further triturated using a pipet and filtered through a 70 µm cell strainer to remove debris. The resulting cell suspension was centrifuged at 200g for 5 min at 25 °C, resuspended in complete medium, and seeded into 150 cm² flasks (Corning). Cells were cultured at 37 °C in 5% CO₂ until confluent (1-2 weeks), and microglia were selectively harvested from the adherent astrocyte layer by shaking at 250 rpm for 5 h in 5% CO₂ at 37 °C followed by collection of the medium. (For isolations done before 2016, the flask was shaken overnight at 37 °C in 5% CO₂.) The flasks were replenished with fresh medium and then incubated further to obtain additional microglia. Typically, this procedure was repeated 3-4 times for one flask without removal of the astrocyte layer. In the bulk of the experimentation, primary microglia were isolated by
Geeta Paranjape, Shana Terrill-Usery, Sanjib Karki, Ben Colvin, or Nyasha Makoni, and I handled the care, preparation, plating, treatment, and analysis of the cells for experiments.

2.4 Microglial AF488-Aβ uptake experiments

2.4.1 Aβ treatment for ELISA and confocal LSM analysis

For cell uptake studies, WT primary murine microglia, acquired as described above, were seeded on glass coverslips, in sterile glass-bottom Mat-Tek P35GC-1.5-14-C culture dishes (Mat-Tek Corp., Ashland, MA) or 96-well cell culture plates at a density of 5 x 10^5 cells/mL in complete growth medium (volumes of 0.200 mL, 0.200 mL and 0.100 mL, respectively). Prior to cell treatment, growth medium was replaced with assay medium (growth medium lacking FBS and GM-CSF). Lysosome labeling was done prior to cell treatment by adding 0.100 mL assay medium containing 0.100 µM LysoTracker® Red DND-99 (Invitrogen) and incubating for 30 min at 37 °C in 5% CO₂. For treatment times >6 h, LysoTracker® was added to the assay medium 30 min before treatment ended. Cells were then incubated at 37 °C in 5% CO₂ with AF488-labeled Aβ (AF488-Aβ), unlabeled Aβ42, aCSF control, or AF488 dye fraction. Times of incubation and concentrations of AF488-Aβ, unlabeled Aβ and AF488 dye are noted in figure legends. Following incubation, the conditioned medium was collected and stored at -20 °C for subsequent analysis by enzyme-linked immunosorbent assay (ELISA) or immuno-dot blot. Adherent microglial cells were rinsed 3X with 0.05% Tween 20 in phosphate buffered saline (PBST) and then fixed with 3.7% formaldehyde for 15 min. Fixed cells were stored overnight at room temperature in the dark before confocal microscopy.
analysis. Microglia were seeded on glass coverslips by placing a 100-200 µL drop of cell suspension in the middle of the coverslip, which was in a 30 mm culture dish. A lid was placed over the culture dish to prevent evaporation during incubation. Microglia were able to adhere to the coverslip. Medium changes were accomplished by placing a pipet tip at the edge of the droplet and removing the liquid. Treatment was applied by gently adding 100 µL to the area of the coverslip occupied by the microglia. After fixing for immunofluorescence or direct fluorescence, followed by staining of the nuclei, the coverslip was placed upside-down over a 50-µL droplet of PBS or ProLong Gold Antifade Mountant (Thermo Fisher Scientific) on a microscope slide.

2.4.2 Aβ treatment for fluorescence plate reader and dot blot analysis

Primary WT murine microglia were plated in Nunc F96 Nunclon sterile 96-well black plates at a density of 5 x 10^5 cells/mL in complete growth medium (0.1 mL volume). Times of incubation and concentrations of AF488-Aβ, unlabeled Aβ are noted in figure legends. In order to remove Aβ from the cell surface membranes, a more thorough wash protocol was utilized for these studies. Medium was removed from treated cells and placed in clean wells in the plate. Each cell-containing well was rinsed 3X with 100 µL sterile PBS. An acid wash (100 µL) was performed using a solution of 0.5 M NaCl and 0.2 M acetic acid for 15 minutes at 4 °C, then cells were rinsed 2X with PBS. All PBS and acid washes were moved to either clean wells or another plate for both fluorescence and dot blot analysis.

For intracellular extract preparation, microglia were lysed for 15 min at 25 °C with 35-50 µL radio immunoprecipitation assay (RIPA) buffer containing 150 mM NaCl,
20 mM Tris, 1 mM ethylenediaminetetraacetic acid (EDTA), 1% Triton X-100, 1% deoxycholic acid, 0.1% sodium dodecyl sulfate (SDS), and protease inhibitor cocktail (Sigma) at a 10X dilution. In some cases, multiple microglia wells were combined to yield higher concentration lysates. Microglial lysates were stored at -20 °C for further analysis.

2.4.3 BV-2 microglia cell binding assay

BV-2 microglia were removed from culture flasks with 0.25% trypsin. Cells were counted using a Cellometer® (Nexcelom Bioscience), pelleted by centrifugation at 500xg for 7 min, and resuspended at a concentration of 5 x 10^5 cells/mL. 0.2 mL cells were seeded in sterile glass-bottom Mat-Tek P35GC-1.5-14-C culture dishes (Mat-Tek Corp., Ashland, MA) at a density of 5 x 10^5 cells/mL in assay medium (growth medium lacking FBS). Prior to cell treatment, adherent cells were rinsed once with assay medium. Cells were treated with AF488-Aβ or unlabeled Aβ42 (concentrations indicated in figure legends) and then incubated at 4 °C, room temperature, or 37 °C in 5% CO₂ for 30 min. BV-2 cells were rinsed 3X with 0.05% Tween 20 in phosphate buffered saline (PBST) and then fixed with 3.7% formaldehyde (15 min, room temperature) for confocal microscopy analysis. BV-2 microglia treated with unlabeled Aβ underwent the immunofluorescence assay described in Section 2.6.

2.5 Fluorescence quantitation for AF488-Aβ-treated microglia

To quantitate AF488-Aβ internalization, in situ cellular fluorescence measurements were carried out using a Perkin Elmer Victor 3 multi-mode plate reader.
Excitation and emission filters were 485 nm and 535 nm, respectively, with a 0.1 second signal averaging time.

The first experiments I conducted using a black plate and the plate reader employed BV-2 cells treated with AF488-Aβ. While the data (not shown) indicated some concentration-dependent differences in the fluorescent signal, the signal-to-noise ratio was small, and there was no way to determine if the fluorescence was from Aβ inside the cells, on the cells, or both. The use of an acid wash, 0.5 % NaCl and 0.2 % acetic acid, to remove antibodies on cell surfaces was reported in 2007 (Liu, et al., 2007) and I used this wash for primary cells treated with AF488-Aβ. First, a “proof of concept” experiment was done to assess the ability of a plate assay to measure uptake. Primary microglia were treated with 5 µM AF488-Aβ monomers or protofibrils (3 wells each), 5 µM unlabeled Aβ42 monomers or protofibrils (3 wells each), 1 µM AF488-Aβ protofibrils (3 wells) and aCSF control (3 wells). The plate was incubated for 30 min at 37 °C, 5% CO₂. After transferring the assay medium to clean wells, there were three washes with PBS (100 µL per well), then the acid wash (100 µL per well), and two more washes with PBS followed. All washes were transferred to clean wells. Because of this extensive washing including the acid wash, the fluorescence measured in the cell-containing wells reflects only internalized AF488-Aβ. Figure 2.8 shows the fluorescence intensity readings measured by plate reader. Negligible fluorescence intensity was measured in the cells treated with unlabeled Aβ42 and the control wells. The lack of fluorescence intensity difference between AF488-Aβ42 monomer and protofibril treated cells is not what I usually see. Monomer-treated cells are expected to have less fluorescence than protofibril-treated cells. The AF488-Aβ42 was about two weeks post-purification.
Figure 2.8 Plate reader fluorescence, AF488-Aβ. Representative data showing fluorescence from a microglia treatment experiment. The fluorescence in the cells is what remains after acid washing. Fluorescence in the acid wash wells represents AF488-Aβ removed from outer cell membrane surfaces. Inset: Fluorescence in cells after washes.
though, and so had already begun to aggregate. There is a difference between the 1 µM and 5 µM AF488-Aβ42 protofibril-treated wells, so from this I knew this assay was sensitive enough to measure uptake differences in concentration and could probably be used in time dependent experiments. It was advantageous to measure uptake this way since using the 96-well plates allowed for more treatment conditions and replicates without using more reagents – especially AF488-Aβ – and plate reader measurements were less time-consuming and more objective than quantitating fluorescence images.

2.6 Immuno-detection of Aβ and confocal microscopy

2.6.1 Preparation of fixed cells for microscopy

BV-2 and primary murine microglial cells were stimulated, treated and fixed as described above (Section 2.4.1). Cell samples were then washed 3X with PBST. Cell nuclei were visualized by incubation for 5 min with 0.2 mL of 0.3 µM 4’,6-diamidino-2-phenylindoledihydrochloride (DAPI). After a final wash step, 1-2 mL PBS was applied to the Mat-Tek™ dishes to avoid cellular dehydration. In some cases, ProLong Gold Antifade (Thermo Fisher Scientific) was applied, the well was covered with a glass coverslip and the antifade mountant was allowed to set overnight. Microglia treated with AF488-Aβ were imaged directly without further manipulation.

For microglia treated with unlabeled Aβ42, fixed cells were incubated for 1 h with blocking buffer (10% w/v dried milk in PBST). Samples were washed 3X with PBST after this step and each subsequent step. All incubations were conducted with gentle shaking at 25 ℃. After blocking, samples were incubated for 1 h with the anti-Aβ antibody Ab9 (1:5000 dilution in PBST with 5% w/v dried milk) followed by a 1 h
incubation with donkey anti-mouse IgG antibody conjugated to Northern Lights (NL) 493 (R&D Systems).

Lysosomal Lamp1 detection was done by immunostaining in a manner similar to that for unlabeled Aβ. After incubating for 1 h in a blocking buffer of PBS containing 1% bovine serum albumin (BSA) with gentle shaking, the cells were rinsed 3X with PBST. Next, a 1:500 dilution of anti-Lamp1 primary antibody (Novus Biologicals) into PBS containing 1% BSA and a 1:100 dilution of anti-mouse IgG-NL637 secondary antibody (R&D Systems) into PBS containing 1% BSA were each incubated for 1 h with gentle shaking and rinsed 3X with PBST. After a final wash step, cell nuclei were counterstained with DAPI and 1 mL PBS was applied to the wells to avoid cellular dehydration.

2.6.2 Confocal microscopy

The light coming from a specimen in confocal microscopy is controlled by a pinhole so that its source is limited to a single plane through the specimen. The resulting image is therefore of a slice through the cell. Any visible fluorescence is from a fluorophore within that plane of the cell, not above or below. In addition, when multiple fluorophores are used, channels can be used, as shown in Figure 2.9B, so that only particular wavelengths are collected during a scan. During the next scan of the same plane, another set of wavelengths can be collected. This prevents crosstalk resulting from the emitted light of one fluorophore exciting another fluorophore. If that happened, the recorded light emission that would be incorrectly attributed to the first fluorophore. For the work reported herein, the signal from each fluorophore was collected individually.

Both two-dimensional and Z-stack images were obtained with a Zeiss LSM 700
Figure 2.9 Confocal laser scanning microscopy. TOP: Light beam path. Light emission is captured point by point, and the light reaching the detector is limited by the pinhole before it reaches the detector. BOTTOM: Light collection channels. Collecting light in only one part of the spectrum at a time limits cross-talk. The setting used most often for the images in my research is the second, where each part of the spectrum is collected separately. (From Carl Zeiss LSM 700 Operating Manual, September 2011)
confocal microscope at 40X magnification using ZEN 2009 imaging and analysis software. Excitation wavelengths used were 405 nm (DAPI), 488 nM (AF488-Aβ42 and anti-mouse IgG-AF488 secondary antibody), 561 nm (LysoTracker® Red, Invitrogen), and 639 nm (antimouse IgG-NL637 for Lamp1, R&D Systems). For comparison experiments, all optical and electrical settings were fixed at identical levels for each image to ensure that fluorescence intensity measurements were not influenced by different settings.

Confocal fluorescence images were quantitated with ImageJ software (NIH) using a procedure detailed by Ansari, et al. (2013). Briefly, a region of interest was drawn around each cell using a polygon drawing tool. Area and integrated density were measured for each cell using ImageJ. Background fluorescence was measured by averaging five random areas between cells in the field. The corrected total cell fluorescence (CTCF) was calculated as follows: [integrated density of total cell area – (total cell area x mean background fluorescence)].

A second method of quantitation involved selecting the channel for fluorescence produced by AF488-Aβ, changing the color presentation to grayscale, and measuring integrated fluorescence intensity using ImageJ. Integrated density was divided by the number of cell nuclei in the field. Excel was employed to compile the data from separate experiments and calculate error. These two methods were used for experiments in which the plate reader assay described in Section 2.5 was not used.

2.7 Immuno-dot blot

A nitrocellulose membrane was soaked in water and allowed to dry completely. Microglial cell lysates (1.7 µL) were spotted onto the membrane and allowed to dry for
20 min. Subsequent incubation and washing steps were carried out with gentle shaking (70 rpm on a rotary platform shaker) at 25 °C. The membrane was placed in a blocking buffer of phosphate buffered saline (PBS) containing 0.1% Tween-20 and 5% dry milk and incubated for 1 h, followed by washing 3X for 5 min with PBS containing 0.2% Tween-20, pH 7.4 (0.2% PBST). Incubation for 1 h in a 1:5000 dilution of mouse anti-Aβ primary antibody Ab9 in PBS containing 1% dry milk and 0.1% Tween-20 was followed by incubation for 1 h in a 1:1000 dilution of anti-mouse IgG-HRP secondary antibody in the same buffer. The wash steps detailed above were done after the primary and secondary antibody incubations. The nitrocellulose membrane was then treated with ECL western blotting substrate solution (Pierce) and washed for 1 min with accelerated shaking at 120 rpm. After drying, the membrane was exposed to film for 60 secs in an autoradiography cassette. The film was developed, fixed, washed in water and dried for scan analysis. Duplicate dot blot membranes were probed for GAPDH as a control intracellular protein. The procedure differed only in the primary antibody, using mouse anti-GAPDH antibody (1:1000 dilution). Densitometry was performed on dot blot film images using ImageJ software (NIH). Victoria A. Rogers and Nyasha J. Makoni performed the immuno-dot blot analyses.

2.8 ELISA

Measurements of tumor necrosis factor α (TNFα) were done by enzyme-linked immunosorbent assay (ELISA). 96-well plates (Nunc, Fisher Scientific) were coated with 100 μL per well of 4 μg/mL monoclonal anti-mouse TNFα capture antibody (R&D Systems) and incubated overnight at 25 °C. 100 μL of 4 μg/mL monoclonal anti-mouse TNFα capture antibody (R&D Systems), washed with PBS containing 0.5% Tween-20
and blocked with PBS containing 1% bovine serum albumin (BSA), 5% sucrose and 0.05% NaN\(_3\) followed by a wash step. Successive treatments with washing in between were done with samples or standards, biotinylated polyclonal anti-mouse TNF\(\alpha\) detection antibody (R&D Systems in 20 mM Tris with 150 mM NaCl and 0.1% BSA, streptavidin-horseradish peroxidase (HRP) conjugate, and equal volumes of HRP substrates 3,3',5,5'-tetramethylbenzidine and hydrogen peroxide. The reaction was stopped by the addition of 1% H\(_2\)SO\(_4\) solution. The optical density of each sample was analyzed at 450 nm with a reference reading at 630 nm using a SpectraMax 340 absorbance plate reader (Molecular Devices, Union City, CA). The concentration of TNF\(\alpha\) in the experimental samples was calculated from a mouse TNF\(\alpha\) standard curve of 15-2000 pg/mL. When necessary, samples were diluted to fall within the standard curve.

2.9 Microvesicle generation and isolation from BV-2 and primary microglia

BV-2 microglia seeded into a T-150 flask (Fisher) were cultured to confluence. The growth medium was then removed, and the cells were rinsed once with sterile PBS, 4 mL per flask. The PBS was removed and 4 mL aCSF was added to the control flask while 4 mL aCSF with 1 mM ATP was added to the treatment flask. Both flasks were incubated at 37 \(^\circ\)C in 5% CO\(_2\) for 10 minutes. The aCSF was removed and transferred to a labeled 15-mL conical tube to be centrifuged at 2000xg for 20 mins (Crescitelli, et al., 2013). Pellets formed in that spin contain apoptotic bodies or even whole cells, but the microvesicles are soluble and will remain in the supernatant. The supernatant is collected, distributed into four labeled 1.5 mL microcentrifuge tubes, 1 mL each, and 3.8 \(\mu\)L 2-(6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBD C6-HPC) was added to each tube (final \([\text{NBD C6-HPC}] = 10 \)
µM). Tubes were then centrifuged at 12,200xg for 40 mins to pellet the microvesicles (Crescitelli, et al., 2013). Supernatants were removed and kept for further analysis. One of the pellets was reconstituted in 200-500 µL aCSF, then the entire volume was transferred to the second tube to reconstitute another pellet. This process was repeated for all four tubes to resuspend and concentrate the microvesicles in one volume.

The amount of primary microglial cells available was limited, and so control experiments in which cells did not receive ATP treatment were not done. Co-cultures of astrocytes and primary microglia were shaken at 250 rpm for 5 hours to dislodge microglia. The cells were then counted, centrifuged, resuspended in primary growth medium and seeded into a T-75 flask. At this point, culture times varied from overnight to one week. If the cells were cultured for more than 3 days, growth medium was changed. The primary microglia were treated with 2’(3’)-O-(4-benzoylbenzoyl)adenosine 5’-triphosphate triethylammonium salt (Bz-ATP), which is a better stimulant of the P2X7 receptors on microglia than ATP. The experimental procedure is the same as for BV-2 microglia, although the amounts of reagents are smaller since the culture flasks used were smaller in size. Microglia were rinsed with 2 mL PBS, then 2 mL growth medium with 100 µM BzATP was added. Cells were incubated 10 min at 37 °C in 5% CO2. Supernatant was collected and centrifuged at 2000xg for 20 min to remove apoptotic bodies. The supernatant, containing microvesicles, is collected, distributed into two labeled 1.5 mL microcentrifuge tubes, 1 mL each, and 3.8 µL 2-(6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBD C6-HPC) was added to each tube (final [NBD C6-HPC] = 10 µM). Tubes were then centrifuged at 12,200xg for 40 mins to pellet the microvesicles (Crescitelli, et al., 2013).
Supernatants were removed and kept for further analysis. One of the pellets was reconstituted in 200-500 µL aCSF, then the entire volume was transferred to the second tube to reconstitute another pellet. This process was repeated for both tubes to resuspend and concentrate the microvesicles in one volume.

2.10 Fluorescence measurements of microvesicles

2-(6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBD C6-HPC) (Life Technologies) is a fluorophore conjugate that inserts into phospholipid membranes. The presence of microvesicles in the aCSF solution described above (Methods 2.9) was determined using a Cary Eclipse fluorescence spectrophotometer. 70-100 µL of the microvesicle-NBD C6-HPC solution was placed in a quartz cuvette. Emission scans of 500-600 nm were obtained with an excitation wavelength of 485 nm. The resulting curves were integrated from 520-580 nm to produce relative fluorescence units (RFU).

2.11 Confocal LSM imaging of microvesicles

Annexin V binding was used to make the microvesicles visible via confocal microscopy. Annexin V binds to exposed phosphatidylserine (PS) on the external leaflet of cell membranes. PS is normally located only on the inner leaflet of the plasma membrane, but is externalized upon either apoptosis or the membrane blebbing that forms microvesicles. A conjugate of Annexin V and the Alexa Fluor 488 fluorophore (Invitrogen) will bind to exposed PS and so it was used to visualize microvesicles. The microvesicle generation from microglia (Section 2.9) was followed by resuspension of the pellets in 500 µL Annexin V binding buffer (10 mM HEPES, 140 mM NaCl, and 2.5
mM CaCl₂, pH 7.4). Then 25 μL of -Annexin V conjugate was added, and after gentle mixing the solution sat at room temperature for 15 min. The solution was then centrifuged at 12,200xg for 40 min to pellet the microvesicles, the supernatant was removed, and the pellet was resuspended in 200 μL binding buffer. 50 μL of the microvesicle solution was placed on a microscope slide and a coverslip was carefully applied. Images were obtained with a Zeiss LSM 700 confocal microscope, with an excitation wavelength of 488 nm, using ZEN 2009 imaging and analysis software.

2.12 Preparation of microvesicles for resin-embedded TEM

The protocol used is based on the procedure described in Crescitelli, et al. (2013), and one of the authors, Dr. Agnes Kittel, was exceptionally helpful by offering suggestions when I requested details regarding the procedure in the published article. BV-2 supernatant samples were centrifuged at 12,200xg (or 17,000xg) for 40 mins. Supernatant was carefully removed and the pellet was rinsed once with PBS. 100 μL of fixing buffer (4% paraformaldehyde in 10 mM PO₄ buffer, pH 7.4) was added to the pellet without disturbing it, and then incubation occurred at room temperature for one hour. After carefully removing fixing buffer, 100 μL 1% OsO₄ in 10 mM PO₄ buffer (10 μL OsO₄ in 990 μL buffer) was added to the pellet and allowed to incubate 30 min at room temperature. (SAFETY PRECAUTIONS for OsO₄: gloves, coat, goggles, fume hood). OsO₄ is a secondary fixing agent that incorporates reacts with lipids and provides contrast for TEM imaging. After incubation, OsO₄ was removed and disposed of with proper safety precautions, and the pellet was washed once with 1 mL diH₂O. An ethanol series was used to dehydrate the pellet (200 μL per tube for each step): 50% ethanol with 2% uranyl acetate 30 min; 70% ethanol for 30 min; 90% ethanol for 30 min; and 100%
ethanol for 30 min. The 100% ethanol step was repeated twice. The pellet was then embedded in 0.2 mL Low Viscosity Embedding Media (Spurr’s Kit, Electron Microscopy Sciences) resin (supplied by David Osborn) and stored at RT overnight. Dr. Osborn then heated the resin to harden it, cut microtome slices 80 nm thick, and obtained TEM images.

2.13 BCA Assay

A bicinchoninic acid (BCA) assay was utilized to measure protein concentrations in microvesicle solutions. In the BCA assay, Cu$^{2+}$ is reduced to Cu$^{1+}$ by the presence of four protein residues (cysteine, cystine, tyrosine, and tryptophan) and the peptide backbone. First, the copper is chelated and reduced by the proteins in a basic solution. Then BCA is used to react with the reduced copper, resulting in a purple color. By measuring absorbance at 562 nm and comparing the samples to a standard curve generated with bovine serum albumin, protein concentration within the MVs can be determined. A standard curve was constructed using bovine serum albumin (BSA) diluted in aCSF, typically in the concentration range of 0 µg/mL to 2000 µg/mL. Microvesicle samples (10 µl) were added to 100 µl of 50:1 mixture of BCA Reagent A to Reagent B (Thermo Fisher Scientific) and mixed thoroughly in individual wells of a 96-well plate. The plate was covered and incubated for 30 min at 37 °C followed by cooling for an additional 15 min. Absorbance was determined for each well at a wavelength of 562 nm using a SpectraMax 340 absorbance plate reader (Molecular Devices, Union City, CA). Mudar Ismail and Natan Zeller conducted the assays and I constructed the graphs.
CHAPTER 3: Aβ INTERACTIONS WITH MICROGLIAL CELL SURFACES

Aβ42 is known to interact with microglial surface receptors, leading to uptake and activation (Section 1.3.1). Previous studies in our lab and had shown that protofibrils can activate a proinflammatory response in THP-1 macrophages and in microglia, while monomers and fibrils do not. Being aware of the difference in response to Aβ conformers, we wanted to know if it was related to a difference in surface interaction. Therefore, my goal was the visualization of Aβ42 on outer cell membrane surfaces using immunofluorescence. I examined the differences in surface binding among monomers, protofibrils and fibrils of Aβ42. I also conducted studies investigating the effects of time, temperature, and Aβ42 concentration on microglial surface interactions. Further, I investigated the correlation between Aβ42 binding to microglia and the subsequent microglial activation. One distinguishing feature of my work was the use of SEC purified monomers and protofibrils, as well as fibrils isolated by centrifugation. This differed from most of the studies in the literature reporting the use of “soluble” Aβ, which usually includes a mix of monomers and multiple aggregated forms.

3.1 Binding of distinct Aβ conformers

When BV-2 microglia were incubated with different forms of Aβ42 – monomers, protofibrils and fibrils –immunofluorescence revealed that membrane binding was occurring only with protofibrils, as shown in Figure 3.1. BV-2 microglial cells were added at a concentration of 5 x 10^4 cells/mL in the wells of Mat-Tek dishes (Methods
Figure 3.1 Binding of distinct species of Aβ. BV-2 microglia were incubated for 30 min at 4 °C with 15µM Aβ42 monomers, protofibrils, or fibrils. Control cells were incubated with assay medium. Aβ (green) was visualized via immunofluorescence with anti-Aβ antibody Ab9 (primary) and anti-mouse IgG-NL493 conjugate (secondary). Nuclei were stained with DAPI (blue). C = control; M = monomer-treated cells; PF = protofibril-treated cells; F = fibril-treated cells. Images were acquired at 40X magnification on a Zeiss LSM 700 confocal microscope. Scale bar is 16 µm and applies to all four images (Paranjape, Terrill, and Gouwens, et al., 2013).
2.4.3). The Mat-Tek dishes have wells with optical glass bottoms to facilitate sample visualization with an inverted microscope. BV-2 cells were incubated on ice with 15 µM Aβ monomers, protofibrils or fibrils in assay medium, while the control cells were incubated in assay medium alone. After incubation, cells were fixed and underwent the confocal assay described in Methods 2.4.3, with Ab9 primary antibody and NL493-IgG secondary antibody. DAPI chemical staining was used to show cell nuclei. Images were obtained on the Zeiss LSM 700 located in the Microscope Imaging and Spectroscopy Technology (MIST) Laboratory in the UMSL Center for Nanoscience.

The reason for holding the temperature at 4 °C was to slow the activity of the cells and prevent phagocytosis, allowing visualization of cell surface interactions. In Figure 3.1, monomer-treated cells (M) look like the control cells (C), with no visible green fluorescence that would indicate the presence of Aβ inside or on the cells, while the cell nuclei (blue) are clearly visible. It is not likely that monomers were taken up and degraded by the microglia since the low temperature would have interfered with uptake and metabolic activities. The image of cells incubated with fibrils (F) shows green fluorescence scattered between the cells, rather than outlining cells, which indicates that fibrils adhered to the well but not to cell membranes. Only protofibrils (PF) could be seen on cell surfaces, and they were not readily visible within cells.

One advantage of using the confocal microscope is the ability to acquire a “z-stack” in which a number of images are made at successive depths within the field of view. These slices can then be rendered by Zeiss Efficient Navigation (ZEN) software to create cross-section images. The PF panel of Figure 3.1 shows this type of imaging. The thin rectangular section at the top of the image corresponds to a slice through the z-stack
made at the horizontal green line near the center of the image. Similarly, the rectangular region to the right corresponds to a slice through the z-stack at the location of the red vertical line on the image. In all three views of this field, Aβ protofibrils are concentrated on the surface membranes of BV-2 cells. Similar results were seen in replicate experiments, leading to the conclusion that BV-2 cell membranes interact with protofibrils of Aβ, but not monomers or fibrils.

Binding of Aβ to the cell surface membranes of monocytes was assessed previously by Bamberger, et al. (2003), and they identified a receptor complex consisting of SR-B receptor CD36, α6β1-integrin, and integrin associated protein CD47 which was responsible for the interaction. In their binding assays, they used Aβ fibrils adhered to glass slides, applied monocytes to the slides, and counted the number of cells adhering to the pre-treated slides after a 5-minute incubation. This group was able to show cells binding to fibrils, but the quantity of Aβ used was large enough that the fibrils were visible to the unaided eye on the slides. It’s possible that the amount of Aβ enhanced the binding and accounts for the difference between our results and theirs. Additionally, fibril binding may be different for monocytes and microglia.

We did not address the binding of oligomeric Aβ to microglia, but this was investigated by Liu, et al. (2012). They were able to show images of oligomers bound to microglial surfaces and colocalized with toll-like receptor 2 (TLR2), but the binding was limited and punctate, while the binding of protofibrils shown here almost completely covers the cells. The difference could be due to the nature of protofibrils and oligomers since they are different types of Aβ aggregates.
It is likely that the hydrophobic nature of protofibrils allows them to bind to the cell membrane indiscriminately even as they trigger receptor-mediated responses in microglia. Some microglial surface receptors are activated by protofibrils (Section 1.3.1), resulting in the production of proinflammatory cytokines, and we have confirmed the secretion of TNFα by BV-2 microglia as a result of protofibril, but not monomer or fibril, treatment (Paranjape, et al., 2012; Paranjape, Terrill, Gouwens, et al., 2013). Several microglial receptors are known to interact with Aβ, and they can be categorized into three types: scavenger receptors, G protein-coupled receptors, and toll-like receptors (reviewed in Yu and Ye, 2014). When distinguishing the Aβ species involved in the interactions, most researchers identify “soluble” or “fibrillar” Aβ, without further description. However, after centrifugation to remove pre-formed fibrils, we carefully separate monomers from protofibrils using SEC. To my knowledge, there are no published images that differentiate between these three forms of Aβ in binding to microglia.

3.2 Time-dependence of Aβ42 interaction with BV-2 cell surfaces

The investigation of membrane interactions between BV-2 microglia and different conformers of Aβ42 revealed that BV-2 cells most readily attract protofibrils, so the next set of experiments was conducted using this Aβ species. A time-dependent measure of plasma membrane interaction was done by first incubating microglia at 4 °C for 30 min to allow surface binding while preventing internalization, then varying the times of incubation at 37 °C. Representative results from these experiments are shown in Figure 3.2. Immunofluorescence revealed the location of Aβ mainly on the exterior surfaces of the BV-2 cells at all time points measured. To rule out the possibility that cell membranes...
Figure 3.2 Time dependence of surface binding to BV-2 microglia. BV-2 microglia were plated in Mat-Tek dishes at a density of 5×10^4 cells/mL in cell assay medium. On the following day, cells were treated with 15 μM Aβ42 protofibrils in cell assay medium. All plates were incubated on ice for 30 min, then incubated for 0 (30/0), 30 (30/30), 60 (30/60), or 120 (30/120) min at 37 °C. Immunofluorescence assay was conducted using anti-Aβ Ab9 primary antibody and anti-mouse IgG-NL493 secondary antibody. Confocal images were acquired at 40X magnification with a Zeiss LSM confocal microscope.
were not permeable to the antibodies used in the immunofluorescence assay, an assay was conducted in which Triton-X 100 was applied to fixed cells before the antibodies were added. Images acquired after the immunofluorescence assay were nearly identical to those obtained without the permeabilizing reagent, confirming that the lack of fluorescence was not due to the inability of antibodies to reach internalized Aβ (data not shown). From the results in Figure 3.2, it was apparent that BV-2 cells were not internalizing Aβ42 even with 2 h of incubation at 37 °C. These results contradict findings from other groups in which BV-2 cells took up various Aβ42 species (Jiang, et al., 2008; Koenigsknecht and Landreth, 2004; Kopec and Carroll, 1998; Mandrekar, et al., 2009; Tahara, et al., 2006; Webster, et al., 2001). The Aβ42 conformers used in those studies included monomers, oligomers and fibrils, but were not prepared by SEC. The peptides in the “soluble” Aβ solutions probably contained some oligomers and protofibrils, while the fibrillar solutions most likely contained oligomers and protofibrils as well.

3.3 Effect of temperature on Aβ42 binding to BV-2 cell surfaces

Another possibility for the difference in my results and previous studies is that treatment for 30 min at 4 °C was negatively affecting the BV-2 microglia such that uptake was compromised. With that in mind, I also conducted experiments in which the first 30-minute incubation was conducted at room temperature. The results (not shown) are similar to the images in Figure 3.2, with Aβ42 collecting on the outer cell surfaces of the microglia. From the results in Figure 3.2, I realized that BV-2 cells are not internalizing Aβ42 even with 2 h of incubation at 37 °C. Therefore, while they are not proficient at internalization, BV-2 microglia are a good model for cell surface binding in
Figure 3.3 Temperature effect on surface binding to BV-2 microglia. Cells were plated in Mat-Tek dishes, 5 x 10^4 cells/mL. On the following day cells were incubated with 15µM Aβ42 protofibrils (green) in assay medium for 30 min at the indicated temperatures. Cells were fixed, underwent an immunofluorescence protocol with Ab9 primary Ab and IgG-NL493 secondary Ab, and were counterstained with DAPI (blue). Images were obtained at 40X magnification on a Zeiss LSM 700 confocal microscope. (37 °C image from Paranjape, Terril, and Gouwens, et al., 2013.)
our culture system. Using immunofluorescence, Aβ42 could be visualized on BV-2 microglial surfaces, binding at 4 °C, room temperature (RT), and 37 °C (Figure 3.2). In Mat-Tek dishes, BV-2 cells were incubated for 30 minutes with 15 µM Aβ42 protofibrils, while control cells were untreated but incubated at room temperature in assay medium with aCSF for the same amount of time. After cell fixing, the immunofluorescence assay (Methods 2.6) was conducted and then followed by counterstaining with DAPI, and images were acquired on a Zeiss LSM 700 confocal microscope. Figure 3.3 shows that binding occurs on the outer surface of the cell membrane at each temperature measured, but protofibrils were not taken up by the BV-2 microglia within the 30 minutes of incubation. If Aβ protofibrils were internalized, green fluorescence would be visible throughout the cells, rather than concentrated on the membrane boundaries. The z-stack views confirm that, for all three temperatures, protofibrils accumulate at BV-2 cell surfaces in our system. While the groups cited above (and shown in Table 3.1) demonstrated uptake at various time points, the species of Aβ42 they used varied in size from monomers to fibrils, and none were SEC-purified protofibrils.

3.4 Effect of Aβ42 concentration on binding to BV-2 cell surfaces

We reported concentration-dependent production of TNFα by microglia in 2012 (Paranjape, et al., 2012). Both primary and BV-2 microglia showed increased TNFα production upon incubation with increasing concentrations of Aβ. While the Aβ treatments reported in 2012 were carried out in F-12 medium (131 mM NaCl, 3 mM KCl, 1 mM NaH₂PO₄, 14 mM NaHCO₃, 0.003 mM MgCl₂, 0.3 mM CaCl₂, 10 mM glucose), the work reported in 2013 utilized artificial cerebrospinal fluid, (aCSF; 130 mM NaCl, 3
Table 3.1 Aβ internalization in BV-2 microglia and other cell lines

<table>
<thead>
<tr>
<th>Reference</th>
<th>Aβ form</th>
<th>Aβ label</th>
<th>[Aβ], µM</th>
<th>Cell type</th>
<th>Incubation time</th>
<th>Uptake (method)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kopec and Carroll, 1998</td>
<td>“aged” (probably fibrillar)</td>
<td>unlabeled (fluorescent microspheres) or free Aβ</td>
<td>5</td>
<td>BV-2</td>
<td>1 h</td>
<td>yes (flow cytometry)</td>
</tr>
<tr>
<td>Webster, et al., 2001</td>
<td>fibrils</td>
<td>fluorescein</td>
<td>10</td>
<td>BV-2</td>
<td>30 min</td>
<td>yes (FACS, fluorescence microscopy)</td>
</tr>
<tr>
<td>Koenig-schnitt and Landreth, 2004</td>
<td>fibrils (oligomers possibly present)</td>
<td>Cy3</td>
<td>10</td>
<td>BV-2</td>
<td>30 min</td>
<td>yes (confocal microscopy)</td>
</tr>
<tr>
<td>Tahara, et al., 2006</td>
<td>polydisperse mixture</td>
<td>none</td>
<td>1</td>
<td>BV-2</td>
<td>24 h</td>
<td>yes (western blot, ELISA, immunofluorescence)</td>
</tr>
<tr>
<td>Halle, et al., 2008</td>
<td>fibrils</td>
<td>FITC</td>
<td>10</td>
<td>immortalized mouse line</td>
<td>4 h</td>
<td>yes (confocal microscopy)</td>
</tr>
<tr>
<td></td>
<td>fibrils</td>
<td>HLF488</td>
<td>10</td>
<td>immortalized mouse line</td>
<td>4 h</td>
<td>yes (confocal microscopy)</td>
</tr>
<tr>
<td></td>
<td>fibrils</td>
<td>FITC</td>
<td>10</td>
<td>immortalized mouse line</td>
<td>1 h</td>
<td>yes (confocal microscopy)</td>
</tr>
<tr>
<td></td>
<td>fibrils</td>
<td>FITC</td>
<td>10</td>
<td>immortalized mouse line</td>
<td>4 h</td>
<td>yes (confocal microscopy)</td>
</tr>
<tr>
<td>Jiang, et al., 2008</td>
<td>monomers and small oligomers</td>
<td>AF488</td>
<td>0.5</td>
<td>BV-2</td>
<td>0-3 h</td>
<td>yes (flow cytometry)</td>
</tr>
<tr>
<td></td>
<td>monomers and small oligomers</td>
<td>AF488</td>
<td>up to 1</td>
<td>BV-2</td>
<td>3 h</td>
<td>yes (ELISA of lysates)</td>
</tr>
<tr>
<td></td>
<td>monomers and small oligomers</td>
<td>Cy3</td>
<td>0.5</td>
<td>BV-2</td>
<td>15 min</td>
<td>yes (confocal microscopy)</td>
</tr>
</tbody>
</table>

continued on next page
Table 3.1 Aβ internalization in BV-2 microglia and other cell lines, continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Aβ form</th>
<th>Aβ label</th>
<th>[Aβ], µM</th>
<th>Cell type</th>
<th>Incubation time</th>
<th>Uptake (method)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandrekar, et al., 2009</td>
<td>soluble or fibrillar monomers</td>
<td>Cy3</td>
<td>0.5</td>
<td>BV-2</td>
<td>3 h</td>
<td>yes (confocal microscopy and flow cytometry)</td>
</tr>
<tr>
<td></td>
<td>monomers</td>
<td>AF488</td>
<td>0.5</td>
<td>BV-2</td>
<td>0-180 min</td>
<td>yes (flow cytometry and lysate ELISA)</td>
</tr>
<tr>
<td></td>
<td>monomers</td>
<td>Cy3</td>
<td>0.5</td>
<td>BV-2</td>
<td>3 h</td>
<td>yes (confocal microscopy)</td>
</tr>
<tr>
<td></td>
<td>monomers</td>
<td>Cy3</td>
<td>0.5</td>
<td>BV-2</td>
<td>0-19 min</td>
<td>yes (confocal microscopy, live imaging)</td>
</tr>
<tr>
<td>Reed-Geaghan, et al., 2009</td>
<td>fibrils (with oligomers)</td>
<td>none</td>
<td>2.5</td>
<td>BV-2</td>
<td>3-5 min</td>
<td>yes (fluorescence microscopy)</td>
</tr>
<tr>
<td>Fu, H, et al., 2012</td>
<td>fibril</td>
<td>AF488</td>
<td>0.5</td>
<td>N9 cell line</td>
<td>1 h</td>
<td>yes (confocal microscopy)</td>
</tr>
<tr>
<td></td>
<td>fibril</td>
<td>AF488</td>
<td>0.5</td>
<td>N9 cell line</td>
<td>0, 15, 30, 60 min</td>
<td>yes (flow cytometry)</td>
</tr>
<tr>
<td></td>
<td>fibril</td>
<td>AF488</td>
<td>0.05, 0.25, 0.5, 1.0, and 2.5</td>
<td>N9</td>
<td>2 h or 5 d</td>
<td>yes (flow cytometry)</td>
</tr>
<tr>
<td></td>
<td>fibril</td>
<td>AF488</td>
<td>0.5</td>
<td>N9</td>
<td>1 h</td>
<td>yes (confocal microscopy)</td>
</tr>
<tr>
<td>Baik, et al., 2016</td>
<td>fibril</td>
<td>FITC</td>
<td>1</td>
<td>BV-2</td>
<td>24 h</td>
<td>yes (confocal microscopy)</td>
</tr>
<tr>
<td>Paranjape, Terrill, and Gouwens, et al., 2013*</td>
<td>protofibrils</td>
<td>none</td>
<td>15</td>
<td>BV-2</td>
<td>30 min</td>
<td>no (confocal microscopy)</td>
</tr>
<tr>
<td>Gouwens, et al., 2016*</td>
<td>protofibrils</td>
<td>AF488</td>
<td>5</td>
<td>BV-2</td>
<td>30 min</td>
<td>no (confocal microscopy)</td>
</tr>
</tbody>
</table>

Abbreviations:
AF488: Alexa Fluor 488
FITC: fluorescein isothiocyanate
HLF488: HiLyte Fluor 488

*results presented herein
mM KCl, 1 mM NaH2PO4, 15 mM NaHCO3). The same concentration-dependent effect on TNFα production was seen with BV-2 cells in aCSF, as shown in Figure 3.4 (Paranjape, Terrill, and Gouwens, et al., 2013). BV-2 cells were treated with Aβ42 at various concentrations. ELISAs were conducted on cell medium samples to measure TNFα, a proinflammatory cytokine produced by microglia when activated. Panel A of Figure 3.4 shows a concentration-dependent increase in TNFα production for BV-2 microglia. The location of Aβ42 on or in BV-2 microglia was assessed by immunofluorescence and confocal microscopy. Panels B and C of Figure 3.4 show very little fluorescence on the surfaces of BV-2 cells treated with 1 µM Aβ42, while Panel D shows markedly more intense fluorescence on the BV-2 cell membranes. Taken together, these images reveal a concentration-dependent pattern of Aβ binding to BV-2 cell membranes. These data are in agreement with our research (Paranjape, et al., 2012; Terrill-Usery, et al., 2014) and the findings of other groups (Combs, et al., 2001; Meda, et al., 1995; Stewart, et al., 2010; Yan, et al., 1996) that microglia produce TNFα upon stimulation with Aβ.

3.5 Correlation of Aβ42 binding and BV-2 activation

The surface interaction of Aβ42 with BV-2 microglia leads to activation and the production of cytokines. Not all forms of Aβ42 can elicit an inflammatory response as measured by cytokines, though. Our lab demonstrated this in 2012 (Paranjape, et al., 2012) and 2013 (Paranjape, Terril, Gouwens, et al., 2013) via ELISA, but there were no images made at the time. In order to correlate binding with activation, I conducted an experiment that measured TNFα production as BV-2 cells encountered two different
Figure 3.4 Aβ42 concentration dependence of cytokine secretion by BV-2 microglia. BV-2 cells were treated with 1 and 15 µM Aβ42 for 30 min at 37 °C. (A) TNFα ELISA; (B & C) Confocal micrographs of cells incubated with 1 µM Aβ42; (D) Confocal micrograph of cells incubated with 15 µM Aβ42. Green: Aβ42. Blue: nuclei (Paranjape, Terrill, Gouwens, et al. 2013)
Aβ42 conformers, and obtained confocal LSM images of BV-2 interactions with the different forms of Aβ42 in a parallel experiment. Experiments were carried out on the same day, with microglia seeded from one batch of cells and Aβ from the same labeled preparation. The only difference was incubation time, because longer time periods were needed for the TNFα part of the experiments in order to generate measurable amounts of the cytokine. The data in Figure 3.5 shows the distinct effects that monomers and protofibrils have on BV-2 microglia. Panel A reveals that BV-2 microglia secrete more TNFα in the presence of protofibrils than monomers, especially at 6 h. The images in Panel B show that the difference in activation is correlated with distinct interaction differences, i.e., BV-2 cells are more prone to interact with protofibrils than monomers. The report by our lab in 2013 was the first to distinguish between monomers, protofibrils and fibrils in the activation of primary murine microglia. To my knowledge, no one has previously shown both images and ELISA data to distinguish between activation due to monomers and protofibrils in BV-2 microglia.
Figure 3.5 Correlation of Aβ42 binding and BV-2 cell activation. BV-2 microglia were treated with AF488-Aβ to correlate conformer binding with activation. (A) At 2 and 6 h time points, TNFα production is greater for protofibril-treated cells than monomer-treated cells. (B) Images show that BV-2 cells associate with protofibrils but not monomers. Green = AF488-Aβ fluorescence; blue = nuclei (DAPI) fluorescence.
CHAPTER 4: SELECTIVE INTERNALIZATION OF Aβ BY MICROGLIA

Having demonstrated differential binding of Aβ42 species to microglia, and the resulting activation of the cells, I sought to determine the fate of Aβ42 once it was internalized by microglia. The Alexa Fluor® 488-TFP (AF488-TFP) fluorophore was used to label Aβ42 in solutions containing a mix of monomers and protofibrils. The mixture was labeled before SEC purification based on a report by Jungbauer and coworkers (2009) showing that labeling peptides after the formation of oligomers and fibrils, rather than before, resulted in AF488-Aβ that was most similar to unlabeled Aβ. After conjugation of the fluorophore to Aβ, AF488-monomers and –protofibrils were separated by SEC. The labeling process and characterization of labeled Aβ42 is described in the Methods chapter, Section 2.2. It proved advantageous to use fluorophore-labeled Aβ because direct fluorescence provided higher quality images than immunodetection, required less time to prepare cells for imaging than immunofluorescence assays, and allowed live cell imaging. My objectives were to compare monomer and protofibril uptake, assess the time- and concentration-dependence of uptake, determine if uptake has a limit using mixtures of labeled and unlabeled Aβ, and confirm colocalization of Aβ with cellular lysosomes.
4.1 Comparison of unlabeled and fluorescently-labeled Aβ42 monomer, protofibril, and fibril interactions with BV-2 and primary microglia

Once the AF488-Aβ had been characterized (Methods 2.2), I set out to assess and compare the interactions of both BV-2 and primary murine microglia with the labeled peptide. I wanted to be sure the binding of AF488-Aβ to BV-2 microglia was similar to cell surface binding observed with unlabeled Aβ. Further, I wanted to be sure that the interactions of primary microglia with AF488-Aβ were similar to unlabeled Aβ. In both cases, I found that the fluorophore label was not affecting Aβ-cell interactions. Unlabeled Aβ42 was detected via immunofluorescence, and three comparisons are shown in Figure 4.1. The top two panels compare primary microglia treated with 5 µM unlabeled (left) and labeled (right) monomers for 30 min, with no significant differences between the images. There is a negligible amount of green fluorescence shown in the images, which indicates that monomers have not been internalized by the primary microglia. Previous data shows that BV-2 microglia do not bind or internalize Aβ42 monomers (Paranjape, Terrill, and Gouwens, et al., 2013), and these images confirm that finding for AF488-Aβ42 monomers. Primary microglia incubated with 5 µM protofibrils for 30 min are shown in the middle two panels, unlabeled on the left and labeled on the right. The green fluorescence in the images indicates the location of Aβ42. Again, there is virtually no difference in how primary microglia interact with protofibrils either with or without a label. The bottom two panels show a comparison of BV-2 microglial surface interactions
Figure 4.1 The AF488 fluorophore does not affect microglial interactions with Aβ. A & B: primary microglia with unlabeled and labeled monomers, respectively (10 µM, 10 min, 37 °C); C & D: primary microglia with unlabeled and labeled protofibrils, respectively (5 µM, 10 min, 37 °C); E & F: BV-2 microglia with unlabeled and labeled protofibrils, respectively (5 µM, 30 min, RT). Green – Aβ; blue – cell nuclei.
with both unlabeled (left) and labeled (right) protofibrils upon incubation for 30 min with 5 µM Aβ. Most of the Aβ42 (green fluorescence) is located on the surfaces of BV-2 cells. As with the previous comparisons, the two images are similar, indicating that the label does not affect BV-2 microglial interaction with AF488-Aβ.

Additionally, the proinflammatory responses measured by TNFα production show that primary microglia are activated and produce TNFα when treated with AF488-Aβ protofibrils, but not monomers. Figure 4.2, panel C, shows ELISA results for primary microglia treated with monomers and protofibrils of labeled Aβ. Primary microglia were activated and produced high quantities of TNFα only when incubated with AF488-Aβ protofibrils. These data agree with our previous results from BV-2 microglia treatments and primary cell experiments with unlabeled Aβ (Paranjape, et al., 2012; Paranjape, Terrill, Gouwens, et al., 2013).

4.2 Time dependent internalization of AF488-Aβ by primary microglia

We had often conducted cell treatments for 30 min or more, yet macropinocytosis of Aβ42 can occur in just a few minutes in microglia (Tables 1.1 and 1.2). To determine how quickly uptake can occur in our primary microglia, AF488-Aβ treatments were performed as described in Methods 2.4.1. Representative of multiple fields from at least two experiments, Figure 4.2, Panel A, provides visualization of uptake at four time-points (green fluorescence is AF488-Aβ42, blue is cell nuclei). Monomer internalization is shown in the top row, and protofibril uptake in the bottom row of Panel A. Compared to monomers, which show a low level of internalization at all four measured time points,
Figure 4.2 Internalization of AF488-Aβ by primary microglia. Uptake is time dependent for protofibrils but not monomers. (A) Images of time-dependent uptake of monomers (top) and protofibrils (bottom). (B) Quantitation of image fluorescence intensity. (C) TNFα ELISA for the same experiments.
protofibril internalization is much more robust. Recalling that the stoichiometry of labeling was about four times higher for monomers than protofibrils, shown in Table 2.1, it is striking that the fluorescence is so much more intense for protofibrils than monomers. This is an indication of the speed and extent of Aβ42 protofibril internalization by primary microglia. While the visual evidence is compelling, quantitation of the images provides more objective evidence of the difference between monomer and protofibril uptake. By measuring fluorescence intensity per cell in multiple fields from two different experiments, the graph shown in Figure 4.2, Panel B, was produced. The data clearly indicate that protofibrils are quickly internalized by primary microglia, and the uptake of AF488-Aβ42 protofibrils increases with time. Also, monomers are taken up at much lower amounts than protofibrils, even at longer incubation times.

Monomer uptake (Jiang, et al., 2008; Taneo, et al., 2015) and soluble Aβ uptake (Chu, et al., 1998; Chung, 1999; Hjorth, et al., 2010; Jiang, et al., 2008; Liu, et al., 2010; Mandrekar, et al., 2009) have been demonstrated by other research groups, and all except Chu (1999) used labeled Aβ. However important differences are present between their studies and ours. With regard to monomers, Jiang reported a mix of monomers and soluble Aβ, and the Taneo experiments were carried out for 24 h, which is enough time for monomers to aggregate. In either case, the uptake was most likely of something larger than monomers. As for the groups reporting internalization of “soluble” Aβ, the uptake was likely not of monomers since soluble species include oligomers and protofibrils. Another difference involves treatment time points. These experiments involved longer time points, hours to even days, allowing plenty of time for oligomers and protofibrils to
form and be taken up. Their data is better compared to our results with SEC-purified protofibrils in Figure 4.2.

As part of the same internalization experiments, microglial activation was measured at these time points by looking at cytokine production. The ELISA results shown in Figure 4.2, Panel C, reveal that the amount of TNFα produced correlated with AF488-Aβ42 protofibril internalization by microglia. At 5 and 10 min of treatment, measurable TNFα is not present for AF488-Aβ42 monomers or protofibrils, but protofibrils produced a greater amount of TNFα than monomers at 30 min and 6 h.

In another set of experiments, time-dependent uptake of protofibrils and monomers was quantitated with immuno-dot blot assays of primary microglia cell lysates using the procedure described in Methods 2.7. Extensive washing of the cells after incubation with AF488-Aβ42, including an acid wash step to remove monomers or protofibrils bound to the cell surface, allowed quantitation of the intracellular AF488-Aβ42 at each time point. While there is virtually no uptake of AF488-Aβ42 monomers at any of the time points (Figure 4.3 A & B), the quantity of AF488-Aβ42 protofibrils taken up by primary microglia increases with time. These cell treatments were done in a 96-well cell culture plate, and, before lysing the microglia, fluorescence measurements were made in a plate reader to determine the relative amounts AF488-Aβ42 internalized at each time point (Figure 2.8 and Section 2.5 of Methods). The intracellular fluorescence is reported as a percentage of the fluorescence in the assay medium removed from the cells after incubation so that results from different experiments could be combined. The results, shown in Figure 4.3 Panel C, confirm the findings that protofibrils are more likely
Figure 4.3 Primary microglia take up AF488-Aβ protofibrils, but not AF488-Aβ monomers, in a time-dependent manner. (A) Immuno-dot blot of cell lysates showing Aβ internalization; representative of three different experiments. (B) Densitometry for immuno-dot blot in (A) using ImageJ (pixel intensity) for three experiments. (C) Quantitation of plate reader fluorescence, normalized to fluorescence in cell medium at 0 h for three experiments.
than monomers to be taken up by primary microglia. Primary murine microglia show a
clear preference for internalizing protofibrils over monomers. Comparison of SEC-
purified monomers and protofibrils is a novel contribution to the literature regarding
microglial uptake of Aβ.

Interestingly, the protofibrils do not appear to be degraded even when microglia
are incubated for 24 h with them. The resistance of Aβ to breakdown confirms findings in
the literature. In the late 1990s, Maxfield’s group showed that only a portion of what they
characterized as “microaggregates” (probably oligomers and/or protofibrils) was
degraded by primary murine microglia, most of the Aβ remained in the cells (Chung,
1999; Paresce, et al., 1997). Cole and colleagues (1999) reported a 50-60% decrease in
fibrillar Aβ in rat microglia after a 24-h treatment. Conducting pulse-chase experiments
in which the treatment medium containing excess Aβ was removed, several groups noted
that Aβ was retained in primary microglia (Jiang, et al., 2016; Majumdar, et al., 2008;
Majumdar, et al., 2007; Shibuya, et al., 2014). Yang, et al., (2011) were able to show
complete degradation of oligomeric Aβ after a 30-minute treatment followed by a 30-
minute chase, but that is likely due to the fact that they were using oligomers, which have
a different structure than protofibrils. There is a constant supply of Aβ being produced in
the brain, so, while a pulse-chase experiment has some value for assessing degradation
rates, it does not accurately reflect physiological conditions.

4.3 Effect of AF488-Aβ concentration on primary microglial uptake

This goal for this set of experiments was to determine the effect of AF488-Aβ42
concentration on internalization by microglia, comparing monomers to protofibrils.
Primary microglia were incubated for 10 min (37 °C, 5% CO₂) with varying concentrations of AF488-Aβ monomers or protofibrils. As seen in the Figure 4.4 confocal images (Panel A) AF488-Aβ monomer uptake is extremely low at all four concentrations tested, and only slightly visible at 5 and 10 µM concentrations. On the other hand, AF488-Aβ protofibrils are visible in the cells even at 0.5 µM, and fluorescence appears to increase in intensity as the concentration increases. The quantitation results in Panel B of Figure 4.4 confirm these observations. The integrated fluorescence intensity acquired in the AF488 channel for each image was divided by the number of nuclei in the DAPI channel for each image. Results from three different experiments were combined. At all four concentrations examined, protofibrils are internalized at a greater extent than monomers, and internalization of AF488-Aβ protofibrils increases as concentration increases. Once again, it is important to note that monomers had a higher stoichiometry of labeling, yet the intracellular fluorescence intensity is markedly stronger for protofibrils. Concentration-dependence of Aβ uptake has been demonstrated in primary murine microglia and in the BV-2 and N9 microglial cell lines (Fu, et al., 2012; Liu, et al., 2005; Mandrekar, et al., 2009; Yang, et al., 2011), but as Table 4.1 summarizes, none of these groups compared monomers and protofibrils purified by SEC as we did. The protofibril uptake findings reported here are novel to the scientific literature.

4.4 Non-saturable Aβ uptake in primary microglia

If there is a limit to the protofibril quantity that can be ingested by primary microglia, it might be possible to use a mixture of both labeled and unlabeled Aβ42 to
<table>
<thead>
<tr>
<th>Reference</th>
<th>Aβ conformation</th>
<th>Aβ label</th>
<th>[Aβ], µM</th>
<th>Cell type</th>
<th>Incubation time</th>
<th>Uptake (method)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ard, et al., 1996</td>
<td>“not fibrillar”</td>
<td>35S-Met</td>
<td>0.22, 1.1, 4.4, or 25</td>
<td>rat primary</td>
<td>24 or 48 h</td>
<td>yes (immunofluorescence; lysate immunoblot)</td>
</tr>
<tr>
<td>Paresce, et al., 1996</td>
<td>“microaggregates” <400 nm length</td>
<td>Cy3</td>
<td>0.22</td>
<td>mouse primary</td>
<td>10 min</td>
<td>yes (fluorescence microscopy, not confocal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cy3</td>
<td>up to 11</td>
<td>mouse primary</td>
<td>15 min</td>
<td>yes (fluorescence microscopy, not confocal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>unlabeled</td>
<td>4</td>
<td>mouse primary</td>
<td>30 min</td>
<td>yes (fluorescence microscopy, not confocal)</td>
</tr>
<tr>
<td>Paresce et al., 1997</td>
<td>“microaggregates”</td>
<td>Cy3</td>
<td>1</td>
<td>mouse primary</td>
<td>15 min, followed by 3 h to 6 d chase times</td>
<td>yes (confocal LSM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cy3</td>
<td>2</td>
<td>mouse primary</td>
<td>1 h, followed by 1 h or 2 d chase</td>
<td>yes (confocal LSM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125I</td>
<td>0.2</td>
<td>mouse primary</td>
<td>1 h, followed by up to 75 min chase</td>
<td>yes (cell associated radioactivity)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>unlabeled</td>
<td>2</td>
<td>mouse primary</td>
<td>1 h, followed by 6 and 24 h chase</td>
<td>yes (immunofluorescence)</td>
</tr>
<tr>
<td>Chung, et al., 1999</td>
<td>fibrils</td>
<td>125I</td>
<td>0.2</td>
<td>mouse primary</td>
<td>1 h, various chase times</td>
<td>yes (cell associated radioactivity)</td>
</tr>
<tr>
<td></td>
<td>fibrils</td>
<td>Cy3</td>
<td>0.2</td>
<td>mouse primary</td>
<td>1 h, various chase times</td>
<td>yes (confocal image quantitation)</td>
</tr>
<tr>
<td></td>
<td>soluble</td>
<td>125I</td>
<td>1</td>
<td>mouse primary</td>
<td>2 h, various chase times</td>
<td>yes (cell associated radioactivity)</td>
</tr>
<tr>
<td></td>
<td>soluble</td>
<td>Cy3 and unlabeled</td>
<td>1 + up to 100 unlabeled</td>
<td>mouse primary</td>
<td>15 min</td>
<td>yes (confocal image quantitation)</td>
</tr>
<tr>
<td></td>
<td>soluble</td>
<td>Cy3</td>
<td>0.5</td>
<td>mouse primary</td>
<td>1.5 h, 1 h chase</td>
<td>yes (confocal microscopy)</td>
</tr>
</tbody>
</table>

continued on next page
Table 4.1 Primary microglia Aβ uptake experiments, *continued*

<table>
<thead>
<tr>
<th>Reference</th>
<th>Aβ conformation</th>
<th>Aβ label</th>
<th>[Aβ], µM</th>
<th>Cell type</th>
<th>Incubation time</th>
<th>Uptake (method)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cole, et al., 1999</td>
<td>fibrils</td>
<td>none</td>
<td>0.2</td>
<td>rat primary</td>
<td>24 h</td>
<td>yes (immunofluorescence)</td>
</tr>
<tr>
<td>Webster, et al., 2000</td>
<td>“minimally aggregated”</td>
<td>14C</td>
<td>0-50</td>
<td>rat primary</td>
<td>2 h and 6 h</td>
<td>yes (cell-associated radioactivity)</td>
</tr>
<tr>
<td></td>
<td>“minimally aggregated”</td>
<td>fluorescein</td>
<td>5, 50</td>
<td>rat primary</td>
<td>2 h and 6 h</td>
<td>yes (immunofluorescence)</td>
</tr>
<tr>
<td>Liu Y, et al., 2005</td>
<td>fibrils/protofibrils</td>
<td>biotin</td>
<td>0.055, 0.55, 5.5</td>
<td>mouse primary</td>
<td>1 h</td>
<td>yes, (quantitation of confocal microscopy, AF488)</td>
</tr>
<tr>
<td></td>
<td>fibrils/protofibrils</td>
<td>biotin</td>
<td>0.55</td>
<td>mouse primary</td>
<td>5, 30, 60 min</td>
<td>yes, (quantitation of confocal microscopy, AF488)</td>
</tr>
<tr>
<td></td>
<td>fibrils/protofibrils</td>
<td>biotin</td>
<td>0.55</td>
<td>mouse primary</td>
<td>5, 30 min; 1, 2 h</td>
<td>yes, (confocal microscopy, Cy3-streptavidin)</td>
</tr>
<tr>
<td>Townsend, et al., 2005</td>
<td>fibrils</td>
<td>FITC</td>
<td>0.3</td>
<td>mouse primary</td>
<td>15, 30, 60 min</td>
<td>yes (fluorometry of lysates)</td>
</tr>
<tr>
<td></td>
<td>fibrils</td>
<td>none</td>
<td>0.3</td>
<td>mouse primary</td>
<td>1 h</td>
<td>yes (western blot of lysates)</td>
</tr>
<tr>
<td></td>
<td>fibrils</td>
<td>Cy3</td>
<td>0.05</td>
<td>mouse primary</td>
<td>1 h</td>
<td>yes (confocal microscopy)</td>
</tr>
<tr>
<td>Floden and Combs, 2006</td>
<td>fibrils</td>
<td>FITC</td>
<td>0.5</td>
<td>primary mouse, neonatal and aged</td>
<td>6 h</td>
<td>yes (fluorometry)</td>
</tr>
<tr>
<td>Tahara, et al., 2006</td>
<td>oligomers</td>
<td>none</td>
<td>0.25</td>
<td>mouse primary</td>
<td>24 h</td>
<td>yes (immunofluorescence microscopy)</td>
</tr>
<tr>
<td>Majumdar, et al., 2007</td>
<td>fibrils</td>
<td>Cy3</td>
<td>1</td>
<td>mouse primary</td>
<td>60 min, then 72 h chase</td>
<td>yes (fluorescence image quantitation)</td>
</tr>
<tr>
<td>Mandrekar, et al., 2009</td>
<td>soluble (monomers with some small oligomers) or fibrillar</td>
<td>Cy3</td>
<td>0.5</td>
<td>mouse primary</td>
<td>3 h</td>
<td>yes (confocal microscopy and flow cytometry)</td>
</tr>
</tbody>
</table>

continued on next page
Table 4.1 Primary microglia Aβ uptake experiments, *continued*

<table>
<thead>
<tr>
<th>Reference</th>
<th>Aβ conformation</th>
<th>Aβ label</th>
<th>[Aβ], µM</th>
<th>Cell type</th>
<th>Incubation time</th>
<th>Uptake (method)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liu Z, et al., 2010</td>
<td>soluble</td>
<td>HLF555</td>
<td>2</td>
<td>primary murine</td>
<td>2 h</td>
<td>yes (confocal microscopy)</td>
</tr>
<tr>
<td>Majumdar, et al., 2011</td>
<td>fibril</td>
<td>Cy3</td>
<td>0.25</td>
<td>primary murine</td>
<td>1 h, chase times vary</td>
<td>yes (confocal microscopy)</td>
</tr>
<tr>
<td>Yang, et al., 2011</td>
<td>oligomer</td>
<td>none</td>
<td>1</td>
<td>primary murine</td>
<td>5 and 30 min; 1 and 4 h</td>
<td>yes (confocal microscopy)</td>
</tr>
<tr>
<td></td>
<td>oligomer</td>
<td>none</td>
<td>0.5, 1.0, 2.5, 5.0</td>
<td>primary murine</td>
<td>30 min</td>
<td>yes (fluorescence intensity quantitation)</td>
</tr>
<tr>
<td>Yang, et al., 2011</td>
<td>oligomer</td>
<td>FAM</td>
<td>1</td>
<td>primary murine</td>
<td>15 min</td>
<td>yes (confocal microscopy)</td>
</tr>
<tr>
<td>Fu, H, et al., 2012</td>
<td>fibril</td>
<td>AF488</td>
<td>0.5</td>
<td>primary murine</td>
<td>1 h</td>
<td>yes (confocal microscopy)</td>
</tr>
<tr>
<td></td>
<td>fibril</td>
<td>AF488</td>
<td>0.5</td>
<td>primary murine</td>
<td>0, 15, 30, 60 min</td>
<td>yes (flow cytometry)</td>
</tr>
<tr>
<td></td>
<td>fibril</td>
<td>AF488</td>
<td>0.5</td>
<td>primary murine</td>
<td>1 h</td>
<td>yes (confocal microscopy)</td>
</tr>
<tr>
<td>Lee, CY, et al., 2012</td>
<td>soluble</td>
<td>AF555</td>
<td>0.4</td>
<td>primary murine</td>
<td>18 h</td>
<td>yes (flow cytometry)</td>
</tr>
<tr>
<td></td>
<td>soluble</td>
<td>AF555</td>
<td>0.2</td>
<td>primary murine</td>
<td>7 min, 10 min chase</td>
<td>yes (confocal microscopy)</td>
</tr>
<tr>
<td>Taneo, et al., 2015</td>
<td>monomer</td>
<td>none</td>
<td>10</td>
<td>primary murine</td>
<td>24 h</td>
<td>yes (confocal microscopy)</td>
</tr>
<tr>
<td></td>
<td>oligomer</td>
<td>none</td>
<td>10</td>
<td>primary murine</td>
<td>24 h</td>
<td>yes (confocal microscopy)</td>
</tr>
<tr>
<td></td>
<td>fibril</td>
<td>none</td>
<td>10</td>
<td>primary murine</td>
<td>24 h</td>
<td>yes (confocal microscopy)</td>
</tr>
<tr>
<td>Baik, et al., 2016</td>
<td>fibril (PF)</td>
<td>FITC</td>
<td>1</td>
<td>primary murine</td>
<td>24 h</td>
<td>yes (confocal microscopy)</td>
</tr>
<tr>
<td>Gouwens, et al., 2016*</td>
<td>monomers</td>
<td>AF488</td>
<td>0.5 – 10</td>
<td>primary murine</td>
<td>0-24 h</td>
<td>no (confocal microscopy; immunodot-blots; plate reader)</td>
</tr>
<tr>
<td></td>
<td>protofibrils</td>
<td>AF488</td>
<td>AF488</td>
<td>primary murine</td>
<td>0-24 h</td>
<td>yes (confocal microscopy; immunodot-blots; plate reader)</td>
</tr>
</tbody>
</table>

*work presented herein

*work presented herein

Abbreviations: AF488: Alexa Fluor 488; AF555: Alexa Fluor 555; Cy3: Cyanine 3; FAM: carboxyfluorescein; FITC: fluorescein isothiocyanate; HLF488: HiLyte Fluor 488
Figure 4.4 Concentration-dependent internalization of AF488-Aβ by primary microglia. (A) Images of monomer-treated (top) and protofibril-treated (bottom) cells. Concentrations indicated above columns. Green – AF488-Aβ, blue – nuclei. (B) Quantitation of fluorescence intensity for AF488-Aβ. Fluorescence intensity for the fields imaged in panel A and two other experiments. ImageJ was used to measure integrated intensity, which was then divided by the number of nuclei in the field.
visualize such a limit. Uptake that is receptor-mediated or regulated by a transport mechanism could prevent the internalization of ever-greater amounts of Aβ42. By maintaining a constant AF488-Aβ42 concentration while increasing the amount of unlabeled Aβ42, a decrease in fluorescence would indicate that cells were saturated with Aβ and could not internalize any more. If the fluorescence intensity is not diminished by increasing the ratio of unlabeled Aβ, then the uptake mechanism cannot be saturated (up to the total amount of labeled + unlabeled Aβ in the experiment). To probe the limits of uptake by primary microglia, unlabeled and AF488-Aβ42 were mixed in various ratios before application to and incubation of microglia. As seen in Figure 4.5, Panel A, the first set of experiments did not indicate a saturation of uptake even at 20 µM total Aβ42. All three images show similar green fluorescence intensity, indicating AF488-Aβ internalization was not saturable. Different AF488-Aβ:unlabeled Aβ ratios were used in another set of experiments, and the image fluorescence intensity quantitation is shown in Panel B of Figure 4.5. Again, there is no significant difference in measured fluorescence intensity, even when there is three times as much unlabeled Aβ42 mixed with AF488-Aβ42. These results confirm the findings of Mandrekar et al. (2009) that Aβ uptake is not receptor-mediated, and in addition show that there is no limit to internalization up to 20 µM Aβ42. These images show internalized Aβ, only the fluorescence on the boundaries of the cells could be considered as surface-attached Aβ. We have shown that the amount of internalized Aβ increases at 6 and 24 h, an increase that would not be present if the protofibrils were rapidly cycling into and out of the cells. Additionally, it is not likely that the membranes of the cell could support a rapid turnover leading to equilibrium. Other
Figure 4.5 Competition/saturation images and quantitation. (A) Representative images of primary microglia treated with the indicated concentrations of labeled and unlabeled Aβ. (B) Quantitation of fluorescence intensity in images of primary microglia treated with the indicated concentrations of labeled and unlabeled Aβ. ImageJ was used to measure integrated intensity for each field, which was divided by the number of nuclei in the field. ($n = 2$ experiments)
groups have conducted pulse-chase experiments in which the Aβ-containing medium was removed and the amount of internalized Aβ was then measured at different time points. but their purpose was to measure degradation, not uptake saturation (Chung, 1999; Lee, et al., 2012; Majumdar, et al., 2011; Majumdar, et al., 2007; Paresce, et al., 1997). While these groups did show some degradation, it was limited. Even if degradation occurred in the experiments reported here, it would not be enough to affect the outcome because the rate of degradation would not be enough to offset uptake, and the rate would be the same for all of the ratios. Two early studies, involving “microaggregates” or fibrillar Aβ seemed to indicate saturation of uptake, as both groups found that intracellular fluorescence increased with increasing concentration, but leveled off after 10-11 µM Aβ (Kopec and Carroll, 1998; Paresce, et al., 1996). These two groups did not use ratios as we did. Other studies used the approach of keeping the amount of labeled Aβ constant while mixing in increasing concentrations of unlabeled peptide, and those groups did report saturation of uptake (Chung, 1999; Mandrekar, et al., 2009).

4.5 Colocalization analysis of AF488-Aβ with lysosomes

The question of whether or not Aβ is degraded by microglia is not settled. Two reports indicated that oligomers are degraded in microglia (Shibuya, et al., 2014; Yang, et al., 2011) but oligomers do not have the same β-sheet structure as protofibrils or fibrils, so it is perhaps not surprising that they are degraded. Several studies showed slow and/or limited breakdown of internalized fibrils (Chung, et al., 1999; Majumdar, et al., 2011; Majumdar, et al., 2008; Majumdar, et al., 2007; Paresce, et al., 1997). Monomers and soluble species were also shown to be slowly or incompletely degraded (Ard, et al., 1996; Griciuc, et al., 2013; Jiang, et al., 2008). In these studies, there was no SEC purification
of protofibrils, so it is possible that both the fibril and soluble solutions used contained some protofibrillar Aβ. Further, the degradation was incomplete when it occurred at all, so more investigation is warranted. In cells, the break down unwanted material occurs in the lysosomes, acidic “digestive” organelles. If Aβ is being degraded, it would first have to be trafficked to lysosomes. Many studies have shown Aβ colocalized with lysosomes, and they are summarized in Table 4.1. Various Aβ conformers were used for cell treatments in those experiments, but no one had reported using SEC-purified protofibrils.

In an effort to show colocalization of protofibrils with lysosomes in our primary microglial system, I had tried using LysoTracker® Red DND-99 (Invitrogen) for labeling lysosomes prior to cell treatment, but did not have good enough results to definitively conclude colocalization or lack thereof. Lysosomal associated membrane protein (LAMP1) is a transmembrane protein that is found on lysosomes in many tissues. To visualize colocalization of Aβ42 and lysosomes, I used immunofluorescence to label the LAMP1 protein. The primary antibody was anti-LAMP1 (Novus Biological) and the secondary antibody was anti-mouse IgG-NL637 (R & D Systems). Primary microglia were treated with AF488-Aβ protofibrils, fixed, immunostained, counterstained with DAPI, and then imaged on a Zeiss LSM 700. The images in Figure 4.6 represent several experiments. Yellow arrows in the images indicate areas of colocalization (yellow) of AF488-Aβ (green) with lysosomes (red). White arrows in the images show either AF488-Aβ (green) that is intracellular but not in lysosomes, or empty lysosomes (red). While other groups have shown Aβ-lysosome colocalization in BV-2 and primary microglia, and some concluded that Aβ is degraded in lysosomes, my results indicated that trafficking to lysosomes is not necessarily the fate of AF488-Aβ protofibrils. This is
Table 4.2 Lysosome colocalization experiments.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Aβ form</th>
<th>Aβ label</th>
<th>[Aβ], µM</th>
<th>Cell type</th>
<th>Incubation time</th>
<th>Colocalization method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ard, et al., 1996</td>
<td>“not fibrillar”</td>
<td>35S-Met</td>
<td>0.22, 1.1, 4.4, or 25</td>
<td>rat primary</td>
<td>24 or 48 h</td>
<td>immunogold, EM</td>
</tr>
<tr>
<td>Paresce, et al., 1996</td>
<td>“microaggregates” <400 nm length</td>
<td>Cy3</td>
<td>0.22</td>
<td>mouse primary</td>
<td>10 min</td>
<td>FITC-α2M</td>
</tr>
<tr>
<td>Paresce et al., 1997</td>
<td>“microaggregates”</td>
<td>Cy3</td>
<td>2</td>
<td>mouse primary</td>
<td>1 h, 1 h or 2 d chase</td>
<td>FITC-dextran</td>
</tr>
<tr>
<td>Chung, et al., 1999</td>
<td>soluble</td>
<td>Cy3</td>
<td>0.5</td>
<td>mouse primary</td>
<td>1.5 h, 1 h chase</td>
<td>FITC-α2M</td>
</tr>
<tr>
<td>Webster, et al., 2000</td>
<td>“minimally aggregated”</td>
<td>fluorescein</td>
<td>5, 50</td>
<td>rat primary</td>
<td>2 h and 6 h</td>
<td>cathepsin D</td>
</tr>
<tr>
<td>Liu Y, et al., 2005</td>
<td>fibrils/protofibrils</td>
<td>biotin</td>
<td>0.55</td>
<td>mouse primary</td>
<td>5, 30 min; 1, 2 h</td>
<td>Lamp2</td>
</tr>
<tr>
<td>Bolmont, et al., 2008</td>
<td>plaques</td>
<td>none</td>
<td>endogenous</td>
<td>APP transgenic mouse, in vivo</td>
<td>Lamp1</td>
<td></td>
</tr>
<tr>
<td>Halle, et al., 2008</td>
<td>fibrils</td>
<td>FITC</td>
<td>10</td>
<td>immortalized mouse line</td>
<td>4 h</td>
<td>Lamp1</td>
</tr>
<tr>
<td></td>
<td>fibrils</td>
<td>HL488</td>
<td>10</td>
<td>immortalized mouse line</td>
<td>4 h</td>
<td>LysoTracker Red</td>
</tr>
<tr>
<td></td>
<td>fibrils</td>
<td>FITC</td>
<td>10</td>
<td>immortalized mouse line</td>
<td>1 h, 4 h</td>
<td>1 h: cathepsin B 4 h: Lamp1 (no colocalization)</td>
</tr>
<tr>
<td>Jiang, et al., 2008</td>
<td>monomers and small oligomers</td>
<td>Cy3</td>
<td>0.5</td>
<td>BV-2</td>
<td>15 min</td>
<td>LysoTracker Green</td>
</tr>
<tr>
<td>Mandrekar, et al., 2009</td>
<td>monomers</td>
<td>Cy3</td>
<td>0.5</td>
<td>BV-2</td>
<td>3 h</td>
<td>Lamp1, Lamp2, Rab5</td>
</tr>
<tr>
<td></td>
<td>monomers</td>
<td>Cy3</td>
<td>0.5</td>
<td>BV-2</td>
<td>0-19 min</td>
<td>LysoTracker Green</td>
</tr>
</tbody>
</table>
Table 4.2 Lysosome colocalization experiments, continued.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Aβ form</th>
<th>Aβ label</th>
<th>[Aβ], µM</th>
<th>Cell type</th>
<th>Incubation time</th>
<th>Colocalization method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hjorth, et al., 2010</td>
<td>soluble</td>
<td>HL488</td>
<td>0.25</td>
<td>human CHME3 line</td>
<td>4 h</td>
<td>Lamp2</td>
</tr>
<tr>
<td>Liu Z, et al., 2010</td>
<td>protofibril</td>
<td>HL555</td>
<td>0.4</td>
<td>in vivo, mouse</td>
<td>up to 4 d</td>
<td>Lamp1</td>
</tr>
<tr>
<td>Majumdar, et al., 2011</td>
<td>fibril</td>
<td>Cy3</td>
<td>0.25</td>
<td>primary murine</td>
<td>1 h, chase times vary</td>
<td>Lamp1</td>
</tr>
<tr>
<td>Yang, et al., 2011</td>
<td>oligomer</td>
<td>FAM</td>
<td>1</td>
<td>primary murine</td>
<td>15 min</td>
<td>DQ-BSA lysosome label</td>
</tr>
<tr>
<td>Fu, H, et al., 2012</td>
<td>fibril</td>
<td>AF488</td>
<td>66 (0.6 µg total)</td>
<td>mouse in vivo</td>
<td>2 h or 5 d</td>
<td>Lamp1</td>
</tr>
<tr>
<td></td>
<td>fibril</td>
<td>AF488</td>
<td>0.5</td>
<td>N9</td>
<td>1 h</td>
<td>LysoTracker</td>
</tr>
<tr>
<td></td>
<td>fibril</td>
<td>AF488</td>
<td>0.5</td>
<td>primary murine</td>
<td>1 h</td>
<td>LysoTracker</td>
</tr>
<tr>
<td>Lee, CY, et al., 2012</td>
<td>soluble</td>
<td>AF555</td>
<td>0.2</td>
<td>primary murine</td>
<td>7 min, 10 min chase</td>
<td>fluorescent microspheres</td>
</tr>
<tr>
<td>Taneo, et al., 2015</td>
<td>monomer</td>
<td>none</td>
<td>10</td>
<td>primary murine</td>
<td>24 h</td>
<td>Lamp1 (not colocalized)</td>
</tr>
<tr>
<td></td>
<td>oligomer</td>
<td>none</td>
<td>10</td>
<td>primary murine</td>
<td>24 h</td>
<td>Lamp1 (not colocalized)</td>
</tr>
<tr>
<td></td>
<td>fibril</td>
<td>none</td>
<td>10</td>
<td>primary murine</td>
<td>24 h</td>
<td>Lamp1 (not colocalized)</td>
</tr>
<tr>
<td>Baik, et al., 2016</td>
<td>fibril (PF)</td>
<td>FITC</td>
<td>1</td>
<td>BV-2</td>
<td>24 h</td>
<td>LysoTracker</td>
</tr>
<tr>
<td></td>
<td>fibril (PF)</td>
<td>FITC</td>
<td>1</td>
<td>primary murine</td>
<td>24 h</td>
<td>LysoTracker</td>
</tr>
<tr>
<td>Gouwens, et al., 2016</td>
<td>protofibril</td>
<td>AF488</td>
<td>5</td>
<td>primary murine</td>
<td>30 min</td>
<td>Lamp1 (partial colocalization)</td>
</tr>
</tbody>
</table>

Abbreviations: AF488: Alexa Fluor 488; AF555: Alexa Fluor 555; Cy3: Cyanine 3; FAM: carboxyfluorescein; FITC: fluorescein isothiocyanate; HLF488: HiLyte Fluor 488; HL555: HiLyte Fluor 555; ^35^S-Met: ^35^S-methionine radioisotope

*work presented herein
evident in the increase of Aβ protofibril load over a 24-h incubation (Figure 4.3) and in the confocal images of Figure 4.6 which show a significant amount of AF488-Aβ distributed throughout the cytosol. The stability of intracellular SEC-purified protofibrils in microglia is a novel finding that was reported in *Brain Research* in 2016 (Gouwens, et al., 2016).
Figure 4.6 Lysosome colocalization. Three fields (top, middle and bottom rows) of primary cells treated with AF488-Aβ show that much of the AF488-Aβ remains outside of microglial cells. Yellow arrows indicate lysosome (red, Lamp1) and AF488-Aβ (green) colocalization. White arrows show lysosomes that have no AF488-Aβ within them. Nuclei are stained with DAPI (blue).
CHAPTER 5: MICROVESICLES

Having demonstrated that microglia internalize Aβ protofibrils without necessarily degrading them, we began to wonder if the protofibrils are released from microglial cells. If there is a release of Aβ, that could partly explain why plaques form in the AD brain. Structures called microvesicles (Section 1.4) are one way microglia could disperse Aβ. Microvesicles (described in Section 1.4) are released by glial cells when P2X7 receptors are stimulated by ATP (Bianco, et al., 2005). In their work, Bianco and colleagues used the N9 murine microglial cell line as well as primary mixed cultures (containing astrocytes and microglia) from embryonic rat pups to demonstrate the release of microvesicles from microglial cells. Rat primary microglia (Joshi, et al., 2014), and human THP-1 monocytes and HEK cells (MacKenzie, et al., 2001) have also been used in experiments to produce microvesicles. Further, P2X7 receptors of microglia have been shown to mediate the inflammatory responses in rat hippocampus (McLarnon, et al., 2006). My goals were to generate and characterize microvesicles from both BV-2 and primary murine microglia.

5.1 Microvesicles from BV-2 microglia

Due to their small size, capturing a substantial amount of microvesicles requires treatment of many cells in an experiment. BV-2 microglia are relatively easy to culture in the amounts needed for microvesicle generation, so I started my experiments with them. Using T-150 flasks (Corning), which have a 150 cm² growing surface, the BV-2 cells
were cultured to confluence. The experiments required two such flasks, a control flask that was incubated with 4 mL artificial cerebrospinal fluid (aCSF) and a second flask that was incubated with 1 mM ATP in 4 mL aCSF to stimulate the production of microvesicles (Methods 2.9). To confirm that microvesicles were produced, we employed a variety of techniques: fluorescently labeled Annexin V, BCA protein measurements, dynamic light scattering (DLS) measurements, transmission electron microscopy (TEM), and NBD C6-HPC fluorescence.

5.1.1. A488-Annexin V visualization of BV-2 microvesicles

Annexin V is an anticoagulant protein that also has a high affinity for phosphatidylserine (PS). Normally PS is found on inner leaflets of the cell membrane, but, in apoptotic cells and microvesicles, PS is externalized (Hugel, et al., 2005). We used Annexin V conjugated to Alexa Fluor® 488 (AF488-AV) to visualize microvesicles generated in the experiments (Figure 5.1). After the cells were treated, the medium was subjected to centrifugation at 2000g for 20 minutes to remove apoptotic cells and cell debris from the medium. Soluble microvesicles are in the supernatant, to which AF488-AV was added. After incubation at room temperature, the solution was then centrifuged at 12,200g for 40 minutes to pellet the microvesicles. The pellet was washed and resuspended, and microvesicles were mounted on slides and imaged using a Zeiss LSM 700. As seen in Figure 5.1 A & B, the microvesicles are produced by both control (A) and ATP-treated (B) cells and are in the expected 100 – 1000 nm size range. Microvesicle production from the control cells (treated with aCSF only) is not necessarily surprising since microvesicles are routinely found in blood and spinal fluid (Budnik, et al., 2016), indicating constitutive generation by cells in the body. Panel C of Figure 5.1 is
a zoomed in view of an area near the center of Panel B which includes a 5 µm scale bar that confirms the size of the microvesicles. The images here are consistent with MacKenzie, et al. (2001), who showed a series of HEK cell images taken at 5 s intervals in which microvesicles are visualized with FITC-conjugated Annexin V bound to externalized PS. They imaged whole cells, and a halo of microvesicles is visible in the same size range as our microvesicles. Wilson, et al. (2004) demonstrated external PS (calling it “PS flip”) in human umbilical vein epithelial cells and murine macrophages. Their images were not of microvesicles, rather, they showed FITC-Annexin V binding to the surfaces of macrophages after treatment with ATP, demonstrating PS externalization. This is the same PS externalization that occurs with microvesicle release. Bianco, et al. (2005) also show FITC-Annexin V in close association with ATP-stimulated N9 microglia, with a few blebs on the cell surface and structures that have the size and morphology of microvesicles. The researchers showed images of microvesicles in a subsequent publication, appearing as dots of fluorescence (Bianco, et al., 2009). One of the methods of microvesicle visualization used by Verderio, et al. (2012) was FITC-Annexin V. Their image, similar to Bianco’s images, does not show the circular fluorescence seen in Figure 5C, which is indicative of hollow spheres. The images in Figure 5 indicate that our protocol for generating microvesicles from ATP-treated BV-2 microglia and separating them from apoptotic bodies via centrifugation is successful.

5.1.2. Bicinchoninic acid protein assay of BV-2 microvesicles

IL-1β has been found in microvesicles generated from human THP-1 monocytes (MacKenzie, et al., 2001) and dendritic cells (Pizzirani, et al., 2007), as well as murine microglia (Bianco, et al., 2005) treated with ATP. Therefore, we expected to find protein
Figure 5.1 AF488-Annexin V visualization of microvesicles from BV-2 cells. Microvesicles were generated from BV-2 microglia with or without ATP treatment. After generation from BV-2 microglia, microvesicles were incubated with AF488-Annexin V and imaged via confocal microscopy. (A) Control: microvesicles generated from microglia incubated in aCSF without ATP; 40X magnification. (B) Microvesicles generated from BV-2 microglia treated with 1 mM ATP. 40X magnification; vertical red scale bar = 20 µm; horizontal red scale bar = 5 µm. C. Zoomed in view of area near horizontal red scale bar in (B)
in the BV-2 microvesicles. Bicinchoninic acid (BCA) protein assays were employed to provide measurements of overall microvesicle protein content. By measuring absorbance at 562 nm and comparing the samples to a standard curve generated with bovine serum albumin, protein concentration within the microvesicles can be determined. While both control and ATP-treated cells produced microvesicles, the microvesicles from treated cells had much more total protein (Figure 5.2), with virtually no protein in the microvesicles from control cells. The combined data from four preps showed a protein concentration of ~150 µg/mL protein in ATP-treated cells compared to virtually none in the control cells. It is likely that the contents of our microvesicles derived from ATP-stimulated BV-2 microglia contain IL-1β, as was found by the MacKenzie, Pizzirani, and Bianco studies mentioned above. Regarding the control cells, constitutive microvesicle production is not unusual, and the lack of protein is likely a consequence of there being no ATP in the aCSF to activate IL-1β production and release.

5.1.3. Dynamic light scattering characterization of BV-2 microvesicles

Particles in solution will move randomly as they collide with molecules of the solution, and smaller particles will move faster than relatively larger ones. Light passing into a solution containing microvesicles, for instance, will be scattered upon encountering a sphere crossing its path. Scattered light then encounters other particles, causing wave interference that is either constructive or destructive. As the particles diffuse through the solution, the scattering intensity changes, as does the correlation between the intensities and interferences. The intensity measurements are fitted to an autocorrelation curve, and from the exponential decay a diffusion coefficient can be calculated, which is then used to calculate hydrodynamic radii of microvesicles. We used these principles of dynamic
Figure 5.2 BCA assays. There is greater protein production in microvesicles generated from ATP-treated cells than control cells in aCSF. Average of four microvesicle preparations from BV-2 microglia. (BCA assays conducted by Mudar Ismail and Nathan Zeller; figure from Dr. Michael Nichols)
light scattering (DLS) to characterize microvesicle size (Methods 2.2.5). Histograms of percent intensity vs. hydrodynamic radius (R_H) were generated by Dynamics software (Wyatt Technologies) data regularization, and intensity-weighted mean R_H values were derived from regularized histograms. What we found, shown in the representative histograms in Figure 5.3, is that the microvesicles we isolated from BV-2 microglia are approximately 100-1000 nm in size, with an average $R_H = 129$ nm for the ATP-treated BV-2 microvesicles in 5.3A, and an average $R_H = 207$ nm for the microvesicles in 5.3B, which were also from ATP-treated BV-2 cells. Microvesicles generated from control cells in the same experiments had average $R_H = 136$ and 208 nm, respectively. The defined microvesicle size range is 100-1000 nm, described by Budnik, et al. (2016), and these representative DLS data for all of the microvesicle preps show that our microvesicles were within that range.

5.1.4. Transmission electron microscopy of resin-embedded BV-2 microvesicles

Microvesicles from BV-2 cells were embedded in resin (Methods 2.11) for imaging via TEM. Dr. Agnes Kittel’s gracious help was vital to this endeavor. After reading a paper that featured TEM images of microvesicles (Crescitelli, et al., 2013), I emailed the corresponding authors and they identified Dr. Kittel as the TEM technician responsible for the images. Our correspondence led to the method used for obtaining the images of BV-2 microvesicles in Figure 5.4. The intricate process involved pelleting the microvesicles, fixing with formaldehyde, treatment with osmium tetroxide, multi-step alcohol dehydration using uranyl acetate stain in the first step, and resin polymerization. David Osborn acquired the images shown in Figure 5.4 after slicing the resin-embedded sample with a microtome. The top panel shows BV-2 microvesicles from control...
5.3 Dynamic light scattering analysis of microvesicles. Microvesicles were generated from BV-2 microglia. Results from two different experiments are shown. (Figure created by Dr. M.R. Nichols.)
Figure 5.4 TEM of resin-embedded BV-2 microvesicles
Top: control BV-2 MVs (no ATP). Bottom: ATP-treated BV-2MV. Both sets of microvesicles are within the size range expected. (Resin embedding done by myself and Mudar Ismail; image by Dr. David Osborn.)
microglia, and the bottom panel shows BV-2 microvesicles from the ATP-treated microglia. The microvesicles are similar in size and appearance, despite the presence or absence of ATP during the experiment. Bianco (2009) and Verderio (2012) presented TEM of vesicles isolated by differential centrifugation, which they refer to as P2 (1200g), P3 (10,000g), and P4 (110,000g). The microvesicles from our experiments (Figure 5.4) correspond to their P3 pellet, and look much like the structures in their images. That is expected, considering the similarities in our isolation protocols; their 1200g and 10,000g centrifugations correspond to our 2000g and 12,200g centrifugations. The lower speed should pellet whole cells, debris, and apoptotic bodies, and the higher speed produces a pellet of microvesicles. In the Crescitelli, et al. (2013) study, three cell types were used: human mast cells, human erythroleukemia cells, and BV-2 murine microglia. They were able to visualize microvesicles from all three, and our BV-2 microvesicles resemble them in size and appearance. These images provide compelling evidence for our ability to generate microvesicles from BV-2 microglia.

5.1.5 Tracking microvesicles with NBD C6-HPC fluorescence

The miniscule pellets presented a challenge when isolating microvesicles. To better track microvesicles, and reassure ourselves that they were indeed present, we took advantage of the NBD fluorophore conjugated to phosphatidylcholine (PC). The NBD C6-HPC (Setareh Biotech; Figure 5.5) molecule inserts into lipid bilayers, and its emission at 536 nm (excitation: 436 nm) can be used to identify membranes. The use of NBD C6-HPC to visualize microvesicles from healthy rat CSF and to quantify microvesicles from rat microglial cell culture was reported by Verderio, et al. (2012). CSF microvesicles isolated from healthy rats were visualized by adding NBD C6-HPC to
pellet fractions, placing drops onto a slide, and imaging the microvesicles with a fluorescence microscope. In their work, microglia were pretreated with NBD C6-HPC before the experiment to label cell membranes, then, after collecting the microvesicles, the researchers quantified NBD C6-HPC fluorescence intensity to make a comparison of microvesicle amounts produced by known stimulants of microglial activation and microvesicle production, such as ATP or LPS. Bianco, et al. (2009) also used NBD C6-HPC to label cell membrane lipids and visualize both real-time microvesicle release from BzATP-treated human glioma cells and microvesicles isolated from cell the culture medium of BzATP-treated astrocytes.

In our experiments, supernatants from microglia treated with ATP or BzATP were processed as described in Methods (2.9 and 2.10). NBD C6-HPC is added to the supernatant collected from the 2000g spin of the cell treatment medium, which pellets cell debris and apoptotic bodies. The supernatant with fluorophore is then incubated at room temperature for 10-15 min, after which the microvesicles are pelleted via centrifugation at 12,200-15,000g and washed with aCSF two to five times to remove excess fluorophore. A fluorimeter is used to measure fluorescence of the washes and resuspended pellets. Fluorescence emission is recorded from 500-600 nm, and integrated from 505-550 nm to produce the values that are graphed. Since most of the unincorporated fluorophore is removed during the washes, greater fluorescence intensity in the resuspended pellet compared to the last wash indicates the presence of microvesicles. Figure 5.5 shows representative data from an experiment in which BV-2 and primary microglia were treated with ATP to stimulate microvesicle production. The bottom panel shows a comparison among two washes and the resuspended microvesicle
Figure 5.5 NBD C6-HPC fluorescence indicates the presence of microvesicles. Top: NBD PC conjugate. Bottom: representative fluorescence intensity measurements for microvesicles generated from BV-2 and primary microglia. Greater fluorescence intensity in the resuspended pellet than in the final wash confirms the presence of microvesicles.
pellet from ATP-treated primary microglia, and from treated and control BV-2 cells. For the ATP-treated BV-2 cells, the first wash has a fluorescence intensity of 11144, the second wash is 1465 and the pellet is 3658, 2.5-fold greater. This indicates that the NBD C6-HPC is embedded in the membranes of the microvesicles in the pellet. The washes from the control (aCSF-treated) BV-2 microvesicles had intensities of 5984, 899, and the pellet intensity was 1126. In this case, the pellet has only 25% greater intensity, but that is still much lower than the first wash, and it seems there fewer microvesicles in the control pellet than in the pellet from the ATP-treated BV-2 microglia. This representative result is typical of the microvesicle preparations we have done so far.

5.2 Characterization of microvesicles from primary microglia

Generating microvesicles from primary microglia is challenging because it is difficult to culture primary microglia in the amounts needed to produce enough microvesicles to assay. Our primary microglia are in co-culture with astrocytes, so I first tried using a co-culture of microglia and astrocytes to generate MVs. The data were promising in that, after using NBD C6-HPC, I was able to detect greater fluorescence intensity in the microvesicles than in the final wash. However, both the control flask and the treated flask were not able to be used again after that experiment. New co-cultures require isolation from mouse pups, so their availability is limited. It is necessary, then, to use cultures of only primary microglia that are removed from the astrocyte + microglia co-culture. To isolate primary microglia for experiments, co-culture flasks are shaken for 5 h at 250 rpm. From two T150 (Corning) flasks containing primary murine astrocytes and microglia, the yield of primary microglia has ranged from 5e4 to 8e5 cells/mL, which is not even enough to cover one T75 flask to confluence. An additional consideration was
the viability of the primary microglia seeded in a flask. We had previously plated primary microglia in 96-well plates for experiments, but I had no experience with primary microglia monocultures or experimenting on them in a culture flask.

First, I seeded four 25 cm2 flasks with 5×10^4 cells/mL in 5 mL and cultured them for a week, changing the medium twice. The data showed promise, but fluorescence intensity from the microvesicles was only slightly more intense than 4th wash. However, from this I confirmed that the primary microglia could be cultured in a flask for at least one week. Next, 2 T-75 flasks were seeded with 1.6×10^5 cells/mL in 10 mL. After 5 days of culture, with one medium change, these cells were used for a microvesicle generation experiment. Only 2 washes were done, as seen in Figure 5.5. After this, fewer co-culture flasks were available, allowing the seeding of just one T-75 flask at a time. With only one T-75 flask of primary microglia, I did not set up a control (untreated) flask when generating microvesicles from primary microglia.

The data from an early experiment with primary cells is shown in Figure 5.5. For microvesicles generated from primary cells, the first wash had an integrated fluorescence intensity of 8269, the second wash was 842, and the pellet integrated intensity was 1564 – nearly double that of the last wash. Later experiments were done with BzATP, which has been shown to be more effective at stimulating the P2X7 receptor. Results from those microvesicle experiments are similar, with about 2-fold greater integrated intensity for the resuspended pellet than the last wash, indicating the presence of microvesicles.

Following consistent generation of microvesicles from primary microglia, further investigation would involve experiments in which we treat primary microglia with Aβ so
they internalize it, use BzATP to stimulate microvesicle production, and probe the microvesicles for Aβ using immuno-dot blots and/or ELISAs.

5.3 Overall conclusion

We have shown that surface interaction of Aβ with BV-2 microglia produces a proinflammatory response in the presence protofibrils, but not monomers or fibrils of Aβ. The proinflammatory response, as measured by TNFα secretion, correlated with the time of exposure to Aβ in BV-2 microglia. Primary microglia are much more likely to internalize SEC-purified protofibrils than monomers, as demonstrated by both time- and concentration-dependent treatments. SEC separation of Aβ monomers and protofibrils is a strategy that we employ which sets apart our work from the literature on microglial uptake of Aβ and explains differences between our findings and those of other groups. For instance, we reported that much of the Aβ taken up by primary microglia is not degraded in the lysosomes. We were also able to show that we can generate microvesicles from BV-2 and primary microglia. Further investigation into whether these microvesicles can carry internalized Aβ back out of microglia is warranted.

The five novel findings from this research include (1) the labeling of a solution of monomers and protofibrils which are then separated by SEC; (2) protofibrils are internalized by primary microglia in greater quantities than monomers in both time-and concentration-dependent experiments; (3) quantitation methods utilizing a plate-reader to measure uptake of labeled Aβ in cells that were treated in a 96-well culture plate; (4) Aβ internalization could not be saturated, even when the concentration of unlabeled Aβ was three-fold greater than labeled Aβ; and, (4) contradictory to many reports in the literature,
a significant amount of internalized Aβ was found in the cytoplasm, outside of lysosomes, and remained stable as protofibrils.

World Health Organization. Dementia Fact Sheet No. 362.

Frost, J. L. and Schafer, D. P. 2016. Microglia: Architects of the developing nervous system. Trends Cell Biol,

Gouwens, L. K., Makoni, N. J., Rogers, V. A. and Nichols, M. R. 2016. Amyloid-beta42 protofibrils are internalized by microglia more extensively than monomers. Brain Res,

Selkoe, D. J. and Hardy, J. 2016. The amyloid hypothesis of alzheimer's disease at 25 years. EMBO Mol Med,

VITA

Lisa (Picard) Gouwens is originally from Linwood, Michigan. After earning a B.S. in biology with a chemistry minor, and a M.Ed. in secondary education from the University of Arkansas-Monticello, Lisa taught high school science in the St. Louis, Missouri, area for eight years. She returned to college in 2009 and completed a M.S. in biochemistry and biotechnology in 2011. Lisa was accepted into the chemistry doctorate program at University of Missouri-St. Louis in 2012. Now that the Ph.D. is complete, she plans to teach chemistry and continue to pursue research, ideally at a small liberal arts university. Lisa lives in the St. Louis metro area with her husband, Don. She has two sons, Jaeson and Kyle. Jaeson is married to Jess, and they are the parents of Lisa’s splendid granddaughter, Luise.