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ABSTRACT 

 

This work examines the possibility of evolving the phenotypic specialization 

associated with division of labor in an agent-based model without task-switching costs.  

The model examines two groups competing for vital resources, where members of one 

group are capable of sharing resources with other agents in their group.  Agents attempt 

to collect resources which allow them to reproduce, with more resources leading to a 

greater number of offspring by asexual reproduction.  Four variants of the model are 

examined, with combinations of one or two resources and the presence of a foraging risk.  

The presence of the foraging risk can lead to agents in the sharing group specializing in 

each trait but, by looking at the fraction of foragers per generation, this event appears to 

be a transient state.  Division of labor is quantified by calculating the normalized mutual 

entropy, and is shown to be higher when a population contains agents which specialize on 

different tasks.   
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1. INTRODUCTION 

 

Biological evolution is often referred to as gradual change in gene frequencies 

over long periods of time.  Natural selection can be summed up succinctly as heritable 

variation in fitness, due to factors such as predation and competition for resources.  A 

population may have some members removed due to selection, and the survivors may 

reproduce, with possible mutations in genes which may allow adaptation to the 

environment.  Mutations which are beneficial to the organisms will become more 

common in future generations.  While these statements are agreed on by anyone studying 

the topic of evolution, the details of how some evolutionary changes occur is a matter of 

considerable debate. 

 

1.1. ALTRUISM 

One of the biggest questions within the topic of evolution is how altruistic traits 

can evolve and become stable (Kerr & Godfrey-Smith 2002, Frank 2013).  The primary 

issue with altruism is due to the idea that all selection occurs at the individual level, and 

therefore only traits which allow a gene to make more copies of itself should be favored 

over many generations.  The general argument is that if a gene exists that causes an 

organism to sacrifice its own ability to reproduce, or to otherwise reduce its probability to 

produce offspring, then that gene should disappear because organisms carrying the gene 

would be outcompeted by conspecifics.  Before addressing the question of how altruism 

can evolve, it is necessary to consider where selection occurs. 

 

1.2. LEVELS OF SELECTION 

 It is often said that selection acts on the phenotype, i.e. selection acts on the traits 

an individual has which can interact with the environment.  This selection is sometimes 

referred to as being selection on genes when individual genes, or combinations of genes, 

are responsible for the traits in the phenotype.  This is perhaps not the only way that 

selection can act on genes.  It is also possible that there can be selection within the 

genotype, with genes which help to stabilize the rest of the genome and prevent 
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mutations also being selected (Doolittle & Sapienza 1980), but it is unknown if this type 

of selection occurs. 

While Okasha (2006) uses “individual selection” in a more general sense to mean 

selection on any single unit (as opposed to a collective of units), this work will define 

individual selection as selection on the phenotype of an organism.  This phenotype 

consists of traits which may be a result of specific genes, but can also be a result of 

developmental processes (Sears 2014).  Even though selection ultimately results in 

passing on (or not passing on) the genes of the organism, it is the phenotype which is 

selected for (or against). 

1.2.1. Group Selection.  Since a combination of genes which produce a trait can 

be acted on as a whole, then it is reasonable to think that combinations of individuals 

with different phenotypes could produce different group traits and these could also be 

acted upon.  This idea is referred to as group selection (Smith 1964, Wilson 1975, Okasha 

2006, Gardner & Grafen 2009).  Group selection requires that individuals which are in a 

collective (multicellular organisms, insect colonies) interact to produce a group 

phenotype, and that this group phenotype differs from another group’s phenotype, thus 

leading to selection at the level of the group.  These group phenotypes would also depend 

on the traits of the individuals within the group, and the idea is that a group with more 

cooperative individuals would have an advantage over a group with purely selfish 

individuals.  Essentially, because an altruistic trait lowers the fitness of the altruistic 

individual, altruistic traits can only be retained due to some type of selection acting on the 

group. 

A major problem with group selection, as it is typically described, is that it does 

not address a pathway for altruistic traits to survive.  If an individual with an altruistic 

gene sacrifices its fitness for the good of the group, then it reduces the probability of the 

next generation having this altruistic gene. 

1.2.2. Kin Selection. This problem is partially solved by kin selection, where the 

altruistic gene can still propagate among a group if some members sacrifice their fitness 

in order to provide a benefit to their kin, who might share the altruistic gene.  The 

condition for kin selection is given by Hamilton’s rule, c < rb, where r is the genetic 
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relatedness (defined as the proportion of shared genes by common descent) between the 

individual engaging in the altruistic behavior and the recipient of said behavior, b is the 

benefit that the recipient receives, and c is the cost to the engaging individual.  As long as 

this inequality holds, then altruistic genes can be maintained.  Kin selection is a simple 

concept, and easily understood.  It is considered the correct explanation for some 

altruistic behaviors in nature (Browning et al. 2012, Suegene et al. 2018, Yamauchi et al. 

2018), but it does not explain situations where an organism decreases their reproductive 

fitness for entities which are largely unrelated.   Group selection then becomes a more 

likely candidate, but this may still be dependent on the type of behavior, e.g. cooperation. 

When multiple groups of organisms occupy an area, there can be competition 

between groups, allowing for some types of cooperation within one group to confer an 

advantage allowing the entire group to thrive (Gavrilets & Fortunato 2014, Shaffer et al. 

2016).  Naturally, cooperation is vulnerable to cheaters (Czárán & Hoekstra 2009, Boza 

& Számadó 2010, Celiker & Gore 2013, Queller & Strassmann 2013), individuals who 

receive the benefits of cooperative behavior without engaging in the behavior themselves, 

and it may be necessary that some systems rely on conflict suppresion (Michod et al. 

2003, Rainey & Rainey 2003) to prevent cheaters from overwhelming the system.  Group 

selection has also been invoked to explain some social behaviors that occur in nature, 

where organisms which are not direct kin, but are still in the same species, form colonies 

together, e.g. ants (Shaffer et al. 2016) and spiders (Pruitt & Goodnight 2014).  However, 

it may be that these collectives are not stable formations, as they appear to have a higher 

rate of extinction than similar species which are not social, at least among spiders (Pruitt 

& Avilés 2017).  Of course, there are some social behaviors which are assumed to be 

both stable and extremely advantageous, the most notable of which is division of labor. 

 

1.3. DIVISION OF LABOR 

Division of labor is present across all levels of biological organization, from 

eukaryotic cells, to eusocial insects, and human societies.  The extent to which division of 

labor is present in various forms of life indicate that it may be extremely easy to evolve, 

and advantageous to the organisms engaging in division of labor.  Division of labor 

ranges from an extreme case of altruism to a changing process of task allocation.  The 
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altruistic type of division of labor occurs in honeybees, termites, wasps, and all species of 

ants, where a non-reproductive worker caste serves to take care of the offspring of their 

queen.  At the other extreme, organisms can take up different tasks depending on context, 

but still distribute work so that all of the needs of the group are met.  In some cases task 

allocation may be dependent on the age of the organism, a property known as age (or 

temporal) polyethism.  Of particular interest is how tasks are allocated at a given time. 

The ants Leptothorax unifasciatus and Pogonomyrmex californicus, and the 

bumblebee Bombus impatiens are all known to have a spatial component of task 

allocation (Sendova-Franks & Franks 1995, Holbrook et al. 2013, Jandt & Dornhaus 

2009); an individual’s location in the colony/nest indicates the types of tasks the 

individual engages in.  Individuals which are closer to brood engage in brood care, or 

individuals at the edge of the nest may engage in defense or foraging behavior.  Bombus 

impatiens is also influenced by age, because as a bumblebee ages they tend to travel 

toward the edges and outside the nest (Jandt & Dornhaus 2009), with brood located at the 

center of the nest being taken care of by the youngest bumblebees, and foraging behavior 

engaged in by the oldest. 

The phenotype of an organism may also determine the tasks it engages in.  This is 

the case in honeybees (Johnson 2010), halictine bees (Jeanson et al. 2005), and eusocial 

wasps (Torres et al. 2011).  Some ants may actually have a predisposition not to work, as 

was found in Temnothorax rugatulus (Charbonneau & Dornhaus 2015).  It is also 

possible for some types of behavioral differences to depend on age, as it is known to 

affect the expression of the Foraging gene in the ant Cardiocondyla obscurior (Oettler et 

al. 2015).  Gordon (2016) suggests that task allocation due to behavioral differences is the 

only true division of labor; though such a statement ignores that spontaneous task 

allocation (Simpson 2012) could have arisen as an answer to non-constant needs, e.g. 

colony defense, which is obviously an important and risky task (Breed et al. 1990).  

Division of labor is most well studied in insects, but is obviously present in other 

types of organisms.  Kim et al. (2015) showed that a strain of Pseudomona fluorescens 

could evolve division of labor in a matter of days via a single mutation, indicating that at 

the bacterial level the evolution of division of labor may be both simple and repeatable.  

The differentiation in multicellular organisms between germ and soma is another well-
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known example, but division of labor is also present in the behavior of slime molds, most 

commonly Dictyostelium discoideum (Bonner 1998, Bahar 2018), where individual 

amoebae aggregate to produce offspring.  Some of the amoebae that were acting in their 

own interest prior to aggregation will form the stalk of a fruiting body, and not reproduce. 

 

1.4. MODELS OF DIVISION OF LABOR 

There are two general categories of models in the subject of division of labor: 

mechanistic and evolutionary (Duarte et al. 2011, Beshers & Fewell 2001), each with a 

different overall goal. 

1.4.1. Mechanistic Models.  Mechanistic models focus on describing a particular 

species or type of division of labor and the possible cues that cause task allocation.  

Models of this type include response threshold, foraging-for-work, and interaction 

models.  They focus on describing division of labor as a property which emerges due to 

the behavior of the individuals and generally assume that division of labor exists in the 

system already, with the goal of providing hypotheses for the mechanisms behind it. 

Bonabeau et al. (1996) studied what is known as the fixed response threshold 

model, focused on describing the behavior of the ant Pheidole pubiventris.  The fixed 

threshold model assumes that all organisms vary in their sensitivity to some stimulus in 

the environment, and when the level of stimulus increases to that organism’s response 

threshold, then the organism engages in the task, lowering the stimulus level, until the 

stimulus drops below the threshold.  Theraulaz et al. (1998) modified this model by 

allowing an individual’s response threshold to change over time, such that the more often 

the individual engaged in the task, the lower its response threshold would be for that task 

at a later time.  Richardson et al. (2011) added a physical space to the fixed threshold 

model, and this had the effect of producing individuals with higher thresholds which 

would become active when the individuals with lower response thresholds were not as 

close to the source of the stimulus. 

Foraging-for-work models are similar to response threshold models in that they 

describe how task allocation can change in response to changing needs, and as a function 
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of worker age (Tofts & Franks 1992), though they are criticized for being unable to show 

any inactive workers (Beshers & Fewell 2001). 

Interaction models assume that social interactions are the primary cause of 

division of labor, that interacting agents can transfer some information about the work 

they have performed, or the work that is needed, and that this is how new workers are 

recruited (Duarte et al. 2011). 

1.4.2. Evolutionary Models.  Evolutionary models seek to understand the 

conditions necessary for division of labor to evolve from a general standpoint, and do not 

necessarily need to model specific systems. 

Ispolatov et al. (2012) modeled the aggregation and differentiation of single cells 

in order to describe the transition to multicellularity.  This model allowed cells to produce 

metabolites, send chemical signals, and exchange metabolites, with costs that cells tried 

to minimize.  This produced cells which could specialize in a single metabolite, receiving 

the other from neighboring cells, and that this was a desirable state because the fitness of 

organisms was higher when they had access to both metabolites.  Gavrilets (2010) did 

something similar, but assumed that cells formed colonies which could differentiate into 

germ and soma via plasticity.  A noteworthy feature of this model is that cheaters were 

driven out because when they formed their own colonies they were at a disadvantage 

compared to colonies without cheaters. 

From a more abstract perspective, Goldsby et al. (2012) demonstrated that task-

switching costs in an agent-based model in Avida could lead to division of labor if agents 

were allowed to exchange information.  Agents in the Avida system are “digital 

organisms” which compete for processing time and resources by performing logical 

functions, with more complex functions rewarding a higher amount of resources to the 

agent performing the function.  Because of the exchange of information, agents could 

work together to perform parts of the function, and send their result to another agent 

which would perform another part.  The design of this model put agents into 

predetermined colonies, and when the colonies amassed a threshold amount of resources, 

they produced an offspring colony.  Therefore, the colonies which developed division of 

labor were able to acquire resources more quickly, and replicate more frequently, than 

colonies without division of labor. 
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Goldsby et al. (2014) considered a similar system, also in Avida, focused on 

analyzing the result of conflicting pressures between individual and group levels.  They 

found that not only could sufficient between-group pressures lead to within-group 

cooperation, but that successful agents were ones that produced more phenotypic 

diversity.  Continuing with models in Avida, Pierce (2012) showed that a model with 

aging and risky tasks could produce age polyethism, where older agents who had already 

had the opportunity to reproduce engaged in the more dangerous tasks, so that younger 

agents would not be at risk before reproduction. 
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2. MODELS AND ANALYTICAL METHODS 

 

Determining minimal requirements for evolving division of labor is a non-trivial 

task.  Every model of division of labor to date has some form of task-switching cost, 

either explicit or implicit.  Incorporating any form of learning, or plasticity, in a model is 

an example of an explicit cost, where an organism is more efficient at engaging in one 

task exclusively.  Meanwhile, implicit costs are present when organisms have to travel 

some distance to engage in a new task, and therefore a physical space will inherently 

always have implicit task-switching costs.  It is known that these kinds of task-switching 

costs can lead to division of labor (Gavrilets 2010, Goldsby et al 2012).  What is not 

known is if these costs are required.  In order to explore a scenario without task-switching 

costs of any kind, the models described here contain none of the influences that a 

physical space could have on the system. 

Due to the frequent occurrence of division of labor across biological life, it is 

desirable to consider a system which does not require complex organisms.  If constraints 

on the system are truly minimal, they should be able to affect single celled organisms as 

well as more complex lifeforms.  To that end, the agents in the models described here can 

be thought of as simple bacteria floating in a jar of nutrients.  Another potential question 

that this work may address is the competitive advantage that specialization and division 

of labor could endow.  For this purpose these models contain two groups of agents in this 

metaphorical jar, which differ in one detail: the ability to share resources. 

 

2.1. BASIC MODEL 

A simulation begins with two groups, each containing five agents, and 10 units of 

resources.  Agents in both groups have two continuous traits which are uniformly 

randomly distributed on the interval [0, 1].  These traits function as sensitivity to stimuli, 

such as resources or other agents in the individual’s group.  Furthermore, an agent’s trait 

values affect which task an agent engages in.  Each generation consists of a number of 

turns, and the number of turns per generation is a parameter which is varied.  The number 

of turns is representative of an average lifespan of organisms, as the more turns there are, 

the longer the agent has to collect resources.  Every agent in the population is selected 
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once each turn to engage in a task with some probability, which depends on both the 

agent’s trait values and the level of stimulus (amount of resources or agents) in the 

environment.  A simple method is to make agents attempt to forage with probability 

 

 
𝑝𝑓  =  

𝜃𝑓(𝑅 + 1)

𝜃𝑓(𝑅 + 1) +  𝜃𝑠(𝑁 − 1)
 

(

(1) 

 

where R is the amount of resources available, N - 1 is the number of other agents in the 

selected agent’s group, and θf, θs refer to the selected agent’s foraging and social trait 

values, respectively.  The factor of R + 1 was chosen to allow for an agent with a high 

foraging trait value to attempt to forage even when there are no resources.  When an 

agent forages, it acquires one unit of resource from the environment and R decreases by 

one.  If an agent does not forage, it will socialize with probability θs such that 

 

 𝑃(𝑠𝑜𝑐𝑖𝑎𝑙𝑖𝑧𝑒|𝑛𝑜𝑡 𝑓𝑜𝑟𝑎𝑔𝑒) =  𝜃𝑠 (2) 

 

where this extra probability prevents agents with low social traits from socializing when 

there are no resources available.  With this conditional probability specified, the total 

probability to socialize can be written as 

 

 
𝑝𝑠 =  

𝜃𝑠
2(𝑁 − 1)

𝜃𝑓(𝑅 + 1) +  𝜃𝑠(𝑁 − 1)
. 

(

(3) 

 

When an agent socializes, if it is part of the group that is allowed to share 

resources, the agent randomly selects another agent in its group and they split evenly 

whatever resources they have acquired at that point.  This kind of direct resource sharing 

does occur in ants via trophallaxis (Richard & Errard 2009).  An agent is allowed to do 

nothing, in the event it does not socialize or forage.  The total probability to do nothing 

can be written 
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𝑝𝑑 =  

(1 − 𝜃𝑠)𝜃𝑠(𝑁 − 1)

𝜃𝑓(𝑅 + 1) +  𝜃𝑠(𝑁 − 1)
. 

(

(4) 

 

After all agents have been chosen once in a turn, they repeat the process again in the next 

turn. 

When all turns have been completed, agents have the opportunity to reproduce, 

marking the end of the generation.  Agents which have no resources are removed from 

the population, while agents with resources reproduce asexually, with a probability which 

depends on the amount of resource n.d they collected in that generation.  The number of 

offspring that an agent has is O = n+1, with a probability 0.d to have an additional 

offspring.  For example, suppose an agent has collected 2.5 units of resource through 

some combination of foraging and sharing.  Then the agent has at least 3 offspring, with 

probability of 0.5 to have a 4
th

 offspring.  An agent which successfully reproduces is 

removed from the population.  Note the special case when an agent collects less than 1 

unit of resource.  If the agent does not reproduce, but d > 0, then the agent survives to the 

next generation. 

Offspring are given trait values which are each uniformly randomly distributed 

within ±µ of the parent’s trait values.  The value µ is referred to as the mutability, and is 

simply the maximum amount an offspring can vary from the parent.  If an offspring agent 

is given a trait value which is less than zero, or greater than one, the agent is removed 

from the population. 

After all agents have attempted to reproduce, the new generation begins with the 

offspring and non-reproductive survivors of the previous generation.  At the beginning of 

every turn (including the first one), the amount of resources in the environment increase 

as a logistic equation given by 

 

 𝛥𝑅

𝛥𝑡
= 2𝑅(1 −

𝑅

𝑅𝑚𝑎𝑥
) 

(5) 

 

where Rmax = 100.  As Rmax determines the maximum amount of resources in the 

environment, it puts a soft limit on the number of agents in each generation.  Setting this 
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at 100 allowed populations to be large enough to see significant trends in distribution of 

trait values, yet small enough as to keep computational time at a reasonable level. 

 

2.2. MODIFICATIONS 

There are two additions to the model that are considered in this work.  The first is 

a risk of foraging, which is present as a probability of an agent dying and being removed 

from the population when attempting to forage.  This risk was motivated by the idea of an 

organism leaving the safety of its nest to find food and being eaten by a predator.  

Another interpretation of this risk, one which is more consistent with the idea of simple 

organisms in a jar, is that a small amount of contaminated food source is present. The 

probability that an agent is removed from the population when foraging must be small if 

the population is to survive at all.  Multiple values were tested and it was seen that if this 

probability was 0.2 or higher, that populations would rarely survive more than 10 

generations.  Therefore, values that were used were kept under 0.1 for the risk to have an 

effect without eliminating population of simulated organisms. 

The other modification considered adds a second resource, and a corresponding 

additional foraging trait.  In this version, one resource is vital for survival, while the 

second resource allows for offspring.  Agents have three traits: one trait controls foraging 

for the survival resource, one controls foraging for the reproductive resource, and the 

third is the social trait.  This version of the model will also be considered in situations 

with or without a foraging risk, making for a total of 4 versions presented in this work. 

 

2.3. IDENTIFIERS OF DIVISION OF LABOR 

It is important to have a clear way of identifying when division of labor occurs.  

Three different concepts of division of labor will be considered in this work: normalized 

mutual entropy, distribution in trait space, and fraction of foragers. 

2.3.1. Normalized Mutual Entropy.  The normalized mutual entropy is the 

standard measure of division of labor.  Also used in ecology to measure biodiversity 

(Gorelick et al. 2004, Gorelick 2006), mutual entropy, when applied to division of labor, 

gives information about which individuals engage in which tasks.  Given a matrix 𝑃 
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where rows are individuals and columns are tasks, an element 𝑝𝑖𝑗 gives the probability 

that individual 𝑖 engages in task 𝑗.  This matrix can be constructed from real data, where 

the probabilities are instead observed frequencies, or the percent of time that organisms 

engage in tasks (Goldsby et al. 2012).  In this work, these matrices are constructed from 

the previously mentioned probabilities: 𝑝𝑓, 𝑝𝑠, and 𝑝𝑑.  The mutual entropy 𝐼 is denoted 

as 

 

 
𝐼 =  ∑ 𝑝𝑖𝑗 ln(

𝑝𝑖𝑗

𝑝𝑖𝑝𝑗
)

𝑖,𝑗

 
(6) 

 

where 𝑝𝑖 and 𝑝𝑗 are the marginal probabilities.  Because the matrix 𝑃 is a probability 

matrix, the marginal probabilities 𝑝𝑖 and 𝑝𝑗 are the sums across the columns and rows of 

𝑃, respectively, and ∑ 𝑝𝑖 =  ∑ 𝑝𝑗 = 1.  For the models in this work, each 𝑝𝑖 =  
1

𝑁
, while 

𝑝𝑗 will vary depending on the trait distribution.  The normalized mutual entropy is then 

defined as 𝐷 =  
𝐼

𝐻
, where 𝐻 is Boltzmann’s marginal entropy given by 

 

 𝐻 =  − ∑ 𝑝𝑖 ln 𝑝𝑖

𝑖

 
(7) 

 

where the 𝑝𝑖 are the same as in the equation for 𝐼.  The quantity 𝐷 will be maximized 

when every individual engages in a single task.  It is clear that the models in this 

dissertation will typically have more individuals than tasks, and it will be unlikely that 

each individual always engages in a single task, i.e. that every agent’s probability to 

engage in a specific task is equal to one.  Because of this, the quantity 𝐷 will never be 

equal to one in these models. 

2.3.2. Trait Space Distribution.  In this dissertation, all of the agents in the 

models have quantifiable traits, which can easily be placed on a scatter plot.  Division of 

labor should occur when there are two distinct groups on the scatter plot: some with high 

foraging & low social trait values, and some with high social & low foraging trait values.  
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This method is based on the idea that phenotypic differences lead to task specialization, 

especially in highly adapted organisms, e.g. leaf-cutter ants (Wilson 1980).  However, 

variation in traits does not guarantee division of labor will occur. 

2.3.3. Fraction of Foragers.  The resources in this model are the limiting factor 

in determining task allocation.  It is therefore useful to examine how many agents in the 

population forage during a generation.  This quantity will be determined as the total 

number of foragers in a generation, divided by both the population size.  As there can be 

more than one turn in a generation, this number may occasionally be larger than one, but 

never larger than the number of turns per generation.  It will be maximized when all 

agents forage every turn in a generation.  This quantity is useful when plotted versus 

generations for a given run, and can reveal generational variations in task allocation.  
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3. RESULTS OF SINGLE-RESOURCE MODEL 

 

Before analyzing the various modifications of the model, it is important to see the 

results of the basic model to be certain which effects are a result of the foraging risk, and 

which are a result of the presence of an additional resource.  Presented here are extinction 

rates, times to extinction, population vs time and trait distributions for sample runs, and 

average final populations, for these different cases.  Sample runs are shown for the 

purposes of identifying potential fitness advantages of sharing that might not be 

detectable in the averaged data, and examining the distributions in trait space which 

correspond to such advantages. 

 

3.1. SINGLE RESOURCE WITHOUT FORAGING RISK 

 Simulations are run for 3000 generations, with parameters varied from 1 to 4 

turns per generation, and five values of µ on the interval [.01, .09].   

3.1.1. Sample Runs for Single-Resource Model.  For the case when there is only 

1 turn per generation, there is no benefit from the social trait in the sharing group, and 

both groups evolve to have the same general trait distributions: low social and high 

foraging values (Figures 3.1 & 3.2).  Note that the trait distributions become more diffuse 

as µ is increased.  Looking at the population vs. generation (also referred to as population 

vs time) plots, it is seen that the population size of the two groups exhibits anti-phase 

oscillations as is seen in biofilms competing for the same resource (Liu et al., 2017), 

provided that both groups survive.  These anti-phase oscillations persist even at 2 turns 

per generation, when µ = 0.01 (Figure 3.3).  Reasons for this behavior include that the 

population sizes are limited due to a finite amount of resources at any time, and the two 

groups have the same distributions in trait space, resulting in no behavioral differences.  

One group may acquire a majority of the available resource in one generation, and the 

other group may acquire a majority in the next generation. 

The stochastic nature of the model can affect the stability of the two groups, as 

shown in Figure 3.4, for µ = 0.03 at 2 turns per generation.  Here, the population vs. time 

plots show different behavior on separate runs of the simulation: in one case, both groups 
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Figure 3.1 Sample runs at 1 turn per generation.  Population vs. time (left column) and 

trait plot (right column).  From top to bottom µ = 0.01, 0.03, and 0.05.  Blue is the 

sharing group and orange is the non-sharing group. 
 

keep similar population levels, and in the other the non-sharing group holds a large 

advantage over the sharing group.  Examining the trait distributions for these different 

behaviors demonstrates that the occurrence of high social trait values in the sharing group 

corresponds to a lower total population size compared to the non-sharing group.  But if 

the sharing group has no members with a high social trait value, then both groups 
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maintain a comparable size.  Interestingly, the social trait did not appear in any runs when 

µ = 0.05, 0.07, or 0.09 (Figure 3.5). 

 

 

 

Figure 3.2 Sample runs at 1 turn per generation for µ = 0.07 (top) and 0.09 (bottom).  

 

 

Figure 3.3 Sample run with µ = 0.01, and 2 turns per generation. 
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Figure 3.4 The stochastic nature of the model.  Parameters for both rows are µ = 0.03, 2 

turns per generation. 

 

At 3 turns per generation, that same instability appears to have a wider range of 

existence, from µ = 0.01 to µ = 0.05 (Figures 3.6-3.8), and can even appear in the same 

run; as seen in the population vs. time plots in the second row of Figure 3.6 and Figure 

3.7.  However, at µ = 0.01, the presence of even a small number of agents with low social 

values in the sharing group (Figure 3.6, top row) appears sufficient to keep population 

sizes of the two groups at a comparable level.  When there are only social foragers, the 

non-sharing group has a larger size than the sharing group by approximately 100 

members (Figures 3.6-3.8).  But when µ = 0.07 or 0.09, the sharing group typically 

maintains a comparable population size to the non-sharing group, with even a slight 

advantage (Figure 3.9).  The trait distributions in these situations show that the larger 

mutability parameter allows agents to have trait values in a large portion of the possible 

space, and this may be connected to the larger population size in the sharing group.  The 
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larger µ value does not benefit the non-sharing group, because a high social trait is 

always a negative for those agents. 

 

 

 

 

Figure 3.5 Sample runs at 2 turns.  From top to bottom, µ = 0.05, 0.07, 0.09. 
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 In the case of 4 turns per generation, the unstable behavior is again present when 

µ = 0.01, and to a lesser extent when µ = 0.03 (Figures 3.10 & 3.11).  For these 

mutability values, when there are only social foragers (agents with high trait values in 

both social and foraging traits) in the sharing group, it has a smaller population size than 

the non-sharing group.  However, as µ increases, the sharing group gains an advantage 

over the non-sharing group, with a different distribution of traits (Figures 3.12). 

 

 

 

Figure 3.6 Stochastic fluctuations with µ = 0.01, and 3 turns per generation.  The 

presence of high social traits in the sharing group corresponds to greater fluctuations in 

the population size. 
 

3.1.2. Extinction Rates and Final Populations.  While data from sample runs 

show how traits affect competition between the two groups, they are only useful when 

both groups survive.  Determining if there is an advantage to the sharing behavior 

requires also examining how often each group went extinct.  Figure 3.13 shows the 
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Figure 3.7 Fluctuations in population size within a single run.  Parameters are µ = 0.03, 

and 3 turns per generation. 

 

 

 

Figure 3.8 Sample runs for µ = 0.05, and 3 turns per generation. 
 



21 
 

extinction rates for each turn value plotted against the mutability parameter.  Extinction 

rates are calculated as the number of times a group went extinct from 100 simulations at 

each parameter combination. 

The extinction rate is highest when there are few turns per generation, and at low 

µ values.  As µ increases, the rate of extinction rapidly decreases.  The most likely reason 

for this is that a larger µ value creates a wider range of traits, which allows each group to 

reach its optimal distribution more quickly.  Due to the initial population being uniformly 

randomly distributed, more than one agent may have traits which would not be optimal in 

a larger population, i.e. a population that is close to the carrying capacity.  Lower µ 

values result in the offspring of successful agents having similar trait values to the parent, 

 

 

 

Figure 3.9 Sample runs at 3 turns per generation.  Top row has µ = 0.07, bottom row has 

µ = 0.09. 
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Figure 3.10 Sample runs for µ = 0.01, and 4 turns per generation. 
 

whose traits may not be viable in the next generation.  As population size rapidly 

increases, parent populations could have more resources available to them than their 

offspring will have.  These excess resources allow agents with traits which would be 

outcompeted in a larger population to have offspring.  Then the offspring have similar 

traits, and are outcompeted in the larger population.  Examining the time to extinction 

helps to determine if this hypothesis is correct, and Figures 3.14 & 3.15 show time-to-

extinction histograms for the sharing group for µ = 0.01 and 0.03; the sharing population 

always survived for higher µ values.  As expected, populations overwhelmingly went 

extinct within the first 300 generations at µ = 0.01, and all went extinct within the first 

500 generations for the 1 turn case even when µ = 0.03.  The case with 2 turns per 

generation for µ = 0.03 shows a far more even distribution, with some extinctions 
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occurring past 2000 generations.  There were no extinctions at µ = 0.03 for 3 or 4 turns in 

the sharing group. 

The final factor in determining whether fitness differences exist between the 

sharing and non-sharing populations is to compare their average final population sizes.  

This is illustrated in Figure 3.16, where the average final population is plotted against the 

mutability parameter.  Average final population values are calculated from the 3000
th

 

generation.  These averages do not include runs where a group went extinct, and therefore 

averages are over a different amount of runs for each data point.  For example, the value 

for the sharing group’s 1 turn per generation and µ = 0.01 data point was averaged over 

the smallest number of runs: 52, because the sharing group went extinct the other 48 

times.  Confirming what was suggested by the figures from sample runs above (Figures 

 

 

 

Figure 3.11 Sample runs for µ = 0.03, and 4 turns per generation. 
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3.1-3.12), the sharing group consistently had a higher population than the non-sharing 

group at higher µ values, while the non-sharing group had a higher population at lower 

values. 

 

 

 

 

Figure 3.12 Sample runs at 4 turns per generation.  From top to bottom, µ = 0.05, 0.07, 

0.09. 
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Figure 3.13 Fraction extinct vs. mutability for single resource model.  Circles correspond 

to the sharing group, and X’s to the non-sharing group.  

 

 

Figure 3.14 Time-to-extinction histogram for µ = 0.01. 
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Figure 3.15 Time-to-extinction histograms for µ = 0.03. 

 

 

Figure 3.16 Average final population vs µ.  These averages exclude runs where the 

groups went extinct.  Sharing (circles) and non-sharing (x) groups behave differently as µ 

increases. 
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3.2. SINGLE RESOURCE WITH FORAGING RISK 

The inclusion of a foraging risk increases the chance that a population can go 

extinct, particularly as the number of turns increases.  For this reason, simulations take 

significantly less time than they do in the absence of the foraging risk and therefore the 

number of turns per generation can be increased while still allowing the acquisition of a 

reasonable amount of data in a short amount of time.  To further lower the time required, 

simulations were only run for 2000 generations.  For this version of the model, turns per 

generation ranges from 2 to 6.  As above, 100 simulations were performed for each set of 

parameters.  The foraging risk p is a flat probability for an agent to be removed when it 

attempts to forage.  Values of p between 0.1 and 0.2 caused extinction so frequently that, 

for some combinations of parameters, all 100 simulations resulted in extinction.  For that 

reason, the foraging risk p takes the values 0.01, 0.03, 0.05, 0.07, and 0.09. 

3.2.1. Sample Runs with Foraging Risk.  The general population behavior seen 

in the model without the foraging risk is unchanged.  That is, when the sharing group has 

high foraging traits and low social traits, it ranges from exhibiting anti-phase oscillations 

with the non-sharing group (Figure 3.17), to gaining a slight advantage over the non-

sharing group.  As the number of turns increases, the size of the sharing population 

relative to the non-sharing population also increases (Figures 3.18-3.29).  In other words, 

sharers with longer lifetimes have a fitness advantage.  This fitness advantage also 

increases with µ, though the reason for this remains to be determined. 

When all members of the sharing group have high social and high foraging values 

(Figure 3.19 & 3.20, bottom rows), the sharing group has a lower population size 

compared to the non-sharing group.  This is likely due to the fact that agents with the 

sharing trait frequently give up half of their resources, resulting in a lower probability of 

reproduction, and lower numbers of offspring.  However, this result should not be 

interpreted as implying that high social traits are innately disadvantageous.  For example, 

a bimodal distribution in the social trait of the sharing group results in a similar 

population advantage over the non-sharing group as does the existence of exclusively low 

social traits (Figures 3.18, 3.19, 3.22, 3.25).  In other words, it only takes some agents 

evolving low social and high foraging traits in order for the sharing trait to be favorable.  

However, this behavior is only present for 4 turns per generation or less.  At 5 and 6  
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Figure 3.17 Sample runs at 2 turns and p = 0.01.  From top to bottom µ = 0.03, 0.05, 

0.07. 

 

turns, the low social, high foraging agents are no longer necessary to provide an 

advantage to the sharing group (Figures 3.27, 3.29).  Presumably this is because the 

population has sufficient opportunities to acquire an amount of resources which can 

sustain reproduction across a significant portion of the sharing group.  As the foraging 

risk is increased, the general behavior in trait space does not change.  The population vs. 
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time plots show an increase in the sizes of the fluctuations in the sharing group for when 

there are agents with high social traits in the population. 

 

 

 

 
Figure 3.18 Sample runs at 3 turns, p = 0.01, and µ = 0.01. 

 

3.2.2. Extinction Rates and Final Populations for All p Values.  The rates of 

extinction when the foraging risk is added differ significantly from the results in the 

absence of foraging risk.  
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Figure 3.19 Sample runs at 3 turns, p = 0.01, and µ = 0.03. 

 

Starting at p = 0.01 (Figure 3.30), for 2-3 turns per generation, the extinction rates 

are similar to the basic model, where populations go extinct more frequently at lower µ 

values.  At 4 turns, the extinction rate has a peak at µ = 0.03, and at 5 or 6 turns, the peak 

is at µ = 0.05.  At p = 0.03, the peak extinction rates are not as obvious, and vary greatly 

with the number of turns (Figure 3.30).  Higher values of p (Figures 3.31 & 3.32) all 

show peak extinction occurring at µ = 0.01, but none of these data points shown reach the  
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Figure 3.20 Sample runs at 3 turns, p = 0.01, and µ = 0.05. 

 

 
Figure 3.21 Sample run at 3 turns, p = 0.01, and µ = 0.09. 

 

70% or higher extinction that is seen for some values at p = 0.01.  It is unclear exactly 

why extinction would occur more often at some µ values when there is a lower risk to 

foraging, compared to those same µ values when there is a higher risk, but it is not the 

only counterintuitive result.  The average final populations show a significant drop at  
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Figure 3.22 Sample runs at 4 turns, p = 0.01, and µ = 0.01. 

 

µ = 0.03 for 4, 5, and 6 turns, compared to other µ values examined in this work, when p 

= 0.01 (Figure 3.33).  This minimum value is either not as extreme, or not even a 

minimum for higher p values and smaller numbers of turns (Figures 3.34 - 3.35). 

 

3.3. DISCUSSION OF RESULTS 

The results presented for the single-resource model are mostly reasonable and can 

be easily summarized as being part of two regimes.  When there are a small number of 

turns, there is little benefit to the social trait in the sharing group, and agents evolve to 

have low social, and high foraging traits, matching the behavior of the non-sharing group.  

As the number of turns increases, then the social trait has both a cost and a benefit to the 

sharing group, though the cost only seems to be relevant at low µ values.  The benefit is 

that an agent could acquire a sufficient amount of resources from sharing, and the cost is 

that sharing with another agent with fewer resources will reduce the amount of resources 
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Figure 3.23 Sample runs at 4 turns, p = 0.01, and µ = 0.03. 

 

of the agent with the larger amount.  The cost of the social trait is present when all agents 

in the sharing group have high social and high foraging traits, as evidenced by the sharing 

group having a lower population size compared to the non-sharing group.  When there 

are some agents with low social and high foraging traits in the sharing group, then the 

social trait provides an advantage.  This cost disappears at larger values of µ, and the 

social trait becomes largely beneficial, though it is the source of the large fluctuations in 

population size of the sharing group.  The size of these fluctuations increase when the 

foraging risk is added, but do not further increase as the foraging risk is increased, 

indicating that they may be related to the extremely high rates of extinction at higher 

values of the foraging risk, though this result is not yet confirmed.  Finally, the data from 

the average final populations indicate that the sharing group typically has a similar size as 

the non-sharing group, or even an advantage over the non-sharing group, across all 

parameters with only a few exceptions occurring when there is a foraging risk present.  

These exceptions, and some of the other inconsistent behavior that occurs when the 
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foraging risk is present, may be due to the small sample sizes.  If simulations were run 

perhaps 1000 times as opposed to only 100 times, then it is possible that more consistent 

patterns would emerge. 

 

 

 
Figure 3.24 Sample runs at 4 turns, and p = 0.01.  From top to bottom µ = 0.05, 0.09. 

 

 
Figure 3.25 Sample runs at 5 turns, p = 0.01, and µ = 0.01. 
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Figure 3.26 Sample runs at 5 turns at p = 0.01.  From top to bottom µ = 0.03, 0.05, and 

0.09. 
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Figure 3.27 Sample runs at 6 turns, p = 0.01, and µ = 0.01. 

 

 

 
Figure 3.28 Sample runs at 6 turns at p = 0.01.  From top to bottom µ = 0.05, 0.09.  
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Figure 3.29 Sample run at 4 turns, p = 0.03, and µ = 0.03. 

 

 
Figure 3.30 Fraction extinct at p = 0.01.  Solid lines represent the sharing group, dotted 

lines are non-sharing group. 
 

 

Figure 3.31 Fraction extinct at p = 0.03 and p = 0.05.   
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Figure 3.32 Extinction rates at p = 0.07 and p = 0.09 

 

 
Figure 3.33 Average final populations vs. µ for p = 0.01. 

 

 
Figure 3.34 Average final populations vs. µ for p = 0.03 and 0.05.  Left is p = 0.03, right 

is p = 0.05. 
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Figure 3.35 Average final populations vs. µ for p = 0.07 and 0.09.  Left is p = 0.07, right 

is p = 0.09. 
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4. RESULTS OF TWO-RESOURCE MODEL 

 

What has been shown from the single resource model is arguably not a division of 

labor, aside from a few runs where some portion of the sharing group specialized on the 

social trait.  Division of labor would be more convincing if the model was to evolve 

agents which specialize on different foraging tasks, and therefore a second resource was 

included to accomplish that goal. 

 

4.1. TWO RESOURCES WITHOUT FORAGING RISK 

Parameter values in this version of the model are again µ = 0.01, 0.03, 0.05, 0.07, 

and 0.09, but the turns per generation is only varied from 2 to 5. 

4.1.1. Sample Runs for Two-Resource Model.  The presence of a third trait 

makes it difficult to plot both groups’ traits on the same Figure  Heat maps are used to 

represent the social trait, and axes of figures are foraging for the survival resource and 

foraging for the reproduction resource (x-axis and y-axis, respectively).  The non-sharing 

group shows more variation in this version of the model compared to the single resource 

model, but still has less variation than the sharing group.  Agents in the non-sharing 

group (Figure 4.1 & 4.2) range from specializing on foraging for the survival resource, to 

being generalists, to everywhere in between.  However, this variation in the non-sharing 

group is not important in determining population sizes.  The primary factor which affects 

population size is the distribution of traits in the sharing group.  For this reason, there is 

no comparison between sharing and non-sharing group trait distributions presented here.  

The remaining discussion will focus on the sharing group. 

When there are only 2 turns per generation, agents in the sharing group evolve to 

focus on foraging for the resource necessary for survival, and have low values for the trait 

associated with foraging for the purposes of reproduction (Figures 4.3-4.6).  The social 

trait can evolve with these parameters (Figures 4.4 & 4.6), though it results in a lower 

fitness compared to the non-sharing group when all agents are highly social (Figure 4.4). 
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Figure 4.1 Sample trait plots for the non-sharing group.  Two turns per generation (left 

column) and five turns per generation (right column) are shown.  Intermediate values 

have distributions that are similar to the right column.  Rows are (top to bottom) µ = 0.01, 

0.03, and 0.05. 
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Figure 4.2 Sample trait plots for non-sharing group at µ = 0.07 (top) and 0.09 (bottom).  

Left column has two turns per generation, and right column has five turns per generation. 
  

 
Figure 4.3 Sample run for 2 turns, µ = 0.01.  Trait plot for sharing group (right) with heat 

map for social trait, from cyan (low) to magenta (high). 
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Figure 4.4 Sample runs at 2 turns, µ = 0.03.  Note the high social trait values – and low 

sharing population size – in the first row. 
 

Increasing the number of turns per generation to 3 turns enables the social trait to 

appear more frequently (Figures 4.7-4.11), and it can be seen that the social trait alone is 

not sufficient to cause a fitness disadvantage (Figure 4.8).  In fact, if highly social agents 

exist alongside non-social agents (Figures 4.8-4.11), the sharing group actually gains a 

noticeable fitness advantage.  Presumably, the cause of this advantage is that the agents 

with high values of both foraging traits are able to consistently procure resources which 

are then distributed among the rest of the population by the agents with the high social 

traits. 

At 4 turns per generation, the sharing group has a consistent fitness advantage 

over the non-sharing group (Figures 4.12-4.14), regardless of the exact trait distribution, 

though having social agents present makes this advantage far more noticeable.  The case 

where the sharing group has a cluster of agents with low social traits and high values in 
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Figure 4.5 Sample runs at 2 turns, µ = 0.05 (top) and 0.07 (bottom). 

 

both foraging traits, and also a cluster with mid to low foraging and high social traits 

(Figure 4.12), produces a population which is larger than other distributions, and at any 

other combination of parameters. 

Five turns per generation looks much like 4 turns (Figures 4.15-4.17), with an 

abundance of social agents in nearly every simulation.  The same general behavior holds 

as well.  A sharing group that contains both agents with large social trait values and 

agents with large trait values in both foraging traits, leads to the largest population sizes. 

4.1.2. Extinction Rates and Average Final Populations.  The figures for 

extinction rates and average final populations support some of the information seen in the 

population vs. time plots from sample runs.  Extinction rates are again calculated as the 

number of times a population went extinct out of 100 runs.  Average final populations are 

calculated by the population size at the 2000
th

 generation and averaged over the number 

of runs where the group did not go extinct.  
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Figure 4.6 Sample runs at 2 turns, µ = 0.09. 

 

For 2 turns, the sharing group has roughly the same average final population as 

the non-sharing group, but goes extinct a little less frequently.  The extinction rates 

decrease as µ increases (Figure 4.18).  At 3 turns, the sharing group has a slightly larger 

average population and has lower extinction rate at µ = 0.01, but rates for larger µ values, 

are similar between the two groups.  When there are 4 or 5 turns, the sharing group has 

both a larger average final population and a higher extinction rate than the non-sharing 

group.  The average final populations also decrease as µ increases, though they decrease 

faster for larger numbers of turns per generation. 

 

4.2. TWO-RESOURCE MODEL WITH FORAGING RISK 

With two resources, a foraging risk could be added in two different ways.  There 

could be is a risk to foraging of any kind, so that an agent engaging in the act of foraging 

for either resource has a probability of death.  Alternatively, there could be a risk  
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Figure 4.7 Sample runs in the two-resource model at 3 turns, µ = 0.01. 

 

associated with only one type of resource, either the resource necessary for survival or 

the one necessary for reproduction.  Because the results from the model without a 

foraging risk indicate that agents typically evolve to focus on the survival resource, it is 

that resource which has been chosen to have a risk associated with it. 

4.2.1. Sample Runs for Two-Resource Model with Foraging Risk.  Adding a 

foraging risk to the two-resource model resulted in two notable changes in trait 

distributions.  The first is that the range of parameters over which the social trait has a 

bimodal distribution increases.  Without the foraging risk, this bimodal distribution 

appears at µ = 0.03, 0.05, 0.07, and 0.09 for 3 turns per generation, and µ = 0.01 for 4 and 

5 turns per generation.  When the foraging risk is added, at p = 0.01 and higher, the 

bimodal distribution also appears at µ = 0.01 for 3 turns per generation (Figure 4.19), so 

that all values of µ examined in this work can produce a bimodal distribution in the social 

trait at 3 turns per generation.  For p = 0.03 and higher, the bimodal distribution also 

appears at µ = 0.03  
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Figure 4.8 Sample runs at 3 turns, µ = 0.03.  A distribution which is bimodal in the social 

trait (bottom row) is possible, but this behavior does not always occur. 
 

(Figure 4.19), 0.05, and 0.07 (Figure 4.20) for 4 turns per generation.  At p = 0.05 and 

higher, the bimodal distribution in the social trait also occurs at µ = 0.09 for 4 and 5 turns 

per generation. 
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Figure 4.9 Sample runs at 3 turns, µ = 0.05. 

 

Adding a foraging risk to the two-resource model alters extinction rates by making them 

both higher and more subject to variance.  In particular, the extinction rates for 2 turns at 

values p = 0.05, 0.07, and 0.09 (Figures 4.21-4.23) show no patterns at all. 

Running more than 100 simulations would likely be necessary to determine any 

consistency to these extinction rates.  Average final populations show the same general 

behavior as seen without the foraging risk, albeit with more variance.  The sizes of the 

final populations are lower with the foraging risk, particularly when there are 5 turns per 

generation.  They also decrease as the foraging risk increases, which is to be expected. 

4.2.2. Summary of Results from the Two-Resource Model.  The inclusion of a 

second unique resource to the model altered the results in significant ways.  The single-

resource model showed that the presence of high social traits in the sharing group was 

generally a disadvantage unless it coincided with low social and high foraging traits.  In 
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the two-resource model, the presence of high social traits in the sharing group is still a 

disadvantage if the social agents also have low foraging traits, but if the sharing group 

has high values for both foraging traits, then the presence of the social trait is beneficial.   

  

 

 
Figure 4.10 Sample runs at 3 turns, µ = 0.07. 

 

Distributions in some runs contained both a non-social group of foragers as well 

as a highly social group of non-foragers, representing the most convincing example of 

task specialization produced by any version of the model.  This result demonstrates that 

division of labor via phenotypic specialization can evolve without task-switching costs, 

under the proper conditions. 

The addition of a foraging risk in the two-resource model had a very small impact 

on the results aside from an increased variance in the extinction rates.  Comparing this 

result with the single-resource model, it seems that decoupling the benefits of resource 

acquisition into two separate resources required for successful reproduction provided a 

buffer against the effects of the foraging risk. 
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Figure 4.11 Sample runs of the two-resource model at 3 turns, µ = 0.09. 
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Figure 4.12 Sample runs of the two-resource model at 4 turns, µ = 0.01. 
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Figure 4.13 Sample runs at 4 turns, µ = 0.03. 

 

 
Figure 4.14 Sample runs at 4 turns and µ = 0.09. 
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Figure 4.15 Sample runs at 5 turns, µ = 0.01 
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Figure 4.16 Sample runs at 5 turns, µ = 0.03. 

 

 
Figure 4.17 Sample runs at 5 turns and µ = 0.05. Higher µ values had the same behavior. 
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Figure 4.18 Extinction rate (left) and average final population (right) vs. µ for 2 

resources.  No foraging risk.  Sharing group is solid lines (o), and non-sharing is dotted 

lines (x). 
 

 

 
Figure 4.19 Bimodal distributions of social traits in two-resource model.  p = 0.01 (top 

left), 0.03 in others, and µ = 0.01 (top left), 0.03 (top right), 0.05 (bottom left) and µ = 

0.07 (bottom right). 
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Figure 4.20 Extinction rates (left) and average final populations (right).  Top to bottom, p 

= 0.01, 0.03, and 0.05. 
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Figure 4.21 Extinction rates (left) and average final populations (right) at p = 0.07 and 

0.09. Top has p = 0.07, bottom has p = 0.09 
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5. DIVISION OF LABOR 

 

This work has so far examined the effect of different trait distributions on the 

competition between the sharing and non-sharing groups, but it remains to be seen 

whether any of the presented phenotypic distributions are sufficient to demonstrate a 

quantifiable division of labor. 

 

5.1. NORMALIZED MUTUAL ENTROPY 

As mentioned in Section 2.4.1, the normalized mutual entropy (NME) in this 

model depends only on the trait values among the population, the population size, and the 

amount of resources.  Due to the task probabilities having a dependence on resources, the 

most accurate measure of division of labor in this model occurs when resources are 

abundant.  This is because even agents with low social traits are more likely to socialize 

than to forage when resources are depleted.  The maximum amount of available resource 

in any one turn is 100 units, therefore only NME values for 100 units of resource are 

considered here. 

5.1.1. Normalized Mutual Entropy for the Single-Resource Model.  A 

population which only contains agents which have high foraging and low social traits 

represents the lowest NME values within the constraints of the model (Figure 5.1).  

Similarly, a population with only low foraging and high social traits has roughly the same 

NME value (Figure 5.2).  A larger µ value increases the amount of variation in these 

same distributions, and also increases the value of NME (Figure 5.3).  A distribution 

which is bimodal in the social trait has a value of NME which is roughly an order of 

magnitude larger than other distributions (Figure 5.4 left), but if the distribution is closer 

to uniform in the social trait than it is bimodal, then the value of NME is not much 

different from the case where distributions are biased towards one trait (Figure 5.4 right). 

This result indicates that bimodality of the social trait is more important for the 

occurrence of division of labor in this model than is a range of trait values.  Knowing 

this, one could assume that bimodality in both traits would produce a larger value of  
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Figure 5.1 NME for the sharing group at low social, high foraging traits.  Left has NME 

= 0.0006.  Right has NME = 0.0010. For both figures, µ = 0.01. 

 

 
Figure 5.2 NME for the sharing group at low foraging, high social traits.  Left has NME 

= 0.0015.  Right has NME = 0.0009.  For both figures, µ = 0.01. 
 

NME, and Figure 5.5 indicates that this is so, with the highest value of NME in the single 

resource model occurring when the distribution is bimodal in both traits. 

While these sample figures give an indication to how trait distributions and 

system parameters affect NME, they are not perfectly sufficient to describe the 

importance of trait distribution when measuring division of labor.  Figure 5.6 shows that 

NME is strongly correlated with the variance of the social trait and total variance among 

both traits, but that variance of the foraging trait is considerably less correlated with 

NME. 

5.1.2. Normalized Mutual Entropy for the Two-Resource Model.  The 

addition of a third trait, corresponding to an extra possible task, changes the range of 

values for NME. 
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Figure 5.3 NME for sharing group when µ = 0.09.  Left has NME = .0080.  Right has 

NME = .0082. 
 

 
Figure 5.4 Trait plots for bimodal social trait.  Left has NME = .0391 for µ = 0.07.  Right 

has NME = .0065 at µ = 0.09. 
 

Figure 5.7 shows that NME is again low for low social, low reproductive 

foraging, and high survival foraging, though it is an order of magnitude higher when 

there is greater variation in trait values.  When the social trait is high (Figure 5.8), NME 

takes a range of values which again depends on the amount of variation in the population.  

The more tightly clustered the trait values, the lower the value of the normalized mutual 

entropy.  When the social trait is bimodal (Figure 5.9), NME takes the largest values 

overall.  As in the single resource model, NME is correlated with the social trait in the 

two-resource model, albeit less strongly.  However, NME is now actually negatively 

correlated with foraging traits in the two-resource model (Figure 5.10). 
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Figure 5.5 Trait plots which are bimodal in both traits.  Left has µ = 0.03, and NME = 

0.0520.  Right has µ = 0.07, and NME = 0.0475. 

   

 
Figure 5.6 NME – trait variance correlation plots in single resource model.  Left panel (µ 

= 0.03) has correlation coefficient R = 0.1319 for foraging trait, 0.9939 for social trait, 

and 0.9896 for both traits together.  Right panel (µ = 0.09) has R = 0.2123 for foraging 

trait, 0.9877 for social trait, and 0.9254 for both traits.  Data is from sharing group only, 

from all parameter values. 
 

5.2. FRACTION FORAGERS 

The quantity “fraction foragers” in this work is defined as the total number of 

foragers in a generation divided by the population size.  Therefore, this quantity will be a 

maximum if all agents forage at every opportunity during a generation, and the maximum 

value is equal to the number of turns per generation.  Only data from the sharing 

population in the single-resource model is presented here.  It was established in Chapter 3 

that large fluctuations in the sharing group’s population size occurred when there were 

agents with high social trait values.  Here it is shown that larger fluctuations in the 
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Figure 5.7 Trait plots with high survival foraging and low social traits.  Left has µ = 0.01, 

and NME = 0.0019.  Right has µ = 0.09, and NME = 0.0135. 

 

  

 
Figure 5.8 Trait plots in two-resource model with high social traits. Top row are µ = 0.01 

with NME = 0.0022 (top left), and 0.0011 (top right). Bottom left is µ = 0.03 with NME 

= 0.0028 (bottom left). Bottom right is µ = 0.09 with NME = 0.0060. 
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Figure 5.9 Trait plots with bimodal distributions in the social trait.  Top row has µ = 0.01, 

and (left to right) NME = 0.0366 and 0.0127.  Bottom row has µ = 0.07 (left) and 0.09 

(right), with NME = 0.0203 and 0.0316, respectively. 

 

 
Figure 5.10 NME - trait variance correlation plots for two-resource model. Left panel (µ 

= 0.03) has correlation coefficient R = -0.4325 for the survival foraging trait, -0.1964 for 

the reproductive foraging trait, 0.4978 for the social trait, and 0.4418 total. Right panel (µ 

= 0.09) has correlation coefficient R = -0.7494 for the survival foraging trait, -0.4110 for 

the reproductive foraging trait, 0.5639 for the social trait, and 0.3217 for the total 

variance. 
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population size correspond to erratic behavior in fraction foragers (Figure 5.11), and that 

erratic behavior in fraction foragers also corresponds to the presence of social traits 

(Figure 5.12). 

 

 

 
Figure 5.11 Fraction foragers predicts population fluctuations.  Left is fraction foragers 

vs. time, right is population vs. time.  Parameters are µ = 0.05, 2 turns (top row), and µ = 

0.01, 4 turns (bottom row) 

 

 

 



65 
 

 

 

 
Figure 5.12 Erratic behavior in fraction foragers occurs when sharing group has social 

traits.  Left column is fraction foragers vs. time, right column is trait plots at the 2000
th

 

generation.  Parameters are µ = 0.05, 2 turns (top row), and µ = 0.01, 4 turns (middle and 

bottom rows) 



66 
 

6. CONCLUSIONS 

 

6.1. DISCUSSION 

The model presented in this work contains elements of both group selection and 

kin selection.  The competition between the two groups represents group selection, but 

the fact that agents in the sharing group can only share with other cooperating agents is 

kin selection, particularly when the population has similar trait values as these values 

most likely came from a single parent. 

It is seen that this cooperative sharing behavior can cause a fitness advantage 

relative to the group which does not share resources, and even when the sharing group 

has a disadvantage due to the social trait, the population remains quite stable, persisting 

for thousands of generations.  This emphasizes a point which is often ignored when 

discussing evolution, which is that any trait which is not driven to extinction can exist.  

The idea that all traits observed in nature are due to some advantage provided to the 

organism is simple and reasonable.  However this work shows that traits which may not 

result in a fitness advantage to the organism can still exist under the right circumstances, 

though the model is limited in the ability to test this hypothesis further. 

This model was created to develop division of labor without task-switching costs.  

Depending on how strictly one defines division of labor, this is both true and false.  The 

model can produce agents which specialize on a specific task, but it is not capable of 

producing agents which never engage in a specific task.  It may still be true that evolving 

organisms which do not reproduce, or which lose the ability to do some task, requires 

task-switching costs, but this model was focused on phenotypic specialization. 

 

6.2. FUTURE WORK 

The basic details and behavior of the model have been laid out, but there are many 

questions that are left unanswered, which future work could examine.  Some data already 

exists to answer these questions, and other questions are extensions of the model which 

would have required far too much time to explore in one dissertation.  One of the largest 

undertakings would be to run thousands of simulations of versions with the foraging risk 
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to eliminate the variance in the results for the extinction rates, and implementing a risk on 

the survival resource, or both resources. 

From a biological perspective, there are some adjustments to the model that 

would perhaps be more realistic.  For example, beginning simulations with traits 

uniformly randomly distributed is unnatural.  If the ability to share resulted from a 

mutation in a previous generation, the offspring of the organism carrying such a mutation 

would have traits similar to the parent, and not be distributed uniformly.  The initial 

populations should be distributed in a manner so that the agents are closer to a central 

peak, the peak representing the parent’s traits.  A good first attempt would probably be a 

normal distribution with standard deviation µ, and then also distributing offspring in the 

model with a normal distribution as opposed to just being a box of height and width 2µ.  

Thus the parameter µ would not control the maximum amount of variation, but the 

typical amount.  The location of the peak would also be a parameter, and it may be that a 

certain combination of peak location and mutability would tend to lead to one 

distribution, while another combination of these parameters could lead to a different 

distribution. 

Cheating is a major question that this model has not addressed, as it assumed that 

agents in one group did not directly interact with members of the other group.  A simple 

method to explore the effect of cheating in this model is to allow mixing between the two 

groups, i.e., that agents can socialize (and therefore share resources) with agents 

belonging to the other group.  This may produce agents in the non-sharing group who 

evolve high social traits, as a secondary method of acquiring resources.  Or it may cause 

the sharing group to simply go extinct more often.  The code for allowing mixing is 

already written, but no simulations were run to test this type of cheating behavior. 

On the topic of extinctions, it is possible that the small initial populations had a 

significant effect on the rates of extinction, particularly since the times to extinction were 

very short.  Performing additional simulations with larger initial populations could be 

serve to test this hypothesis.  A related set of simulations could test whether the relative 

sizes of the initial populations affect extinction, e.g., if the sharing group begins with half 

of the size of the non-sharing group.  Part of this work included an incomplete dataset to 
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explore this question, though these datasets are unanalyzed.  This work will be included 

in a future paper. 

Further analysis of the results presented here are also underway and to be 

included in a future paper.  This includes tracking the stability of social clusters over 

time, and mapping all simulations at each parameter set onto a single figure to more 

clearly identify the fitness peaks in trait space.    
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APPENDIX: 

MATLAB CODE 

 

%% Initialization 

 

N0 = 5;    % Initial population 

agents1 = unifrnd(0,1,2,N0);   % 2xN vector of trait values on (0,1) 

agents2 = unifrnd(0,1,2,N0); 

turns_per_gen = 2; 

 

R0 = 10;     % Initial resource amount 

R = R0; 

R_in = 100;  % Resource influx(constant flow), or max(logistic growth) 

mu1 = .01;    % Allowed deviation of offspring from parents 

mu2 = mu1; 

w0 = 2;      % Neutral fitness value 

time_stop = 2000;       % Number of generations 

BigJ = 0;     % Selection toggle 

 

food_thresh = 0;  % Survival threshold 

 

pop_size1 = zeros(1,time_stop); 

pop_size2 = zeros(1,time_stop); 

trait_gens1 = cell(1,time_stop);     % trait data storage 

trait_gens2 = cell(1,time_stop); 

parent1 = nan(1,time_stop); 

parent2 = nan(1,time_stop); 

 

pop_size1(1) = N0; 

pop_size2(1) = 0; 

trait_gens1(1) = mat2cell(agents1(1:2,:), [2]); 

trait_gens2(1) = mat2cell(agents2(1:2,:), [2]); 

dead1 = 0;  % tracking possible extinctions 

dead2 = 0; 

 

agents1(3,:) = zeros(1,N0); 

agents2(3,:) = zeros(1,N0); 

 

foragers1 = zeros(turns_per_gen,time_stop); 

foragers2 = foragers1; 

 

%% Section II - Main 

 

% Assuming there are 2 possible types of particles (agents and resources) 

% with agents in 2 possible states (food or no food), then probability that 
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% an agent forages p_f ~ R, probability that he socializes p_s ~ N-1. 

% Socializing then produces 2 outcomes, depending on whether he finds an 

% agent with food or without.  After that step is done, agents who have 

% food will reproduce with probability r. 

 

for t = 2:time_stop 

     

    % TURNS 

    for turn = 1:turns_per_gen 

        if R < 0 

            R = 0; 

        end 

        % logistic equation resource growth 

        dR = 2*R0*(1-(R0/R_in)); 

        R = R + dR;     % Increment resource 

        R0 = R;         % Store resource to determine growth between turns 

 

        % Get population sizes 

        N1 = size(agents1,2); 

        N2 = size(agents2,2); 

        % Forage/sharing loop 

        reorder = choozrand(1:N1+N2,N1+N2);   % choozrand reorders any 1xN vector 

        % indices from 1:N1 are agents1, N1+1:N1+N2 are agents2 

         

        for j = 1:N1+N2 

            if reorder(j) < N1+1 

                T = [R+1 N1-1]; 

                p_f = agents1(1,reorder(j))*(R+1)/(T*agents1(1:2,reorder(j))); 

                roll = unifrnd(0,1); 

                if roll < p_f         % forage 

                    if (R  > 0) 

                        R = R-1; 

                        agents1(3,reorder(j)) = agents1(3,reorder(j)) + 1; 

                        foragers1(turn,t) = foragers1(turn,t) + 1; 

                    end 

                else roll = unifrnd(0,1); 

                    if roll < agents1(2,reorder(j)) 

                        % share 

                        tosser = [1:reorder(j)-1,reorder(j)+1:N1];   

                        pick = choozrand(tosser,1); 

                        agents1(3,reorder(j)) = (agents1(3,reorder(j)) + agents1(3,pick))/2; 

                        agents1(3,pick) = agents1(3,reorder(j)); 

                    end 

                end 

            else  T = [R+1 N2-1]; 

                index = reorder(j)-N1; 
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                p_f = agents2(1,index)*(R+1)/(T*agents2(1:2,index)); 

                roll = unifrnd(0,1); 

                if roll < p_f 

                    if (R > 0)  

                        R = R-1; 

                        agents2(3,index) = agents2(3,index) + 1; 

                        foragers2(turn,t) = foragers2(turn,t) + 1; 

                    end 

                end 

            end 

        end 

        

    end 

     

    % Reproduction loop 

    next_agent = nan(2,1); 

    newegg = []; 

    if isempty(agents1) == 0 

        n_A1 = find(agents1(3,:) > food_thresh); 

        r1 = agents1(3,n_A1); 

        kk = 1; 

        w1 = floor(r1) + w0;     % Setting fitness values 

         

        for k = 1:length(n_A1) 

            roll = unifrnd(0,1); 

            % reproduction1 

            if r1(k) > 1 

                if roll < (r1(k) - floor(r1(k))) 

                    newegg = braket_reproduction(agents1(1:2,n_A1(k)),w1(k),mu1); 

                    kids = w1(k); 

                else 

                    newegg = braket_reproduction(agents1(1:2,n_A1(k)),w1(k) - 1,mu1); 

                    kids = w1(k) - 1; 

                end 

            elseif roll < r1(k) 

                newegg = braket_reproduction(agents1(1:2,n_A1(k)),w0,mu1); 

                kids = w0; 

            end 

            if isempty(newegg) == 0 

                cut1 = find(newegg>1 | newegg<0); 

                % boundary death 

                if isempty(cut1) 

                    next_agent(1:2,kk:kk+kids-1) = newegg; 

                    parent1(kk:kk+kids-1,t) = n_A1(k); 

                    kk = kk+kids; 

                else for b = 1:size(newegg,2) 



72 
 

                        c = find(newegg(:,b)>1 | newegg(:,b)<0); 

                        if isempty(c) 

                            next_agent(1:2,kk) = newegg(:,b); 

                            parent1(kk,t) = n_A1(k); 

                            kk = kk+1; 

                        end 

                    end 

                end 

            else next_agent(1:2,kk) = agents1(1:2,n_A1(k)); 

                parent1(kk,t) = 0; 

                kk = kk+1; 

            end 

            clear kids; 

            newegg = []; 

        end 

         

    end 

 

    % extinction check 1 

    if isempty(find(isnan(next_agent),1)) 

        new_N = size(next_agent,2); 

        next_agent(3,:) = zeros(1,new_N); 

        agents1 = next_agent; 

        pop_size1(t) = new_N; 

        trait_gens1(t) = mat2cell(agents1(1:2,:), [2]); 

    elseif dead1 == 0 

        fprintf('population 1 is extinct at generation %g. \n',t); 

        agents1 = []; 

        dead1 = t; 

    end 

    next_agent = nan(2,1); 

     

    if isempty(agents2) == 0 

        n_A2 = find(agents2(3,:) > food_thresh); 

        r2 = agents2(3,n_A2); 

        jj=1; 

        w2 = floor(r2) + w0;    % fitness values 

        for k = 1:length(n_A2) 

            roll = unifrnd(0,1); 

            % reproduction2 

            if r2(k) > 1 

                if roll < (r2(k) - floor(r2(k))) 

                    newegg = braket_reproduction(agents2(1:2,n_A2(k)),w2(k),mu2); 

                    kids = w2(k); 

                else newegg = braket_reproduction(agents2(1:2,n_A2(k)),w2(k) - 1,mu2); 

                    kids = w2(k) - 1; 
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                end 

            elseif roll < r2(k) 

                newegg = braket_reproduction(agents2(1:2,n_A2(k)),w0,mu2); 

                kids = w0; 

            end 

            if isempty(newegg) == 0 

                cut2 = find(newegg>1 | newegg<0); 

                if isempty(cut2) 

                    next_agent(1:2,jj:jj+kids-1) = newegg; 

                    parent2(jj:jj+kids-1,t) = n_A2(k); 

                    jj = jj+kids; 

                else for b = 1:size(newegg,2) 

                        c = find(newegg(:,b)>1 | newegg(:,b)<0); 

                        if isempty(c) 

                            next_agent(1:2,jj) = newegg(:,b); 

                            parent2(jj,t) = n_A2(k); 

                            jj = jj+1; 

                        end 

                    end 

                end 

            else next_agent(1:2,jj) = agents2(1:2,n_A2(k)); 

                parent2(jj,t) = 0; 

                jj = jj+1; 

            end 

            clear kids; 

            newegg = []; 

        end 

         

    end 

    % extinction check 

    if isempty(find(isnan(next_agent),1)) 

        new_N = size(next_agent,2); 

        next_agent(3,:) = zeros(1,new_N); 

        agents2 = next_agent; 

        pop_size2(t) = new_N; 

        trait_gens2(t) = mat2cell(agents2(1:2,:), [2]);     

    elseif dead2 == 0 

        fprintf('population 2 is extinct at generation %g. \n',t) 

        agents2 = []; 

        dead2 = t; 

    end 

    % clear update vector 

    clear next_agent; 

end 

 

 



74 
 

REFERENCES 

 

Bahar S. (2018).  The essential tension: competition, cooperation and multilevel selection 

in evolution, 175-202, New York, NY: Springer. 

 

Beshers S. N., Fewell J. H. (2001).  Models of division of labor in social insects. Annu. 

Rev. Entomol., 46, 413-440. 

 

Bonabeau E., Theraulaz G., Deneubourg J-L. (1996).  Quantitative study of the fixed 

threshold model for the regulation of division of labour in insect societies. Proc. 

R. Soc. Lond. B, 263, 1565-1569. 

 

Bonner J. T. (1998).  The origins of multicellularity, Integrative Biology, 1, 27-36. 

 

Boza G., Számadó S. (2010).  Beneficial laggards: multilevel selection, cooperative 

polymorphism and division of labour in threshold public good games. BMC 

Evolutionary Biology, 10:336. 

 

Breed M. D., Robinson G. E., Page Jr., R. E. (1990).  Division of labor during honey bee 

colondy defense. Behav. Ecol. Sociobiol., 27, 395-401. 

 

Browning L. E., Patrick S. C., Rollins L. A., Griffith S. C., Russell A. F. (2012).  Kin 

selection, not group augmentation predicts helping in an obligate cooperatively 

breeding bird. Proc. R. Soc. B., 279, 3861-3869. 

 

Celiker H., Gore J. (2013).  Cellular cooperation: insights from microbes. Trends in Cell 

Biology, Vol. 23, No. 1, 9-15. 

 

Charbonneau D., Dornhaus A. (2015).  Workers ‘specialized’ on inactivity: behavioral 

consistency of inactive workers and their role in task allocation. Behavioral 

Ecology and Sociobiology, Vol. 69, Issue 9, 1459-1472. 

 

Clutton-Brock T. (2002).  Breeding together: kin selection and mutualism in cooperative 

vertebrates. Science, Vol. 296, 69-72. 

 

Czárán T., Hoekstra R. F. (2009).  Microbial communication, cooperation and cheating: 

quorum sensing drives the evolution of cooperation in bacteria. PLoS ONE, Vol. 

4, Issue 8, e6655. 

 

Dees N. D., Bahar S. (2010).  Mutation size optimizes speciation in an evolutionary 

model. PLoS ONE, Vol. 5, Issue 8, e11952. 

 

Doolittle W. F., Sapienza C. (1980).  Selfish genes, the phenotype paradigm and genome 

evolution. Nature, Vol. 284, 601-603. 



75 
 

Duarte A., Weissing F. J., Pen I., Keller L. (2011).  An evolutionary perspective on self-

organized division of labor in social insects. Annu. Rev. Ecol. Evol. Syst., 42, 91-

110. 

 

Ellis S., Robinson E. J. H. (2016).  Internest food sharing within wood ant colonies: 

resource redistribution behavior in a complex system. Behavioral Ecology. 27(2), 

660-668. 

 

Farine D. R., Montiglio P-O., Spiegel O. (2015).  From individuals to groups and back: 

the evolutionary implications of group phenotypic composition. Trends in 

Ecology & Evolution. Vol. 30, No. 10, 609-621. 

 

Frank S. A. (2013).  Natural selection. VII. history and interpretation of kin selection 

theory. Journal of Evolutionary Biology, 26, 1151-1184. 

 

Gardner A., Grafen A. (2009).  Capturing the superorganism: a formal theory of group 

adaptation. Journal of Evolutionary Biology. 22, 659-671. 

 

Gavrilets S. (2010).  Rapid transition towards the division of labor via evolution of 

developmental plasticity. PLoS Computational Biology, Vol. 6, Issue 6, 

e1000805. 

 

Gavrilets S., Fortunato L. (2014).  A solution to the collective action problem in between-

group conflict with within-group inequality. Nature Communications, 5:3526. 

 

Goldsby H. J., Dornhaus A., Kerr B., Ofria C. (2012).  Task-switching costs promote the 

evolution of division of labor and shifts in individuality. PNAS, Vol. 109, No. 34, 

13686-13691. 

 

Goldsby H. J., Knoester D. B., Kerr B., Ofria C. (2014).  The effect of conflicting 

pressures on the evolution of division of labor. PLoS ONE, Vol. 9, Issue 8, 

e102713. 

 

Gordon D. M. (2016).  From division of labor to the collective behavior of social insects. 

Behav Ecol Sociobiol, 70:1101-1108. 

 

Gorelick R. (2006).  Combining richness and abundance into a single diversity index 

using matrix analogues of Shannon’s and Simpson’s indices. Ecography, 29, 525-

530. 

 

Gorelick R., Bertram S. M. (2007). Quantifying division of labor: borrowing tools from 

sociology, sociobiology, information theory, landscape ecology, and 

biogeography. Insect. Soc., 54, 105-112. 

 



76 
 

Gorelick R., Bertram S. M., Killeen P. R., Fewell J. H. (2004).  Normalized mutual 

entropy in biology: quantifying division of labor. The American Naturalist, Vol. 

164, No. 5, 677-682. 

 

Griswold C. K. (2015).  Additive genetic variation and evolvability of a multivariate trait 

can be increased by epistatic gene action. Journal of Theoretical Biology, 387, 

241-257. 

 

Herrera E. A. (2012).  Ecological and genetic distribution of eusociality: the case for kin 

selection. Behavioral Ecology, Vol. 24, Issue 2, 331-333. 

 

Holbrook C. T., Eriksson T. H., Overson R. P., Gadau J., Fewel J. H. (2013).  Colony-

size effects on task organization in the harvester ant Pogonomyrmex californicus. 

Insect. Soc., 60, 191-201.  

 

Jeanson R., Kukuk P. F., Fewell J. H. (2005).  Emergence of division of labour in 

halictine bees: contributions of social interactions and behavioural variance. 

Animal Behavior, 70, 5, 1183-1193. 

 

Johnson B. R. (2010).  Division of labor in honeybees: form, function, and proximate 

mechanisms. Behav. Ecol. Sociobiol., 64, 305-316. 

 

Kerr B., Godfrey-Smith P. (2002).  Individualist and multi-level perspectives on selection 

in structured populations. Biology and Philosophy, 17, 477-517. 

 

Kim W., Levy S. B., Foster K. R. (2016).  Rapid radiation in bacteria leads to a division 

of labour. Nature Communications, 7:10508. 

 

Landt J. M., Dornhaus A. (2009).  Spatial organization and division of labour in the 

bumblebee Bombus impatiens. Animal Behavior, 77, 641-651. 

 

Liu J., Martinez-Corral R., Prindle A., Lee D. D., Larkin J., Gabalda-Sagarra M., Garcia-

Ojalvo J., Süel G. M. (2017).  Coupling between distant biofilms and emergence 

of nutrient time-sharing. Science, 356, 638-642. 

 

Markvoort A. J., Sinai S., Nowak M. A. (2014).  Computer simulations of cellular group 

selection reveal mechanism for sustaining cooperation. Journal of Theoretical 

Biology 357, 123-133. 

 

Michod R. E., Nedelcu A. M., Roze D. (2003).  Cooperation and conflict in the evolution 

of individuality IV. Conflict mediation and evolvability in Volvox carteri. 

BioSystems 69, 95-114. 

 

Moore A. J., Brodie E. D., Wolf J. B. (1997).  Interacting phenotypes and the 

evolutionary process: I. direct and indirect genetic effects of social interactions. 

Evolution, Vol. 51, Issue 5, 1352-1362. 



77 
 

Oettler J., Nachtigal A-L., Schrader L. (2015).  Expression of the foraging gene is 

associated with age polyethism, not task preference, in the ant Cardiocondyla 

obscurior. PLoS ONE, Vol. 10, Issue 12, e0144699. 

 

Okasha S. (2006). Evolution and the levels of selection, Oxford, NY, Oxford University 

Press. 

 

Østman B., Lin R., Adami C. (2014).  Trade-offs drive resource specialization and the 

gradual establishment of ecotypes. BMC Evolutionary Biology, Vol. 14, 113. 

 

Pierce T. (2012).  The evolution of temporal polyethism, University of Washington, 

Seattle, WA. 

 

Pruitt J. N., Goodnight C. J. (2014).  Site-specific group selection drives locally adapted 

group compositions. Nature, Vol. 514, 359-362. 

 

Pruitt J. N., Avilés L. (2017).  Social spiders: mildly successful social animals with much 

untapped research potential. Animal Behavior, 1-11. 

 

Queller D. C., Strassmann J. E., (2013).  The veil of ignorance can favour biological 

cooperation. Biology Letters 9: 20130365. 

 

Rainey P. B., Rainey K. (2003).  Evolution of cooperation and conflict in experimental 

bacterial populations. Nature, Vol. 425, 72-74. 

 

Richard F-J., Errard C. (2009).  Hygienic behavior, liquid-foraging, and trophallaxis in 

the leaf-cutting ants, Acromyrmex subterraneus and Acromyrmex octospinosus. 

Journal of Insect Science, Vol. 9, Article 63. 

 

Richardson T. O., Christensen K., Franks N. R., Jensen H. J., Sendova-Franks A. B. 

(2011).  Ants in a Labyrinth: A Statistical Mechanics Approach to the Division of 

Labour. PLoS ONE, Vol. 6, Issue 4, e18416. 

 

Sears K. E. (2014).  Quantifying the impact of development on phenotypic variation and 

evolution. Journal of Experimental Zoology (Molecular and Developmental 

Evolution), 322B, 643-653. 

 

Sendova-Franks A. B., Franks N. R. (1995).  Spatial relationships within nests of the ant 

Leptothorax unifasciatus and their implications for the division of labour. Animal 

Behavior, 50, 121-136. 

 

Shaffer Z., Sasaki T., Haney B., Janssen M., Pratt S. C., Fewell J. H. (2016).  The 

foundress’s dilemma: group selection for cooperation among queens of the 

harvester ant, Pogonomyrmex californicus. Scientific Reports, 6:29828. 

 



78 
 

Simpson C. (2012).  The evolutionary history of division of labour. Proc. R. Soc. B, 279, 

116-121. 

 

Smith J. M. (1964).  Group selection and kin selection. Nature, 201, 1145-1147 

 

Suegene N., Geist K. S., Tian X., Strassmann J. E., Queller D. C. (2018).  Genetic 

signatures of microbial altruism and cheating in social amoebas in the wild. 

Proceedings of the National Academy of Sciences, 201720324. 

 

Tofts C., Franks N. R. (1992).  Doing the right thing: ants, honeybees and naked mole-

rats. Trends in Ecology and Evolution, Vol. 7, Issue 10, 346-349. 

 

Torres V. O., Montagna T. S., Raizer J., Antonialli W. F. (2011).  Division of labor in 

colonies of the eusocial wasp, Mischocyttarus consimilis. Journal of Insect 

Science, Vol. 12, Article 21. 

 

Wilson D. S. (1975).  A theory of group selection. Proc. Nat. Acad. Sci., Vol. 72, Issue 1, 

143-146. 

 

Wilson E. O. (1980).  Caste and division of labor in Atta. II. Behav. Ecol. Sociobiol., 

Vol. 7, 157-165. 

 

Wolf J. B., Brodie E. D., Moore A. J. (1999).  Interacting phenotypes and the 

evolutionary process. II. selection resulting from social interactions. The 

American Naturalist, Vol. 153, No. 3, 254-266. 

 

Yamauchi A., van Baalen M., Sabelis M. W. (2018).  Spatial patterns generated by 

simultaneous cooperation and exploitation favour the evolution of altruism. 

Journal of Theoretical Biology, 441, 58-67. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



79 
 

VITA 

 

Shane Robert Meyer was born in Quincy, Illinois and raised in Villa Ridge, 

Missouri.  He graduated from the, now closed, St. John the Baptist High School in St. 

Louis, Missouri in 1996, and opted to take a couple years off before starting university.  

A “couple” turned into ten years and he began at University of Missouri – St. Louis in 

fall 2006, graduating in May 2011 with a Bachelor’s of Science in Physics, and a 

Bachelor’s of Arts in Mathematics.  He immediately began the graduate program and in 

May 2013 achieved his Master’s of Science. in Physics, along with a third bachelor’s 

degree, a B. A. in Modern Languages.  He completed the Doctorate of Philosophy in 

Physics from the co-op program between the University of Missouri – St. Louis and  

Missouri University of Science and Technology in May 2018. 


	University of Missouri, St. Louis
	IRL @ UMSL
	4-3-2018

	Evolving Specialization in an Agent-Based Model without Task-Switching Costs
	Shane Meyer
	Recommended Citation


	tmp.1524790710.pdf.4Ft52

