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Abstract 

Circadian clock is a transcriptional/translational feedback loop that drives the rhythmic 

expression of downstream mRNAs.  Termed “clock-controlled genes,” these molecular outputs 

of the circadian clock orchestrate cellular, metabolic, and behavioral rhythms.  As part of our on-

going work to characterize key upstream regulators of circadian mRNA expression, we have 

identified a novel clock-controlled gene in Drosophila melanogaster, Achilles (Achl), which is 

rhythmic at the mRNA level in the brain and represses expression of immune response genes, 

especially anti-microbial peptides in the immune system. Achl knock-down in the brain 

dramatically elevates expression of crucial immune response genes, including IM1 (Immune 

induced molecule 1), Mtk (Metchnikowin), and Drs (Drosomysin). As a result, flies with knocked-

down Achl expression are more resistant to bacterial challenges. Meanwhile, no significant 

change in core clock gene expression and locomotor activity is observed, suggesting that Achl 

influences rhythmic mRNA outputs rather than directly regulating the core timekeeping 

mechanism. Additionally, Achl knock-down in the brain disrupts the rhythmicity of the immune 

system. Flies with knocked-down Achl show altered rhythmicity in both survival towards infection 

and sensitivity of immune response gene induction upon infection. Using high-throughput RNA-

sequencing, we also identified candidate clock controlled genes that are downstream of Achl. 

Notably, Achl knock-down in the absence of immune challenge significantly diminishes the fly’s 

overall lifespan and resistance towards starvation, indicating a behavioral or metabolic cost of 

constitutively activating this pathway. Together, our data demonstrate that (1) Achl is a novel 

clock-controlled gene that (2) regulates the immune system in a repressive manner. (3) Achl 

regulates the rhythmicity of the immune system, and (4) Achl participates in signaling from the 

brain to immunological tissues.  
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Outline 

There will be five chapters in this Dissertation. In Chapter 1, I will introduce the basic 

background information and related research progress. In Chapter 2, I will focus on a 

computational simulation and further analysis that was done to shed light on the considerations 

when using RNA-sequencing technology to profile rhythmic mRNA expression. Results obtained 

from this simulation also contribute to the experiments discussed in the Chapter 4. In Chapters 3 

& 4, I will talk about the major dissertation project about the role of Achl gene in the regulation of 

the immune function and its circadian rhythms in Drosophila (fruit flies). In Chapter 3, I will focus 

on the role Achl plays in the regulation of the immune system and in Chapter 4, I will focus on 

the circadian aspect of the immune system and the role Achl plays in its regulation. There will be 

a more specific introduction about the background of the project described in Chapter 3 and 4 in 

Chapter 3. In the last chapter, Chapter 5, I will make an overall conclusion and future directions. 

Circadian Rhythms 

Our planet completes one rotation roughly every 24 hours, giving us day and night. As a 

consequence, most organisms, including bacteria, fungi, plants and animals, have developed an 

endogenous clock system to predict and adapt to the predictable light and dark cycle. This 

internal clock system is named circadian rhythms, with “circa” referring to “approximately”, and 

“dies” referring to “day” in Latin. Circadian rhythms participate in almost all aspects of physiology 

and maintain their homeostasis. In mammals, for example, locomotor activity, sleep-wake cycle, 

feeding, hormone releasing, body temperature, blood pressure and cardiovascular activity, 

muscle strength, metabolism and alertness are all rhythmic. Disruption of circadian rhythms has 

been implicated in multiple pathologies, like neurodegenerative disease, cardiovascular disease, 
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obesity, diabetes, metabolic syndromes, cancer and depression (Klerman 2005, Halberg et al. 

2006, Levi and Schibler 2007).  

There are three key characteristics for a circadian rhythm: period, phase and amplitude. As 

illustrated in Figure 1.1, period is the time elapsed for one complete cycle, phase is the time 

when a rhythm reaches its peak, and amplitude is the difference between peak (or trough) to the 

mean level. Period and phase defines the property of specific rhythm, while amplitude defines its 

rhythmic strength.  

At the organismal level, here are three features within the circadian rhythms. First, circadian 

rhythms can be entrained. When there are environmental cues, named “zeitgebers”, animals are 

able to synchronize their rhythms with various zeitgebers, among which light is the strongest 

zeightber. Second, circadian rhythms are self-sustained. Under constant conditions, where no 

environmental cue is available, animals are still able to maintain their rhythmicity, though the 

amplitude is damped. We use different terms to identify time so that we can easily distinguish 

the environmental conditions of experimental objects. Under constant conditions, a standard of 

time, termed circadian time (CT) is used. CT0 is defined as the onset of activity of diurnal 

organisms, that is, subjective dawn. CT12 is defined as the onset of activity of nocturnal 

organisms, that is, subjective dusk. When an environmental cue, like light that is most commonly 

used in lab, is available, zeitgeber time (ZT) is used. ZT0 is defined as the onset of light, and 

ZT12 is defined as the offset of light. Third, the circadian rhythms are temperature compensated. 

That is, animals are able to maintain their period length over any constant temperature within the 

physiological temperature range. For example, fruit flies of the same genetic background 

maintained at either 18 degrees or 25 degrees will have the same period length. 
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Figure 1.1. Illustration of the key characteristics of a rhythm  

 

For a defined circadian rhythm output, there is a peak where the output reaches its highest level, 

and a trough where the output reaches its lowest level. Period is the time elapsed for an entire 

cycle, which will be around 24 hours for circadian rhythms. Phase is the time when the output 

reaches its peak. And the amplitude is the range of output between peak (or trough) to the 

median.   
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Circadian rhythms are highly hierarchical  

Regulation of the circadian rhythms is highly hierarchical. The principal oscillator (also called 

master pacemaker) in mammals is the suprachiasmatic nucleus (SCN) located at the anterior 

hypothalamus in the brain (Hastings et al. 2003). There are about 20,000 cells within the SCN. 

These SCN cells receive both optic and non-optic signals from the environment. The most 

potent input signal to the SCN is light, which is received by rods, cones and intrinsically 

photosensitive retinal ganglion cells (iPRGCs) within the eyes (Schmidt et al. 2011). The 

received light signal is transmitted to the SCN through the photic neural input pathway, retino-

hypothalamic tract (RHT) (Slat et al. 2013). SCN cells incorporate these input signals received 

from the environment, synchronize the signals within SCN cells, and transmit synchronized 

output signals to other brain regions and peripheral tissues. Output signals are transmitted 

through neuronal connections and secretary humoral factors, like TGF-α, prokineticin and 

cortisol. SCN cells ultimately coordinate rhythmic behavior, metabolism and physiology in 

peripheral tissues through this signal transmitting system (Slat et al. 2013).  

Though peripheral tissues mainly synchronize through SCN released signals, rhythms in 

peripheral tissues are endogenous and self-sustaining. Peripheral tissues possess the same 

functional molecular components that are involved in SCN rhythms and can keep rhythmicity in 

vitro, though not as robust as SCN rhythms (Yoo et al. 2004). Furthermore, isolated cells can 

maintain rhythmicity for years in vitro, suggesting that peripheral tissues are able to sustain 

circadian rhythms autonomously (Balsalobre et al. 2000, Nagoshi et al. 2004). Peripheral 

oscillators can also receive signals from the local environment and entrain their rhythms 

accordingly. For example, restricted-feeding can cause a rhythmic shift in the liver, without 

affecting the SCN rhythm (Kornmann et al. 2007).  
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Figure 1.2.  The clock neuron network in Drosophila 

 
 

 

Schematic figure showing the location of principal oscillator neurons in flies. There are about 150 

clock neurons that are divided into several group based on their clustering pattern, location and 

size. This figure is modified from Allada & Chung. (2010) Annual Review of Physiology. 
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In Drosophila, the principal oscillator network is composed of about 150 neurons (out of about 

250,000 neurons) that express the core clock genes (Figure 1.2). These 150 neurons, including 

dorsal lateral neurons (LNd), small and large ventral lateral neurons (lLNv and sLNv), lateral-

posterior neurons (LPN) and dorsal neurons (DN1, DN2 and DN3), are the functional 

compartment of SCN neurons in Drosophila (Nitabach and Taghert 2008, Allada and Chung 

2010). These cells receive light input signals from the retina, ocelli, and the Hofbauer-Buchner 

eyelets. In addition, CRYPTOCHROME (CRY), a blue-light photoreceptor, provides an 

alternative light input pathway as CRY is activated upon light, and the activation of CRY will 

promote TIM degradation and thus synchronize the clock with the environmental light.  

Molecular basis of the circadian clock 

At the molecular level, circadian rhythms are regulated by core clock genes that compose self-

sustained 24-hour feedback loops (Ko and Takahashi 2006). In flies, as shown in Figure 1.3, the 

structure of the molecular clock is conserved between flies (Figure 1.3A) and mice (Figure 1.3B). 

Using fly molecular clock for example, two transcription factors, CLOCK (CLK) and CYCLE 

(CYC) form heterodimers and bind to the E-box element (CANNTG), located at promoter regions 

of period (per) and timeless (tim), promoting their expression. PER and TIM, once expressed, 

will dimerize and translocate into the nucleus, where the heterodimers prevent CLK and CYC 

heterodimers from accessing E-box elements, thus decreasing the expression of per and tim 

themselves. When the levels of PER and TIM get low, they will be degraded in the cytoplasm 

before translocating into the nucleus. The inhibition of CLK and CYC activity will thus be 

released. When CLK and CYC activities get released, expression of per and tim will be activated 

again (Allada and Chung 2010). This transcriptional-translational feedback loop (TTFL) occurs  
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Figure 1.3. Molecular components of the clock in flies and mice 
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The molecular architecture of the clock system, including the core clock genes and CCGs, is 

conserved in flies (A) and mice (B). This figure is modified from Ko & Takahashi. (2006) Human 

Molecular Genetics.  
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every 24 hours, with some delay mechanisms that are controlled by protein modifications, 

constitutes the fundamental basis of circadian rhythms (Dunlap 1999).  

This TTFL is reinforced by additional loops composed of PDP1 (Par Domain Protein 1)/VRI 

(Vrille) and CWO (Clockwork Orange). As shown in Figure 1.4B, the expression of Pdp1, vri and 

cwo, are under the control of CLK and CYC. Meanwhile, PDP1 is a basic zipper (bZip) activator; 

it activates Clk expression through the P/V element located at the promoter region of Clk. VRI is 

a bZip transcriptional repressor which represses Clk expression by preventing this PDP binding. 

CWO is a bHLH repressor; it specifically binds to E-box regions and prevents the expression of 

CLK/CYC target mRNAs. However, CWO also plays a role of activator in maintaining the 

robustness of the rhythmicity since loss of cwo results in an overall decreased amplitude (Allada 

and Chung 2010).  

Clock-controlled-genes (CCGs) and physiology 

These core clock genes maintain circadian rhythms through TTFLs. Furthermore, they control 

the expression of thousands of downstream genes, referred to as clock controlled genes 

(CCGs), through either direct transcriptional regulation or cascaded regulation mediated by 

regulating CCGs that are controlled by TTFL-like transcription factors. While core clock genes 

maintain circadian rhythms, CCGs are the ones that are directly involved in physiology. The 

disruption of core clock genes causes systematic rhythmic disorders, while the disruption of 

CCGs is more likely to cause local disorders (Ko and Takahashi 2006).  

Regulation of CCGs is primarily at the transcriptional level through TTFLs, which are most 

extensively studied. However, there are multiple levels of CCG regulation, including regulation at 

transcriptional level, post-transcriptional level, translational level and post-translational level. For 
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example, peroxiredoxins in blood cells undergo 24-hour redox oscillation at the post-translational 

level (O'Neill and Reddy 2011).  

RNA-sequencing is a great tool to study CCGs 

To identify CCGs and understand their regulation mechanisms, microarray and RNA-sequencing 

(RNA-seq) are being widely used. These high through-put profiling based studies have greatly 

accelerated our understandings of CCGs in wild type animals, different tissues, cell types, the 

regulation mechanisms and the contributions of principle oscillator and peripheral oscillators 

(Harmer et al. 2000, McDonald and Rosbash 2001, Wichert et al. 2004, Wijnen et al. 2005, 

Keegan et al. 2007, Covington et al. 2008, Hughes et al. 2012, Hsu and Harmer 2014, Zhang et 

al. 2014). In addition, because of the single base pair resolution, RNA-seq data enable the 

detection of novel cycling transcripts, as well as the measurement of multiple RNA processing 

forms, like alternative splicing and RNA editing (Trapnell et al. 2010, Filichkin and Mockler 2012, 

McGlincy et al. 2012). 

Rhythmic outputs and immune response 

As mentioned earlier, almost all aspects of physiology are under circadian control. These 

rhythmic physiological activities are the ultimate outputs under the regulation of circadian clock. 

Immunological defense is one of the most dramatic examples of a pathway through which the 

circadian clock influences organismal health and fitness.  In mammals, the immune system is 

regulated by circadian rhythms. This is seen at both a molecular and cellular level (Silver et al. 

2012a, Silver et al. 2012b, Curtis et al. 2015).  

At the molecular level, core clock genes are expressed rhythmically in all immune tissues and 



25 

 

cells. Besides, microarray based global circadian gene expression profile found that over a 

thousand genes are rhythmically expressed in macrophage (Keller et al. 2009). In addition, upon 

infection, many cytokines and chemokines, including IL6 (interleukin 6), TNFα (tumor necrosis 

factors alpha) and CXCL 12 (Chemokine (C-X-C Motif) Ligand 12) are released into the 

circulation in a rhythmic manner. At the cellular level, the precursor haematopoietic stem cells 

enter the circulation in a rhythmic manner. Differentiated lymphatic cells, including T 

lymphocytes, B lymphocytes, natural killer cells, macrophages, monocytes, also show rhythmic 

trafficking in the circulation (Mendez-Ferrer et al. 2008, Lange et al. 2010, Gibbs et al. 2012, 

Scheiermann et al. 2013, Labrecque and Cermakian 2015, Ella et al. 2016). Together, these 

molecular and cellular rhythms influence rhythmic immunological processes at the organismal 

level.  

Mice show differential survival against infection in a time-of-day dependent manner. Some other 

immune related processes, such as inflammation, immune resistance, and the severity of 

autoimmune diseases, like rheumatoid arthritis, are found to vary throughout the day in a 

rhythmic manner (Cutolo 2012, Gibbs and Ray 2013, Curtis et al. 2014, Carter et al. 2016). The 

chronic disruption of circadian rhythms, such as sleep deprivation, shift work, and jet lag can 

precipitate disease even in healthy individuals and exacerbate existing diseases, particularly 

inflammatory conditions (Ranjbaran et al. 2007).  

Drosophila melanogaster is a model organism that is widely used to study the mechanisms of 

humoral immune response (Figure 1.4). The humoral immune system in Drosophila is simplified, 

yet highly conserved at a molecular level with its mammalian counterpart (Muller et al. 2008). 

The discovery and understanding of mammalian pattern recognition receptors are triggered by 

the discovery of Toll in Drosophila immune system (Anderson 2000, Kimbrell and Beutler 2001, 
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Hoffmann 2003). As shown in Figure 1.4, there are two major pathways, Toll pathway and Imd 

(immune deficiency) pathway, within humoral immune system of Drosophila. Toll pathway mainly 

combats gram- positive bacterial infection and fungal infection, while Imd pathway mainly 

combat gram-negative bacterial infection.  

There are pattern recognition proteins either circulating in the hemolymph or located on the cell 

membrane of the fat body for each pathway. These pattern recognition proteins could distinguish 

specific pathogen-associated molecular patterns and activate the downstream signaling pathway 

to induce the expression of AMPs (anti-microbial peptides) within the immune system, 

particularly within the fat body.  AMPs are then secreted into the hemolymph to fight against the 

invading pathogen (Imler and Hoffmann 2000, Hoffmann 2003).  

Similar to mammals, the immune response in Drosophila is rhythmic. Several genes involved in 

immune response are rhythmically expressed, and flies infected with pathogenic bacteria at 

different times of the day show a rhythmic resistance peaking during the late night (McDonald 

and Rosbash 2001, Lee and Edery 2008, Stone et al. 2012). However, it is unclear how this is 

regulated at either a molecular or cellular level. 

Current questions and outline 

As described above, one of questions waiting to be answered is, how does the principal 

oscillator regulates rhythmic physiology in peripheral tissues? We decide to choose the 

regulation of immune system in Drosophila as our model to study.  

Drosophila has several unique advantages: First, flies are easy to raise. Flies grow fast, they can 

complete one life cycle in ten to twelve days. Flies are tiny, they are only a few millimeters in  
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Figure 1. 4. The immune system in Drosophila 

 

 

 

A. Drosophila anatomy showing major immunological tissues: two fat bodies, one located in the 
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head and the other one in the abdomen. And the hemocytes circulating within the cavity.  

B. A schematic presentation of the immune pathways, Toll pathway and Imd pathway in 

Drosophila. This figure is modified from Jules A Hoffmann, (2003) Nature (Hoffmann 2003).   
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body length. It is thus easy to maintain a large amount of flies in lab. Second, flies have a 

smaller genome, and there are various transgenic lines for most fly genes. Besides, there are 

well established genetic tools to get use of these transgenic lines. For example, UAS (upstream 

activating sequence)-Gal4 system is an extensively used genetic tool to manipulate the 

expression of certain genes in a tissue specific manner (Brand and Perrimon 1993). Briefly, 

there is one parental fly line with a Gal4 coding sequence downstream of a tissue specific 

promoter inserted into the genome, tissue specific GAL4 protein is expressed in this line. There 

is a second parental fly line with a transgenic fragment downstream of the UAS promoter 

inserted into the genome. Depending on the purpose, either a coding sequence or an RNAi 

fragment can be used as transgenic fragment here. By crossing these two parental lines, 

expressed GAL4 protein will bind to the UAS element and drive the expression of that transgenic 

fragment in the F1 offspring. Third, flies share conserved mechanism with mammals. Over half 

of human disease related genes have their counterparts in flies, and the regulation mechanisms 

of most processes are conserved from flies to mice. For example, as show in Figure 1.3, the 

architecture of the molecular clock is conserved in both flies and mice.  

We then choose the immune system to study because 1), it is nicely rhythmic with a clear 

readout. We can infect flies with pathogenic bacterial and look at the survival. And we can 

monitor the expression of immune response genes as well as bacterial growth after infection in 

flies. 2), the clock in the fat body damps quickly under constant condition, suggesting that it 

relies largely on the principal oscillator to regulate its rhythmicity.  

Using this Drosophila immune system as a working model, we found Achilles (Achl), a clock 

controlled gene that is expressed in the brain, regulates the immune system (Chapter 3) as well 

as its rhythmicity (Chapter 4). We also profiled candidate CCGs downstream of Achl using high 
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throughput RNA-seq (Chapter 4). To determine the best experimental conditions for using RNA-

seq to profile circadian genes, we performed a computational simulation for various conditions 

based on published experimental data (Chapter 3). 
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Abstract 

Circadian rhythms are daily endogenous oscillations of behavior, metabolism, and physiology. At 

a molecular level, these oscillations are generated by transcriptional–translational feedback 

loops composed of core clock genes. In turn, core clock genes drive the rhythmic accumulation 

of downstream outputs—termed clock-controlled genes (CCGs)—whose rhythmic translation 

and function ultimately underlie daily oscillations at a cellular and organismal level. Given the 

circadian clock's profound influence on human health and behavior, considerable efforts have 

been made to systematically identify CCGs. The recent development of next-generation 

sequencing has dramatically expanded our ability to study the expression, processing, and 

stability of rhythmically expressed mRNAs. Nevertheless, like any new technology, there are 

many technical issues to be addressed. Here, we discuss considerations for studying circadian 

rhythms using genome scale transcriptional profiling, with a particular emphasis on RNA 

sequencing. We make a number of practical recommendations—including the choice of 

sampling density, read depth, alignment algorithms, read-depth normalization, and cycling 

detection algorithms—based on computational simulations and our experience from previous 

studies. We believe that these results will be of interest to the circadian field and help 

investigators design experiments to derive most values from these large and complex data sets. 

Introduction  

Circadian rhythms are daily endogenous oscillations of behavior, physiology and metabolism 

that allow organisms to anticipate and respond to predictable environmental changes. In 

animals, these oscillations are governed by a dedicated timing system composed in large part by 

transcriptional-translational feedback loops of core clock genes (Ko and Takahashi 2006). At an 
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organismal level, circadian rhythms have profound influence over normal physiological rhythms 

such as sleep / wake cycles, while disruption of the clock contributes to many human disorders, 

including cardiovascular disease, neurodegenerative disease, obesity, diabetes, and cancer 

(Klerman 2005, Halberg et al. 2006, Levi and Schibler 2007). 

In both mammals and insects, the principal circadian oscillator resides in a small number of 

neurons in the central nervous system (Nitabach and Taghert 2008, Slat et al. 2013). The 

molecular circadian clock in these neurons is entrained by external stimuli, ultimately 

synchronizing organismal rhythms. In mammals, this central clock is located in the 

suprachiasmatic nuclei (SCN) of the hypothalamus (Hastings et al. 2003, Stratmann and 

Schibler 2006). SCN neurons receive both photic and non-photic information from the 

environment and coordinate behavioral rhythms in locomotion, feeding, and sleep / wake cycles.   

Through both direct and indirect mechanisms, the SCN also synchronizes downstream 

molecular circadian clocks in the brain and in peripheral tissues throughout the body. Peripheral 

clocks are typically phase-delayed from the SCN by 4-6 hours (Panda et al. 2002b) but 

otherwise have many of the same genetic and biochemical properties of clocks in the central 

oscillator. Notably, peripheral oscillations are endogenous and self-sustaining, persisting for 

days or even weeks in vitro (Yoo et al. 2004). Even cultured cell lines that have been maintained 

in vitro for many years maintain endogenous circadian oscillators that can be synchronized by a 

variety of stimuli (Balsalobre et al. 2000, Nagoshi et al. 2004). The discovery of circadian 

rhythms in tissue culture has had an enormous impact on the field, as these cellular circadian 

models have proven to be a fruitful resource for investigating core clock mechanisms (Baggs et 

al. 2009, Zhang et al. 2009). 

In both central and peripheral oscillators, core clock proteins drive the rhythmic expression of 
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downstream targets, which are termed “clock controlled genes” (CCGs). These output genes do 

not participate directly in the mechanism of the circadian timekeeper, but instead are translated 

and ultimately impose rhythmicity on downstream cellular and physiological functions (Hastings 

et al. 2003). Many CCGs regulate the rate-limiting steps of metabolic and genetic pathways, 

indicating that they play a key role in temporally compartmentalizing cellular functions (Panda et 

al. 2002b). Although a systematic review of every CCG with an established molecular function is 

beyond the scope of this manuscript, it is worth emphasizing that maintaining appropriate 

rhythmic expression of single genes can be a matter of life and death. For example, a number of 

key ion channels are under circadian control in cardiomyocytes, and dysregulation of their 

rhythmic expression has profound consequences for the physiology of the heart while 

predisposing animals to fatal arrhythmia (Jeyaraj et al. 2012, Schroder et al. 2013). 

The total number of cycling transcripts in any given tissue is difficult to ascertain and depends on 

many assumptions, but we can be confident that it ranges from a few hundred to several 

thousand transcripts, depending on the tissue (Hughes et al. 2007, Hughes et al. 2009). Notably, 

although the core clock machinery is largely conserved in different tissues, circadian output 

genes are highly tissue-specific (Ceriani et al. 2002, Panda et al. 2002a, Storch et al. 2002, 

Hughes et al. 2009). This observation makes intuitive sense, as the physiological demands on 

the liver, for example, are substantially different from those on neural tissues. But the diversity of 

CCGs complicates matters for investigators studying the molecular mechanisms of circadian 

clock output, and it provides strong motivation for experiments aimed at systematically 

identifying CCGs in different tissues and species.   

To identify CCGs and understand the mechanism of their regulation, microarrays have been 

used to profile rhythmic gene expression systematically in cyanobacteria, plants, insects, fungi, 
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mice, and cellular models (Keegan et al. 2007, Kornmann et al. 2007, Menger et al. 2007, 

Covington et al. 2008, Hughes et al. 2009, Vollmers et al. 2009, Atwood et al. 2011, Rund et al. 

2011, Xu et al. 2011, Hughes et al. 2012b, McGlincy et al. 2012). These studies have 

contributed significantly to our understanding of circadian output in wildtype animals, and over 

time they have matured into investigations of more focused tissues and cell types ((Kula-

Eversole et al. 2010, Collins et al. 2012)). Most of these data sets are freely available online and 

provide a powerful resource for researchers interested in visualizing the expression of multiple 

genes in many human and mouse tissues (Pizarro et al. 2013, Zhang et al. 2014). Moreover, 

these data have contributed significantly to computational modeling studies of the molecular 

mechanism of circadian rhythms (Bozek et al. 2009, Anafi et al. 2014). 

Besides simply cataloging CCGs, microarray profiling of rhythmic gene expression has also 

been instrumental in elucidating the mechanism of circadian output pathways. For example, a 

pair of recent studies used microarrays in conjunction with tissue-specific manipulation of clock 

genes to explore the relationship between central and peripheral oscillators (Kornmann et al. 

2007, Hughes et al. 2012b). Both studies show that the peripheral circadian clock is essential for 

normal CCG expression and identified a number of candidate genes that may coordinate the 

synchronization of peripheral rhythms. A similar approach has characterized the fundamental 

role feeding cues have in driving CCG expression in peripheral tissues. By simply manipulating 

the time of day at which mice are allowed to feed, the phase of most CCGs in the liver was 

dramatically changed, underscoring the complexity of CCG regulation in the periphery (Vollmers 

et al. 2009). Finally, a recent study of rhythmic gene expression in Dicer-mutant fruit flies has 

shown the key role that miRNAs have in regulating circadian rhythms and transcriptional output 

(Kadener et al. 2009). The role of miRNAs in clock regulation has been confirmed in mouse 
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(Chen et al. 2013), thus motivating follow-up experiments aimed at understanding in much 

greater detail the interplay between ncRNAs and mRNAs in circadian output.  

The development of next generation sequencing (NGS) has accelerated studies into the global 

regulation of gene expression, and these technical advances offer significant opportunities for 

the circadian field. Early studies using RNA-sequencing (RNA-seq) to profile circadian gene 

expression have demonstrated the potential of these approaches (Filichkin and Mockler 2012, 

Hughes et al. 2012a, Menet et al. 2012, Du et al. 2014). Moreover, the single base-pair 

resolution of these data enables the detection of new cycling transcripts, as well as measuring 

alternative splice forms, RNA editing, and other forms of RNA processing. Besides RNA-seq, 

there are other emerging NGS technologies that have begun to influence circadian research. For 

example, nascent RNA-seq (Menet et al. 2012, Rodriguez et al. 2013) provides information 

about the transcriptional and post-transcriptional regulation of cycling mRNAs. ChIP-seq enables 

the characterization of how these output rhythms are regulated by transcription factor binding 

and chromatin regulation (Rey et al. 2011, Bugge et al. 2012, Koike et al. 2012, Meireles-Filho et 

al. 2014, Menet et al. 2014).  

Despite the impact that NGS has had on circadian research, many technical challenges await 

investigators conducting these experiments. Several of these challenges involving experimental 

and statistical design are common to all global gene expression studies, including those using 

microarrays. We point the interested reader to several excellent articles that have discussed 

these issues in detail (Walker and Hogenesch 2005, Wijnen et al. 2005, Deckard et al. 2013, 

Hsu and Harmer 2014). In addition, the use of RNA-seq introduces a number of technical issues 

that have not been satisfactorily addressed by the circadian field, such as the depth of 

sequencing coverage, read-depth normalization, and choice of alignment algorithm. Here, we 
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present recommendations for future work using RNA-seq to explore circadian mRNA rhythms, 

with a focus on the computational and statistical approaches necessary for data interpretation. 

Conceptually, the systematic identification of CCGs is remarkably straight-forward. Tissue 

samples are collected at regular intervals, mRNA expression is measured on a global scale for 

each of these samples, and appropriate statistical tests are used to identify rhythmic 

components of the data. Typically, tissue collections are performed in constant darkness in order 

to isolate rhythms driven by the circadian clock, but many valuable studies have also been 

performed under LD conditions or in the presence of different zeitgebers. The key considerations 

when designing circadian RNA-seq experiments include: (1) number of time points and 

replicates, (2) choice of alignment algorithm, (3) method of read-depth normalization, (4) number 

of reads per sample, and (5) choice of statistical analyses and interpretation of the results. 

Sample density  

Statistical tests for rhythmicity are extremely sensitive to the frequency of sampling (Hughes et 

al. 2007, Hughes et al. 2009, Atwood et al. 2011). However, given the expense and relative 

novelty of RNA-seq, there are presently no circadian RNA-seq studies using very dense 

sampling schemes. To simulate higher sampling densities using the available data, we randomly 

combined subsets of reads from neighboring time points. These synthetic data points were then 

used to calculate expression levels at intermediate data points and thus gain a measure of the 

relationship between sampling density and cycling identification. We emphasize that this 

computational approach is an expedient to generate synthetic test data, rather than an approach 

to identify bona fide cycling transcripts. Nevertheless, we note that over half of the top cycling 

transcripts in these data also cycle in previous microarray studies (Hughes et al. 2009, Hughes 
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et al. 2012a). The total number of cycling transcripts and their distribution of phases and 

amplitudes in these data were also consistent with previous studies. Most importantly, the 

number of uniquely aligned reads and the dynamic range of transcript expression were both 

within normal ranges, indicating that our synthetic data realistically model the properties of a 

circadian RNA-seq experiment. 

We found that 2-h sampling resolution over two consecutive days dramatically increases the 

number of identified cycling transcripts relative to 4- and 6-h sampling schemes (Figure 2.1A and 

2.1B). Moreover, the identification of cycling transcripts at 2-h resolution yielded considerably 

fewer false positives, which we determined by comparing to cycling transcripts identified in 

period-null fruit flies (data not shown). These results agree with the previous circadian 

microarray studies mentioned above, and based on their consensus, we strongly recommend 

using 2-h sampling over two consecutive days. The approximately twofold increase in cost is 

more than compensated by dramatic improvements in the accuracy and reproducibility of cycling 

identification. 

Alignment algorithm and splice form detection  

Many different algorithms have been developed to align raw RNA-seq reads to a reference 

genome/transcriptome and calculate expression values. These algorithms, including but not 

limited to Bowtie, Tophat, RUM, Star, and GSNAP have unique strengths and weaknesses 

based on speed, memory footprint, sensitivity, and accuracy(Langmead et al. 2009, Trapnell et 

al. 2009, Trapnell et al. 2010, Wu and Nacu 2010, Grant et al. 2011, Dobin et al. 2012, Kim et al. 

2013). We recommend RUM because it is robust, user- friendly, and exceptionally good at 

mapping reads to exon–exon junctions. However, we note that other algorithms each have   
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Figure 2.1. The discovery of cycling transcripts depends on sampling 

density and read depth 

 

 

To assess the relationship among sampling density, read depth, and the identification of cycling 

transcripts, subsets of raw reads were randomly selected from legacy data sets and used to 

measure gene expression. Two-hour sampling resolution was simulated from these data by 

randomly pooling reads from neighboring time points. The discovery cycling transcripts in the 

fruit fly brain (A) and the mouse liver (B) showed a clear positive dependence on total read depth 

and sampling density. The total number of expressed transcripts (>10 uniquely aligned reads 

across the entire data set) is plotted as a function of read depth per sample for fruit fly brain (C) 
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and mouse liver (D). Note that the blue traces (dark gray in the print version) in A and B have 

been replotted in C and D for the sake of clarity. In both data sets, the total number of cycling 

transcripts does not plateau, even at maximum read depths. Similarly, although the total number 

of expressed transcripts begins to plateau (2.5 million reads per sample for flies; 5 million reads 

per sample for mice), expressed transcripts continue to be identified even at maximal read 

depths.  
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specific advantages. Star, for example, is particularly effective when working with large data 

sets, being orders of magnitude faster than RUM, GSNAP, or Tophat. 

A related consideration is splice form detection. Several methods have been proposed to identify 

and quantify splice forms, such as Cufflinks, Scripture, CEM, and iReckon (Trapnell et al. 2010). 

In (Hayer et al. 2015), using BEERS, we simulated up to 10 forms of 5000 Refseq genes. When 

detecting one or two forms, most algorithms are able to detect with reasonable accuracy the 

internal gene structures of these models. However, when three or more forms are included, both 

the false discovery and false negative rates become substantial. Put simply, when you need 

these algorithms to detect multiple forms, they fail more often than not, even using 100 bp 

paired-end reads. Because of their ineffectiveness in this regard, it is difficult to evaluate their 

quantification properties. While increasing read length may improve splice form detection (250 

bp paired-end reads are now possible), at this point, this is an unresolved problem. Alternatively, 

cycling analysis may be performed at an exon-level to thereby avoid the difficulties of accurately 

detecting alternative splice forms. 

Read-depth normalization 

Read depth determines signal to noise in detection and, consequently, the ability to detect 

cycling. Unfortunately, with RNA-seq it is impossible to get the same number of reads for 

multiple samples. This is in contrast to arrays, where normalization methods such as RMA and 

GCRMA are robust for small changes in overall signal between arrays. If the number of reads 

per sample is roughly equal, downsampling can be an attractive option. In this way, you “fix” the 

read depth to the sample for which you have the fewest mapped reads. For example, in the 

above fly samples with 15–21 m reads, we could sample 15 m reads from each time point. This 
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has the unattractive property of throwing away data, but it is probably the best strategy to 

normalize read depth between samples. 

Read depth  

Read depth is a key factor that determines the accuracy of measurements made by high 

throughput sequencing (Hart et al. 2013, Liu et al. 2013, Jung et al. 2014). More reads increase 

the statistical power of gene expression measurements and allow the detection of rare 

transcripts. But unlike microarrays whose cost is driven by the number of samples, the cost of 

RNA-seq is largely determined by the number of sequenced reads. Therefore, care must be 

taken to avoid under-powered experiments on one hand and wasted resources on the other. 

As seen in Figure 2.1, the number of identified cycling transcripts depends on read depth. 

Notably, the number of cyclers does not plateau, even at the maximum read depths available in 

this study. For comparison, we plotted the total number of detectable transcripts in these data, 

defined as 10 uniquely aligned reads across the entire data set (Figure 2.1C and 2.1D). Unlike 

cycling transcripts, expressed transcripts begin to plateau in these data, but some expressed 

transcripts are only detectable at very high read depths. Consistent with this, our unpublished 

data indicate that even one billion reads per sample may be insufficient to detect every 

expressed transcript in mouse tissues. It stands to reason that determining whether a transcript 

cycles requires considerably more reads than merely detecting its expression, and we speculate 

that hundreds of millions of reads per sample (at 2-h resolution or greater) will be required to 

identify every cycling transcript in any given tissue.  

On the other hand, if the goal of an experiment is to assess changes in the circadian 

transcriptome rather than catalog every cycling transcript, far fewer reads per sample may be 
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necessary. This distinction is akin to the difference between de novo sequencing of a genome 

versus resequencing to identify allelic variants. To explore this relationship, we compared the 

expression profiles of 25 known cycling transcripts in the fly brain at different read depths (Figure 

2.2A). We found that the overall rhythmic pattern of these transcripts is maintained at 50% the 

maximal read depth, and much of the rhythmic signal persists even at 10% of the maximal read 

depth. To illustrate this observation, we plotted the expression pattern of four clock genes, 

timeless, vrille, Pdp1, and cwo, whose rhythmicity is evident even at low read depths (Figure 

2.2B). In fact, the correlation between downsampled expression profiles and the “true” 

expression profile is maintained at surprisingly low read depths. For example, as little as 500 

thousand reads per sample are sufficient to detect rhythms in timeless and Pdp1 (Figure 2.2C).  

We broadened this observation to the whole transcriptome by determining how many cycling 

transcripts (defined as cycling at maximum reads depths) are also identified at lower read depths 

(Figure 2.3). As one might expect, in both fruit flies and mice, high-amplitude cyclers were 

detectable at relatively low read depths. Similarly, highly expressed transcripts are more likely to 

be identified as cycling at lower read depths (data not shown). We used these observations to 

calculate a rough estimate of the number of reads per sample necessary to identify 50%, 75%, 

or 87.5% of the total circadian transcriptome (Figure 2.4). Since the maximal read depths 

available in this study are insufficient to identify every cycling transcript as discussed in detail 

above, we caution the reader that these figures represent low-end estimates. With that caveat in 

mind, however, these data indicate that 10–15 million reads per sample in flies and 20–25 

million reads per sample in mice may be sufficient to characterize the majority of the circadian 

transcriptome, especially if the investigator is content to measure the highest amplitude and 

most highly expressed rhythmic genes.  
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Figure 2.2. Many cycling transcripts are detectable with far fewer reads per 

sample than seen in legacy data sets 

 

 

(A) The expression pattern of 25 cycling transcripts in the fruit fly brain at different read depths 
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are shown as heat maps. The top gray and black bars represent subjective day and night, 

respectively. Every transcript's expression profile has been median-normalized. Expression 

levels greater than 1.4-fold are shown as bright yellow; expression levels less than 0.5-fold are 

shown as bright blue (legend on the far right). (B) The rhythmic expression pattern of four 

representative transcripts, 

timeless.c, pdp1.a, vrille-RD, and cwo.g are shown at different read depths. The top gray and 

black bars represent subjective day and night, respectively. The vertical axis represents PKM 

values; the horizontal axis indicates time points which are marked on the bottom. (C) Pearson 

correlation coefficients between maximal read depth and subsampled data of expression values 

of the four transcripts in (B). The horizontal axis indicates different read depth. Correlations 

equal to 1.0 are shown as bright yellow; correlations less than 0.8 are shown as bright blue 

(legend on the far right).  
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Figure 2.3. Detection of cycling transcripts at lower read depth depends on 

amplitude 

 

 

Cycling transcripts were divided in quartiles based on the magnitude of the amplitude. The 

percentage of cycling transcripts from each quartile is plotted as function of read depth in fruit fly 

brain (A) and mouse liver (B) data sets. Transcripts with higher amplitudes are more likely to be 

detected at a lower read depth, while the detection of low-amplitude transcripts requires 

increasingly large read depths. The vertical axis refers to the percentage of transcripts cycling 

(e.g., since 8% of transcripts in the fruit fly brain cycle, each quartile contains 2% of the 

transcriptome cycling, at max).  
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Figure 2.4. Estimated number of reads necessary to detect subsets of the 

circadian transcriptome 

 

 

The number of reads per sample necessary to detect 50%, 75%, 87.5%, and 100% of cycling 

transcripts in the fruit fly and mouse transcriptome are shown here. The vertical axis indicates 

read depth per sample, and the horizontal axis indicates the total number of transcripts within 

the transcriptomes of fruit fly and mice.  



53 

 

Cycling detection algorithms  

Many statistical tests have been developed to detect cycling components of complex data sets, 

including but not limited to COSOPT, Fisher’s G test, F24, Haystack, Arser, JTK_Cycle, Lomb 

Scargle and Delichtenberg (Claridge-Chang et al. 2001, Straume 2004, Wichert et al. 2004, de 

Lichtenberg et al. 2005, Glynn et al. 2006, Mockler et al. 2007, Hughes et al. 2010, Yang and Su 

2010). They are based on different mathematical assumptions, and their relative strengths and 

weaknesses have been compared in several recent benchmarking studies (Hughes et al. 2010, 

Deckard et al. 2013). In our on-going experiments, we favor using JTK_Cycle as it has proven to 

be powerful, accurate, and efficient, while also being relatively user-friendly. But we note that 

many of the related approaches have been used to great effect in previous cycling studies.  

False discovery correction  

Accurately estimating the rate of false discoveries is a well-recognized problem in any high-

throughput analysis (Macarthur, 2012). For circadian experiments, the p-value is calculated 

independently for every transcript, and it reflects the probability that a given expression profile 

occurred by chance alone. However, this measure does not account for the enormous size of 

genomics experiments, which may include tens of thousands or even hundreds of thousands of 

expression profiles. Consequently, even extremely unlikely occurrences (i.e., transcripts with low 

p-values) are expected to be present with some frequency. Therefore, the false discovery rate 

(FDR or q-value) is calculated for the experiment as a whole, and it reflects the probability that 

transcripts at a given statistical threshold are in actuality false discoveries. 

The rank order of p- and q-values will always be the same, and the q-value will inevitably be 

greater than or equal to the p-value (i.e., more conservative). Although the choice of statistical 
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threshold depends on the aims of the investigation and the tolerance for false discoveries, we 

strongly recommend the inclusion of an explicit false discovery correction to account for the 

enormous number of comparisons being made. 

Validation and follow-up 

Like any high-throughput assay, several steps should be taken to validate the accuracy gene 

expression measurements. Fortunately, circadian profiling experiments have excellent internal 

controls built-in, as the expression pattern of many core clock genes are known or predicted 

from previous work. Moreover, independent biological samples should be collected, and novel 

candidate cyclers should be verified using independent technical approaches such as 

quantitative PCR or in situ hybridization. Finally, comparisons with legacy data sets—both 

expression profiling and ChIP-seq—can be used to effectively strengthen the confidence that a 

novel cycling gene is worth pursuing in downstream functional experiments. 

Discussion 

Circadian rhythms exert an enormous influence on normal and pathological physiology. 

Nevertheless, the pathways by which the core circadian oscillator drives rhythms in peripheral 

tissues and the mechanisms through which peripheral clocks influence human health are 

incompletely understood. RNA-seq analysis of the circadian transcriptome can be used to build 

a comprehensive list of candidate CCGs as well as explore the underlying molecular biology 

through which these rhythms are generated. We expect that both applications will have a major 

impact on the circadian field in the years ahead. Care must be taken to use appropriate 

experimental designs and statistical approaches, particularly with respect to the sampling 

density and the number of reads per sample. Using experimental designs appropriate to the 
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goals of an investigation will ultimately increase the value and staying power of the data 

collected. 

Materials and Methods 

Data processing 

Previously published circadian RNA-seq data from fruit fly brain (Hughes, Grant, et al., 2012) 

were downloaded from GEO (GSE36108). Mouse liver RNA-seq data were obtained in advance 

of publication, the GEO accession number is GSE54652 (Zhang et al. 2014). To simulate 2-h 

sampling in both data sets, randomly selected reads from neighboring time points were merged 

together using custom-built Ruby scripts; three independent replicates were generated for each 

data set in the fruit fly data. 

Alignment 

RUM (Grant et al., 2011) was used to align all reads (75 bp, paired-end) to the genome and 

transcriptome of either D. melanogaster (build dm3) or M. musculus (build mm9), using the 

following parameters: “–bowtie-nu-limit 10 –nu-limit 10.” For the fruit fly data set, 52–59% of 

reads were mapped uniquely to the genome and transcriptome. For mouse data sets, 77–82% 

of reads were mapped uniquely to the genome and transcriptome. Reads per kilobase per 

million reads (RPKMs) for each transcript were calculated by RUM from uniquely mapped reads. 

Circadian analysis: Detection of cycling was performed using either JTK_Cycle or JTK_Cycle_v2 

(Hughes et al., 2010; Miyazaki et al., 2011) implemented in R (64-bit, version 2.12.1). 

Benjamini–Hochberg corrected q-values of<0.05 were generally used as statistical threshold. To 

mitigate the effect of false discovery in the fruit fly data set, per0 data (i.e., circadian mutant) 
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were used as a negative control. Cycling transcripts found in per0 samples were considered to 

be false discoveries. In the analysis of RPKM or amplitude, all the cycling transcripts in legacy 

data set were divided into four groups according to either mean RPKM or amplitude values, with 

the same numbers of transcripts in each group. 

RUM can be downloaded and installed from the following: 

http://www.cbil.upenn.edu/RUM/userguide.php. JTK_Cycle is available from: 

http://openwetware.org/wiki/HughesLab:JTK_Cycle. All Ruby scripts and data sets are available 

on demand. 
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Abstract 

The circadian clock is a transcriptional/translational feedback loop that drives the rhythmic 

expression of downstream mRNAs.  Termed “clock-controlled genes,” these molecular outputs 

of the circadian clock orchestrate cellular, metabolic, and behavioral rhythms.  As part of our on-

going work to characterize key upstream regulators of circadian mRNA expression, we have 

identified a novel clock-controlled gene in Drosophila melanogaster, Achilles (Achl), which is 

rhythmic at the mRNA level in the brain and which represses expression of anti-microbial 

peptides in the immune system. Achl knock-down in neurons dramatically elevates expression of 

crucial immune response genes, including IM1 (Immune induced molecule 1), Mtk 

(Metchnikowin), and Drs (Drosomysin). As a result, flies with knocked-down Achl expression are 

resistant to bacterial challenges.  Meanwhile, no significant change in core clock gene 

expression and locomotor activity is observed, suggesting that Achl influences rhythmic mRNA 

outputs rather than directly regulating the core timekeeping mechanism.  Notably, Achl knock-

down in the absence of immune challenge significantly diminishes the fly’s overall lifespan, 

indicating a behavioral or metabolic cost of constitutively activating this pathway. Together, our 

data demonstrate that (1) Achl is a novel clock-controlled gene that (2) regulates the immune 

system, and (3) participates in signaling from the brain to immunological tissues. 

Introduction 

Circadian rhythms are internal timekeeping mechanisms that orchestrate daily oscillations of 

behavior, metabolism and physiology. In most living organisms, circadian rhythms play a 

profound role in the regulation of physiological behaviors, such as locomotor activity, sleep-wake 

cycle, body temperature, blood pressure, cardiovascular activity, muscle strength, feeding, 
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glucose and lipid homeostasis, and alertness (Hastings et al. 2003). In addition, circadian 

rhythms regulate both adaptive and innate immunity and thereby influence resistance to infection 

(Scheiermann et al. 2013). Circadian rhythms are important for maintaining homeostasis by 

anticipating and adapting to predictable environmental changes. Consequently, disruption of 

circadian rhythms influences multiple pathologies, such as neurodegenerative diseases, 

cardiovascular diseases, obesity, diabetes, cancer, and depression (Hastings et al. 2003, 

Knutsson 2003, Klerman 2005, Halberg et al. 2006, Levi and Schibler 2007, Wulff et al. 2010).  

At the molecular level, circadian rhythms are regulated by core clock genes that underlie self-

sustained 24-hour feedback loops. In flies, two transcription factors, CLOCK (CLK) and CYCLE 

(CYC) compose the positive branch of the feedback loop while PERIOD (PER) and TIMELESS 

(TIM) compose the negative branch. CLK and CYC form heterodimers and bind to E-box 

elements located in the promoter regions of per and tim, promoting their expression. Once 

translated, PER and TIM dimerize and translocate into the nucleus, where they prevent CLK and 

CYC heterodimers from accessing E-box elements, thus decreasing the mRNA expression of 

per and tim. The degradation of PER and TIM resets the clock and thereby starts a new round of 

CLK and CYC activation. Well-studied protein modifications impose appropriate delay 

mechanisms, thus generating a transcriptional-translational feedback loop (TTFL) that occurs 

about every 24 hours (Ko and Takahashi 2006, Allada and Chung 2010, Hardin 2011).   

In addition to promoting per and tim expression, CLK and CYC further drive the rhythmic 

expression of hundreds to thousands of downstream genes.  Termed “clock-controlled genes 

(CCGs),” these rhythmic mRNAs are not involved in the core time-keeping mechanism but 

instead regulate physiological processes (Hastings et al. 2003). While the core clock genes are 

conserved in different tissues, CCGs are highly tissue-specific. Rhythmic transcriptome profiling 
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in 12 different mouse organs shows little overlap of CCGs between different tissues, as 

expected, given how diverse these different tissues are in their physiological demands (Zhang et 

al. 2014). The observation that CCGs are largely tissue-specific is seen in flies as well as 

mammals, suggesting that it is a well-conserved aspect of circadian output pathways (Ceriani et 

al. 2002, Panda et al. 2002, Storch et al. 2002, Xu et al. 2011). Consequently, the disruption of 

core clock genes causes systematic rhythmic disorders, while the disruption of CCGs is more 

likely to be linked to local disorders (Hughes et al. 2012, Jeyaraj et al. 2012). Since the outputs 

of the circadian clock are ultimately responsible for the clock’s influence on health and 

physiology, it is thus necessary to identify tissue-specific CCGs and to understand their 

regulatory mechanisms. For example, the study of cardiac specific CCGs revealed a role of 

rhythmic iron channels in arrhythmia development and susceptibility (Jeyaraj et al. 2012, 

Schroder et al. 2013). To this end, high-throughput microarray and RNA-sequencing (RNA-seq) 

have greatly accelerated our understanding of CCGs in diverse tissues as well as multiple cell 

types (McDonald and Rosbash 2001, Keegan et al. 2007, Filichkin and Mockler 2012, Hughes et 

al. 2012, Menet et al. 2012, Du et al. 2014). Furthermore, the use of these high-throughput 

approaches in genetically modified animals enables the understanding of their regulatory 

mechanisms as well as the contributions of principle oscillator and peripheral oscillators to the 

regulation of specific CCGs (Rey et al. 2011, Xu et al. 2011, Bugge et al. 2012, Koike et al. 

2012, Meireles-Filho et al. 2014, Menet et al. 2014). On-going studies in our lab and others are 

aimed at identifying CCGs and understanding how they mediate clock output of physiological 

processes related to disease and therapeutics.  

In animals, circadian rhythms are regulated in hierarchy. In both mammals and insects, there are 

neuron-based primary oscillators located in the brain. The primary oscillator in mammals resides 
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in the suprachiasmatic nuclei (SCN), and in flies it is distributed among several diffuse clusters of 

neurons (Herzog 2007, Nitabach and Taghert 2008).  In addition to the primary oscillator, there 

are multiple peripheral tissues that behave rhythmically. The principal oscillator integrates 

environmental signals and sends synchronizing cues to peripheral tissues through mechanisms 

that are the subject of active investigation (Hastings et al. 2003).   

Circadian control of immunological defenses is one of the most dramatic examples of a pathway 

through which the circadian clock influences organismal health and fitness.  In mammals, both 

principal arms of the immune system – innate and adaptive – are regulated by circadian 

rhythms. This is seen at both a molecular and cellular level (Silver et al. 2012a, Silver et al. 

2012b, Curtis et al. 2015). High-throughput analyses have revealed rhythmicity in many genes 

involved in the immune response (Keller et al. 2009). In addition, cytokines and chemokines, 

such as IL6 (interleukin 6), TNFα (tumor necrosis factors alpha) and CXCL 12 (Chemokine (C-X-

C Motif) Ligand 12) are released into the circulation in a rhythmic manner. White blood cells, 

including T lymphocytes, natural killer cells, macrophages, monocytes and the precursor 

haematopoietic stem cells are released into the circulation in a rhythmic manner and respond to 

stimuli rhythmically (Mendez-Ferrer et al. 2008, Lange et al. 2010, Gibbs et al. 2012, 

Scheiermann et al. 2013, Labrecque and Cermakian 2015, Ella et al. 2016). Together, these 

molecular and cellular rhythms influence organismal immunobiology in profound ways. Mice 

show differential resistance against infection at different times of the day. Inflammation, immune 

resistance, and the severity of autoimmune diseases are also found to vary throughout the day 

in a rhythmic manner (Cutolo 2012, Gibbs and Ray 2013, Curtis et al. 2014, Carter et al. 2016).  

The chronic disruption of circadian rhythms, including sleep deprivation, shift work, and jet lag 

can precipitate disease even in healthy individuals and exacerbate existing diseases, particularly 
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inflammatory conditions (Ranjbaran et al. 2007). 

Drosophila has been widely used as a model organism to study the mechanisms of immune 

response due to its relative simplicity and its genetic tractability.  Some exotic defense 

mechanisms notwithstanding (Watson et al. 2005), the humoral immune system in Drosophila is 

highly conserved at a molecular level with its mammalian counterpart (Muller et al. 2008). The 

initial discovery of an immunological role for Toll in Drosophila revolutionized the study of 

mammalian pattern recognition receptors (Anderson 2000, Kimbrell and Beutler 2001, Hoffmann 

2003). The humoral immune system of Drosophila is divided into two major pathways, Toll 

pathway and Imd (immune deficiency) pathway. These two pathways combat different types of 

bacterial and fungal infections by distinguishing the pathogen-associated molecular patterns 

through pattern recognition proteins, activating the downstream AMPs (anti-microbial peptides) 

within the immune system, particularly within the fat body.  AMPs are then secreted into the 

heamolymph to clear the infected pathogen (Imler and Hoffmann 2000, Hoffmann 2003). There 

are seven AMP families characterized in Drosophila:  Drosomycin, Metchnikowin, Cecropins, 

Defensin, Attacins, Diptericin and Drosocin (Hetru et al. 2003). Similar to mammals, the immune 

response in Drosophila is also found to be rhythmic. Genes involved in immune response are 

rhythmically expressed, and flies infected with pathogenic bacteria at different times of the day 

show a rhythmic resistance peaking during the late night (McDonald and Rosbash 2001, Lee 

and Edery 2008, Stone et al. 2012). However, it is unclear how this is regulated at both a 

molecular and cellular level.  

Here we show that CG17386, a previously uncharacterized clock-controlled gene is highly 

rhythmic in the fly head.  Using whole-transcriptome profiling, we find that CG17386 represses 

the expression of immune responsive genes. Neuron-specific CG17386 knock-down results in 
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dramatically elevated levels of crucial immune response genes, including AMPs.   As a result, 

flies with knocked-down CG17386 expression are more resistant to immune challenge with 

bacteria. Notably, CG17386 knock-down in the absence of immune challenge significantly 

diminishes the fly’s overall lifespan, indicating an energetic or metabolic cost of constitutively 

activating this pathway.  Hereafter we refer to CG17386 as Achilles (Achl), in recognition that its 

mutant phenotype protects flies against injury and infection, while simultaneously shortening 

their lifespan. 

Achl is a clock-controlled gene with rhythmic mRNA expression in the fly 

head 

Previous high-throughput analyses revealed that Achl mRNA is rhythmically expressed in the fly 

head (Keegan et al., 2007) and brain (Figure 3.2A) (Hughes et al., 2012). We verified these 

observations using quantitative PCR (qPCR) assays on fly heads collected every four hours 

either in 12 hour light: 12 hour dark (LD) conditions or in constant darkness (DD). As expected, 

we found rhythmic Achl mRNA expression (Figure 3.1A and 3.1B) in both conditions, with 

damped amplitude under DD. Notably, the amplitude of Achl mRNA under both conditions is 

comparable with the amplitude of core clock genes, including timeless. Furthermore, ChIP-seq 

studies from other labs suggested that CLOCK and CYCLE directly bind to the E-box regions of 

the Achl promoter (Abruzzi et al., 2011; Meireles-Filho et al., 2014), and Achl rhythmicity is 

eliminated in period mutant flies (Figure 3.2A) (Hughes et al., 2012); its expression is also down-

regulated in Clk mutant flies (Figure 3.2B) (McDonald and Rosbash, 2001).  Taken as a whole, 

these results suggest that Achl is under the direct control of the molecular clock. Larp7, a 

homolog of Achl in mammals, shares a conserved RNA binding domain with Achl (Figure 3.3B). 

Since Larp7 is rhythmically expressed in the mouse kidney (Figure 3.3A) (Zhang et al., 2014), 
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we speculate that there may be a conserved mechanism underlying their rhythmic expression.  

Moreover, given the role that many RNA-binding proteins play in regulating mRNA expression, 

these genes may in turn regulate downstream CCGs (Morf et al., 2012; Siomi and Dreyfuss, 

1997). 

Knocking down Achl in neurons does not affect the core clock 

Based on the robust, high-amplitude rhythmicity of Achl in the fly head, we hypothesized that 

Achl is either a core clock gene or a key output gene.  To test these possibilities, we generated 

pan-neuronal knock-down of Achl using genetically encoded RNAi constructs (i.e. Elav-Gal4; 

UAS-Dcr2 was crossed with TRiP UAS-Achl RNAi line). qPCR data confirmed a 60% knock 

down efficiency in both male and female Achl RNAi flies at ZT2 when the mRNA level of Achl is 

moderate (Figure 3.6A), compared to the negative control, an unrelated RNAi construct with the 

same backbone vector and genomic insertion point (UAS-GFP flies).  

The Achl RNAi line we used was generated by TRiP project and is predicted to have no off-

target effects (Perkins et al., 2009).  Consistent with this, we found Achl to be the only 

Drosophila mRNA with greater than 19 base pairs matching the RNAi construct we used (Figure 

3.4A and 3.4B).  Therefore, every potential off-target hit of this RNAi construct had at least 2 

base pair mismatches and showed minimal knock-down in mRNA expression compared to Achl. 

Achl-RNAi flies driven under a pan-neuronal driver eclosed in normal Mendalian ratios, indicating 

no significant developmental effects on embryonic, larval, or pupal stages.  Nevertheless, we 

observed partially penetrant developmental defects in adult wing development. As shown in 

Figure 3.5, Achl RNAi flies have heterogeneous defects in their wing morphology, suggesting a 

potential role of Achl in wing development and / or wing spreading behavior after eclosion. 
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Figure 3.1. Achl is a clock-controlled gene that shows robust rhythmic 

mRNA expression in the fly head 

 

(A). qPCR assays performed on Canton S wildtype fly heads with two replicates showing that 

Achl is rhythmic at the mRNA level in 12hr: 12hr light:dark (LD) conditions. timeless is a core 

clock gene that serves as a positive control.  The bottom horizontal white and black bars 

represent lights on and lights off, respectively. Error bars represent +/- SEM. Data were 

analyzed with JTK-CYCLE to evaluate the rhythmicity (Hughes et al., 2010; Miyazaki et al., 

2011). qPCR data were normalized with the median expression value of each gene. 
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(B). qPCR assay performed on control fly heads showing that Achl is rhythmic at the mRNA level 

in constant darkness (DD) conditions. The bottom horizontal gray and black bars represent 

subjective day and night, respectively. Data were analyzed with JTK-CYCLE to evaluate the 

rhythmicity (Hughes et al., 2010; Miyazaki et al., 2011). qPCR data were normalized with the 

median expression value of each gene. 
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Figure 3.2. Achl is regulated by the core clock 

 

 

 

(A). Achl rhythmicity is disrupted in per0 flies. Data adapted from Hughes et al. (2012) Genome 

Research. 
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(B). Achl expression level is down-regulated in Clk mutant flies. Data adapted from McDonald & 

Rosbash. (2001) Cell. 
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Figure 3.3. Larp7, Achl’s mammalian homolog is rhythmically expressed in 

the mouse kidney 

 

(A). Larp7, a mammalian homolog of Achl, is rhythmically expressed in the mouse kidney. Data 

adapted from Zhang et al. (2014) PNAS. 

(B). Sequence alignment of the conserved Lupus-La RNA binding domains in ACHL and its 

mammalian homolog, LARP7. The alignment is performed using MUSCLE (Multiple Sequence 



77 

 

Comparison by Log- Expectation) 3.8 on EMBL-EBI (Edgar, 2004). “*” indicates positions which 

have a single, fully conserved residue. “:” indicates conservation between groups of strongly 

similar properties - scoring > 0.5 in the Gonnet PAM 250 matrix, and “.” indicates conservation 

between groups of weakly similar properties - scoring =< 0.5 in the Gonnet PAM 250 matrix. 

Different colors indicate the physicochemical properties of the residues.   
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Figure 3. 4. Achl RNAi knock-down is specific 

 

 

(A). RNA-seq data demonstrate that the most likely off-target hits of the RNAi construct we use 

are not knocked-down. Achl is the only transcript measurably knocked-down with predicted 

alignment to the genetically-encoded RNAi construct we used. Control flies expressed UAS-GFP 

RNAi instead of UAS-Achl RNAi.  RPKM: reads per kilobase per million sequenced reads. 

(B). Mismatch from perfect 21-bp alignment predicted by “find OTE (off-target elements)” 

program (Perkins et al. 2009).  
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Figure 3.5. Achl RNAi flies have defective wing development 

 

 

 

Pictures captured under dissection microscope.  

(A) Control flies (UAS-GFP RNAi) with normal wings.  

(B) Achl RNAi flies with heterogeneous defects in their wing morphology, from slight to severe. 

Arrows indicate disrupted wing morphology. 
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Two hallmarks of core circadian clock genes are (1) their effect on expression of other circadian 

clock genes and (2) their influence on circadian period length in constant conditions. We 

therefore tested whether knocking down Achl has any effect on the core clock gene expression 

and the overall time-keeping mechanism. As shown in Figure 3.6B, there is no significant 

difference in the expression of a core clock gene, per in Achl RNAi flies at ZT2. Since per 

expression peaks during the night, we performed additional qPCR analyses on samples 

collected at ZT11 as well as CT36 with probes targeting per and timeless, two core clock genes, 

and found no difference in the expression level at these time points as well (Figure 3.6C), 

suggesting that Achl is unlikely to affect the core clock. Furthermore, we collected heads from 

flies maintained in DD every four hours for 24 hours and used qPCR to assess the rhythmicity of 

core clock genes.  We found no obvious defects in the period, phase, or amplitude of core clock 

genes, as exemplified by timeless expression (Figure 3.6D).  

In addition to the rhythmicity of core clock gene expression, we also examined the overall 

behavioral rhythmicity of Achl RNAi flies. Locomotor activity is the standard circadian behavior 

output that reflects the endogenous period of individual animals. We used conventional DAM 

(Drosophila Activity Monitoring) system monitoring to assess behavioral rhythmicity in LD and 

DD conditions (Pfeiffenberger et al., 2010; Schmid et al., 2011).  Achl RNAi flies had normal 

locomotor rhythms in both LD and in DD (see averaged actograms in Figure 3.7A and 3.7B).  

The period length of these flies in constant conditions was within the experiment-to-experiment 

variance for negative controls (Figure 3.7A-D).  The total number of rhythmic flies in the Achl 

knock-down was slightly higher than wildtype, although not statistically significant (Figure 3.7E).  

We observed that the uniformity of rhythms in Achl RNAi flies damped over time in DD (Figure 

3.7B), and consistent with this, the power of their individual rhythms was damped on average,   
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Figure 3.6. Knocking down Achl in the neurons does not affect the core 

clock 

 

 

(A). qPCR data from RNAi (UAS-Achl RNAi) and control (UAS-GFP RNAi) fly heads showing 

that that Achl expression level is significantly reduced in both males and females using 

genetically-encoded RNAi (i.e. Elav-Gal4; UAS-Dcr2 was crossed with TRiP UAS-Achl/GFP 

RNAi line) (* = p < 0.05, *** = p < 0.005; N = 3 biological replicates of 6-8 flies apiece; Error bars 

are +/- SEM). qPCR data were normalized with control Achl expression data of the same sex. 
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(B). qPCR data from RNAi and control fly heads showing that there is no significant difference in 

the expression of period, a core clock gene in wildtype control and Achl RNAi flies (NS = not 

significant, Student’s T-test; N = 3 biological replicates of 6-8 flies apiece; Error bars are +/- 

SEM). qPCR data were normalized with control period expression data of the same sex. 

(C). qPCR data from RNAi and wildtype control fly heads showing that there is no significant 

difference in the expression of core clock genes (period and timeless) at other time points. 

Samples collected at CT36 were females, and samples collected at ZT11 were males. qPCR 

data were normalized with control expression data collected at the same time. 

(D). timeless, a core clock gene, maintains its rhythmic mRNA expression in both control and 

RNAi fly heads, suggesting that Achl has no effect on the core clock. qPCR data were 

normalized with the median expression of each genotype. 
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Figure 3.7. Achl RNAi does not significantly affect behavioral rhythms or 

sleep 

 

 

 

(A & B). Averaged actograms for representative control (N = 26) (A) and Achl RNAi (N = 28) (B) 

male flies. Flies were placed in LD conditions and converted to DD conditions at day 5, as 
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indicated by the arrow. These results are representative of > 5 independent experiments. The 

top horizontal gray and black bars represent subjective day and night. 

(C & D). Lomb-Scargle periodograms corresponding to the averaged actograms in panels A and 

B showing the period calculated for control (C) and RNAi (D) flies. Period length differences 

were within the variance of negative control flies in these experiments. 

(E). Percentage of individual rhythmic flies (Lomb-Scargle p < 0.05) observed. N = 26 for control 

and 28 for RNAi.  

(F). Average power of individual rhythmic flies being analyzed; Error bars are +/- SEM. NS = p > 

0.05 Students’ T-test. 

(G & H). Overall sleep profile (G) and sleep amounts (H) of control (parental flies) and Achl RNAi 

flies showing that Achl RNAi does not dramatically alter either sleep rhythms or quantity. Error 

bars are +/- SEM. NS = not significant, Student’s T-test; *= p < 0.05 Students’ T-test. 
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although not statistically significant (Figure 3.7F).  The sleep profile of these flies (a key 

behavioral output of the circadian clock) was within the variance seen between different negative 

controls (Figure 3.7G-H).   

Although we cannot formally exclude the possibility of a subtle behavior phenotype, based on 

the available data, specifically expression and rhythmicity of core clock genes, locomotor 

rhythms, and sleep profiles, we conclude that Achl is unlikely to play a direct role in the core 

clock.  Instead, we favor the hypothesis that it is a clock-controlled gene influencing 

physiological outputs. 

Knock-down of Achl results in activated expression of immune responsive 

genes 

We then tested if Achl plays any role in the regulation of rhythmic physiological outputs. To this 

end, we profiled transcript expression using RNA-seq on fly heads collected from both male and 

female Achl RNAi and control flies to profile the genes being regulated by Achl. The samples 

were collected at ZT2, about 6 hours after the peak of Achl mRNA. This time point was chosen 

to provide sufficient time for ACHL protein to be synthesized and regulate downstream genes. 

We collected 3-4 biological replicates for each genotype and sex (Table 3.1). RNA samples were 

prepared with in-line control DNAs and quality control was performed using conventional 

methods. For each sample, at least five million reads were obtained, roughly consistent with 

previous suggestions for read-depth in Drosophila RNA-seq profiling (Liu et al., 2014). The raw 

reads were aligned against Drosophila genome and transcriptome with RUM (RNA-seq Unified 

Mapper) (Grant et al., 2011). At least 95% of sequenced reads were mapped to the genome or 

transcriptome. We used uniquely mapped reads to calculate expression levels and disregarded   
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Table 3. 1. RUM alignment statistics 

 

 

 

This table shows the samples we used for RNA-seq, the total number of reads, and the number 

of uniquely- or non-uniquely aligning reads as determined by RUM.    
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ambiguous reads mapping to multiple locations. The expression values were calculated with 

RPKM (reads per kilobase per million mapped reads). The averaged Pearson correlation 

coefficient for overall transcript RPKMs was greater than 0.94 for each pairwise comparison of 

replicates, suggesting that the data we obtained are reproducible (Table 3.1). Differentially 

expressed genes were analyzed with a two-way ANOVA statistical analysis with factors of 

genotype and sex and an explicit false-discovery correction. As shown in Table 3.2, we found 

dozens to hundreds of differentially expressed transcripts under different p-value thresholds that 

depend on genotype in both males and females. For all further analyses, we chose to use a p-

value threshold of 0.001, corresponding to a false discovery rate of q < 0.18.  As shown in Figure 

3.8A, over 90% differentially-expressed transcripts are up-regulated in Achl RNAi flies, 

suggesting that ACHL’s molecular function may be to repress target mRNAs.  

To determine the physiological pathways that are being affected, we performed Gene Ontology 

(GO) analysis for all the differentially expressed genes (Eden et al., 2007; Eden et al., 2009). As 

shown in Figure 3.8B, immune responsive pathways are dramatically enriched (see Table 3.3 for 

the full list). Anti-microbial peptides (AMPs) are among the well-studied immune defensive 

mechanisms in insects (Hetru et al., 2003; Hoffmann, 2003). We found a striking up-regulation in 

their expression in Achl RNAi flies compared to negative controls (Figure 3.8C).  Moreover, we 

verified that immune defenses were up-regulated in the thorax and abdomen as well as in the 

fly head (Figure 3.9), consistent with the possibility that expression of Achl in the brain regulates 

systemic responses to infection.  

Achl knock-down in neurons protects flies against bacterial infection 

There are two strategies that hosts, including Drosophila take to defend infection: resistance and  

http://www.sciencedirect.com/science/article/pii/S0889159116305141#s0155
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Figure 3.8. RNA-seq data showed an activation of immune responsive genes 

in Achl RNAi flies 
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(A). Volcano plot of the RNA-seq expression data. Each dot represents a single transcript.  Gray 

dotted lines indicate a p-value threshold of < 0.001 (corresponding to a q-value < 0.18) and fold 

change threshold of > 2X. For each genotype, data includes four male replicates and three 

female replicates.  

(B). Summarized Gene Ontology analysis of differentially-expressed transcripts. Software used 

for analysis: Gene Ontology enrichment analysis and visualization tool (GOrilla) (Eden et al. 

2007, Eden et al. 2009). 

(C). Heatmap of the median-normalized expression of key immune responsive genes. Red 
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indicates higher expression, and black indicates lower expression. Names of transcripts are 

marked on the left, and fold change (RNAi/Control) are marked on the right. 
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Table 3.2. Differential expression statistics 

 

 

 

This table shows the numbers of transcripts and genes differentially expressed at different p-

value thresholds as well as the number and percentage of transcripts upregulated. 
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Table 3.3. Full Gene Ontology enrichment table 

 

 

 

This is a full Gene Ontology enrichment table generated by GOrilla software available online 
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(Eden et al. 2007, Eden et al. 2009). The corresponding simplified table is shown in Figure 3B.  

As shown from the GOrilla website, Enrichment (N, B, n, b) is defined as follows: 

N: the total number of genes; B: the total number of genes associated with a specific GO term; 

n: the number of genes in the top of the user's input list or in the target set when appropriate; b: 

the number of genes in the intersection. 

  



94 

 

Figure 3.9. Systemic effects of Achl knock-down 

 

 

 

Immune response gene IM1 is upregulated in both head and body (B) in Achl RNAi flies, even 
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though RNAi knockdown of Achl is only observed in head (A).  qPCR data is normalized with 

controls of the same tissue.   
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tolerance. Resistance refers to the ability to reduce bacterial growth within the host body and 

tolerance refers to the ability to reduce detrimental pathological effects of infection.  The activated 

expression of immune responsive genes, which play a role in reducing bacterial growth, in Achl 

RNAi flies led us to hypothesize that Achl RNAi flies would be more resistant toward infection. To 

test this, we performed a needle inoculation assay with commonly studied and evolutionarily 

divergent pathogenic bacteria, P. aeruginosa and S. aureus. This needle inoculation assay is a 

well-characterized acute infection assay that is a conventional model for testing fly immune 

responses (Apidianakis and Rahme, 2009). As shown in Figure 3.10A and 3.10B, Achl RNAi flies 

have better overall survival compared with control flies.  In addition, we examined the growth of 

bacteria within the fly body, and we found decreased bacterial growth after 24 hours of infection, as 

indicated by fewer colony forming units (CFUs) in Achl RNAi flies (Figure 3.10C) with the same 

original bacterial load (Figure 3.11). The fact that Achl RNAi flies had a better overall survival and 

less bacterial load after 24 hours of infection compared to control flies suggests that this better 

survival is due to increased resistance, not tolerance.  

Furthermore, we performed qPCR assays with four selected probes (IM1, Mtk, DptB and PGRP-

SD) on flies infected for 24 hours to measure the expression of immune responsive genes. We 

chose to look at these four genes because they are genes with significant up-regulation in RNAi 

flies that could represent both pathways (Toll and Imd pathways) as well as different processes 

(bacterial recognition and anti-bacterial defense processes). As shown in Figure 3.10D & Figure 

3.12, the expression of these genes after 24 hours of infection is similar for control and RNAi flies, 

suggesting that there is no dramatic change in the ability to respond to pathogenic bacterial 

infection. In addition, we found a more dramatic increased expression of these immune response 

genes in control flies than Achl RNAi flies because of the pre-activation in Achl RNAi flies. Taken   
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Figure 3.10. Achl knock-down in neurons protects flies against bacterial 

infection 

 

(A). Achl knock-down flies have a higher survival rate after S.aureus infection. Data are the 

combined results of at least four biological replicates. N > 50 for infected flies and > 30 for injury 
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only flies. *** = p < 0.005 Log rank test.        

(B). Achl knock-down flies have a better survival rate after P.aeruginosa infection. Data are the 

combined results of at least four biological repeats. N > 50 for infected flies and > 30 for injury 

only flies.   *** = p < 0.005 Log rank test.               

(C). Achl knock-down flies have decreased bacterial colony formation after bacterial infection.  N 

> 30 for infected flies and > 20 for injury only flies. ***= p < 0.005 Students’ T-test. Mean ± SEM 

of Control-P.aeruginosa: 4.898e+006 ± 1.105e+006; RNAi-P.aeruginosa: 606616 ± 159290; 

Control-S.aureus: 7.687e+006 ± 1.301e+006; RNAi-S.aureus: 324859 ± 110479. 

(D). Expression of IM1 upon infection by qPCR assay (N = 2 biological replicates of 6-8 flies 

apiece; Error bars are +/- SEM). 0 hour expression level is higher in RNAi than control flies; 24 

hours expression level is similar in RNAi and control flies for each inoculation condition. All 

qPCR data were normalized with control 0 hour injury only data. 
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Figure 3.11. Initial bacterial load of flies in the infection assay 

 

 

Achl knock-down flies and control flies have comparable initial bacterial load in bacterial infection 

assay.  N > 50 for infected flies and > 20 for injury only flies. NS = p > 0.05 Students’ T-test. 

Mean ± SEM of Control-P.aeruginosa: 40.14 ± 5.408; RNAi-P.aeruginosa: 39.75 ± 4.216; 

Control-S.aureus: 106.8 ± 8.895; RNAi-S.aureus: 105.0 ± 9.471. 
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Figure 3.12. Expression of Immune responsive genes Mtk, DptB and PGRP-

SD upon infection 
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(A-C). Expression of immune responsive genes Mtk (A), DptB (B) and PGRP-SD (C) upon 

infection examined by qPCR assay (N = 2 biological replicates of 6-8 flies apiece; Error bars are 

+/- SEM). 0 hour expression level is higher in RNAi than control flies; 24 hours expression level 

is similar in RNAi and control flies for each inoculation condition. All qPCR data were normalized 

with control 0 hour injury data. 
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together, these data suggest that Achl regulates steady-state immune response gene 

expression but does not affect peak expression after infection. 

Flies with knocked-down Achl have a decreased lifespan 

Altogether, these data indicate that Achl RNAi flies have a constitutively active immune system. 

This continuous activation is advantageous when flies are infected with bacteria, but it might 

cause deleterious effects in normal conditions. We therefore measured the overall lifespan of 

these flies and found that Achl RNAi flies have a significantly shorter lifespan than the control 

flies (Figure 3.13A). We hypothesized that this trade-off might be due to metabolic dysfunction, 

and therefore we examined starvation resistance of both Achl RNAi flies and control flies. To do 

so, flies were placed into fresh 1% agarose vials with water supply but without any source of 

nutrition. As shown in Figure 3.13B, Achl RNAi flies have a median survival time of 39 hours, 

while control flies have a median survival time of 48 hours. This decrease in both normal lifespan 

and starvation resistance suggests a behavioral or metabolic cost of constitutively activating 

immune pathways. 

Discussion 

The circadian clock drives tissue-specific expression of rhythmic mRNAs to regulate many 

different physiological processes, including the sensitivity and activity of the immune system.  

Here we show that Achl is expressed with 24-hour periodicity in the fly brain.  Given the phase of 

its expression, the presence of tandem E-boxes with CLK/CYC occupancy in ChIP-seq studies, 

and disrupted rhythmic expression in Clock and period mutant flies, it is likely to be under the 

direct control of the molecular circadian clock.  Since Achl encodes a protein with an RNA-

binding domain, we hypothesized that it may in turn regulate the expression of downstream   
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Figure 3.13. Achl RNAi flies have a shorter lifespan and decreased starvation 

resistance 

 

 

(A). Overall lifespan of Achl RNAi and control flies. Data are combined from at least three 

independent replicates. Total N = 60; *** = p < 0.005 Log rank test. 

(B). Starvation assay performed with Achl RNAi and control flies. Data are obtained by merging 

at least three replicates. Total N = 90-120; *** = p < 0.005 Log rank test. 
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rhythmic genes. To test this possibility, we used whole-transcriptome RNA-seq to profile gene 

expression differences in the heads of wildtype flies and those with knocked-down Achl 

expression. Surprisingly, we found a dramatic increase in the expression of immune-response 

genes (Gene Ontology analysis q < 10-4; enrichment score > 5.0).  Notably, most of these 

genes were up-regulated (Table 3.2 and Figure 3.8), with expression levels ranging from 2- to 

1000-fold greater than baseline.  Taken together, these data suggest that Achl directly or 

indirectly regulates gene expression of immune effectors.   

As expected from these results, knock-down of Achl potentiates the immune system and thereby 

increases flies’ resistance to bacterial infection.  We acknowledge that this phenotype may be 

due in part to changes in bacterial tolerance, although we have no data to test this possibility 

directly.  Related to this, we also acknowledge the possibility that Achl knock-down may disrupt 

the microbiota in flies in a complicated and unpredictable fashion and might thereby alter normal 

immune function, for example, by increasing the basal expression of anti-microbial peptides. 

Similarly, phagocytosis is part of the rhythmic immune response in Drosophila, and its disruption 

might contribute to the survival phenotype we observe.  Since Achl is not measurably expressed 

in hemocytes (Cherbas et al., 2011), any effect on phagocytosis is likely to be indirect and via a 

heretofore uncharacterized signaling pathway.  Nevertheless, we cannot formally exclude the 

possibility that Achl plays a role in phagocytosis.  Moreover, given the relatively minor 

developmental phenotype in Achl knock-downs compared to the enormous up-regulation of anti-

microbial peptides, we favor the conclusion that the survival benefit of Achl knock-down is due to 

activation of immune response genes rather than a more elaborate mechanism.  Finally, we note 

that Achl RNAi flies have shorter overall lifespans in the absence of infection, particularly in 

starvation conditions, thus indicating a metabolic or physiological cost of having a perpetually 



105 

 

activated immune system.       

Achl’ closest mammalian homologues are La ribonucleoprotein domain family members 6 and 7 

(Larp6 and Larp7).  Neither gene has a known function in immunity and neither has 

polymorphisms that predispose human patients to auto-immune disorders in GWAS studies 

(Farh et al., 2015).  We note that Larp7 cycles in the mouse kidney, and Larp6 cycles (albeit 

more weakly) in the distal colon, so both genes possess promoter and/or enhancer elements 

necessary for clock-driven rhythmicity.  However, there is a relative paucity of circadian 

transcriptional profiling in immunological tissues, so it is difficult to say whether either gene is 

rhythmic in cells directly relevant to immunity.  

Several follow-up questions emerge from these observations that are the subject of on-going 

work in our laboratory.  First, how does Achl regulate immune responses at a cellular level?  We 

note that Achl expression is not normally detected in hemocytes or fat body, the conventional 

workhorses of the fly’s immune system.  Moreover, we note that knock-down of Achl in the head 

affects immune gene expression in the body, indicating system-wide influences of Achl on 

immune function (Figure 3.9).  We further emphasize that our experiments manipulated Achl 

expression strictly in neurons.  Since expression of anti-microbial peptides is mainly a product of 

the fly fat body, we surmise that there must be a signaling mechanism downstream of Achl that 

conveys information from neurons to the fat body or other immunologically relevant tissues.  

Given the effect of Achl on the fly’s response to starvation, we speculate that signaling 

downstream of Achl influences both immune function and metabolic control, although more 

complicated mechanisms are certainly possible. Testing these possibilities and linking Achl to 

circadian control of both energy expenditure and immune function is a priority of on-going 

studies.   
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Second, does Achl mRNA cycling directly contribute to functional rhythmicity in anti-bacterial 

immune defenses?  We note that roughly 100-200 genes in the fly nervous system are under 

circadian control, and that many of them, like Achl, have never been studied in detail.  Given the 

importance of understanding the molecular mechanisms by which circadian clocks control 

immune function (Edgar et al., 2016; Fortier et al., 2011; Gibbs et al., 2012; Keller et al., 2009; 

Rahman et al., 2015; Scheiermann et al., 2013; Silver et al., 2012b), we propose the testable 

hypothesis that Achl acts as a direct link between the circadian clock and immune function.  This 

hypothesis is supported by several observations: Achl has high-amplitude mRNA rhythms that 

are likely driven by the clock, and it encodes an RNA-binding protein that may in turn regulate 

expression of downstream circadian effectors, perhaps including upstream regulators of immune 

activation.  Arguing against this hypothesis are the observations that many clock gene mutants 

disrupt rather than enhance anti-bacterial immunity (Lee and Edery, 2008; Stone et al., 2012).  

However, we observe that Clk mutants actually confer enhanced resistance to infection (Lee and 

Edery, 2008), and we further note that Clk mutants have diminished Achl expression (McDonald 

and Rosbash, 2001).  Based on this molecular phenotype, our data would predict increased 

expression of AMPs in Clk mutants, due to their reduced expression of Achl.  This prediction is 

confirmed by previous microarray studies (McDonald and Rosbash, 2001).  We acknowledge 

that there are a multitude of potential molecular mechanisms that may account for Achl’s 

somewhat anomalous immunological phenotype.  But, given the enormous contributions flies 

have made as a model system to both immunity and circadian rhythms, we contend that testing 

this hypothesis will contribute to understanding the fundamental mechanisms linking circadian 

rhythms and immune function in all animals.  

Materials and Methods  



107 

 

Fly stocks and behavioral monitoring 

Flies were maintained on standard food (Genesee Scientific, San Diego, California) at 25 °C in 

12 hour light: 12 hour dark (LD) conditions. Humidity was maintained at roughly 50%.  All fly 

stocks used were acquired from the Bloomington stock center: Elav-Gal4 strain: 

P{w[+mW.hs]=GawB}elav[C155] w[1118]; P{w[+mC]=UAS-Dcr-2.D}2. CG17386 (Achl) RNAi 

strain: y[1] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.JF01976}attP2. RNAi control strain: y[1] v[1]; P{y[+t7.7] 

v[+t1.8]=UAS-GFP.VALIUM10}attP2.  Canton S flies were used as wildtype controls. 

Individual male flies were placed in locomotor activity monitor tubes 3-5 days after eclosion and 

were entrained to LD conditions for five days before being released into free-running conditions 

of constant darkness (DD). Automated TriKinetics (Waltham, Massachusetts) infrared beam-

crossing monitor systems were used to assay locomotor activity using one minute bins.  

Bacterial stocks and culture  

P. aeruginosa strain PAO1 was a gift from Dr. Lon Chubiz (UMSL).  S. aureus strain was 

acquired by Kelly O’Mara from Carolina Biological (Burlington, North Carolina).  For each 

experiment, a frozen glycerol stock was freshly streaked onto a LB plate and grown overnight at 

37 °C. A single colony was picked from this plate and grown in 1-2 ml LB media overnight.  

Afterwards a subculture was made in 2 ml LB at a starting OD600 nm of 0.05 or less. The 

culture was harvested at an OD600 nm of around 3.0. After 1X PBS wash, the bacterial was 

serially diluted into OD600 nm of 0.05 for P. aeruginosa (about 40 bacteria/fly) or 0.10 for S. 

aureus (about 100 bacteria/fly) with 1X PBS for experimental infection. 

RNA Preparation 
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Flies of three to five days old were used for sequencing and expression analysis of Achl core 

clock genes. Five to ten days old flies were used for infection related qPCR analysis. For 

sequencing and quantitative PCR purposes, five to ten fly heads per sample were manually 

dissected in PBS, transferred into 100 μL of Trizol (Life Technologies, Carlsbad, California) and 

homogenized using RNase-free pestles (Fisher Scientific, Waltham, Massachusetts).  After 5 

min incubation at room temperature with an additional 400 μL of Trizol, total RNA was prepared 

with phase lock gels (5Prime, Gaithersburg, Maryland) and RNeasy mini kit (Qiagen, Hilden, 

Germany) using the manufacturer's protocol.  RNA quantity and quality were assessed using a 

Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, California) and a 2100 Bioanalyzer (Agilent 

Technologies, Santa Clara, California). 

Library preparation and RNA sequencing 

RNA-seq libraries were prepared from 200ng total RNA per sample using TruSeq Stranded 

mRNA LT Sample Prep Kit (Illumina, San Diego, California) following the manufacturer’s 

protocol with 13 rounds of PCR amplification.  Libraries were quantified and qualified using Qubit 

2.0 Fluorometer and Agilent 2100 Bioanalyzer.  Prepared libraries with unique indexes were 

diluted to 2.5nM and multiplexed for loading on an Illumina Miseq (UMSL Genomics Facility) for 

sequencing using Miseq reagent kit v2 (50 cycles). Sequencing samples with quality scores >= 

Q30 were over 95%.  

RNA-seq alignment 

The RNA-seq Unified Mapper (Grant et al., 2011) was used to align sequenced reads to the 

genome and transcriptome of Drosophila melanogaster (build dm3) using the following 

parameters: 
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“--strand-specific --variable-length-reads --bowtie-nu-limit 10 --nu-limit 10”. All aligned samples 

showed expected proportions of uniquely and non-uniquely aligned reads, and normal 

distribution across Drosophila chromosomes, as compared to previous studies (Hughes et al., 

2012). Pearson correlation coefficient of all transcripts is no less than 0.94 between replicates. 

Quantitative and reverse transcriptase PCR 

Reverse transcriptase PCR was performed using High Capacity cDNA Reverse Transcription kit 

(Applied Biosystems, Foster City, California) following the manufacturer's protocol with 100 

nanograms to 500 nanograms of RNA. Quantitative PCR (qPCR) was performed using Brilliant 

III ultra-fast qPCR master mix kit (Agilent Technologies, Santa Clara, California) on an MX3005p 

qPCR system (Agilent Technologies, Santa Clara, California) with 10–50 ng of cDNA template. 

All the probes were Taqman probes labeled with FAM (fluorescein) (Applied Biosystems, Foster 

City, California). The Taqman probes used include: CG17386 (Achl), Dm01824077_s1; period, 

Dm01843684_g1;timeless, Dm_01814247_g1; IM1, Dm02366433_s1; Mtk, Dm01821460_s1; 

DptB, Dm01821557_g1; PGRP-SD, Dm01840723_s1; and Rpl32: Dm_02151827_g1. 

Infection and survival assay 

Survival rate assay protocol was performed as described previously (Apidianakis and Rahme, 

2009). Briefly, male flies 1 to 2 days after eclosion were collected, raised in the incubator on 

standard food (Genesee Scientific, San Diego, CA) at 25 °C in LD conditions until 5 to 6 days 

after eclosion. At ZT2 (zeitgeber time 2, i.e. 2 hours after lights-on), an ethanol sterilized 

tungsten needle that is of about 0.01 mm diameter at the tip and 0.25 mm across the needle 

body was injected into the thorax of five to ten flies to be coated with fly hemolymph. The needle 

was then dipped into the diluted bacterial solution prepared earlier and injected into the midline 



110 

 

of the thorax of flies, as described above. Control flies were injected with 1X PBS instead of 

bacterial solution. Injured flies were moved into vials containing fresh food, transferred daily into 

new vials at 25 °C. Viability was checked every three hours between 24 hours and 48 hours post 

injection. For each time point and genotype, data from at least three independent experiments 

were pooled. 

Colony forming unit assay 

Colony forming unit assay protocol was adapted from the one described previously (Apidianakis 

and Rahme, 2009). The infection step is performed the same as in the survival rate assay 

described above. After 0 or 24 hours, individual flies were rinsed in 70% ethanol; homogenized 

in 100 ml of 1X PBS; serially diluted and spread on LB plates. These plates were incubated at 

37 °C overnight before the total number of colonies was counted. For each time point and 

genotype, data from at least three independent experiments were pooled. 

Lifespan assay 

Male flies newly enclosed were collected and maintained at 25 °C in LD conditions in fresh vials 

with a density of 20 flies per vial. Flies were monitored for viability and transferred into new vials 

every five days for eight weeks. Data from three independent experiments were pooled. 

Starvation assay 

Seven to nine days old male flies maintained at 25 °C in LD conditions were transferred to new 

vials containing 1% agarose with a density of about 20 flies per vial with the same maintenance 

conditions. Flies were monitored for viability every three hours afterwards. 

Statistical Analyses 
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Analysis of rhythmicity: JTK_CYCLE is an algorithm implemented in R that analyzes the 

rhythmicity of time-series data (Hughes et al., 2010).  JTK_Cycle was performed using a period 

length window precisely equal to 24 hours.  Lag indicates the phase of serial expression, and 

amplitude was calculated as previously described (Miyazaki et al., 2011). 

Survival assay: Survival data were analyzed using log rank test as previously described (H. J. 

Motulsky, 2016). 

CFU assay: The comparison of CFUs in control and RNA flies were performed using students’ T-

test. 

qPCR: Relative expression from qPCR data were calculated using the delta delta Ct method.  

Briefly, Ct data were normalized with internal control (Rpl32: Dm_02151827_g1), then 

normalized with either control (for gene analysis) or median (for circadian analysis) as mentioned 

in the Results and Legends. 

RNA-Seq: GO term analysis was performed using GOrilla software available online (Eden et al. 

2007, Eden et al. 2009). Two-way ANOVA was used to compare RNAi and control flies. 

Transcripts with averaged RPKM<1 were eliminated from further analysis.  An explicit false-

discovery correction (i.e. the q-value) was calculated using the method described by Benjamani-

Hochberg ((Benjamini and Hochberg 1995). 

Fly Behavior: Double-plotted actograms and Lomb-Scargle periodograms for assaying free-

running period were generated using ActogramJ implemented in ImageJ (Schmid et al. 2011).  

DD statistics were measured from the first through the tenth subjective day (DD1-DD10; i.e. days 

5-15 of the experiment). Only flies surviving the length of the experiment were used for statistical 

analysis.  Individual flies were deemed to be rhythmic if their Lomb-Scargle p-value was less 
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than 0.05 (Figure 3.7E).  Rhythmic power was calculated by Lomb-Scargle for the averaged 

actograms (Figure 3.7A-D) as well as for each individual fly (Figure 3.7F).  Sleep analysis was 

performed as described in detail previously (Kunst et al. 2014). To measure sleep, which is 

considered as 5 minutes of inactivity, we used a custom written MATLAB script (Parisky et al. 

2008). Sleep parameters were statistically analyzed and plotted using custom written R scripts 

(available on request).   

Data access 

All raw sequencing data have been submitted to the NCBI Gene Expression Omnibus (GEO) 

(http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE80738. 
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Abstract 

Circadian rhythms are the daily oscillations of almost all aspects of life, including behavior, 

metabolism, and physiology.  At the molecular level, it is regulated by core clock genes as well 

as clock-controlled genes (CCGs). Core clock genes compose the TTFL (transcriptional 

translational feedback loop) that maintains the 24-hr rhythm. CCGs, the molecular outputs of the 

circadian clock, orchestrate cellular, metabolic, and behavioral rhythms directly or indirectly. 

Achilles (Achl), a novel clock-controlled gene, has been shown to play an important role in the 

regulation of the immune system in Drosophila melanogaster. However, it is not clear if Achl also 

regulates the rhythmicity of immune response. Here we examined the role of Achl in the 

regulation of immune circadian rhythms by knocking down Achl, and we checked the immune 

response upon bacterial infection. We found that in Achl RNAi flies, the rhythmicity in both 

survival and sensitivity of immune response gene expression upon infection are disrupted, 

suggesting that Achl does regulate the immune response. In addition, we profiled the CCGs that 

lose rhythmicity upon Achl knock-down. These candidates genes will help understand the 

signaling cascade that Achl makes use of to send the regulatory signals from the brain to the 

immunological tissues.  

Introduction 

The earth rotates around its axis once in roughly 24 hours, giving us days and nights. Most 

organisms have developed an endogenous timing system to predict and adapt to this 

environmental change. Named circadian rhythms, organisms display all kinds of rhythmic 

physiological processes such as locomotor activity. For example, the immune system is 

circadianly regulated from insects to mammals (Lee and Edery 2008, Labrecque and Cermakian 
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2015), as both mice and flies show rhythmic survival upon infection. These rhythmic 

physiological processes are regulated both at molecular level and organismal level.  

At molecular level, the circadian clock is composed of core clock genes as well as clock 

controlled genes (CCGs). The core clock genes compose and reinforce a self-sustaining 

transcriptional/translational feedback loop (TTFL) that finishes one cycle about twenty four 

hours. This core clock architecture is conserved between flies and mice. Taking the core clock in 

flies for example, two transcription factors, CLOCK (CLK) and CYCLE (CYC) drive the 

expression of period (per) and timless (tim), which in turn inhibit the activity of CLOCK and 

CYCLE upon translation. Once inhibited, the level of PER and TIM will decrease, eventually 

releasing the blockage and starting a new cycle of per and tim expression. This self-sustaining 

TTFL cycles about every twenty-four hours and forms the basis of circadian clocks. Meanwhile, 

CLK and CYC, as transcription factors, drive the rhythmic expression of thousands of other 

genes, some of these genes are regulatory proteins that could drive the rhythmic expression of 

further downstream genes. All these circadian genes, directly or indirectly regulated by the core 

clock, are named clock controlled genes (CCGs). CCGs are not part of the core clock timing 

system, instead, these are genes that are related to specific rhythmic physiological processes 

(Panda et al. 2002, Hardin 2005, Allada and Chung 2010).  

At an organismal level, the principal oscillator in Drosophila is composed of about 150 neurons, 

including dorsal lateral neurons (LNd), small and large ventral lateral neurons (lLNv and sLNv), 

and dorsal neurons (DN1, DN2 and DN3) (Nitabach and Taghert 2008, Allada and Chung 2010). 

These neurons receive light signals from (1), the visual system, including compound eyes, ocelli, 

and Hofbauer-Buchner eyelets and (2) CRYPTOCHROME (CRY), a blue-light photoreceptor that 

is expressed in many clock neurons. Upon receiving timing signals, clock neurons will 
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synchronize the timing cue and transmit the synchronized timing signals to other brain regions 

and peripheral tissues. Output signals are transmitted through neuronal connections and 

secretary factors. The principal oscillator thus ultimately coordinates rhythmic behavior, 

metabolism and physiology in peripheral tissues through this signal transmitting system. 

However, it is not completely clear how this signaling transmitting system works. Here using 

Drosophila immune system as a study model, we found that Achl, a CCG that is expressed in 

the brain, is a key factor that transmits circadian signals to the fat body, the major immunological 

tissue in flies to orchestrate the rhythmicity of the immune system in Drosophila. We identified 

CCGs downstream of Achl using high-throughput RNA-sequencing, these CCGs are candidate 

genes mediating signaling transmission from the brain to the fat body. 

Profiling candidate downstream CCGs regulated by Achl  

There is a conserved RNA binding domain within ACHL protein, suggesting that Achl is a 

regulatory protein that may regulate the rhythmic expression of further downstream CCGs. we 

thus investigated if Achl regulates downstream CCGs and profiled CCGs that lost their 

rhythmicity after Achl RNAi. 

Starting at CT24, both control and Achl RNAi flies were collected every two hours for 

consecutive two days on both sexes. Fly heads were chosen for sample collection because 

there is both brain and fat body in the head. The core clock resides in the brain, and the immune 

system resides in the fat body. Sequencing libraries were generated from prepared RNA 

samples with in line control DNAs and quality control was performed with conventional methods. 

After sequencing with Illumina Hiseq platform, the raw sequencing results were mapped to the 

Drosophila genome and transcriptome with RUM algorithm (Grant et al. 2011), the rhythmicity of 
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the expressed transcripts were analyzed using JTK_CYCLE algorithm (Hughes et al. 2010). It 

turned out that on average 15 million reads per sample were obtained from RNA-sequencing 

(Table 4.1). Among these reads, 86.7% were uniquely mapped to the genome/transcriptome.  

We first looked at the expression of the core clock genes. In agreement with previous 

observations, the core clock genes maintain their rhythms (Figure 4.1). We also looked at the 

expression pattern of Achl. Though Achl also maintains its rhythmicity upon RNAi, its amplitude 

damped significantly. The peak (highest) expression level of Achl expression in Achl RNAi flies is 

about the same level as the trough (lowest) expression in control flies, suggesting that this 

maintained yet dramatically damped rhythmicity in Achl is not strong enough to maintain its 

regulation towards downstream CCGs (Figure 4.2), thus this RNA-seq data can be used to 

detect CCGs that are downstream of Achl.  

We hypothesized that Achl regulated-CCGs are genes that are rhythmic in control flies but lose 

the rhythmicity in Achl RNAi flies. To identify these Achl regulated-CCGs, we ran JTK_CYCLE 

and compared the rhythmicity pattern of all transcripts that are expressed in control and Achl 

RNAi flies (Table 4.2). In males, there are similar numbers of CCGs detected in both control and 

Achl RNAi flies. In females, there are dramatically fewer CCGs detected in Achl RNAi flies, 

suggesting that there might be a sex specific difference in Achl regulation towards immune 

system. Because we use males for all our functional assays, we decided to focus on the males 

in terms of CCGs detection.  

As shown in Figure 4.3, we picked p value of < 0.0001 as the rhythmic threshold, and p value of 

> 0.001 as the non-rhythmic threshold. Choosing different thresholds here is to avoid some of 

the false positives that are still rhythmic in RNAi flies but the statistics is just around the rhythmic 

threshold. Consequently, 124 transcripts were found to maintain their rhythmicity and 92   
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Table 4.1. RNA-seq alignment statistics 

 

Sequencing ID Total 
reads 
(millions) 

% aligned  unique 
reads 
(millions) 

% 
uniquely 
aligned 

Female Achl RNAi CT24 15.44 95.80% 13.26 82.33% 

Female Achl RNAi CT26 20.95 96.10% 19.06 87.46% 

Female Achl RNAi CT28 18.88 94.40% 17.05 85.27% 

Female Achl RNAi CT30 15.4 96.80% 13.48 84.81% 

Female Achl RNAi CT32 9.34 91.40% 7.7 75.34% 

Female Achl RNAi CT34 7.54 87.90% 7.16 83.47% 

Female Achl RNAi CT36 21.66 94% 18.99 82.45% 

Female Achl RNAi CT38 19.23 95% 18.4 90.97% 

Female Achl RNAi CT40 9.99 93.50% 8.67 81.21% 

Female Achl RNAi CT42 17.03 93.40% 15.03 82.44% 

Female Achl RNAi CT44 13.3 97.60% 11.77 86.44% 

Female Achl RNAi CT46 13.54 97.90% 12.64 91.43% 

Female Achl RNAi CT48 11.79 97.30% 11.37 93.87% 

Female Achl RNAi CT50 13.6 97.10% 13.02 93% 

Female Achl RNAi CT52 12.39 96.10% 11.86 92.06% 

Female Achl RNAi CT54 14.38 88.60% 13.43 82.82% 

Female Achl RNAi CT56 24.89 98.10% 23.66 93.28% 

Female Achl RNAi CT58 18.37 98.10% 17.66 94.33% 

Female Achl RNAi CT60 19.08 88.60% 17.62 81.91% 

Female Achl RNAi CT62 17.39 86.20% 15.74 78.10% 
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Female Achl RNAi CT64 14.55 98% 13.8 93.02% 

Female Achl RNAi CT66 16.94 97.60% 16.38 94.47% 

Female Achl RNAi CT68 11.47 98.10% 11.1 94.99% 

Female Achl RNAi CT70 20.91 98.20% 20.08 94.30% 

Female Control CT24 18.61 97.30% 16.75 87.59% 

Female Control CT26 20.2 96.50% 18.45 88.20% 

Female Control CT28 13.82 92.80% 12.24 82.18% 

Female Control CT30 15.8 97.20% 14.08 86.72% 

Female Control CT32 14.6 97.70% 13.85 92.73% 

Female Control CT34 15.8 98% 14.31 88.76% 

Female Control CT36 14.32 95.30% 12.41 82.70% 

Female Control CT38 20.81 88.90% 18.21 77.82% 

Female Control CT40 16.06 95.70% 15.04 89.70% 

Female Control CT42 16.63 95.90% 14.82 85.46% 

Female Control CT44 20.41 98.10% 18.26 87.87% 

Female Control CT46 11.26 96.40% 10.22 87.56% 

Female Control CT48 13.98 97.80% 13.49 94.49% 

Female Control CT50 18.32 98.10% 17.79 95.37% 

Female Control CT52 17.73 94.50% 16.96 90.43% 

Female Control CT54 14.2 97.90% 13.7 94.51% 

Female Control CT56 14.27 97.90% 13.83 94.90% 

Female Control CT58 17.8 97.90% 17.12 94.22% 

Female Control CT60 15.43 96.80% 14.79 92.82% 

Female Control CT62 13.26 94.70% 12.64 90.30% 
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Female Control CT64 13.8 97.30% 13.16 92.75% 

Female Control CT66 16.71 98.10% 15.97 93.79% 

Female Control CT68 14.64 97.80% 14.1 94.23% 

Female Control CT70 16.85 97.90% 16.05 93.26% 

Male Achl RNAi CT24 12.19 96.20% 10.64 83.97% 

Male Achl RNAi CT26 20.06 95.80% 17.46 83.42% 

Male Achl RNAi CT28 22.98 96.90% 19.96 84.16% 

Male Achl RNAi CT30 19.15 96.50% 16.02 80.78% 

Male Achl RNAi CT32 11.43 96.50% 9.58 80.94% 

Male Achl RNAi CT34 15.89 96% 13.03 78.81% 

Male Achl RNAi CT36 15.77 96.70% 13.55 83.12% 

Male Achl RNAi CT38 12.45 97.10% 10.55 82.28% 

Male Achl RNAi CT40 14 96% 12.4 85.12% 

Male Achl RNAi CT42 15.42 96.50% 13.57 84.99% 

Male Achl RNAi CT44 16.47 96% 14.6 85.11% 

Male Achl RNAi CT46 16.58 96.40% 14.41 83.77% 

Male Achl RNAi CT48 12.96 96.50% 11.29 84.18% 

Male Achl RNAi CT50 14.83 96.70% 12.7 82.79% 

Male Achl RNAi CT52 14.94 96.50% 12.63 81.63% 

Male Achl RNAi CT54 15.39 96.20% 13.31 83.23% 

Male Achl RNAi CT56 12.95 96.30% 11.3 84.03% 

Male Achl RNAi CT58 14.26 96.10% 12.87 86.75% 

Male Achl RNAi CT60 20.02 96.70% 17.84 86.18% 

Male Achl RNAi CT62 14.22 97.30% 12.47 85.30% 
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Male Achl RNAi CT64 14.38 96.60% 12.98 87.17% 

Male Achl RNAi CT66 17.05 94.70% 14.94 83.03% 

Male Achl RNAi CT68 19.87 96.80% 17.51 85.35% 

Male Achl RNAi CT70 15.48 96.70% 13.7 85.60% 

Male Control CT24 15.76 96.60% 14.18 86.92% 

Male Control CT26 20.3 97.10% 17.86 85.51% 

Male Control CT28 13.42 95.80% 12.13 86.62% 

Male Control CT30 13.06 96.20% 11.62 85.55% 

Male Control CT32 13.17 97.10% 11.37 83.85% 

Male Control CT34 18.6 96.50% 16.53 85.81% 

Male Control CT36 18.14 97.50% 15.62 84.02% 

Male Control CT38 16.49 97.50% 13.76 81.44% 

Male Control CT40 14.98 95.20% 13.81 87.80% 

Male Control CT42 18.4 94.50% 17.09 87.86% 

Male Control CT44 18.79 96.70% 17.12 88.12% 

Male Control CT46 15.25 94.10% 14.14 87.33% 

Male Control CT48 16.49 96.70% 14.71 86.30% 

Male Control CT50 18.64 95.90% 16.82 86.54% 

Male Control CT52 24.1 95.90% 21.67 86.27% 

Male Control CT54 16.2 96.40% 14.17 84.36% 

Male Control CT56 12.17 97.10% 10.91 87.07% 

Male Control CT58 11.74 96.70% 10.67 87.92% 

Male Control CT60 14.08 97.10% 12.5 86.34% 

Male Control CT62 12.81 97.10% 11.22 85.10% 
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Male Control CT64 10.27 97.10% 9 87.29% 

Male Control CT66 13.2 97.10% 11.55 85% 

Male Control CT68 15.21 97% 13.42 85.63% 

Male Control CT70 13.4 97.30% 11.41 82.96% 

  

This table shows the RNA-seq statistics for all samples collected for RNA-seq, including two 

genotypes: Achl RNAi and Control. For each genotype we collected both sexes. And for each 

sex of that genotype, we collected 24 samples in a 2-hour resolution. 
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Table 4. 2. JTK_CYCLE analysis statistics 

 

Number of 
transcripts 

Female 

Control 

Female 

RNAi 

Male 

Control 

Male 

RNAi 

total 34830 34585 34917 34948 

p <0.001 

(q-value of 0.058 
in male control 
sample) 

379 112 550 569 

 

These are the statistics of all RNA-seq data after running JTK-CYCLE algorithm. 
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Figure 4.1. Core clock genes maintain their rhythmicity upon Achl RNAi 

 
 

 

 

The expression pattern of four core clock genes, vri, tim, Clk and per in male (A & B) and female 
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(C & D) flies from RNA-seq data confirming that Achl is not part of the core clock.  

  



131 

 

Figure 4.2. Achl expression is greatly knocked down by RNAi 

 

The expression profile of Achl in both females and males of Achl RNAi and control flies from 

RNA-seq. Achl maintains its rhythmicity in RNAi flies. However, the overall expression level in 

RNAi flies is very low.   
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Figure 4.3. CCGs that either maintain or lose their rhythmicity upon Achl 

RNAi 

 

Heatmap of transcripts that maintain (A) or lose (B) their rhythmicity upon Achl knock-down. 

Each row indicates one transcript, and each volume indicates one time point. Yellow indicates 

higher expression, and blue indicates lower expression. The bottom lines indicate the genotype:  

blue line indicates GFP control, and orange line indicates Achl RNAi. The white line splits each 

heatmap according to the genotypes. The expression values are median-normalized.  
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transcripts were found to lose their rhythmicity upon Achl RNAi. The transcripts that maintain 

their rhythmicity are the core clock genes and CCGs that play other physiological roles unrelated 

to Achl. The transcripts that lose their rhythmicity are promising candidate genes that may be 

downstream of Achl and mediate the rhythmic immune response. For example, JHL-21 is an 

amino acid antiporter that have been shown to play a role in the immune response combating 

fungal infection (Jin et al. 2008).  Nevertheless, we acknowledge that some of these candidates 

are likely to be false positives due to the false discovery in this kind of high throughput analysis. 

Further functional assay is required to determine if they play any Achl dependent role in the 

regulation of immune system. 

Achl regulates immune response genes at all time points 

The RNA-seq data analyzed in Chapter 3 were obtained from the samples collected at ZT2, 

when the ACHL protein level is presumably highest. Consequently that RNA-seq data can only 

provide information limited to that time point. By analyzing RNA-seq data obtained here from 

samples collected at multiple times of the day, we will be able to find genes with altered 

expression at different time points. This finding may provide insights into the regulation of other 

physiological processes, like metabolism. Thus we analyzed all samples collected over the forty 

eight hours with two-way ANOVA analysis. As shown before, there are more genes being 

upregulated in Achl RNAi flies (Figure 4.4), confirming that Achl regulates the immune system in 

a repressive manner. As shown in Figure 4.5, the most strongly enriched GO terms are still 

immune related, validating the specificity of Achl in regulating the immune system. We also 

found a few general glycan metabolic/catabolic processes that are metabolism related, 

supporting our previous statement that there is an altered metabolic status as the trade-off for 

having a constitutively activated immune system (See detailed description of enriched GO terms  
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Figure 4.4. Volcano plot showing genes differentially expressed in Achl RNAi 

flies 

 

Volcano plot of the RNA-seq data showing genes differentially expressed in Achl RNAi flies. 

Each dot represent a single transcript. Gray dotted lines indicate a p-value threshold of <0.001 

(correspond to a q-value of and fold change threshold of 2X. For each genotype, data includes 

all 24 samples collected at multiple time points.  
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Figure 4.5. GO analysis reveals enrichment of immune related processes in 

Achl RNAi flies 
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GO analysis of differentially expressed genes in Achl RNAi flies. The figure is split into two part 

here to optimize visualization. There are two major groups of enriched processes. The left half is 

the group of metabolic processes and the right half is the group of immune response processes. 

Different color scales indicate different p-values of enrichment: White: p > 10-3; light yellow: 10-3 

< p < 10-5; light orange: 10-5 < p < 10-7; orange: 10-7 < p < 10-9; red: p< 10-9. The connective 

arrow lines indicate that the GO terms of the arrow-head side are specialized from one general 

term of the other side. A detailed description of each enriched term is shown in Table 4.3. 
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Table 4.3. Detailed GO enrichment for Figure 4.10 

GO term Description P-value 

FDR q-
value 

Enrichment (N, B, 
n, b) 

GO:0050830 

defense response to 
Gram-positive bacterium 

1.96E-25 1.33E-21 
37.97 

(7827,35,106,18) 

GO:0051707 

response to other 
organism 

1.80E-24 6.08E-21 
9.79 

(7827,249,106,33) 

GO:0043207 

response to external 
biotic stimulus 

3.46E-24 7.80E-21 
9.59 

(7827,254,106,33) 

GO:0009607 

response to biotic 
stimulus 

3.46E-24 5.85E-21 
9.59 

(7827,254,106,33) 

GO:0009617 response to bacterium 5.53E-24 7.49E-21 
12.76 

(7827,162,106,28) 

GO:0006952 defense response 4.82E-21 5.44E-18 
8.48 

(7827,270,106,31) 

GO:0051704 multi-organism process 4.95E-21 4.79E-18 
7.66 

(7827,318,106,33) 

GO:0019731 

antibacterial humoral 
response 

9.37E-19 7.93E-16 
46.64 

(7827,19,106,12) 

GO:0098542 

defense response to 
other organism 

3.00E-18 2.25E-15 
9.56 

(7827,193,106,25) 

GO:0042742 

defense response to 
bacterium 

1.10E-17 7.42E-15 
11.28 

(7827,144,106,22) 

GO:0009605 

response to external 
stimulus 

8.08E-17 4.97E-14 
5.01 

(7827,531,106,36) 

GO:0006955 immune response 4.22E-16 2.38E-13 
9.56 

(7827,170,106,22) 

GO:0006959 

humoral immune 
response 

1.44E-15 7.51E-13 
18.16 

(7827,61,106,15) 

GO:0002376 immune system process 1.07E-14 5.16E-12 
7.68 

(7827,221,106,23) 

GO:0019730 

antimicrobial humoral 
response 

2.97E-13 1.34E-10 
20.14 

(7827,44,106,12) 

GO:0050896 response to stimulus 1.83E-11 7.75E-09 
2.65 

(7827,1309,106,47) 

http://cbl-gorilla.cs.technion.ac.il/GOrilla/r4o9x4gq/GOResultsPROCESS.html#p_value_info
http://cbl-gorilla.cs.technion.ac.il/GOrilla/r4o9x4gq/GOResultsPROCESS.html#fdr_info
http://cbl-gorilla.cs.technion.ac.il/GOrilla/r4o9x4gq/GOResultsPROCESS.html#fdr_info
http://cbl-gorilla.cs.technion.ac.il/GOrilla/r4o9x4gq/GOResultsPROCESS.html#enrich_info
http://cbl-gorilla.cs.technion.ac.il/GOrilla/r4o9x4gq/GOResultsPROCESS.html#enrich_info
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0050830&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0051707&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0043207&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0009607&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0009617&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0006952&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0051704&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0019731&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0098542&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0042742&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0009605&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0006955&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0006959&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0002376&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0019730&view=details
http://www.godatabase.org/cgi-bin/amigo/go.cgi?query=GO:0050896&view=details
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Detailed GO enrichment table. This is a full Gene Ontology enrichment table generated by 

GOrilla software available online (Eden et al. 2007, Eden et al. 2009). The corresponding figure 

is shown in Figure 4.5.  

As shown from the GOrilla website, Enrichment (N, B, n, b) is defined as follows: 

N: the total number of genes; B: the total number of genes associated with a specific GO term; 

n: the number of genes in the top of the user's input list or in the target set when appropriate; b: 

the number of genes in the intersection. 
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and enrichment statistics in Table 4.3).  

Achl regulates the rhythmicity of survival upon S.aureus infection 

Achl regulates the immune response. The mRNA expression of Achl is robustly rhythmic. And 

the immune system is rhythmic. These three pieces of facts made it reasonable to hypothesize 

that Achl regulates the rhythmicity of the immune system. To test this hypothesis, we examined 

the ability of flies to combat infection in Achl RNAi and control flies at multiple times of the day by 

infecting flies with pathological bacteria S.aureus and monitoring the overall survival pattern after 

infection.  

The needle mediated infection method that we used in Chapter 3 is convenient and fast, 

however, as shown in Figure 4.6A, it is hard to control the precise infecting bacterial load, thus 

making it difficult to do the multi-time-point comparisons. To minimize the variation that this 

inoculation method may introduce, we set up a nanoject III mediated infection assay. Nanoject III 

is the most advanced programmable nanoliter injector that allows accurate injection of small 

volume of liquid (bacterial solutions in our case). As shown in Figure 4.6B, nanoject III mediated 

infection is excellent in terms of reproducibility. 

We started with wildtype Canton S (CS) flies. Starting at ZT4, flies of both genotype were 

infected with S.aureus at six different times of day. As shown in Figure 4.7, the median survival 

of infected flies show a rhythmic pattern that peaks around ZT20. This is in agreement with 

previous publication (Lee and Edery 2008), suggesting that our system is valid. 

We then used this Nanoject III based infection system to test the median survival of Achl RNAi 

and control flies. As shown in Figure 4.8, the rhythm of Achl RNAi flies altered significantly, 
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suggesting that Achl does regulate the rhythmicity of survival upon infection. Notably, the 

alteration pattern agrees with Achl expression pattern. The most significant changes happen in 

the first part of the day, where ACHL level is putatively high, suggesting that this alteration in 

survival is due to Achl RNAi.  

 Achl regulates the sensitivity of flies in inducing the expression of immune 

response genes 

In addition to rhythmic survival upon infection, previous report showed that several immune 

response genes showed a rhythmic sensitivity upon infection (Lee and Edery 2008). Here we 

also examined this aspect in both control and Achl RNAi flies. Lipopolysaccharides (LPS), a 

major component of the outer membrane of the gram negative bacterial, can elicit strong 

immune response in flies. It was thus used to inoculate the flies in our assay due to its 

consistency and convenience.  

First, we examined the dose effect of LPS in inducing the immune response gene expression. 

Expression of immune response genes was examined with qPCR. As shown in Figure 4.9, LPS 

induces the expression of immune response genes in a dose dependent manner. We chose 5 

ng as further infection dose because this is the dose with which Mtk expression reaches its 

plateau. Meanwhile, we found minimal death for these LPS injected flies, this is also why we 

only use LPS for immune response gene expression analysis.  
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Figure 4. 6. Nanoject III mediated infection has less variation in initial 

bacterial load 

 

A comparison of two infection procedures. A is showing data from needle mediate infection, the 

data is adapted from Figure 3.10C. B is showing data from Nanoject III mediated infection, six 

experiments were performed with different bacterial load.  

  



142 

 

Figure 4.7. CS flies show rhythmic survival upon infection 

 
 

 

CS flies were infected at multiple times of the day to test the Nanoject III based system. CS flies 

show rhythmic survival upon infection after S.aureus infection at multiple times of the day.  N = 

15-16 for each genotype. *: p-value <0.05 when comparing the peak with surroundings using 

Student’s T-test. 
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Figure 4.8. Achl RNAi flies have an altered survival rhythm upon infection 

 

 

The median survival time of control (A) and Achl RNAi (B) flies after S.aureus infection at 

multiple times of the day suggesting that Achl RNAi flies have an altered survival rhythm upon 

infection. Each spot represents an individual fly. N = 15 - 16 for each replicate, and there are 2 - 

3 replicates for each time point. *: p<0.05 when comparing the peak with surroundings using 

Student’s T-test.  
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Figure 4.9. LPS induces the expression of immune response genes in a 

dose-dependent manner 

 

LPS induce the expression of immune response genes in a dose-dependent manner. Four 

immune response genes, CecC, DptB, Mtk and PGRP-SD were examined. All samples were 

collected 6 hours post LPS infection. qPCR data were normalized with the expression value 0 

hours post infection.  
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Figure 4.10. Dro lost its rhythmicity in the sensitivity of expression upon 

infection 

 

Dro lost its rhythmicity in the sensitivity of expression upon infection. The expression level is 

detected six hours post infection by qPCR assay. (A). In control flies, the induced expression of 

Dro is rhythmic. JTK p-value: 0.1. The rhythmicity is comparable to the core clock gene timeless 

under the same resolution (Figure 3.1B). (B). In Achl RNAi flies, the induced expression of Dro 

lost its rhythmicity. JTK p-value: 1. qPCR data were normalized with the median expression 

value of each genotype. 
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We then investigated the sensitivity of both control and Achl RNAi flies in inducing the 

expression of immune response genes six hours after infection. As shown in Figure 4.10, Dro, a 

previously identified AMP that shows rhythmicity in its sensitivity upon infection, is rhythmic in 

control flies. However, this rhythmicity is gone in Achl RNAi flies, suggesting that Achl also 

regulates the sensitivity of flies in inducing the expression of immune response genes. 

In which cell type would Achl play its role of regulating the immune system? 

In all previous RNAi strategies, UAS (upstream activation sequence)-Gal4 system, a powerful 

genetic tool to manipulate tissue-specific expression of certain genes is used to drive Achl RNAi. 

Briefly, there is an Elav-Gal4 Drosophila line that drives the expression of Gal4 specifically in 

neurons. In addition, there is a UAS-Dcr2 fragment inserted into the genome to enhance the 

efficiency of RNAi in this fly line. There is another UAS-Achl RNAi Drosophila line that has a 

UAS promoter followed by Achl RNAi sequence inserted into the genome. UAS promoter is only 

activated after GAL4 binding, thus this UAS-Achl RNAi element will only get activated when 

GAL4 protein is present. By crossing these two parental lines, neuron-specific Achl RNAi will be 

achieved in the F1 offspring.  

We used Elav-Gal4 to drive the knock-down of Achl, this Gal4 line drives Achl RNAi in the 

nervous system. However, it is not clear within which area, or which cell type would Achl play its 

role as an immune system regulator.  To answer this question, we performed a UAS-Gal4 

system based screening using multiple specialized Gal4 lines. When performing UAS-Gal4 

system based screening, we realized that most Gal4 lines do not have a UAS-Dcr2 fragment 

inserted into their genome. To determine if missing UAS-Dcr2 would affect the RNAi efficiency, 

we compared Achl RNAi efficiency using either Elav-Gal4 alone or Elav-Gal4 and UAS-Dcr2. It 
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turned out that both fly lines were effective in knocking down Achl. We thus decided to perform 

the screening without UAS-Dcr2 fragment. 

As shown in Figure 4.11, in our screening, Elav-gal4 turned out to be the only line that drives 

dramatic expression of immune response genes. Even another neuron-specific driver, nSyb-gal4 

did not drive such dramatic expression of immune response genes. There are three possibilities: 

(1) other driver lines could not drive Achl RNAi because they do not carry a UAS-Dcer2 element 

as our Elav-gal4 line does. Even though we have tested and confirmed that both Elav-gal4 alone 

and Elav-gal4; UAS-Dcr2, we cannot rule out the possibility that other gal4 lines need the help of 

UAS-Dcr2 to process Achl RNAi. This possibility can be determined by adding UAS-Dcr2 into the 

screening system using genetic tools. (2) We did not include the specific cell type driver in our 

screening, and even though both nSyb-gal4 and Elav-gal4 are recognized as neuron specific 

driver, there may be slight difference in their expression pattern, thus it is the cells that have Elav 

expression but not nSyb where Achl resides in and plays its role. This possibility will be 

determined by performing in situ hybridization or immunostaining using both Achl and Elav/nSyb 

probes/antibodies. (3) There is a slight increase of immune response gene expression in Repo-

gal4 driving Achl RNAi flies. Repo-gal4 is a glia specific marker, and Elav-gal4 line was reported 

to be expressed in glia cells during early developmental stage (Berger et al. 2007). It is possible 

that it is actually that early stage glia cells that express Achl and have a long-lasting effect on the 

immune system. This possibility can also be determined by performing in situ hybridization or 

immunostaining of Achl. Meanwhile, we can analyze our RNA-seq data to determine if the 

expression level of glia specific genes is altered in Achl RNAi flies.  
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Figure 4.11. Screening to identify in which cells does Achl play its role in 

regulating the immune system 

 

Cross different Gal4 lines with Achl RNAi and control to determine if driving Achl knock-down in that 

specific cell type is sufficient to regulate the immune system using qPCR assay.  
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Discussion 

The circadian clock drives tissue specific expression of rhythmic mRNAs to regulate 

physiological processes, including the immune system. In chapter 3 we have revealed that Achl, 

a CCG, could regulate the expression of immune response genes, making us hypothesize that 

Achl also orchestrates the rhythmicity of immune system. To test this hypothesis, we infected 

both control and Achl RNAi flies at multiple times of the day and found that the rhythmicity in 

both survival and sensitivity of immune response gene expression upon infection is disrupted in 

Achl RNAi flies, confirming that Achl does play an essential role in the regulation of the 

rhythmicity of immune system (Figure 4.9 & 4.10). 

There are limited numbers of immune response genes with a steady-state circadian expression 

in flies (McDonald and Rosbash 2001, Keegan et al. 2007, Xu et al. 2011). This is different from 

what happens in mice, where many immune response genes have been shown to be 

rhythmically expressed (Keller et al. 2009). Based on our findings, I would hypothesize that Achl 

actually plays a role in gating the expression of immune response genes upon infection at 

certain times of the day. This also agrees with our data that the sensitivity of immune response 

gene expression upon infection is disrupted in Achl RNAi flies.  

Achl is not expressed in the fat body, where the majority of immune response genes are being 

expressed. Instead, it is expressed and plays its role in the brain. How does Achl regulate the 

gene expression in distant tissues? Here we identified CCGs that have disrupted rhythms upon 

knocking down Achl using high-throughput RNA-seq. These CCGs are potentially downstream of 

Achl. Whether any of them play a role in the signaling transmission of the immune system is not 

determined yet. Combining functional assay and ACHL RNA immunoprecipitation (RIP) may 
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help understand the details of this signaling cascade. 

RNAi screening data have not yet confirmed which cells must express Achl to regulate immune 

function. As mentioned in the previous text, we will add UAS-Dcr2 element into our UAS-Gal4 

screening system to make sure that the RNAi works. The slight increase of representative 

immune response genes in glia driven Achl RNAi (Repo-Gal4 line) flies is interesting. Glia are 

known to play important roles in regulating the immune system (Petersen et al. 2012, Cao et al. 

2013). However, from our RNA-seq data, we did not find any difference in the expression of glia 

specific genes, nor genes known to play a role in the immune regulation in the glia, suggesting 

that Achl may regulate the immune response in a glia independent pathway. Even though earlier 

research suggested that Elav-Gal4 may be expressed early in glia cells, whether or not this Achl 

mediated immune regulation is through the glia is not clear yet. We are on the way of setting up 

Elav-gal4; repo-gal80 line driving Achl RNAi. The existence of repo-gal80 will prevent Achl 

knock-down in the glia, thus give us a clue if knocking down Achl in early glia cells in the early 

developmental glia cells contribute to the elevated immune response. In addition, in 

collaboration with Dr. Chen at McGill University, we are performing Achl in situ hybridization in 

the brain to determine its expression pattern to see in exactly which cells Achl are being 

expressed. We can then using corresponding Gal4 lines to drive Achl RNAi there and detect the 

immune system. 

Materials and Methods  

Bacterial stocks and culture  

A frozen glycerol stock was freshly streaked onto a LB plate and grown overnight at 37 °C. A 

single colony was picked from this plate and grown in 2 ml LB media overnight.  Afterwards a 
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subculture was made in 20 ml LB. The culture was harvested and added with 20% glycerol after 

overnight growth. Bacterial mixture were then aliquoted into 1ml aliquots in 1.5 ml Eppendorf 

tubes for storage at -80 degree. Before infection, frozen bacterial were taken out, centrifuged 

and suspended with fresh LB. After two and half hours of incubating in 37 degree shaking 

incubator, bacteria were collected, centrifuged, washed with PBS and serially diluted into a final 

OD of 0.04 for experimental infection.   

Infection and survival assay 

Survival rate assay protocol was performed as described previously (Apidianakis and Rahme, 

2009). Briefly, male flies 1 to 2 days after eclosion were collected, raised in the incubator on 

standard food (Genesee Scientific, San Diego, CA) at 25 °C in LD conditions until 5 to 7 days 

after eclosion. At multiple zeitgeber time points, prepared bacterial solution will be filled with 

glass capillaries which will were then inserted into the Nanoject III head. 40nl of bacterial 

solution will then be injected into the thorax of individual flies. Each injured flies were moved into 

DAM (Drosophila activity monitor) system vials containing fresh food. The survival will be 

automatically monitored at 25 °C under LD condition. For each time point and genotype, n = 15 -

16. 

The glass capillaries 

We used micropipette puller P87 to generate the glass capillaries, with the following parameters: 

“ Heat = 780, Pull = 0, Vel = 20, Time = 0”. We break the tips of capillaries before use to 

generate sharp tiny openings.  

Fly stocks 
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Flies were maintained on standard food (Genesee Scientific, San Diego, California) at 25 °C in 

12 hour light: 12 hour dark (LD) conditions. Humidity was maintained at roughly 50%.  c929-Gal4 

flies were obtained from Paul Taghert Lab at Washington University in St. Louis. All other fly 

stocks used were acquired from the Bloomington stock center:  

All other experiments were performed as stated in Chapter 3 
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Achl is a clock-controlled gene  

Our qPCR data, as well as previously published high-throughput microarray and RNA-seq data, 

show that Achl is rhythmically expressed at the mRNA level in wildtype flies but not clock 

disrupted flies (Figure 3.1 & 3.2). Achl has tandem E-box regions within its promoter region, 

ChIP-seq data also suggest that CLOCK and CYCLE binds directly to Achl promoter region 

(Abruzzi et al. 2011, Meireles-Filho et al. 2014), suggesting that Achl is downstream of the core 

clock. Achl knock-down has no effect on the rhythms of the core clock (Figure 3.6). And the 

locomotor activity is not affected in Achl RNAi flies (Figure 3.7), confirming that Achl is not part of 

the core clock, instead, it is a clock controlled gene that is downstream of the core clock genes. 

Achl regulates the expression of immune response genes  

To study the functional role of Achl, we generated Achl RNAi flies using UAS-GAL4 system that 

allows tissue specific interference of the gene of interest. Because Achl is highly expressed in 

the brain, we chose Elav-Gal4 that drives putative neuron specific Achl RNAi and got over 60% 

RNAi efficiency (Figure 3.4). We then examined the genes that are affected by knocking-down 

Achl. RNA-seq from fly head samples revealed that knock-down of Achl specifically results in 

activated expression of immune response genes (Figure 3.8), suggesting that Achl regulates the 

expression of immune response genes in a repressive manner. Furthermore, we found activated 

expression of immune response genes in not only brains, but also the body, suggesting that this 

is a systematic activation (Figure 3.9). 

Achl regulates the ability to combat infection largely by increasing the 

resistance towards infection 
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Since knocking-down Achl causes upregulation of immune response genes, we hypothesized 

that Achl RNAi flies will also have a better survival after infection. To test this, we infected flies 

with pathological bacteria and examined the survival afterwards. In agreement with our 

hypothesis, Achl RNAi flies survive better than control flies (Figure 3.10A & 3.10B). Meanwhile, 

we found no significant difference in the level of immune response genes at 24 hours after 

infection in control and Achl RNAi flies (Figure 3.12D and Figure 3.12), suggesting that there is 

no increased ability to induce higher immune response gene expression in Achl RNAi flies, it is 

the increased steady-state immune response gene expression that contributes to the increased 

survival. To further determine if this better survival is due to increased resistance, or increased 

tolerance, we performed the colony formation unit assay. Flies immediately or 24 hours after 

infection were homogenized and plated to determine their bacterial load. While Achl RNAi and 

control flies carry the same initial bacterial load (Figure 3.11), there is a significant decrease in 

the bacterial load in Achl RNAi flies after 24 hours (Figure 3.10C), suggesting that this better 

survival is largely due to increased resistance. 

Achl regulates the rhythmicity of survival upon infection  

After confirming that Achl knock-down cause dramatic activation in the expression of immune 

response genes as well as increased survival at time point ZT2, we investigated if Achl also 

regulates the rhythmicity of the immune system. To test this, we set up the Nanoject III mediated 

infection assay to inject a precise initial bacterial load into fly body at multiple times of the day 

(Figure 4.6).  It turned out that Achl RNAi flies do have an altered survival rhythm upon infection, 

and the alteration mainly focused on the early light-on times, when ACHL level is presumably 

highest (Figure 4.8). This agrees with the previous statement that Achl regulates the immune 

system in a repressive way. 
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Achl regulates the sensitivity of immune response gene expression upon 

infection  

In addition to the rhythmic survival regulation, we also investigated the rhythmicity of the 

sensitivity of immune response gene expression upon infection.  To do so, we injected LPS to 

induce the expression of immune response genes at multiple times of the day. Six hours 

afterwards, fly heads were collected and qPCR was performed to determine the expression of 

immune response genes. As shown in Figure 4.10, Drosocin (Dro) show a nice rhythm in its 

sensitivity towards infection at different times of the day. However, there is not such a rhythm in 

Achl RNAi flies, suggesting that Achl also regulates the rhythm of the sensitivity towards 

infection in flies.  Notably, we did not find such a rhythm in the induced expression pattern of 

several other anti-microbial peptides, it is possible that it takes less than 6 hours for these genes 

to be induced, future experiments should be performed earlier after infection to test if that is the 

case. 

Decreased lifespan and starvation resistance as trade-offs 

While increasing resistance towards bacterial infection, flies with knocked-down Achl show a 

decreased overall lifespan under natural uninfected conditions (Figure 3.13). This physiological 

trade-off between immunity and lifespan, as shown in other organisms as well (Mills et al. 2010, 

Todesco et al. 2010, Schwenke et al. 2016),  suggests the critical role circadian rhythms plays in 

making full use of resources to balance multiple demands in a time-dependent fashion. As 

demonstrated here, Achl represses the steady-state expression of immune response genes at 

certain times of the day to take best advantage of resources available and disrupting this 

balance is detrimental to flies.  
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Achl regulates downstream CCGs that may mediate the signaling cascade 

from the brain to the fat body 

Achl is expressed in the brain while immune response genes are expressed in the 

immunological tissues, mainly the fat body. Therefore, there must be a signaling cascade that 

transmits the circadian signals from one tissue to the other. After confirming Achl’s role in 

regulating the immune system, especially the rhythmicity of the immune system, we investigated 

the underlying signaling cascade by collecting samples every two hours for two consecutive 

days, performing RNA-seq, and analyzing the rhythmicity of the expressed transcriptome.  We 

identified 92 transcripts that code for CCGs. Losing their rhythmicity upon Achl RNAi, these 

CCGs are promising candidates that are downstream of Achl and mediate signaling from the 

brain to the fat body (Figure 4.3). Nevertheless, further functional assay is necessary to validate 

their roles.  

It is not completely clear where does Achl regulate the immune system yet 

In this project we mostly used Elav-gal4, a putative pan-neuronal driver to express Achl RNAi. 

We tried screening with more cell type specific drivers, however it did not work well (Figure 

4.10). Possibilities and on-going optimization to the screening have been described in detail in 

Chapter 4. We have started to collaborate with Dr. Chen lab to do in situ hybridization to get 

more information about the cell type that expresses Achl and regulate the immune system.  

Future directions 

Here we described our project focusing on Achl, a novel gene that plays a fundamental role in 

regulating the immune system and its rhythmicity in Drosophila. In this project we focused on the 
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molecular side of the immune system, that is, the expression of immune response genes. We 

did not investigate the cellular side, like the phagocytosis process. Previous research has shown 

that the phagocytosis process in the Drosophila is also under the circadian regulation (Stone et 

al. 2012). It will be interesting to check if Achl also plays any role in the regulation of 

phagocytosis. Related to this, we did not test if the microbiota in flies is regulated by Achl.  

Previous studies have shown the significance of post-transcriptional regulation in generating 

circadian rhythms while most studies still focus on the regulation at the transcriptional level.  

With its conserved putative RNA-binding domain, ACHL protein may serve as a nice model to 

study post-transcriptional regulation of circadian rhythms. To do so, tagged Achl transgenic flies 

and Achl mutant flies with RNA binding domain truncated can be made. The tagged fly line can 

be used to examine the expressing pattern of Achl. In addition, the tagged fly can be used to 

perform RNA-immunoprecipitation-seq (RIP-seq), which will tell us genes that are directly 

controlled by Achl. The truncation fly line will be used to examine the significance of this post-

transcriptional RNA binding in regulating the rhythmicity of immune response. 

We have found CCGs potentially regulated by Achl. However, how this is regulated and if this 

plays a role in the immune system is still not clear. Future functional work can be done to 

examine whether the candidate gene plays a role in this process. In combination with RIP-seq 

data, we may be able to decipher the signaling cascade from Achl to the rhythmic immune 

system. This finding will provide valuable insights in understanding the regulation of tissue 

specific peripheral physiological circadian rhythms. 

Lastly, there are other orthologs that belong to the same sub-family with Achl in Drosophila, as 

well as homologs in mammals, it will be interesting to check if any of these proteins also show 

rhythmicity and play any role in rhythmic regulation of any physiological process. Actually there 
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are two homologs, Larp6 and Larp 7 that show a rhythmic mRNA expression in mice, though not 

in the immune system. It will be interesting to see if they also play any role in orchestrating any 

physiological process with a similar regulating mechanism. 
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