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Abstract 

 

Learning progressions are the latest tool to understand the ways science learning 

occurs and they underlie the structure and framework of the Next Generation Science 

Standards. Prior research indicated a variety of ways to develop and validate learning 

progressions and learning progression’s general positive impact on students’ science 

learning.  However, no study has explicitly employed science notebooks as the 

cornerstone to the development and/or validation processes.  Therefore, the research 

question is:  what is the impact on students’ science learning outcomes when a middle 

school science learning progression is developed and validated using science notebooks 

as part of an inquiry-based instructional intervention?  A rock cycle learning progression 

based on the systems thinking hierarchy model was developed.  Using a causal-

comparative case study, the study validated the rock cycle learning progression by 

implementing a three-week instructional intervention with 22 rising 8th grade students in 

an urban charter school.  Data were Rock Cycle Assessment pretest and posttest scores, 

symbolic media, and reflective conclusions.  Three important results emerged:  a) a 

statistically non-significant relationship existed between posttest scores of the On-campus 

and Learning Progression groups, but there was a statistically significant relationship 

between posttest scores of the Off-campus and Learning Progression groups; b) 

intervention participants were partially able or unable to describe their science learning; 

and c) there was moderate to strong association between each symbolic media categorical 

descriptor and the inquiry phase in which it was produced.  The results suggest that the 

phase-placement of symbolic media in science notebooks influences science learning 

outcomes.  
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   Chapter 1: Introduction 

 

A “learning progression” is a tool that focuses on understanding the ways science 

learning occurs (Duschl, Schweingruber, & Shouse, 2007). A learning progression is a 

systematic and well-organized description of’ thinking and/or understanding of a given 

science concept by students (Alonzo & Steedle, 2009). Many current researchers 

advocated learning progressions as a vehicle to transform science education (Duschl et 

al., 2007).  As such, learning progressions were the premise of the Next Generation of 

Science Standards (NGSS). Although a learning progression is a model of cognition, it is 

not a single, linear, pathway. It is a probable idea—a conjectural model for learning core 

science ideas and practices (Alonzo & Steedle, 2009). Usually, a learning progression is 

arranged in hierarchal levels. Each level represented milestones along a trajectory from 

initial conceptual understanding to a scientific level of understanding (Plummer & 

Maynard, 2014).  

Learning progressions have common features.  Foremost, learning progressions 

were informed by research on student thinking and learning in a content domain and 

organized around the “big ideas” of that content domain (Duncan & Hmelo-Silver 2009; 

Duncan, Rogat, and Yarden, 2009; Duschl et al., 2007; Smith, Wiser, Anderson, & 

Krajcik, 2006).  Secondly, learning progression development and validation occurred 

iteratively and/or concurrently through cycles of empirical testing and theoretical revising 

(Duncan & Hmelo-Silver, 2009). Lastly, all learning progressions inherently had three 

critical features: a) grade band, b) scope, and c) grain size.  

 Learning progressions have been developed and validated in a variety of ways. 

Researchers have employed case studies, cross-sectional studies, construct maps, 
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instructional interventions, and a host of other techniques to develop, validate, and/or 

refine learning progressions; however, using learning progression with science notebooks 

is one method that has been exceptionally rare. According to Klentschy (2005), a science 

notebook is a living, working document. It is a central place where linguistics, data, and 

practice coalesce to construct meaning for the student (Klentschy, 2005). Science 

notebooks and their pedagogical function were highly researched.  They were also 

advocated in many school districts and by many educational organizations, researchers, 

and practitioners. Specifically, research demonstrated the value of employing science 

notebooks in inquiry-based instruction (e.g. Aschbacher & Alonzo, 2006; Butler & 

Nesbit, 2008; Clidas, 2010).   

1.0 Background of the Problem 

Smith et al. (2006) reported the earliest learning progression research. They also 

defined the cardinal principles for much of the current learning progression research.  

Since their seminal work, several studies were published that demonstrated the 

contributions to the improvement of student outcomes by learning progression strategies.  

Overwhelmingly, learning progression research results indicated student improvements in 

various capacities.  Songer, Kelcey, and Gotwals (2009) described a method to develop a 

learning progression on complex thinking about biodiversity.  Their (2009) 

Hierarchical Linear Modeling (HLM) results showed noteworthy student success. Songer 

and Gotwals (2012) examined learning progressions with a similar sample as Songer et 

al. (2009).  Their (2012) study results also indicated student improvement.  

While learning progression research confirmed positive student outcomes, only 

Songer, Kelcey, & Gotwals (2009) employed science notebooks in the development 
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and/or validation of a learning progression. Consequently, there is a gap in what is known 

about the role science notebooks play in inquiry-based science as it relates to the 

development and/or validation of a learning progression. 

2.0 Purpose  

The purpose was two-fold: a) to develop a middle school science learning 

progression validated in the context of inquiry by using science notebooks, and b) to 

study the impact of the notebook-based learning progression on middle school students’ 

learning. The following research question was explored:  

What is the impact on science learning outcomes when a middle school science 

learning progression is developed and validated using science notebooks as part of an 

inquiry-based instructional intervention?   

 

Science notebooks served as the focal point for the instructional intervention.  All 

student participants were administered a pretest of the targeted science content.  The 

teacher-researcher utilized the learning progression and its associated materials in the 

Learning Progression group and did not utilize the learning progression, the instructional 

intervention, or science notebooks with the Computer-assisted group. Following the 

completion of the three-week intervention, all student participants were administered a 

posttest.  

3.0 Significance  

The study was important for several reasons.  Foremost, it tested a different way 

to develop and validate a learning progression in a science content area while 

simultaneously addressing a research gap by using science notebooks. Many studies 
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demonstrated the contribution of learning progressions to the improvement of student 

outcomes.  For example, Songer et al. (2009) described a five-step process to develop a 

learning progression, and the results demonstrated significant student achievement. 

Schwarz et al. (2009) also presented a learning progression for scientific modeling, and 

results indicated the sample engaged in constructing and revising increasingly accurate 

models. Many studies have also shown science notebooks to be beneficial to student 

science achievement. For example, Huerta, Irby, Lara-Alecio, and Tong (2015) examined 

the relationship between language and concept science notebook scores of English 

language learners and/or economically disadvantaged students.  The authors (2015) found 

positive, large, and significant correlations between students’ language and concept 

scores; science notebook entries that had more academic language had the largest 

correlations.  Klentschy and Molina (2004) illuminated the Valle Imperial Project in 

Science (VIPS) in their research of students’ science notebooks and the inquiry process.  

Specifically, the VIPS project connected science and literacy through the use of science 

notebooks.  It was found that there was a pattern of significant growth in student 

achievement in science achievement as well as reading and writing achievement for all 

students participating in the program.   

 Not only was the work of Schwarz et al. (2009)  important to middle school 

students’ science learning outcomes, but also it was also important to education 

stakeholders. Furtak (2009) noted learning progressions had the wherewithal to be used 

in teacher preparation and professional development.  Learning progressions contain 

information about students’ thinking and learning and therefore, were potentially a 

framework for developing coherent curricula and assessment in science (Shin, Stevens, 
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Short, & Krajcik, 2009; e.g. Alonzo & Steedle, 2009; Berland & McNeill, 2010).  Also, 

they could assist in preparing level-appropriate instruction (Shin et al., 2009).  In some 

cases, they had suggestions for strategies and actions to help students learn (Furtak, 2009; 

e.g. Jin & Anderson, 2012; Lee & Liu, 2010). Additionally, learning progressions could 

also help teachers identify and judge collected artifacts as evidence of student thinking 

and learning.  In turn, the artifacts could then be used to modify instruction and in some 

cases, revise the learning progression (Furtak, 2012). Consequently, as a 

teacher/professional development tool, learning progressions potentially increased 

teacher knowledge (Wilson, 2009). For policy makers, the associated assessments of 

learning progressions potentially provided (more accurate) diagnostic information about 

the level and nature of students’ understanding (Steedle & Shavelson 2009; e.g. 

Neumann, Viering, Boone, & Fischer, 2013).  For the researcher, the initial learning 

progression developed was important because it had the potential to bridge the gap 

between research and practice—between research on how students learn in a given 

content domain and the methods for teaching and assessing in science. 

4.0 Delimitations  

The problem was delimited to the role science notebooks play in inquiry-based 

science as it related to the development and validation of a learning progression.  The 

problem was selected because, despite the established role of science notebooks in 

science education research, learning progression researchers rarely addressed them in 

research literature. The grade range was delimited to rising 8th grade students because of 

the summer enrichment program, ease of access to sample participants, and the 

availability of national science databases/resources. Grades five and 12 are other grade 
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levels for potential selections because of their clear delineation in the Next Generation 

Science Standards (NGSS).  However, they were not selected because of lack of access to 

a sample. Scope was delimited to earth and space science (ESS) disciplinary core ideas 

(DCI) of the NGSS. Specifically, the 5th and 8th grade DCI’s bound the rock cycle 

learning progression. 

Grain size was delimited to eight achievement levels.  This size was selected 

based on the systems thinking hierarchal (STH) model in Earth and Space Science (ESS) 

and the grain size trend research literature.  A grain size smaller than three achievement 

levels was not in research literature. Learning progression development was delimited to 

one of three of Duncan and Hmelo-Silver’s (2009) recommended approaches: developing 

an “initial” learning progression based on existing research in student thinking and 

learning, and content domain analysis.  The development approach was selected because 

of its feasibility and clarity for implementation.  

5.0 Definition of Terms 

• Construct map— a continuum that defined student understanding in addition to 

common errors at each performance level (i.e. achievement level) within the 

continuum. Wilson (2009) suggested a concept map be generated concurrently 

with the content domain analysis in order to guide the development of the 

intermediate levels of a learning progression. 

• Mainstream students— students with social prestige, institutionalized privilege, 

and normative power; in the U.S., these students tended to be White, 

upper/middle class, and native English speakers (Duschl et al., 2007; Lee & 

Lukyx, 2007). 

• Non-mainstream students— students who did not have access to the same 

prestige, privilege, and power as mainstream students; consequently they 

experienced social incongruency and were at an academic disadvantage (Lee & 

Lukyx, 2007). 

• Symbolic media:  according to Lehrer and Schauble (2012), drawings, diagrams, 

photos, and other similar models. 

• Test blueprint—A guide that aided in test construction, it ensured the constructed 

test will sample important content areas and levels of cognitive complexity. 
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According to Suskie (2009), a test blueprint is “an outline of the test that lists the 

learning goals that students are to demonstrate ” (p.167). Test blueprinting linked 

the test to learning goals. 

6.0 Summary 

Education reform is traditionally a highly contentious topic in the United States 

(U.S.) and specifically, science education reform is no exception. The NGSS, released in 

April 2014, represented a major shift in science education reform, and learning 

progressions were foundational to that reform effort (Achieve Inc., 2013).  In a learning 

progression, each level represented a significant milestone along the learning trajectories 

from initial conceptual understanding to a scientific level of understanding (Plummer & 

Maynard, 2014). They are systematic and well-organized descriptions of student thinking 

and understanding of a given science concept that are hierarchally arranged around the 

“big ideas (Alonzo & Steedle, 2009). Several studies demonstrated contributions of 

learning progressions to the improvement of student outcomes. While the learning 

progression research field is relatively new, and there was general consensus about many 

common features, there was also much ambiguity among researchers, across many 

dimensions of the research field, and consequently, gaps existed in the research literature.  

One gap was the role science notebooks played in inquiry-based science as it related to 

the development and validation of a learning progression. 

The study was important for several reasons.  Foremost, it examined a new way 

(using science notebooks) to develop and validate a learning progression that has yet to 

be established. Secondly, it bridged the gap between research and practice. Third, the  

results could act as teacher preparation and professional development tool, potentially be 

a framework for developing coherent science curricula and assessments, and assist in 

preparing level-appropriate instruction. They could also have suggestions for 
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strategies/actions to help students learn, and, inform revisions for future iterations of the 

learning progression (Furtak, 2009; Shin et al., 2009).  
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Chapter 2:  Review of Related Literature 

 

1.0 Learning Progressions: A Promising Theme in Science Education Reform 

There was never an intentional focus on children’s thinking and learning in the 

historical context of U.S. science education (Kahle, 2007). Learning progressions aimed 

to remedy the neglect (Duschl et al., 2007). Consequently, learning progressions 

appeared to be the next theme as they systematically describe thinking and understanding 

by students of a given science topic, were informed by research on thinking and learning, 

and were foundational to the NGSS (Alonzo & Steedle, 2009; Duncan & Hmelo-Silver, 

2009). Many researchers claimed learning progressions as potentially transformative for 

science education because of their capacity to better align curriculum, instruction, and 

assessment (e.g. Duncan & Hmelo-Silver, 2009; Mohan, Chen, & Anderson, 2009).  

1.1 Historical Background of Learning Progressions 

Smith et al. (2006) coined the phrase "learning progression" and designated it as a 

cognitive model that described the way students continuously and gradually refined ways 

of reasoning. Learning progression, as defined by Smith et al. (2006), was based on 

research synthesis and conceptual analysis. Their (2006) work initially stemmed from 

assessment systems development designed to track student progress (Kennedy, Brown, 

Drancy, & Wilson, 2005; Wilson, 2005).  Part of the assessment system was construct 

maps. Generally, construct maps were considered the forerunner of learning progression 

research.  

Smith et al. (2006) defined the cardinal principles for much of the current learning 

progression research. They (2006) recommended learning progressions be organized 

around big ideas—the central concepts and principles of a scientific discipline. Their 
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(2006) learning progression symbolized coalescence between not only theory and 

practice, but also between science learning researchers and measurement specialists. With 

their groundbreaking research, Smith et al. (2006) laid the foundation for NRC’s 2007 

policy, Taking Science to School, which in turn served as a guide for NGSS. Since Smith 

et al. publication, there was an ever-increasing amount of learning progressions research. 

1.2 Description Of Learning Progressions 

Several authors used synonymous terms for learning progressions such as learning 

pathways, conceptual pathways, and conceptual progressions. All of these phrases were 

used to describe a means of tracking student learning across time (Adadan et al., 2010; 

Liu & Lesniak, 2006).  Several authors cited Duschl, et al. (2007) definition for a 

learning progression. (Duncan & Hmelo-Silver, 2009; Gunckel, Covitt, Salinas, & 

Anderson, 2012; Mohan et al., 2009; Plummer & Krajcik, 2010; Stevens et al., 2010). 

Among learning progression researchers, the general consensus was that the development 

of learning progressions must be informed by research on student thinking and learning 

in the content domain (Duncan & Hmelo-Silver, 2009; e.g. Plummer and Krajcik, 2010; 

Smith et al, 2006). Furthermore, there were a variety of ways to validate a learning 

progression in research literature.   Learning progressions inherently aimed to develop 

and to deepen knowledge over time because they emphasized providing greater 

alignment among curriculum, instruction, and assessment as difficulty increased as grade 

levels increased. 

Learning progressions were hierarchally organized in levels around big ideas 

(Duncan & Hmelo-Silver, 2009).  At its upper end, a learning progression was anchored 

by what students should know and/or be able to do relative to societal expectations 
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(Duncan & Hmelo-Silver, 2009). At its lower end, it contained what students knew about 

the science ideas and practices upon entering school (Duschl et al., 2007). In between the 

upper and lower ends were the levels of achievement (i.e. performance levels). These 

levels articulated the understandings, alternative conceptions, and/or misconceptions 

characteristic to bridging the gap between its upper and lower ends (Duncan & Hmelo-

Silver, 2009; Wilson, 2009).  Several authors referred to the intermediate region as the 

"messy middle" (Furtak, 2012; Gotwals & Songer, 2013; Songer & Gotwals, 2012).  

Duncan and Hmelo-Silver (2009) provided a more formal description of learning 

progression levels by identifying four fundamental theoretical/structural components that 

unified all learning progressions: 

• They focused on a few content ideas and inquiry practices.  

• Upper and lower anchors bound learning progressions. 

• Levels of achievement described the intermediate steps— a hypothesized order of 

the levels through which knowledge and skills progressed en route to the upper 

anchor.   

• Targeted instruction and curriculum mediated learning progressions. Scaffolded 

curriculum and instruction reconciled the learning associated with the progression 

(p. 607).   

2.0 Trends in Learning Progression Research 

Despite the comparatively small amount of research literature, some salient trends 

and intriguing findings precipitated.  Foremost, there were two extraordinarily broad 

classifications for learning progressions.  One classification focused on curriculum and 

instruction. The other classification emphasized cognition and instruction.  Across and 

within both classifications, there were current and characteristic practices researchers 

employed in developing and/or validating respective learning progressions.  One example 

was the use of construct maps.  Another trend was the virtual absence of poor and urban 
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sample participants in learning progression research.  Major findings included the 

contribution learning progressions to student outcomes, an emergent subdivision, the 

establishment of LeaPS conference, and U.S. stakeholder use of learning progression 

(e.g. Alonzo & Steedle, 2009; Lehrer & Schauble, 2012; Mohan, Chen, & Anderson, 

2009; NSF, 2008; Schwarz et al., 2009). 

2.1 Two Broad Classifications 

Learning progression research concentrated on a variety of core ideas and 

practices (e.g. matter and the atomic-molecular theory, water in socio-ecological 

systems). Nevertheless, there were two broad classifications of learning progressions.  

One category focused on cognition and instruction; the other focused on curriculum and 

instruction (NSF, 2008).  

2.11 Cognition and Instruction Learning Progressions 

Cognition and instruction research typically began with a psychological analysis 

of the cognition, which was at the core of the content.  For this category of research, the 

goal was fostering growth of the cognition as students moved from novice to expert in 

learning about a specific concept (Shavelson & Kurpius, 2012). Mark Wilson was an 

exemplar in this category for his work in developing the notion of construct maps. 

According to Wilson (2009), a construct map was less complicated than a learning 

progression. Wilson (2009) described a construct and its development in great detail. 

Alonzo and Steedle (2009) contended construct maps (which they conceptualize as 

smaller learning progressions) potentially provided the detail teachers needed so student 

thinking can be tracked over the course of instructional units.  
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Alonzo and Steedle’s (2009) research demonstrated a cognition and instruction 

learning progression. The authors (2009) described the iterative process of developing a 

force and motion learning progression and its associated assessment items.  They (2009) 

identified two areas of cognitive science research that were important to their learning 

progression development: a) the consistency of student responses, and b) language use.  

A learning progression was developed around these two areas. In efforts to foster 

cognition growth, the authors (2009) compared the use of ordered multiple-choice 

(OMC) to open-ended (OE) items in measuring comprehension of force and motion. 

2.12 Curriculum and Instruction Learning Progressions 

Typically, curriculum and instruction learning progressions began with a logical 

content analysis and were characterized by the development of an instructional unit 

(Shavelson & Kurpius, 2012). Plummer and Maynard (2014) exemplified the curriculum 

and instruction classification category.  They explored how eighth grade students learned 

the seasons before and after an accompanying instructional intervention.  The 

investigation began with developing a construct map by using the construct modeling 

methodology. Once developed, student-participants were given a pretest, a 10-day 

inquiry-based curriculum, and then a posttest. All students received identical instructional 

activities across each of the ten 50-minute class periods.  Instead of developing 

instructional units, the authors utilized a curriculum based on lessons from The Real 

Reasons for the Seasons (Plummer & Maynard, 2014).  Following the posttest, the 

authors revised the seasons construct map using a Rasch model analysis of pretest and 

posttests (Plummer & Maynard, 2014).   
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Leher and Schauble (2012) is another example of the curriculum and instruction 

focus. They described changes in representational and modeling practices for 

kindergarten through sixth grade students across three intertwined strands: a) change, b) 

variation, and c) ecosystems. Leher and Schauble (2012) identified potential milestones 

of conceptual progress in each of the three concept strands via one construct map. Once 

the construct map was complete, they illustrated examples of students’ artifacts of models 

from classroom, developmental, and science learning empirical research.  Instead of 

developing instructional units, they described instructional designs, which shaped 

classroom teaching and learning. 

2.2 Construct Map in Developing Learning Progression 

Several researchers also used construct maps in a variety of ways to develop their 

respective learning progressions. Both Plummer and Maynard (2014) and Lehrer and 

Schauble (2012) began their learning progression development by drafting construct 

maps.  However, the authors used the construct maps differently. Plummer and Maynard 

(2014) used their construct map as a generated metric, transformed it into a learning 

progression, and iteratively refined the “initial” learning progression.  Leher and 

Schauble (2012) used a construct map to represent the states of knowledge in 

representation and modeling across change, variation, and ecosystems for kindergarten 

through 6th grade students. Plummer and Maynard (2014) explicitly detailed construct 

map development, whereas Leher and Schauble (2012) implied the development of the 

construct map.  Nevertheless, both construct maps helped delineate the content and/or 

skill, served as a precursor to learning progressions, and potentially guided instruction 

within the curriculum. 
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2.3 Learning Progression Development and Validation  

The development and validation approach was the most crucial feature of learning 

progression research.  Yet, there was no unified vision to accomplish this.   The only 

general agreement was that the processes entwined (to varying degrees), took place 

through recurring cycles of empirical testing and theoretical revising, and was based on 

research of children’s thinking and learning (Duncan & Hmelo-Silver, 2009, e.g. Mohan 

et al., 2009).  Outside of those parameters, there were a variety of methods to develop 

and/or validate learning progressions. In rare cases, development and validation were not 

necessarily mutually inclusive (e.g. Leher & Schauble, 2012; Smith et al., 2006).  

There was no universal approach to developing and validating learning 

progressions. For example, Plummer and Maynard (2014) developed a construct map 

followed by administering a pretest, an instructional intervention, and a posttest.  

Students’ pretest and posttest scores were analyzed with a Rasch model. The results were 

used to revise the construct map into a learning progression, which simultaneously 

validated the learning progression.  Neuman et al. (2013) gleaned their initial learning 

progression from existing curriculum research on understanding and development of 

understanding in the domain of energy.  These sources guided the development of the 

Energy Concept Assessment (ECA).  To validate the learning progression, the ECA was 

administered to approximately 1800 6th through 10th grade students in German public 

and private schools. Revisions were made to the initial learning progression. Furtak 

(2012) modified another author’s learning progression in order to investigate teacher 

engagement in the iterative development, enactment, and revision of formative 

assessments.  
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Duncan and Hmelo-Silver (2009) articulated three general development-

validation approaches for learning progressions. Many researchers subscribed to one of 

the three methodologies, however, some did not adhere to Duncan and Hmelo-Silver 

(2009) recommendations.  One approach was developing an initial learning progression 

from existing research on student learning and thinking in the content domain (Duncan & 

Hmelo-Silver, 2009).  These learning progressions required validation studies, which 

involved the development and implementation of instructional interventions (Duncan & 

Hmelo-Silver, 2009). Plummer and Maynard (2014) demonstrated this approach.  They 

presented the development of a learning progression for celestial motion and then 

explored how student learning of the seasons was supported by classroom instruction.  

The authors (2014) began their development process with an analysis of astronomy 

education and students’ thinking and learning research in astronomy.  Based on the 

analysis, they built a hypothetical construct map, pretested participants, and implemented 

an instructional intervention. The instruction supported students in building on, and 

changing, conceptions about incidents in the solar system. The lessons were based on 

Gould, Willard, and Pompea’s (2000) The Real Reasons for Seasons and Coyle’s (1993) 

Project Star. They also utilized teacher-created materials. The intervention called for 

students to examine important concepts for additional exploration of the seasons. 

Student-participants then used this information as they wrote reflections on how their 

understanding of Earth’s orbit changed during the lessons.  Based posttest performance, 

Plummer and Maynard (2014) revised the hypothetical seasons construct map as a means 

to validate the learning progression. 
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Duncan and Hmelo-Silver’s (2009) second recommendation was for learning 

progressions to be built on carefully designed cross-sectional studies.  The study 

chronicled knowledge development and reasoning of students on a specific topic across 

many grades (Duncan & Hmelo-Silver, 2009). This approach yielded an appraisal of the 

students’ current learning trajectories (Duncan & Hmelo-Silver, 2009). Typically, the 

second approach did not involve instructional interventions. Mohan et al. (2009) utilized 

the second approach in developing a multi-year learning progression for carbon cycling 

in socio-ecological systems. Participants were 4th grade and 6th through 12th grade 

students in Michigan, Korea (on a U.S. military base), and California. The participant-

teachers developed their own instruction between the pretest and posttest. The researchers 

offered instructional activities focusing on the principles of matter, energy, and scale 

during the carbon cycling processes.   They also developed the initial learning 

progression and associated assessments, administered the assessments, and then used the 

assessment results to revise the initial learning progression.  The revised learning 

progression led to new assessments for students each year of the study. Each iteration 

spanned one year (Mohan et al., 2009). Data were written assessments by students and 

clinical interviews, which informed the learning progression revisions (Mohan et al., 

2009). The written assessments questions were iteratively developed during the three-

year period, varied in length contingent on age level, and focused on what happened to 

matter during carbon transforming processes (Mohan et al., 2009). The clinical interviews 

used a set of cards, each showing a color picture and written description of a macroscopic 

event to stimulate students to develop ideas (Mohan et al., 2009). Students explained the 

underlying matter transformation and classification of the macroscopic events. Responses 
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by students determined the interviewers probing questions (Mohan et al. 2009).  The 30-

minute student interviews were either video or audio recorded (Mohan et al. 2009).  

Duncan and Hmelo-Silver’s (2009) third recommendation involved developing a 

learning progression based on sequencing teaching experiments across multiple grades. 

Songer et al. (2009) employed this approach in describing an iterative, empirically driven 

process to develop a three-year learning progression for students in 4th to 6th grades that 

centered on complex thinking about biodiversity.  Duncan and Hmelo-Silver (2009) 

presented and discussed a four-step process for its development and validation (p. 607):  

1. Development of a preliminary content and a preliminary inquiry reasoning 

learning progression;  

2. Development of eight weeks of curricular activities and the associated assessment 

items representative of both learning progressions;  

3. Evaluation of learning that occurs with the curricular units using the initial 

assessment instruments; and 

4. The revision and expansion of the initial learning progressions into a three-year 

content and three-year inquiry reasoning learning progression. 

 

Step two detailed the careful sequencing of teaching experiments that were hallmarks of 

Duncan and Hmelo-Silver’s (2009) third approach to development and validation. Songer 

et al. (2009) developed a preliminary content and a preliminary inquiry skill learning 

progression.  They (2009) then translated the key points from both learning progressions 

into curricular activities and implemented the activities with students. The key points 

were then empirically tested. Drawing from cognitive scaffolding research, Songer et al. 

(2009) first worked with teachers to develop a scaffold format.  The form served as a 

guide for developing evidence-based explanations. The authors (2009) and teachers then 

defined the essential components of an evidence-based explanation: “a scientific claim, 

two pieces of evidence (associated with a key scientific concept), reasoning that ties the 
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claim to the evidence, and guidance in composing all of these pieces into one consistent 

whole (p. 613).”  Secondly, the authors (2009) and teachers implemented the curricular 

activity that provided specific locations (such as boxes or lines) for the components of 

evidence-based explanations to be written (Songer et al., 2009).  The curricular activity 

used the explanation-building format that was generated earlier in conjunction with 

symbolic media (e.g. drawings, diagrams) to help students develop their evidence-based 

explanations across each grade (Songer et al., 2009).  

Despite Duncan  and Hmelo-Silver’s (2009) development and validation 

recommendations, there were some researchers who did not subscribe to the 

recommendations. (e.g. Neuman et al., 2013). Among those authors who did not adhere 

to the development-validation parameters, there were differences in how these 

researchers conceptualized and utilized their developed learning progressions. 

2.4 Utility Of Learning Progressions 

  Another trend was the utility of a learning progression.  There was an implied 

consensus as to how learning progressions could be definitively used—either as a 

diagnostic tool or as a tool to foster learning (NSF, 2008).  Overwhelmingly, learning 

progressions were diagnostic. Diagnostic learning progressions identified precisely 

where, within the learning progression, a student’s thinking was. Both Gunckel et al. 

(2009) and Jin and Anderson (2012) utilized a socio-ecological framework for their 

respective diagnostic learning progressions. Very few learning progressions were 

progressive, fostering conceptual change of students toward a scientific level of 

understanding.   
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2.41 Diagnosis of Student Thinking 

Gunckel et al. (2009) demonstrated a diagnostic learning progression.  They 

investigated explanation by students of water and substances in water moving through 

socio-ecological systems. Using a cross-section methodology and sampling from students 

in 5th through 12th grades, they employed an iterative design whereby each cycle moves 

through three phases: a) development of a model of cognition (i.e. learning progression); 

b) assessment; and c) interpretation. After each design cycle, the authors (2009) revised 

the learning progression based on results from the previous design cycle and in total 

conducted three cycles of assessments. After each cycle of assessment, items were then 

refined based on the results from the previous design cycle.  During the interpretation 

phase, student explanations were analyzed and the results were used to inform revisions 

to the learning progression (Gunckel et al., 2009).  The revisions enabled the authors to 

better articulate the intermediate levels and lower anchor.  Gunckel et al. (2009) 

published the findings from the third cycle of assessment.  The product was a four-level 

learning progression. The bulk of high school student-participants provided explanations 

between levels two and three. Very few students provided explanations at level four. 

In the design and implementation of a diagnostic learning progression, Jin and 

Anderson (2012) focused on how K-12th grade students used energy-related concepts in 

their explanations of carbon-transforming processes (e.g. photosynthesis, cellular 

respiration, biosynthesis) in socio-ecological systems at multiple scales.  The authors 

identified association and tracing as two hallmark practices, and they designed the 

learning progression around these two dimensions by analyzing explanations provided by 

the students. They conducted 48 clinical interviews and administered approximately 



 28 

4,000 written tests to students.  Jin and Anderson (2012) essentially used the same 

iterative process as Gunckel et al. (2009):  observation (design/revise assessment); 

interpretation (data analysis); and model building (design/revise learning progression). 

Data were collected before and after instruction, whereas Gunckel et al. [2009] collected 

data after instruction for each assessment cycle. The Jin and Anderson’s (2012) learning 

progression was the product of five cycles. Based on the results of data, a four level 

learning progression was developed. Level four indicated students developed the sense 

that energy must be conserved and degraded in individual processes and in the system as 

a whole (Jin & Anderson, 2012).  Level four was achieved by less than three percent of 

students sampled (Jin & Anderson, 2012). 

2.42 Fostering Student Conceptual Understanding  

 In terms of fostering student progression, research was very limited.  Schwarz et 

al. (2009) presented a learning progression that could potentially be used to foster 

progression. The evaporation and condensation learning progression developed by the 

authors centered on scientific modeling, combined metaknowledge, and elements of 

modeling practice. They described the progression of learning along two dimensions: a) 

scientific models as tools for predicting and explaining; and b) models change as 

understanding improved.  The modeling process was operationalized to include four 

elements:  a) constructing models; b) using models; c) evaluating the ability of different 

models; and d) revising models. Even though the authors (2009) endorsed an 

instructional modeling sequence based on an operationalization for the practice of 

modeling, they did not utilize an instructional modeling sequence in the 2009 research. In 

order to develop learning progression with empirical support, they presented samples of 
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students’ work, which demonstrated each dimension.  The samples were drawn from 

various empirical investigations with 5th and 6th grade students.  Data were written 

concerning assessments of reasoning with models, reflective interviews about modeling 

practice, and classroom discourse during modeling activities (Schwarz et al., 2009).  The 

data, according to the authors (2009), helped demonstrate what kinds of student work 

could be achieved with good instructional support.   

2.5 Neglect of Poor and Urban Research Participants 

A disturbing trend was the neglect of non-mainstream, low-SES research 

participants in urban districts. There was an overwhelming focus on middle to upper class 

sample participants in rural and suburban areas (e.g. Alonzo & Steedle, 2008; Liu & 

Lesniak, 2006; Mohan et al., 2009; Plummer & Krajcik, 2010; Rivet & Kastens, 2012; 

Schwartz et al., 2009). Sample racial/ethnic demographic was either mainstream or not 

reported (e.g. Alonzo & Steedle, 2008; Liu & Lesniak, 2006; Mohan et al., 2009; 

Plummer & Krajcik, 2010; Rivet & Kastens, 2012). Schwartz et al. (2009) described their 

elementary sample participants as “ethnically and linguistically diverse.” However, 

students’ socioeconomic status was middle to upper class (Lehrer & Schauble, 2012; 

Mohan et al., 2009; Neumann et al., 2013; Plummer & Maynard, 2014). Songer et al. 

(2009), and the follow-up study, Gotwals & Songer (2013) were the only learning 

progression researchers, thus far, with explicit focus on non-mainstream students in a low 

SES urban district.  Those sample participants were 4th through 6th grade and 6th grade 

students who attended Detroit Public Schools.   
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3.0 Major Findings in Learning Progression Research 

The major findings that emerged from research literature were, by and large, 

promising. Four major findings materialized. First, learning progressions contributed to 

improvement in students’ learning outcomes.  Another major finding was models, 

modeling, and symbolic representations emerged as a subcategory within the research 

field.  Two additional major findings were: a) up-and-coming discoveries from the 

Learning Progressions in Science (LeaPS) conference; and b) stakeholders’ use of 

learning progressions across the U.S. (NSF, 2008; Missouri Learning Standards—ELA, 

2015). 

3.1 Contribution To Student Outcomes 

  A major finding was the learning progressions’ general contribution to the 

improvement of student outcomes.  Overwhelmingly, the results of many learning 

progression researchers indicated student improvement in various capacities. Songer et al. 

(2009) described a method to develop a learning progression on complex thinking about 

biodiversity. HLM results demonstrated noteworthy student success. Schwartz et al. 

(2009) presented a two-dimensional learning progression for scientific modeling.  The 

results indicated 5th and 6th graders in the sample were building and modifying 

increasingly precise models.  Songer and Gotwals (2012) investigated 4th through 6th 

grade students’ learning outcomes in their experience with an eight-week scaffold-rich 

explanation formation intervention about biodiversity and ecology.  The results (2012) 

demonstrated strong learning gains in all three grade-level cohorts. Nevertheless, there 

was research that demonstrated students not attaining the highest levels of achievement 
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established by the learning progression (e.g. Gunckel et al., 2009; Jin & Anderson, 2012).  

However, those findings were anomalies.   

3.2 An Emergent Subdivision 

Within the total body of learning progression literature, a subcategory began to 

materialize. Several authors focused on scientific models, modeling, and/or symbolic 

media/representations. Schwarz et al. (2009) offered an operational definition of  “a 

scientific model: a representation that abstracts and simplifies a system by focusing on 

key features to explain and predict scientific phenomena” (p. 633).  Modeling was a 

fundamental scientific practice, skill, and a prominent facet of scientific literacy 

(Schwarz et al., 2009).  However, models rarely appeared in science classrooms (Schwarz 

et al., 2009). When they did appear, they were restricted to drawings and were very rarely 

utilized as theory-building tools (Schwarz et al., 2009). Models were usually added to 

science curriculum at the high school or university-level and were either taken as obvious 

or for granted (Lehrer & Schauble, 2012).  

  Lehrer and Schauble (2012) classified models as a type of representational 

system. Symbolic media such as drawings, diagrams, photos, and other similar 

representations were also classified under representational systems. Although all models 

were a type of representation, all representations were not models (Schwarz et al, 2009). 

Rivet and Kasten (2012) distinguished three types of models:  a) expressed; b) mental; 

and c) dynamic models.  Expressed models were in the public domain (e.g. drawings, 

photographs).  Dynamic models moved and/or changed in response to manipulation by 

the model user (Rivet & Kasten, 2012). Mental models were not explicitly addressed in 
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learning progression literature, with the exception of Kasten and Rivets’ (2012) very brief 

contrast of it to expressed models.   

According to Lehrer and Schauble (2012), models were located anywhere along a 

representational continuum. The spectrum extended from models that served as examples 

to models that used symbolic media. They referred to models as “analogical structures” 

whose attributes changed between the base and the target system (Lehrer & Schauble, 

2012). The base of the model was the objects/relations in the analogy; the target systems 

were the objects/relations that were explained for the phenomena (Lehrer & Schauble 

2012). The analogical structures easiest to understand were those that kept the most 

likeness between the representing and represented worlds (Lehrer & Schauble, 2012). 

Both Leher and Schauble (2012) and Schwarz et al. (2009) emphasized the 

importance of students participating in the practice of scientific modeling.  Schwarz et al. 

(2009) emphasized students modeling the “elements of practice”:  constructing, using, 

evaluating, and revising their own models.  Lehrer and Schauble (2012) had a similar 

sentiment: the backbone of science aimed toward building, modifying, using, and 

defending “natural world” models.  According to Schwarz et al. (2009), modeling 

became accessible to learners when they engaged in the aforementioned practices.  

However, the skill developed over a long period of time because it was nuanced and had 

a complex epistemology (Schwarz et al., 2009).  Lehrer and Schauble (2012) contended 

students needed to engage in the epistemic culture of modeling.  This culture comprised 

of the goals, problems, representations, and forms of modeling (Lehrer & Schauble, 

2012).  However, science educational textbooks and curricula did not address these 

epistemological intricacies (Lehrer & Schauble, 2012). The authors recommended 
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building modeling practices into school curricula. Schwarz et al. (2009) insisted that if 

scientific modeling was to be meaningful to learners, it had to be generative. 

Learning progression research utilized modeling in various capacities. Plummer 

and Krajcik (2010) developed learning trajectories (synonymous with levels of 

achievement) for a full physical model (“dynamic” in Rivet & Kasten’s [2012] 

terminology) of celestial motion.  Emphasizing analogical reasoning, the authors (2010) 

examined ideas of students about celestial motion. Participants used a flashlight as they 

demonstrated their ideas about apparent celestial motion. Students performed the 

demonstration on the interior of a dome constructed of PVC pipe and dark canvas 

material.  As students explained their reasoning, the researcher audio recorded students’ 

responses.  The interviewer drew visual information from demonstrations performed by 

their students on a two-dimensional dome template. 

Rivet and Kasten (2012) emphasized analogical reasoning to a greater degree than 

Plummer and Krajcik (2010).  Rivet and Kasten (2012) focused on “conceptualization, 

development, and testing the validity of an assessment of the ability to reason around 

physical dynamic models in Earth Science” (p. 713).  Rivet and Kasten developed a two-

dimensional construct map with three levels. The construct map exhibited the 

progressively refined forms of analogical reasoning between the model and the Earth 

System. After selecting moon phases as the topic, the authors developed assessment 

items. They then administered a pretest, the moon phase activities, and a posttest.  Rivet 

and Kasten (2012) cited Getner’s (1983) structure mapping analogy framework and 

employed it as the conceptual framework to guide their research. Getner (1983), as cited 

by Rivet and Kasten (2012), defined four levels of analogical reasoning. The reasoning 
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occurred between a source and a target; it increased in complexity and abstractness as the 

levels progressed (Rivet and Kasten, 2012).  Getner’s (1983) analogy framework, 

according to Rivet and Kasten (2012), helped to orient the process of establishing 

alignment between a familiar source (i.e. base according to Lehrer & Schauble, 2012) and 

the unfamiliar target.  The familiar source was the physical model in front of students; the 

unfamiliar target was the large-scale Earth process (i.e. lunar phases, causes of the 

seasons, and depositional processes; Rivet & Kasten, 2012). Among other things, Rivet 

and Kasten’s (2012) conceptual framework articulated guidelines for mapping knowledge 

about the source onto the target. 

Schwarz et al. (2009) developed a scientific modeling learning progression. They 

analyzed data, which helped show the types of knowledge and skills in modeling possible 

with 6th and 8th grade students.  In addition to the learning progression, the authors 

generated two by-products: a) the potential components of metaknowledge (e.g. nature of 

models, purpose of models, and criteria for evaluating and revising models); and b) an 

instructional modeling sequence (Schwarz et al., 2009).  

Lehrer and Schauble (2012) offered a modeling learning progression for 

elementary and middle school students with the goal of understanding the development of 

modeling “big ideas” with supportive forms of instruction. The big ideas eventually 

formed the foundation for reasoning about the theory of evolution (Lehrer & Schauble, 

2012).  Even though the premise of their work rested on the claim that modeling was best 

achieved by participating in the practice, the authors did not implement this in their 

research.  Rather, they discussed changes in representations and modeling for K-6th 
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grade. They also provided illustrations that exemplified the levels of the learning 

progression.   

Adadan et al. (2010) identified and described conceptual pathways (i.e. learning 

progression) of 19 11th grade introductory chemistry students. The students voluntarily 

participated in multi-representational instruction of the particulate nature of matter 

(PNM).  The study focused on stimulating PNM conceptual change; multi-

representational instruction was the means to that end. The authors collected open-ended 

questionnaires and interviews, and then analyzed data with document analysis.  The 

questionnaire, (NMDQ), contained tasks that included pictorial particulate 

representations coupled with open-ended questions. The open-ended questions required 

explanations of drawings for a given PNM phenomena (Adadan et al., 2010). 

Although modeling became more notable in learning progression research, other 

forms of representational systems (e.g. microcosms, maps, globes) and/or use of 

symbolic media (e.g. drawings, diagrams) were missing in the context of learning 

progression. Adadan et al. (2010) was the only research to examine students’ symbolic 

media and its role in learning progression development and validation. Gotwals and 

Songer (2013) did not research symbolic media use explicitly, yet they prudently used it 

as they researched the development of evidence-based explanation on ecology 

assessments.  Outside of the aforementioned rare exceptions, the role of symbolic media 

in learning progression research was non-existent. 

3.3 Learning Progression in Science (Leaps) Conference 

  The Learning Progressions in Science (LeaPS) conference was an NSF-sponsored 

conference founded by Amelia Gotwals and Alicia Alonzo (National Science Foundation, 
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2008). It provided a structured setting for facilitating discussions about challenges in the 

science learning progression field and it attempted to develop a consensus for possible 

solutions to these challenges (National Science Foundation, 2008). Nearly 100 science 

education and cognitive science researchers, measurement specialists, and practitioners 

gathered and had critical discussions about their work in and around various aspects of 

learning progressions (National Science Foundation, 2008). The conference was 

organized around four challenges identified within the research field: 

• Defining learning progressions  (the need for clearer definitions); 

• Developing and validating assessments; 

• Using statistical modeling to summarize students’ level on learning progression; 

and  

• Using learning progressions (implications of learning progression for curriculum, 

teacher education, and assessment). 

 

Alonzo and Gotwals published the findings and conclusions from the conference 

proceedings in their 2012 text Learning Progressions in Science:  Current Challenges 

and Future Directions. 

3.4 Use of Learning Progressions by U.S. Stakeholders’ 

  Learning progressions were not limited to science education.  Several states 

implemented learning progressions (or derivatives thereof) in other content areas in 

respective school districts and/or state departments of education.  Missouri developed 

vertical alignment charts for English Language Arts (ELA) for K-12th grade students.  

The charts were standards for reading literature, reading informational literature, reading 

foundations, writing, speaking/listening, and language.  Missouri’s ELA learning 

progressions were spirally developed, increased in rigor as grade levels increased, and 

sequentially built (Missouri Learning Standards—ELA, 2015).  The Arizona Board of 
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Regents developed drafts for math learning progressions for students in K-12th grades.  

Illinois, Idaho, and Arkansas developed ELA learning progressions associated with 

Common Core ELA for elementary, middle, and/or high school. 

The Pennsylvania Education Department, by far, had the most comprehensive use 

of learning progressions.  There were documents for reading, writing, and math for the 

calendar years of 2013 and 2014.  The science learning progression documents included 

2010, 2013, and 2014.  Pennsylvania also had a Voluntary Model Curriculum (VMC).  

The VMC was a series of units and lesson plans incorporating learning progressions and 

content resources aligned to the Pennsylvania standards within the curriculum 

frameworks.  The VMC science unit plans included alignment (e.g. grade level, related 

academic standards), curriculum (e.g. big ideas, essential questions), and an assessment 

creator.  The science VMC was available for kindergarten to 8th grades, biology, and 

chemistry.  

4.0 Science Teaching, Learning, and Assessment With Science Notebooks 

In research and teaching literature, science notebooks were referred to as journals, 

interactive journals, and learning logs (e.g. Audet, Hickman, & Dobriynina, 1996; 

Chesbro, 2006; Shepardson & Britsch, 1997).  They had a multifaceted function.  For 

example, they portrayed and reflected how science students practice inquiry in the 

classroom (Aschbacher & Alonzo, 2006).  The entries provided a partial record of student 

instructional experiences in science class and contained students’ interpretations of the 

goals and procedures of inquiry activities as presented by the teacher (Madden & Wiebe, 

2013; Ruiz-Primo, Li & Shavelson, 2002).  In concert, the multi-faceted role was 

considered to be  “curricular evidence.”  Baxter, Bass, & Glasser (2000) noted curricular 
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evidence was a critical aspect of science teaching and learning. Teaching and research 

literature demonstrated how science notebooks were used to monitor science instruction 

and assess students’ learning. Teachers often used science notebooks as a tool for 

teaching, learning, and assessment within the confines of inquiry (Baxter et al., 2000).  

When this was the case, notebooks functioned as documentation of teacher instruction, 

provided differentiation and scaffolding opportunities, became a vehicle for tracking 

student progress over time, was a medium for student-teacher science dialogue, and 

served as a tool for formative assessment (Audet et al., 1996; Baxter et al., 2000; Madden 

& Wiebe, 2013; Ruiz-Primo, Li & Shavelson, 2002; Shepardson & Britsch, 1997).  

Baxter et al. (2000) investigated monitoring instruction by examining the use of 

science notebooks during a unit on electricity with 5th grade students.  Data (2000) were 

collected from 83 student notebooks in an urban school district.  Baxter et al. (2000) 

found science notebooks consistently reflected what students did and what teachers 

focused on during the science class.  Ruiz-Primo et al. (2002) focused on monitoring 

instruction and assessing learning.  The authors (2002) examined 10 urban teachers and 

the teachers’ classrooms in which two Full Option Science System® (FOSS) units were 

implemented. The study (2002) investigated the nature of activities encountered in 

science class, the nature of teacher feedback, and the interaction of those two dimensions. 

The authors (2002) analyzed the science notebooks of 60 5th grade participants. They 

concluded science notebooks permitted teachers to assess student understandings, and 

also gave the feedback students needed to improve performance.  Aschbacher and Alonzo 

(2006) focused on monitoring student science notebooks as a means of formative 

assessment. Participants were 25 teachers and their 4th and 5th grade students. The inquiry 
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unit focused on students’ conceptual understanding of circuits.  The teachers were 

divided into two groups.  The first group engaged in a professional development 

workshop focusing on using science notebooks as a formative assessment tool.  The 

second group did not receive the professional development. The classrooms whose 

teachers received the professional development were then compared to the classrooms of 

teachers who do not receive it.  The authors (2006) concluded notebooks had tremendous 

“potential as a tool for formative assessment and they reveal student thinking (p. 200).”  

4.1 Teacher Practices and Student Experiences as Reflected in Science Notebooks 

Teacher practices and student experiences influenced student learning outcomes.  

Science notebooks represented student experiences with the science curriculum and were 

an abundant source for artifacts (Madden & Wiebe, 2013).  Moreover, they were used to 

examine the impact on learning outcomes and the context of the science instruction 

(Klentschy et al., 2004).   

Teacher identity—“what kind of person” a teacher was—was linked to science 

teachers’ instructional practice (Madden & Wiebe, 2013). Baxter et al. (2000) found that 

the ways the teacher interpreted the unit was emulated in students’ science notebooks. 

The content, organization, magnitude, and quality of students’ science notebook entries 

were a reflection of the teacher’s pedagogical methods (Baxter et al., 2000). Notebook 

entries revealed the type and duration of learning that transpired (Madden & Wiebe, 

2013).  They also gave teachers better insight into how their students understood their 

teaching because the notebooks were a window into students’ thinking (Madden & 

Wiebe, 2013; Morrison, 2005).    
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Morrison (2005) presented a provocative study illustrating how science notebooks 

revealed the intersection of teacher practices and student experiences.  Morrison (2005) 

explored how participants used their respective notebooks and how the notebooks 

influenced their understanding and predicted use of formative assessment involving 

science notebooks. Data were collected from notebooks. Participants were undergraduate 

and graduate pre-service teachers in a science methods course. They kept a science 

notebook during their matriculation. As evidence of growth in notebook use, one entry 

was photocopied from the beginning and from the end of the semester for each 

participant. During the semester, participants received informal and formal feedback from 

the instructor, wrote a formal paper about the use of science notebooks as a formative 

assessment tool, and wrote a reflection about their own use of science notebooks. 

Participants also completed an anonymous questionnaire at the end of the course, which 

explored participants’ personal use of notebooks as an assessment tool, their future use 

for notebooks, and what they gained through assessment of their own notebooks.  

Morrison (2005) found pre-service teachers saw science notebooks as a way to 

continually gather information from students, and as an opportunity to provide students 

with consistent and constructive feedback.  

5.0 Coalescencing Science Notebooks, Graphics, and Inquiry- Based Instruction 

The research team of Wiebe et al. (2008; 2009a; 2009b) investigated student-

generated graphic representations in science notebooks within the context of inquiry-

based science instruction. These graphics were an integral part of the science notebook 

process (Wiebe et al., 2008).  The research team concentrated on spatial intelligence and 

student-produced graphics with science-kit instruction in elementary education.  
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According to Wiebe et al. (2008), “there was a positive connection between student-

generated graphics as part of science inquiry activities and conceptual learning of 

relevant science topics (p.1)”. Wiebe et al. (2008) aimed to determine how to enhance 

spatial intelligence as a learning tool for 2nd to 5th grade students. The study (2008) 

occurred in a single school in an urban/suburban district.  Using classroom observations, 

assessments of utilized science kits, and student-generated graphics collected from 

science notebooks, there were four salient findings: 

• Some teachers more than other were comfortable using graphics to further student 

thinking;  

• Science kits and professional development did not position teachers to increase 

student-generated graphics; 

• Graphic usage was not integrated across the inquiry process; and 

•  How different graphic types served and complemented parts of the inquiry cycle 

was not highlighted (Wiebe et al., 2008).   

 

The findings served as a springboard for future research, which focused on the 

intersection of inquiry-based science and the role science notebooks played in the 

process.  

 Wiebe et al. (2009a) investigated the capacity of science notebooks to 

communicate evidence of inquiry practices in 2nd to 5th grade classrooms.  They (2009a) 

focused on student-generated graphic representations in different stages of the inquiry 

process. Central to interpreting student-generated graphics was linking them to the 

classroom experiences that induced their creation. Science instruction was delivered 

through district adopted science kits and science notebooks were collected from two 

teachers per grade level.  Each teacher selected between two and twelve notebooks per 

class to obtain a representative cross-section of student ability.  Graphic representations 

were categorized according to the semiotic taxonomy: text-graphic, spatial organization, 
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drawing’s scale representation, and drawing’s temporal representation. Each semiotic 

taxon represented a major analogical aspect of graphics (Wiebe et al., 2009a). Taxon 

arrangement was not hierarchal (Wiebe et al., 2009b). 

Findings from Wiebe’s et al. (2009a) graphic analysis revealed very little pre-lab 

graphic activity and limited post-lab graphic activity. In the analysis of post-lab graphics 

of Wiebe et al. study (2009a), many of the student-generated entries were re-

representations of text near it (e.g. Venn-diagrams).  Many entries focused on during-lab 

activities (e.g. listing materials and procedures) and were heavily guided by the teacher.  

There was very little opportunity for student ownership/originality. Overall, the graphic 

analysis revealed strong teacher structuring of the content.  Wiebe et al. (2009a) also 

demonstrated science notebook entries as evidence of in-class inquiry practices. 

The findings of Wiebe et al. (2009a) informed Wiebe et al. (2009b). Wiebe et al. 

(2009b) investigated the capacity for science notebooks to efficiently inform a 

professional development aimed at guiding teachers in using student-generated graphics. 

A purposeful sample was analyzed for graphic content with an expanded semiotic 

taxonomy. The sample consisted of 32 science notebooks from a similar sample of 

students in Wiebe et al. (2008; 2009a). Wiebe et al. (2009b) found an uneven distribution 

of graphic production across the stages of inquiry, and teacher-driven entries dominated 

students’ notebooks.  Furthermore, the analysis revealed students’ entries represented 

concrete, macro-scale, and real-time science phenomena.  

Although Wiebe’s et al. (2009b) semiotic taxonomy gave insight into the 

intersection of teacher pedagogical content knowledge and skills, science kit-based 

curriculum, science notebooks, and student cognition, they (2009b) did not explicitly 
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articulate how their analysis informed future professional development efforts for 

elementary teachers.  Nevertheless, they (2009b) offered the suggestion to develop 

“graphical progressions”—master images that would be canonical representations of 

scientific phenomena.  They (2009b) proposed both teachers and students could use 

graphical progressions throughout a kit and across grade levels.  

6.0 Content Domain Analysis and Student Thinking  

Multi-faceted systems were a significant emphasis of thinking and learning 

research. Most science textbooks, however, did not support learning science in this 

capacity. Rather, they supported learning science as a set of facts as opposed to big ideas 

to help foster integrated understanding and mediated behaviors of complex, 

interconnected systems (Liu & Hmelo-Silver, 2009).  For the last two decades, science 

education research had been driven by the recognition of the importance of complex 

systems and the inadequacies of methods in helping students identify them (Kali, Orion, 

& Eylon, 2003). Furthermore, earth science education shifted towards a systems approach 

to teaching and curriculum development during the same time frame (Kali et al., 2003). 

The Frameworks (2014) recommended and emphasized the need for exposing students to 

the systems thinking approach and developing systems thinking skills among students 

beginning at the elementary level.  It also delineated three dimensions in each of its 

content areas:  a) scientific and engineering practices; b) cross-cutting concepts; and c) 

core ideas. “Systems and system models” was one of the cross-cutting concepts.  

Coined by Barry Richmond in 1987, the definition of systems and systems 

thinking ranged from basic to broad (Arnold & Wade, 2015).  Generally, researchers 

considered systems thinking as a vital skill set in a world in which systems were 
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becoming increasingly complex (e.g. Arnold & Wade, 2015; Assaraf & Orion, 2005; 

Assaraf & Orion, 2010; Raved & Yarden, 2014). O’Conner and McDermott (1997) 

defined a system as an entity that preserved its existence and operated as a whole through 

the interaction of its parts.  Kali et al. (2003) defined systems thinking as the type of 

thinking needed for understanding systems.  Systems thinking was studied in medicine, 

and engineering, as well as other content domains outside of STEM fields (Orion & 

Libarken, 2014; Kali et al., 2003). 

Systems thinking skill development was represented by several models (Orion & 

Libarken, 2014; Liu & Hmelo-Silver, 2009). Assaraf and Orion (2005) presented a model 

for systems thinking skills in earth science education. Their (2005) System Thinking 

Hierarchal (STH) model had eight developmental stages arranged in three hierarchal 

levels: a) analysis (stage 1); b) synthesis (stages 2-5); and c) implementation (stages 6-8). 

They (2005) utilized the STH model as part of their investigation of both 8th grade and 

high school students.  The authors (2005) described hierarchal system thinking skills 

development as follows (p. 541): 

1. The ability to identify the parts of a system and processes within the system; 

2. The ability to identify simple relationships between or among the system’s parts; 

3. The ability to identify dynamic relationships within the system; 

4. The ability to organize the systems’ parts, processes, and interactions, within a 

framework of relationships; 

5. The ability to identify the cyclic nature of matter and energy within the system;  

6. The ability to recognize hidden dimensions of the system; 

7. The ability to make generalizations—to solve problems based on understanding 

systems’ mechanisms; 

8. The ability to think temporally— retrospection and prediction.  

 

Each of the eight facets of the systems thinking hierarchy (STH) model appeared 

independently in research literature, but they appeared in the context of different systems 
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(Assaraf & Orion; 2010). Traditionally, STH models were presented in the shape of a 

pyramid.  The model’s wide base represented the analytical skills. Moving toward the 

apex, the pyramid model narrowed and represented students possessing synthesis skills. 

The apex of the pyramid model represented students possessing implementation skills. 

Therefore, as systems thinking level increased (i.e. moves simultaneously through the 

eight hierarchal levels and three developmental stages), the amount of students 

possessing a particular systems thinking skill decreased. Consequently, a student reaching 

the implementation level (the highest systems thinking level) had to successfully 

complete the analysis and synthesis levels (see Figure 1).  Although the STH model 

provided a system for delineating the development of systems thinking, it only 

highlighted the “touchstones” students passed through in their trajectory from lower to 

higher order systems thinking (Assaraf & Orion, 2010). 

 Kali et al. (2003) led a study describing the specific systems thinking required for 

understanding the rock cycle at the middle school level. The authors (2003) defined three 

general elements for systems thinking: a) understanding the parts of a system; b) 

understanding the connections between these parts; and c) understanding the system as a 

whole.  Kali et al. (2003) found that most middle school students did not reach an 

understanding of both the dynamic and cyclic natures of the rock cycle even though they 

understood all the relevant geological processes and products.  
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Figure 1.  Rock cycle learning progression general structure (STH model).  The pyramid illustrates the basic structure 

of the Rock Cycle learning progression.  The lowest level, Analysis (L1), is at the base of the model and represents the 

greatest population.  As students transition to Synthesis (L2-L4) and Implementation (L5-L8), the thinking becomes more 

complex and fewer students inhabit those levels. 

Assaraf and Orion (2005) examined an 8th grade earth system-based curriculum that 

focused on the water cycle in an inquiry context.  There were three salient findings 

(Assaraf and Orion, 2005): 

• Systems thinking development among middle school students was 

comprised of many stages arranged in hierarchical order. 

• Even though students had marginal initial system thinking abilities, most 

achieved meaningful progress in system thinking. 

• The factors that influenced the differential progress the most were 

students’ initial system thinking cognitive abilities and their level of 

involvement in the inquiry-based activities. 

 

 Orion and Assaraf (2009) investigated the initial systems thinking levels of high 

school students who had not learned the middle school systems thinking unit.  They 

(2009) found the initial STH levels of high school students did not differ significantly 

from 8th graders of the Assaraf and Orion 2005 study.  They (2009) also found that 
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students whose initial level of systems thinking was low developed much less than those 

with higher initial levels of systems thinking.  

Assaraf and Orion (2010) examined elementary school students’ complex systems 

thinking skills (based on their findings and recommendation of the 2005 study).  

Specifically, the authors (2010) studied 40 4th grade students in one school from a small 

town in Israel as the students studied the water cycle through an inquiry-based earth 

systems curriculum. The authors (2010) found that, despite students’ minimal initial 

system thinking ability, most made significant progress with their ability to analyze the 

parts and processes of the water cycle. Some students even reached higher system 

thinking abilities. Assaraf and Orion (2010) also examined system thinking perception 

development. Specifically, four of the middle school student-participants from their 2005 

study were observed via semi-structured interviews, observations, and a variety of 

“concept viewing” tools before, during, immediately after, and six years after completing 

the 2005 study.  The authors (2010) concluded that students developed their systems 

mental models and remembered the learned material based on learning patterns that 

remained unchanged over time. 

7.0 Curriculum Framework:  Spiral Curriculum Design 

Three features were indispensible to spiraling the curriculum of the Rock Cycle 

learning progression.  First, students revisited the big ideas and the analysis level (L1) of 

the Rock Cycle learning progression on several occasions during the intervention 

(Bruner, 1960; Harden & Stamper, 1999). Secondly, the Brunarian spiral curriculum 

design for the Rock Cycle learning progression had increasing levels of difficulty 

(Bruner, 1960; Harden & Stamper, 1999). The third feature was demonstrated as students 
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participated in the inquiry-based labs.  The situational context provided opportunities to 

discuss the learning connections across the STH model.  New content and/or skills 

introduced at higher levels of the progression were related back and directly linked to 

learning in lower levels of the spiraled learning progression.  Likewise, what was learned 

in the beginning of the learning progression was linked to what was learned at higher 

levels within the progression (Harden & Stamper, 1999).  In terms of the organization 

and structure of the learning progression, the hierarchal and iterative nature of the STH 

model was an intrinsic feature and therefore facilitated the use of the spiral curriculum as 

its framework. 

8.0 Theoretical Framework:  Situated Cognition Theory  

 Brown et al. (1989) developed situated cognition theory (also referred to as 

situated learning theory, SitCog, situated action, and situativity). The theory contended 

that knowing was connected to doing. It was based on the supposition that knowledge 

should be presented in its authentic situation, which involved its application.  Hence, 

situated cognition theory urged teachers to immerse students in a learning environment 

that imitates the real-world context.  Students applied their new conceptions and skills in 

“real-world” learning environments (Brown et al., 1989). Brown et al. (1989) posited that 

the vital element of knowledge was positioned; it was anchored in the environment in 

which it was used.  Furthermore, knowledge was partially created from the activity, 

context, and culture in which it was developed and was used (Brown et al., 1989).  

Activity, concept, and culture were interdependent, and learning must involve all three 

(Brown et al., 1989).  
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8.1 Theoretical Tenets 

According to situated cognition theory, concepts were situated and increasingly 

developed through activities.  Brown et al. (1989) suggested conceptual knowledge 

analogous to a set of tools in order to explain how learning takes place. Like tools, 

conceptual knowledge was understood through its use (Brown et al., 1989).  Moreover, 

using tools/conceptual knowledge stimulated shifts in the user’s perspectives and caused 

the user to adopt the belief systems of the culture (Brown et al., 1989). The situated 

cognition theory stated it was impossible to properly use tool/conceptual knowledge 

without understanding the community and culture in which it was used (Brown et al., 

1989).  

8.11 Enculturation  

Enculturation was one tenet of situated cognition theory.  According to the theory, 

enculturation process emphasized the socio-cultural context of the learning environment 

and ensured that learning and doing were not divorced from each other (Ho, 2015). The 

teacher’s role was practitioner, and the teacher used the tools/conceptual knowledge in a 

way that called for students to wrestle with problems of the “real-world” (Brown et al., 

1989).   

8.12 Authentic Activity  

Authentic activity was a second tenant of situated cognition theory.  It addressed 

how practitioners orchestrate the “real-world” problems for their students. Brown et al. 

(1989) defined authentic activities as the prevalent practices of a culture that were 

coherent, meaningful, and purposeful. In an authentic activity, the teacher selected and 
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implemented the situation.  The teacher also provided the necessary scaffolding for 

learning within the situation (Ho, 2015).  

8.13 Cognitive Apprenticeship 

Cognitive apprenticeship was a third theoretical tenet. The pedagogic strategy 

aspired to contextualize learning and focused on skill acquisition (Brown et al., 1989).  It 

was a process for teachers to impart their skill to students through a training process 

(Brown et al., 1989). The teacher intentionally elicited thinking to the surface and made it 

visible. Brown et al. (1989) listed three instructional procedures of cognitive 

apprenticeship: 

• Identify the processes of the task and make them visible to students; 

• Situate abstract tasks in authentic contexts so that students understand the 

relevance of the work; and 

• Vary the diversity of situations and articulate the common aspects so that 

students can transfer what they learn. 

 

Through cognitive apprenticeship, learning was fostered within the nexus of activity, 

tool, and culture because apprentices were encultured via activity and social interaction 

(Brown et al., 1989). Cognitive apprenticeship was not a compatible paradigm for all 

aspects of teaching, nor was it a “packaged formula for instruction” (Collins et al., 1991).  

It was a teaching paradigm to guide the pedagogical and theoretical issues that were 

associated with designing learning environments and experiences (Collins et al., 1991).  

8.2 Empirical Evidence Supporting Situated Cognition Theory 

Preece and Bond-Robinson (2003) used an ethnomethodological approach with 

three undergraduate novices who were selected for a NSF Research Experience.  The 

authors (2003) examined cognition in “science-as-practice” based on situated learning 



 51 

with the novices.  The interaction of individual, context, and activity was captured in 60 

hours of video.   The authors (2003) found that while apprenticeship was not efficient for 

their (2003) research, it was highly effective as a learning environment.  There were two 

major findings: a) novices were cognitively and motivationally challenged; and b) 

novices exhibited difficulty transferring course knowledge to research.  Sweeney and 

Paradis (2004) used the situated cognition theory framework to design and develop a 

laboratory-training course.  The course provided two pre-service secondary science 

teachers with the opportunity to explore the pedagogical potential of the teaching 

laboratory and gaining hands-on experience running a general chemistry laboratory.  A 

case study methodology was employed in the study, and the authors (2004) found the 

laboratory model of teacher preparation they developed positively influenced the pre-

service teachers’ abilities to design, organize, and manage chemistry laboratory 

experiments and activities.  Sweeney and Paradis (2004) also found the model positively 

influenced the pre-service teachers’ enculturation into the respective science subcultures 

of chemistry and science education. In 2005, Bond-Robinson and Preece-Stucky used 

ethnographic methods to explore the cognitive processes and the social environment in an 

organic synthesis laboratory.  Specifically, the authors (2005) examined a graduate 

research group performing organic synthesis of molecules. The authors (2005) observed 

the daily work and problem solving in over 100 hours of video data as well as conducted 

informal and semi-structured interviews.  Based on the findings, Bond-Robinson and 

Preece-Stucky (2005) concluded thinking and acting by the apprentice graduate 

researchers in the community of practice molded their everyday thinking into the 

scientific reasoning required to be a proficient organic research scientist. Brown et al. 
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(1989) examined two examples of mathematics instruction whereby children successfully 

solved math problems through authentic practices and activities.  
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Chapter 3:  Methodology 

 
The purpose of the study was two-fold:  a) to develop and validate a middle 

school science learning progression in an inquiry context by using science notebooks; and 

b) to examine the impact of science notebooks’ use with the learning progression on 

students’ learning. The research question for the study was:  What is the impact on 

students’ science learning outcomes when a middle school science learning progression is 

developed and validated using science notebooks as part of an inquiry-based instructional 

intervention? 

 A causal comparative case study was the research design for the study.  Three 

groups were compared: a) a Computer-assisted instruction group that was on campus; b) 

a Computer-assisted instruction group that was off campus; and c) a Learning 

Progression group. The on-campus computer-assisted group received a computer-based 

rock cycle curriculum for 12 total hours while the off-campus group received five total 

hours. The Learning Progression group received the learning progression curriculum and 

participated in the instructional intervention.  All participants took the pretest and posttest 

on the same respective day (with the exception of the Off-campus group). 

1.0 Study Context, Population, and Sample  

The study utilized both quantitative and qualitative research methods in data 

collection and analysis. The study took place in an urban public charter school during the 

summer of 2016 in conjunction with the school’s summer enrichment program. The 

purpose of the summer program was to extend the school year, sustain students’ overall 

achievement, and familiarize students with their teachers for the upcoming school year.  
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The program was volitional and grades were not issued to students for any classes. The 

researcher’s role was that of the “8th science teacher.”  Three groups of students were 

compared:  a) a learning progression-science notebook students; b) an on-campus 

computer-assisted instruction students; and c) an off-campus computer-assisted 

instruction students.  The learning progression-science notebook students received the 

maximum instructional time in the inquiry-based learning progression.  The on-campus 

computer-assisted instruction students also received maximum instructional time, but 

their curriculum consisted of science expository writing and comic strip production.  The 

off-campus computer-assisted had the same curriculum, but students received 

substantially less instructional time. 

Approximately 96% of the schools’ students were non-mainstream and had a low-

SES. The total enrollment for 2015 academic year was 572; the school had a 91% total 

attendance rate. Ninety-three percent of all enrolled student were black, while 7% were 

white. Ninety-four percent of students were eligible for free or reduced-price lunch.  

The sample was four classes of rising 8th grade students whose ages ranged from 12 to 

14 years old; three students did not report their age. Students’ race and/or ethnicity were 

retrieved from the school’s database (see Table 1).  Two classes comprised the learning 

progression-science notebook students group, while the remaining two classes comprised 

the computer-assisted instruction group. Due to circumstances beyond the teacher-

researcher’s control, the computer-assisted instruction group was split into an on-campus 

and off-campus group.  The learning progression-science notebook group consisted of 16 

students.  The on-campus group had six students while the off-campus group had 10 

students.  In general, the sample consisted of black, 13 year-old students.  Females were 
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predominately in the on campus group while males were predominately in the learning 

progression-science notebook group.  Each class was an hour long and met Monday 

through Friday.  The exception was the off-campus group; they received instruction five 

of the 12 days available. 

Table 1   

Racial/Ethnic, Gender, and Age Demographic of Students 

Demographic Computer-Assisted Instruction Learning 

Progression-

Science 

Notebook 

Grand Total 

 On-Campus Off-campus 

 n Percentage n Percentage n Percentage n Percentage 

Ethnicity/Race         

Black 3 50% 10 100% 15 93.7% 28 87.5% 

Multi-racial 2 33.3% 0 0% 1 6.2% 3 9.4% 

White 1 16.6% 0 0% 0 0% 1 3.1% 

TOTAL 6 100% 10 100% 16 100% 32 100% 

Gender         

Female 5 83.3% 5 50% 7 43.7% 17 53.5% 

Male 1 16.6% 5 50% 9 56.2% 15 46.5% 

TOTAL 6 100% 10 100% 16 100% 32 100% 

Age         

12 0 0% 2 20% 1 6.2% 3 9.4% 

13 5 83.3% 7 70% 10 62.5% 22 68.8% 

14 1 16.6% 0 0% 3 18.7% 4 12.5% 

Not Reported 0 0% 1 10% 2 12.5% 3 9.4% 

TOTAL 6 100% 10 100% 16 100% 32 100% 
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On the first day of instruction, it was disclosed by the school’s administration that 

the second period class was to participate in an off-campus program at a local university. 

Students were selected by administration based on their attendance, behavior, and grades 

during the academic school year.  The off-campus program lasted two of the three weeks 

of the summer program. Consequently, the second period class only met on Fridays and 

three days of the last week.  

1.1 Setting 

Three groups were examined in efforts to describe the impact of the use of science 

notebooks in conjunction with the rock cycle learning progression: a) the learning 

progression-notebook group; b) the on-campus computer-assisted group; and c) the off-

campus computer-assisted group.  The researcher was the data-gathering instrument, 

participating in the study as the teacher and specifically collecting data from the Rock 

Cycle Assessment and science notebooks.  Because of the qualitative approach, several 

sources of error persisted in the research design.  Efforts were made to decrease error 

from the researcher, participating subjects, the social context, and during data collection 

and analysis and thereby increase the validity and reliability of the study.  Foremost, the 

teacher-researcher made sure the student participants were very clear on the nature of the 

research.  Secondly, a trust-relationship was built with the subjects as the teacher-

researcher stayed in the setting (i.e. classroom) for the duration of the study.  Third, 

informal interviews were conducted with many subjects on several occasions for the 

duration of the study.   

Triangulation, multiple repetition, and thick description were used to address 

threats to internal and external validity.  Three data sources were used in the study.  The 
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Rock Cycle Assessment was analyzed with a t-test for independent means and the 

learning progression levels frequency distribution was extracted. Symbolic media and 

reflective conclusions were two data sources used from science notebooks.  Symbolic 

media were analyzed using semiotic taxonomy while reflective conclusions were 

analyzed utilizing the constant comparative method.  Multiple data sources and analysis 

approaches were employed to minimize researcher personal bias in addition to 

overcoming the inherent deficits to single-investigation, single-theory, and single-method 

studies. This increased the validity of the study.   

There were other strategies employed to increase the consistency and 

trustworthiness of the results. There were two repetitions of the Rock Cycle Assessment, 

pre-lab, during lab, and post-lab during the study.  Also, students were permitted to work 

in class outside of their scheduled class time (e.g. lunch or elective).  Finally, a thick 

description was given for the development and validation of the middle school rock cycle 

learning progression such that the methodology was replicable.  Nevertheless, threats to 

validity were present in the study.  Descriptive validity was a threat because the 

researcher was unable to record while gathering data.  Group composition effects were a 

concern because pre-existing differences among the groups could obscure the effects of 

the learning progression.  Lastly, selective sample attrition was a tremendous threat as 

participants dropped out of the groups as the study progressed. 

The research site was a charter school located in St. Louis, Missouri, in the 

Soulard neighborhood. The school facility was a miscellany of buildings in the process of 

coalescence. The main building was a fusion of four buildings and housed 7th to 12th 

grade students.    
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The middle school side of the main building had nine classrooms and the middle 

school administrative office.  The study was facilitated in the 8th grade science classroom. 

There were six laboratory workstations located in the classroom and 25 desks in the 

classroom. The classroom was located in a high traffic area of the middle school, adjacent 

to the water fountain, restrooms, the shared principal and dean of students’ office, and 

copy machines. Because of the high traffic, the teacher-researcher decided to keep the 

classroom door closed and locked during instructional time. 

The study used one of Duncan and Hmelo-Silver (2009) recommended approach 

to develop the learning progression: developing an initial learning progression from 

existing research on student learning and thinking in the content domain. According to 

the authors (2009), developing an initial progression required a validation study that 

involves developing and implementing an instructional intervention.  The treatment 

translated into the following methods: 

1. Develop the learning progression; 

2. Develop the instructional intervention; 

3. Develop the assessment instrument; 

4. Align the curriculum, instruction, and assessment of the learning progression; 

5. Administer a pretest; 

6. Implement the learning progression via instructional intervention; 

7. Administer a posttest. 

 

The methods employed to develop the rock cycle learning progression are described in 

this section:  a) determining the upper and lower anchors; and b) constructing the 

intermediate levels.  This section also describes the two-part validation process:  a) 

developing the instructional intervention; and b) incorporating science notebooks in the 

intervention. 
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2.0 Rock Cycle Learning Progression Development 

 The first major task was to develop a learning progression.  The content domain 

was Earth and space science (ESS), specifically, the rock cycle. To develop and inform 

the learning progression, the teacher-researcher surveyed student thinking and learning 

research in ESS relative to development of systems thinking skills and other relative 

domains. Kali et al. (2003) defined systems thinking as the type of thinking needed for 

understanding systems. 

A two-dimensional pyramid diagram emerged. It was developed, deconstructed, 

and drafted into a middle school Rock Cycle learning progression.  Assaraf and Orion 

(2005) presented a systems thinking skills model in earth science education.  The 

model—the systems thinking hierarchal (STH) was a three-tiered model with an eight-

level framework. It served as the draft for the study’s concept map and consequently 

formed the intermediate region of the progression. Organized around the big ideas of 

ESS, NGSS core disciplinary ideas (CDI’s) and the STH model, the learning progression 

had four theoretical tenets (Duncan & Hmelo-Silver, 2009, p. 67): 

• It focused on a few content ideas and/or inquiry practices (i.e. rock cycle); 

• An upper and lower anchor confined it (i.e. MS-ESS2-1 and 5-ESS2-1); 

• Levels of achievement described the intermediate levels between the upper and 

lower anchors (i.e. STH model); and 

• Targeted instruction and curricula mediated it (e.g. instruction and curriculum 

focused on parts of the rock cycle, understanding the connections between those 

parts, and understanding the system as a whole). 

 

Other structural components included the grade band, scope, and grain size. The learning 

progression’s grade band was 6th through 8th grades and each grade had eight levels of 

achievement.  
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2.1 General Anatomy of Rock Cycle Learning Progression   

The rock cycle learning progression had three general parts:  a) the upper anchor; 

b) the levels of achievement (i.e. the intermediate region); and c) the lower anchor.  The 

upper and lower anchors were the boundary of the rock cycle learning progression while 

the STH model was in between those anchors. The modified STH model was the 

construct map, a draft of the intermediate region, and provided a means for delineating 

systems thinking skills development. It highlighted the “touchstones” of students’ 

trajectory from lower to higher order systems thinking (Assaraf & Orion, 2010).  

Fifth grade and middle school DCI performance expectations were the lower and 

upper anchors of the learning progression, respectively:  

1. Lower Anchor: 5-ESS2-1—Develop a model using an example to describe ways 

the geosphere, biosphere, hydrosphere, and/or atmosphere interact; 

2. Upper Anchor: MS-ESS2-1—Develop a model to describe the cycling of Earth's 

materials and the flow of energy that drives this process.  

 

The lower anchor described what students should know (see Figure 2). The upper anchor 

described what students should know and/or be able to do relative to societal expectations 

(see Figure 3; Duncan & Hmelo-Silver, 2009; Smith et al., 2006).   

2.12 Construct Maps: Drafting The Intermediate Levels 

The construct map helped develop the intermediate levels of the learning progression and 

used the STH model as its organizational framework. The first step was identifying the 

big ideas within ESS systems thinking by analyzing research literature and documenting 

fundamental content skills. The two big ideas were: a) Earth was continuously changing; 

and b) Earth was a complex system of interacting rock, water, air, and life. 
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Figure 2.  Lower anchor and analysis stage of the rock cycle learning progression. This figure illustrates the lower 

anchor boundary, the lowest level (L1) of achievement, and the hallmark practices (in bold) of the Rock Cycle learning 

progression for 6th to 8th grades.  

Lower Anchor: 5-ESS2-1 Develop a model using an example to describe ways the geosphere, biosphere,  

                          hydrosphere, and/or atmosphere interact (assessment is limited to the interactions of two          

                          systems at a time) 

ANALYSIS 

(Touchstones/Levels of Achievement) 

STH Model 6th 7th 8th  

L1:  Ability to identify 

the components of a 

system and processes 

within the system 

Identify Earth Systems’ 

Components 

Hydrosphere, geosphere, 

atmosphere, and biosphere 

Identify Earth Systems’ 

Processes 

The rock cycle, the food 

chain, the water cycle 

Identify Rock Cycle 

Components 

Sedimentary, igneous, & 

metamorphic rocks, rocks 

at the surface, soil 

Identify Rock Cycle 

Processes 

Weathering/erosion, high 

temps/pressure, melting, 

cooling 

Identify Earth Systems’ 

Components 

Hydrosphere, geosphere, 

atmosphere, and biosphere 

Identify Earth Systems’ 

Processes 

The rock cycle, the food chain, 

the water cycle 

Identify Rock Cycle 

Components 

Sedimentary, igneous, & 

metamorphic rocks, rocks at the 

surface, soil, mobile sediments, 

sedimentary sequences 

Identify Rock Cycle Processes 

Weathering/erosion, high 

temps/pressure, melting, 

cooling, transportation, 

deposition, 

compaction/cementation, 

metamorphism, 

Identify Rock Cycle 

Components 

Sedimentary, igneous, & 

metamorphic rocks, rocks 

at the surface, soil, mobile 

sediments, sedimentary 

sequences, sedimentary 

rocks, metamorphic rocks, 

magma (from below), 

intrusive igneous rocks, 

extrusive igneous rocks, 

layers of the earth, 

tectonics 

Identify Rock Cycle 

Processes 

Weathering, 

erosion/transportation, 

deposition, 

compaction/cementation, 

metamorphism, melting, 

extrusion, crystallization, 

uplift, convection 

IMPLEMENTATION 

(Touchstones/Levels of Achievement) 

STH Model 6th 7th 8th 

L6:  Ability to 

make 

generalizations 

 

Make Generalizations About 

• The dynamic and cyclic nature of the rock cycle 

• Transformation of matter in the rock cycle 

• Energy in the rock cycle 

• Influence and/or interaction of either the atmosphere, hydrosphere, or biosphere 

• How the Earth changes as a consequence of the rock cycle 

• How the processes of the rock cycle affects the products of it 

L7: 

Understanding the 

hidden 

dimensions of the 

system 

Recognize Patterns And Interrelationships Of The Rock Cycle Which Are Not Seen On 

The Surface 

• Metamorphism of rocks 

• Melting of rocks (cooling of intrusive igneous rock) 

• Plate tectonic movements 

• Folding, faulting, and uplift 

L8: Thinking 

temporally:  

retrospection and 

prediction 

 

Retrospective/Prediction Of The Temporal Component Of The Rock Cycle 

• Changes in the rate that rocks are made and destroyed can have a profound affect on the 

planet.  

o E.g. As the rate of plate tectonic movements has changed over geologic time 

scales, the rock cycle has changed as well.  

▪ at times when the rate of plate movements has been high, there is 

more volcanic activity, which releases more particles into the 

atmosphere. Faster plate tectonic movements also mean more 

mountains are built in areas where plates converge. As rocks are 

uplifted into mountains, they start to erode and dissolve, sending 
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Figure 3.  Upper anchor and Implementation stage of rock cycle learning progression.  This figure 

illustrates the upper anchor boundary, the highest levels (L6- L8) of achievement, and the hallmark practices 

(in bold) of the Rock Cycle learning progression for 6th to 8th grades. 

 

The second step was diagramming the STH traditional pyramid model combined with the 

specific STH framework and its three hierarchal levels: a) analysis (stage one); b) 

synthesis (stages two through five); and c) implementation (stages six through eight).  

The diagram was deconstructed such that each level at every stage could be clearly and 

fully articulated. The eight stages were listed and respective touchstones/achievement 

levels were expressed at every grade level. The third step involved arranging the 

construct map according to the tenets of a spiral curriculum.  Recommendations and the 

teacher-researcher’s professional judgment was used to hierarchically arrange the 

touchstones/levels of achievement so that a spiraled continuum was achieved. The 

construct map was reviewed and edited.  The final edit served as the intermediate levels 

for the learning progression.  The edited construct map was fused with the upper and 

lower anchors to form the completed rock cycle learning progression.  

3.0 Learning Progression Validation 

Once developed, the learning progression had to be validated. According to 

Duncan and Hmelo-Silver (2010), validating a learning progression required the 

development and implementation of an instructional intervention and an assessment 

instrument.  

sediments and nutrients into waterways and impacting the 

ecosystems for living things. 

 

Upper Anchor:  MS-ESS2-1 Develop a model to describe the cycling earth’s materials and the flow of energy  

              that drives this process (emphasis is on the processes of melting, crystallization, weathering, deformation,  

              and sedimentation, which act to together to form minerals and rocks through the cycling earth’s   

              materials) 
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3.1 Instructional Intervention Development and Implementation   

Several inquiry activities were harvested from several sources.  After careful 

review, the activities were aligned to the levels of the learning progression. Multimedia 

presentations, curricular materials, and instructional resources were secured, prepared, 

and organized for each lab according to Shepardson and Britsch’s (1997) instructional 

outline. The rock cycle learning progression, its supplement materials, situated cognition 

instructional principles, and the instructional framework were incorporated into the 

teacher-researcher’s pedagogical repertoire and facilitated daily.  To ensure fidelity of the 

intervention’s execution, five faculty-participants observed the classes at least three times 

weekly. Each class met for one hour daily.  With the exception of field trip attendance, 

the Learning Progression group received at most 11 hours of instructional intervention 

time. 

3.2 Science Notebook-Based Instructional Intervention 

The intervention used Shepardson and Britsch (1997) instructional outline for 

children’s science journals.  The authors provided definitive parameters for the three 

phases of inquiry: a) pre-lab, b) during lab, and c) post-lab. Symbolic media were 

generated in each phase. In pre-lab, students explained existing ideas/understandings, 

described the purpose of the investigation, stated questions to be answered, made 

predictions/hypotheses, and explained procedures.  During the lab, students recorded 

observations and created drawings, charts, and tables for organizing data.  In post-lab, 

students used data and other resources to explain the results, reflected on existing ideas 

and predictions in light of findings, and identified ways of conducting the investigation 

differently or improving the investigation. 
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 The instructional intervention centered on using science notebooks in inquiry-

based activities. Symbolic media and reflective conclusions were produced in science 

notebooks. Symbolic media included drawings, diagrams, photos, and organized text 

written and drawn in students’ notebooks; they provided a record of students’ 

development of science concepts (Wiebe et al., 2009). There were six categorical 

qualities of symbolic media: a) text-graphic relationship; b) spatial organization; c) scale 

representation; d) temporal representation; e) re-representation; and f) driving force of 

notebooks (Wiebe et al., 2009).  Symbolic media were generated at each phase of inquiry 

while reflective conclusions were generated only in post-lab.  

The first class day was for introduction and organization. On the second day of 

instruction, the study’s permission forms were collected. Students who were absent on 

the first day received permission forms, completed the applicable forms, and were 

instructed to return parental consent forms on the next (third) class day. The pretest was 

also administered to all students on the second instructional day. On the third day, the 

instructional protocol and culminating project (a diorama) were introduced. Students 

were shown a video of how to build a diorama, pictures of various themed dioramas, 

discussed materials, scale and creativity.  

Students participated in two labs during the intervention.  The first lab (Lab #1) 

focused on components and processes of the rock cycle (L1; see Fig. 2).  Lab #2 focused 

on L2 of the learning progression:  how the processes of the rock cycle affect the parts of 

the rock cycle.   
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3.21 Level One—The Parts And Processes Of The Rock Cycle 

Level one lesson began with a two-minute video of the rock cycle and the path a 

rock might take through the cycle as it is transformed. Students were introduced to the 

major principles of the lessons, informed to look for these principles as they studied the 

rock cycle, and were shown a very simple concept map of the rock cycle. Students were 

also shown the recycling symbol and asked what the symbol indicated and where they 

had seen the symbol. The recycling symbol was the springboard for discussion about 

Earth systems’ overlapping cycles and how matter is constantly recycled. Familiar cycles 

were discussed like day and night as well as seasons. The rock cycle was connected to the 

discussion about cycles. 

Lab #1 focused on three types of rocks and emphasized the differences among 

them. Students determined rock types based on the rocks’ physical characteristics. In a 

multimedia presentation, students saw various examples of each type of rock.  Some 

sketched examples in their notes; others wrote the definitive characteristics.  As the 

examples were discussed, students were given background about why the rock looked the 

way it did. Similar rocks were compared and contrasted to each other (e.g. sandstone and 

conglomerate).   

At the end of the multimedia presentation, students were given a testable 

question: “What type of rock do I have?”  Students observed unknown rocks, generated 

predictions based on their observations and pre-lab notes, and explained their thinking for 

their predictions.  After approval of their predictions, students were given materials to 

collect qualitative data.  Data included drawings of their assigned, unknown rocks, the 

type of rock they believed it was, and citing evidence from notes. At the end of data 
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collection, the reflective conclusion writing frames were introduced.  The teacher-

researcher discussed each part of the reflective conclusion with students while students 

completed the writing frame.  

3.22 Level Two—The Effect Of Processes On The Rock Cycle   

Level two lesson focused on how rocks change. It started with a do-now/quick 

write question, “Where do rocks come from? Provide evidence to support your answer.” 

After the do-now question, students wrote background/pre-lab notes in their science 

notebooks. Students copied a flow chart that illustrated how the processes of the rock 

cycle changed.  The five ways rocks changed were identified and listed with their 

representative picture from a more elaborate rock cycle concept map than in Lab #1.  

Each process was discussed in detail.   

In Lab #2, students created and modeled sedimentary, metamorphic, and igneous 

rocks from crayon and other common materials.  The testable question was given and 

students were to select three of the five processes discussed in the pre-lab. Students made 

predictions about how the processes would affect the crayons, explained their thinking 

with the prediction, and used pre-lab notes as the basis for predictions. Students were 

given the procedure in a handout.  After pre-lab approval, students collected qualitative 

data, which consisted of before and after pictures for each “rock” type modeled from 

crayon and identifying the process that caused the rock changes. Students obtained the 

teacher-researcher’s signature to ensure all parts of the data were accurately recorded 

after each drawing. Once data collection was complete, students wrote reflective 

conclusions.  
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4.0 Rock Cycle Assessment: Instrument Development and Administration 

The American Association for the Advancement of Science’s (AAAS) Science 

Assessment and the National Center for Education Statistics’ (NCES) National 

Assessment of Educational Progress (NAEP) Question Tool (NQT) released items were 

used to adapt a Rock Cycle Assessment instrument.  Each test question data bank was 

harvested independently for potential items. Next, the questions were preliminary 

screened and organized separately.  

4.1 AAAS and NQT Preliminary Item Screening  

The teacher-researcher created a free account with AAAS science assessment to 

establish an item bank. The released items were relative to earth science and placed into 

one digital document. Three AAAS released-item topics were selected from the item 

banks: a) Plate Tectonics; b) Weathering, Erosion and Deposition (WED); and c) 

Weather and Climate II:  Seasonal Differences (WCII).  Questions were eliminated if 

they were outside the scope of the rock cycle.  Remaining questions were re-numbered 

with the original AAAS released-item number. Approximately 50 questions qualified for 

inclusion on the Rock Cycle Assessment instrument from the AAAS item bank. The item 

code and performance details were recorded, organized into a table and analyzed for 

apparent trends.  

Of the released items available from NQT, 43 were selected from the ESS domain 

and were put into a NQT item list on NAEP’s website. The ESS released items were 

categorized into five topics:  

• Using Science Principles 

• Identifying Science Principles 

• Using Scientific Inquiry 
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• Scientific Investigation 

• Conceptual Understanding 

 

Irrelevant questions were eliminated from the NQT potential item pool and eleven 

questions remained. NQT Question Identification Numbers, content classification, 

question type, and subject were recorded for each question. The difficulty levels—

described as easy, medium, or hard—were given a quantitative equivocal rating (i.e. easy 

= 1; hard = 3). NQT released items were then sorted by grade level (4th or 8th) and then by 

topic in a table for comparative purposes.  

4.2 Item Analyses and Instrument Construction  

After preliminary screening, each released item was placed into a table for 

evaluation. In the first evaluation, each item code /question ID, questions with their 

respective answers, items’ source, topic/description, percentage responding correctly 

(when applicable), and difficulty level (when applicable) were listed. Several items were 

eliminated during the first evaluation and an explanation was given for every item 

eliminated. Sixty questions were evaluated, 23 questions were eliminated, and 37 

questions went on to a second evaluation. 

 During the second evaluation, the same parameters were listed as were in the first 

evaluation. Items and their definitive parameters were examined much closer.  

Inappropriate and repetitive items were eliminated.  An explanation was given for each 

eliminated released item. Seven items were eliminated from the second evaluation.  The 

remaining 30 items were then arranged according to their learning progression alignment, 

and this determined the items’ Rock Cycle Assessment assigned number. The items were 

listed sequentially by learning progression level: a) L1; b) L2; c) L3; and d) L2-3.  A test 
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blueprint was constructed to ensure a balanced instrument (see Appendix A). Finally, 

each item was copied from its respective website and pasted onto a Word document for 

the final draft of the assessment instrument. 

4.3 Instrument Validation And Reliability 

The number of items selected for the instrument (and consequent percentage of 

test items) was contingent upon the number of levels of achievement, the learning 

progression’s grain size, and the amount of relevant released items available. Test items 

were approximately equally distributed across three 8th grade levels of the learning 

progression in light of the limiting factors. The item source, percentage of students 

responding correctly, and difficulty level varied across the e Rock Cycle Assessment 

instrument. 

Both national databases validated their respective released question items. The 

AAAS research team carefully validated the Science Assessment test questions. The 

released items measured students’ conceptual understanding, tested for 

misconceptions/alternative ideas, and aligned the science ideas (AAAS, 2015).  NAEP 

NQT item-development process used many steps to validate the test items including 

internal (i.e. NAEP) and external test specialists reviewing and revising the items, 

editorial and fairness reviews, a pilot test, and selection based on pilot test analysis 

(NAEP, 2009).  Cronbach’s alpha was used to determine internal consistency of the Rock 

Cycle Assessment instrument (30 items; =. 315) and the instrument had low reliability. 

4.4 Rock Cycle Assessment Pretest-Posttest Administration 

 The Rock Cycle Assessment pretest was administered the second day of 

instruction to students in first through third periods.  Fourth period students were 
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administered the pretest the first Friday of instruction in a likewise manner. The pretest 

was a 30-question, multiple-choice exam and it was not timed. Students had 

approximately 40 minutes to complete the pretest.  Students were informed that there 

were no adverse consequences for their test score. They were instructed to ask for clarity 

if they did not know a word, to do the easy questions first, and to make intelligent 

guesses.  The identical Rock Cycle Assessment posttest was administered the day before 

the last day of instruction to all students in a similar manner.   

5.0 Data Collection, Management and Analysis 

Rock Cycle Assessment pretest-posttest scores, student-generated symbolic 

media, and reflective conclusions were collected from students.  Pretest-posttest data 

were collected from all students at the completion of each exam.  In addition to 

descriptive statistics, the posttests were analyzed with a t-test for independent means.  

Student-generated symbolic media and reflective conclusions were collected from the 

Learning Progression group’s science notebooks at the end of the study.  They were 

analyzed with Wiebe et at. (2009) semiotic taxonomy and the constant comparative 

method, respectively. 

5.1 Rock Cycle Assessment Pretest-Posttest Collection, Management and Analysis 

The study utilized the Rock Cycle Assessment to gauge the learning progression’s 

impact on students’ science outcomes. The pretest-posttest data were collected after each 

administration of the instrument.  Scores were first recorded manually and then entered 

into a spreadsheet.  After all pretest-posttest exams were administered, posttest scores 

were analyzed with t-test for independent means.  
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5.2 Data Collection from Science Notebook 

Symbolic media and reflective conclusions were collected from science 

notebooks. All science notebooks were passed out at the beginning of class and collected 

at the end of class. Entries were made in notebooks daily. At the end of class, students 

placed science notebooks in respective milk crates and were dismissed if their science 

notebooks were in the milk crate. The notebooks were stored in a restricted area of the 

classroom and remained in a locked classroom when the teacher-researcher was not in the 

classroom. They remained intact as a complete unit for the duration of the study. 

5.21 Data Collection and Analysis of Symbolic Media 

The study also tracked the distribution of student-generated symbolic media 

across, and within, the phases of the inquiry process. Symbolic media were harvested 

from the Learning Progression group’s science notebooks and they were analyzed using 

Wiebe et al. (2009a; 2009b) semiotic taxonomy. After the study was completed, each 

page of every science notebook was labeled with students’ corresponding identification 

number. The pages were given an entry number and a taxonomy analysis form was 

stapled to every page, labeled with the corresponding identification number and entry 

number.  All notebook entries were kept in a data log: a large three ring binder.  

There were six qualities for categorizing symbolic media and the context in which 

the symbolic media were generated.  Each taxon’s categorical descriptors were identified 

on the taxonomy form by marking an “X” for the respective investigative phase in which 

it was produced (i.e. pre, during, after, unknown). A tally sheet was generated; totals 

were summed for the six taxa and investigation phases. The frequency was determined 

for each investigative stage of the inquiry process. Descriptive statistics were calculated 
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across, and between, the phases of the inquiry process. Frequency distribution was 

analyzed using a chi-square test. 

5.22 Reflective Conclusions Collection, Management, and Analysis 

Reflective conclusions were isolated from other notebook entries following 

semiotic analysis and were analyzed using the constant comparative method. The data 

unit was the reflective conclusion because “it is heuristic and the smallest piece of 

information interpretable in the absence of any additional information” (Merriam, 2009, 

p. 345).   

Several measures were utilized to ensure validity and reliability as the constant 

comparative method was employed. Internal validity was established because of the 

multiple sources of raw data (i.e. the reflective conclusions). Students wrote their 

reflective conclusions during instructional time; however, some students required 

additional instructional time either during lunch, elective time, or an additional class day.  

Many reflective conclusions received an in-situ assessment. A student was given written 

or oral feedback while other students were working on their reflective conclusions.  

Others were given written feedback in their notebooks after instructional time had ended.  

As the informal assessment took place, the teacher-researcher observed and compared 

reflective conclusions to each other and recorded the observations in the teacher log. Raw 

data were constantly compared among, and between, both lab activities.  After visual 

examination of all reflective conclusions, three codes emerged to describe students’ 

reflective conclusions: 

• Satisfactory (S): correctly completed the writing frame; 

• Needs improvement (NI):  attempted to complete the writing frame; 
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• Incomplete (INC): only wrote the stem of the frame or did not write the stem of 

the frame. 

 

Each frame was coded for both labs in a handwritten table, which included students’ ID 

codes, data log entry number, and the teacher-researcher’s random “self-notes.”  The 

handwritten chart was converted into a digital document. The code totals and percentages 

were calculated for each of the five frames for both labs. Codes were double checked 

against the original handwritten copy for accuracy.  After corrections were made and 

double-checked, data were extrapolated according to codes and the percentage of each 

code was calculated. The data were then bar-graphed.  

External validity was ensured through the use of rich, thick descriptions of the 

setting and participants of the study, the findings and sufficient evidence from notebook 

entries, the teacher-researcher’s log, and the faculty-participants’ classroom observations. 

The classroom, the school, and the teacher-researcher’s observations were described in 

the teacher log. Students’ personalities, struggles, limitations, and other characteristics 

were also described in the teacher-log. Student anonymity was, however, maintained.  As 

a means of reliability, the teacher-participant generated an audit trail. The trail was 

recorded in the teacher log and in memos as data were examined. 

5.23 Data Collection and Analysis of Reflective Conclusions 

Each day after school, the teacher-researcher reviewed a few students’ notebooks 

and gave written feedback.  Memos were made of the most common trends in the 

notebooks and the teacher-researcher addressed those trends in subsequent instruction. 

Students’ reflective conclusions were retrieved and managed the same way as the 

symbolic media (i.e. given identification number, given data log entry number, and 
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placed in the data log).  The reflective conclusions were isolated from the other symbolic 

media. The constant comparative method was employed to analyze reflective 

conclusions. 

There were multiple sources of raw data examined at different times. Students 

wrote their reflective conclusions in class, during lunch, during elective time, and/or 

during an additional class day.  Some reflective conclusions were assessed in-situ; others 

were given written feedback after instructional time had ended. The teacher-researcher 

observed and compared written reflections to each other and recorded those observations 

in the teacher log as well as generated “self-notes”/memos of patterns that emerged. 

Visual examination was done to obtain axial codes. Each writing frame was a 

representative code because it highlighted a significant understanding in the inquiry 

process. The five axial codes were a) purpose of investigation; b) process of 

investigation; c) results of investigation; d) accuracy of investigation; and e) further 

investigation.  After sorting students’ reflective conclusions into the five categories, it 

was observed that many writing frames were either complete or incomplete.  Closer 

examination revealed that some of the “completed” writing frames were partially to 

completely erroneous.  Nevertheless, students attempted to describe a particular portion 

of the inquiry experience.  Each writing frame was coded for both labs in a handwritten 

table, and then converted into a digital document. Afterward, a detailed word-by-word 
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content analysis was done for each category of the 16 reflective conclusions, and the 

result emerged:  students were not fully able to define their science experience based on 

the overwhelming amount of writing frames that needed improvement or were 

incomplete.   

6.0 Computer-Assisted Group 

The computer-based rock cycle curriculum was found online and modified such 

that it only included content around the rock cycle. It called for students to research the 

three types of rocks and the rock cycle.  Students wrote letters at the end of their 

individual research and used writing frames (different writing frames from the Learning 

Progression group) to help scaffold their writing process. Students had two options for 

completion: complete a hardcopy or a digital portfolio.  Digital portfolios were 

overwhelmingly selected.  

The Computer-assisted group researched how rocks were made.  They 

investigated four aspects:  a) rocks’ composition; b) ways rocks were made; c) rocks’ 

different physical characteristics; and d) ways rocks transform.  The curriculum consisted 

of five partnered projects and one individual project.  Students’ products were stored in 

folders in a locked classroom and in their Google drives.  Instructions and requirements 

were given at the start of each project.  Students selected with whom they partnered and 

each student was responsible for submitting the requirements of the project.  

 Five projects required a scientific letter addressed to a fellow colleague.  Students 

used the Internet and other sources to conduct their research.  At the start of each project, 

students were given a list of websites to assist them; they also had the option to explore 
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other relevant websites.  Students were given a set of questions to answer; the answers 

helped students write their scientific letters. The grading rubric was also given for each 

letter.  The rough draft letters were peer-edited, typed, and shared (via Google docs) with 

the teacher-researcher.  Students used the “Eight Sentence Paragraph Structure”—a 

school-wide template that assisted students at every grade level to write consistent 

paragraphs.  The sixth project had two parts: a) each student wrote about the journey 

through the rock cycle from the perspective of a rock; and b) each student created a 

comic strip about the experience.   
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Chapter 4:  Results 

 
 

The study reported examined students’ science learning outcomes when a middle 

school science learning progression was implemented.  The research question for the 

study was:  What is the impact on students’ science learning outcomes when a middle 

school science learning progression is developed and validated using science notebooks 

as part of an inquiry-based instructional intervention?  In general, the study tested the 

hypothesis that students’ learning outcomes would be greatly impacted when a learning 

progression instructional strategy was utilized.   

Shepardson and Britsch (1997) instructional outline for using science journals 

provided the instructional framework for the intervention as well as the definitive 

parameters for delineating the instructional phases: a) pre-lab, b) during lab, and c) post-

lab.  In pre-lab, students explained existing ideas and understandings, described the 

purpose of the investigation, stated the testable question, and made 

hypotheses/predictions. During the lab, students recorded observations, organized data, 

and created drawings and diagrams. Post-lab, students answered the testable question 

using observations and data collected during the lab, explained their results using 

information from their notes, and reflected on their existing ideas in light of their 

findings. 

Collected data helped to describe the impact. A t-test of independent means was 

performed to compare the means of the On/Off-campus and Learning progression 

groups’ posttest in order to determine if the means were significantly different.  The Rock 

Cycle Assessment scores were separated by the three groups (i.e. learning progression, 
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on-campus, and off-campus) and put into a frequency table (see Appendix B).  Constant 

comparative method was used to generate grounded theory of students’ reflective 

conclusions. A Pearson’s Chi-square was used to test how likely it was that the frequency 

distribution of graphic representations in students’ science notebooks was due to chance. 

1.0 Rock Cycle Posttest Results 

As can be seen in Table 2, the Rock Cycle Assessment scores were an acceptable, 

normal distribution for the purpose of conducting a t-test.  The On-campus group (n=6) 

had a mean posttest score of M = 11.5 (SD = 3.39) on a scale of 0-30 while the Off-

campus group (n=10) had a mean posttest score of M = 13.8 (SD = 3.88).  By 

comparison, the learning progression group (n=16) had a numerically smaller mean 

posttest score of M = 10.43 (SD = 3.52).  To test the hypothesis that the On-campus/Off-

campus groups and the learning progression group had statistically significant different 

mean posttest scores, an independent samples t-test was performed.  

Table 2 

 

Rock Cycle Assessment Scores’ Descriptive Statistics  

 

 

 

 

 n M 

Pretest 

SD 

Pretest 

M 

Posttest 

SD 

Posttest 

Skew Skew 

SE 

Kurtosis Kurtosis 

SE 

On-Campus 

Group 

6 10.67 2.42 11.5 3.39 -.462 .845 -2.07 1.741 

Off-Campus 

Group 

10 10.1 3.48 13.8 3.88 1.04 .77 0.71 1.6 

Learning 

Progression   

Group 

16 7.25 3.60 10.43 3.52 -.699 .564 .316 1.09 
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The On-campus group did not have a statistically significant different mean posttest score 

than that of the learning progression group, t(20)=. 636, p = .532.  However, the Off-

campus group did have a statistically significant different mean posttest score than the 

learning progression group, t(24) = 2.27, p = .0319. 

2.0 Notebook Analyses 

 The notebooks analyses enabled a comprehensive examination of the changes that 

occurred in the notebook entries.  Specifically, the reflective conclusions examined 

students’ capacity to explain and make meaning of what they learned about the rock cycle 

in the context of inquiry.  The semiotic taxonomy partially revealed how students 

experienced the learning progression curriculum while categorizing symbolic media and 

the context in which the symbolic were generated. 

2.1 Science Notebook Results: Reflective Conclusions  

Reflective conclusions were written in post-lab. Three concerns led to the 

research study: a) establishment of learning progression utility; b) phenomenological 

perspective of learning progression research; and c) facilitating learning progression 

research in low SES and non-mainstream learning environments.  Consequently, in their 

reflective conclusions, students explored their inquiry experience by clarifying what they 

learned and they made meaning out of what they studied.  Randall (1999) sentence 

starters were used as writing frames.  This research study aimed to address the gap 

between the role science notebooks play in inquiry-based science and the development 

and validation of learning progressions.  The study also aimed to establish a pattern for 

using a learning progression with science notebooks by a science classroom teacher.  
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Comparative and content analyses yielded three ratings to describe students’ reflective 

conclusions: a) satisfactory; b) needs improvement; and c) incomplete. 

2.11 Rated Satisfactory 

There were 21 satisfactory codes across both labs. Writing Frame One focused on 

the purpose of the investigation and it dominated the satisfactory category (see Figure 4).  

Of the total 21 possible responses, 10 were categorized as being satisfactorily completed 

for identifying the purpose of the investigation (i.e. writing frame one).  More students in 

the satisfactory category completed the purpose of the investigation than in any other 

rating.  Students were overwhelmingly able to articulate the purpose of Lab #1 (e.g. 

entries #10, 61, 120; see Table 3).  

 

Figure 4. Frequency distribution of satisfactory rating for each writing frames of reflective conclusions.  

The bar graph compares the frequency distribution of satisfactory ratings for Labs #1 and #2. 
 

However, it was found that more students did not use their own words to express the 

purpose of the investigation compared to the number of students who did.  For example,  
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Table 3  

Content Analysis Results of Writing Frames with Satisfactory Rating 

Entry Number Writing Frame Number and Content Observations 

10 1. Didn’t use own words 

31 1. Didn’t use own words 

5.  Expressed how the study could be extended; didn't explain why more 

time was needed. 

61 1. Didn’t use own words 

104 4.  Stated results were accurate because they were reviewed by "expert" 

(teacher) for accuracy of results; selected if it was accurate. 

5. Use different kind of material to get different results 

(change/manipulate variable) 

 

120 1. Used own words 

5.  Identified how to extend the investigation; didn't explain why it was 

160 1.  Used own words 

206 1. Didn’t use own words 

2. Discussed the procedure(s) used to identify rocks 

5.  Used own words; proposed to change variables for further 

investigation 

 

217 1. Mentioned processes used to change rocks a.k.a. crayons 

5.  Used own words; proposed to change variables for further 

investigation (change of wax) 

 

256 1. Used own words; expressed the focus/topic of lab 

277 5.  Wording a little off; proposed to change variables for further 

investigation (change of wax) 

288 1. Didn’t use own words 

313 1. Used own words 

5. Proposed to change variables for further investigation (different 

numbered rock[s]) 

 

319 4.  Indicated accuracy of results; identified the specific methods taken to 

ensure accuracy of results 

5.  Proposed to change variables for further investigation (change of 

crayon for easier melting) 
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of all satisfactory ratings for Lab #1, entries #120, 160, 256, and 313 used their own 

words, which was approximately 45% of the ratings.  No student used his or her own  

words for Lab #2. Of all satisfactory ratings for Lab #1, entries #10, 31, 61, 206, and 288 

had the exact wording from the pre-lab notes to complete writing frame one. For Lab #2, 

entry #217—the only satisfactory rating for Writing Frame One—also used the exact 

wording from pre-lab notes. Writing Frame Two articulated the methods utilized to 

investigate the topic of study.  One entry had a satisfactory rating for Writing Frame Two 

in Lab #1, entry #206. No entry had a satisfactory rating in Lab #2. 

 

Writing Frame Three articulated the results of the investigation.  It included using 

claims, evidence, and reasoning (C-E-R) to explain the results. No entry had a 

satisfactory rating for Writing Frame Three. Writing Frame Four articulated the accuracy 

of results. For Writing Frame Four to be rated satisfactory, students had to select 

“accurate or inaccurate” and explain why their results were either accurate or inaccurate. 

Writing Frame Four had no satisfactory rating in Lab #1. Entries #104 and 319 had a 

satisfactory rating in Lab #2. Writing Frame Five articulated further investigation of the 

studied phenomenon.  It had eight of 21 (approximately 40%) possible satisfactory 

ratings. All students used their own words for Writing Frame Five. Students’ responses 

articulated what would be done differently, or what would be changed, upon further 

investigation. For example, entry #31 specified a need for more time to carry out the 

investigation.  Entry #104 expressed utilizing a different type of material to get different 

results.  Entry #313 specified investigating a different set of unidentified rocks. One 

entry, #277, had “off wording” (e.g. grammatical errors, did not proof read prior to 

submitting the assignment).   
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2.12 Rated Needs Improvement  

There were 47 total needs improvement ratings across both labs.  Lab #1 had 26 

entries while Lab #2 had 21 entries. Writing Frame One had eight needs improvement 

ratings. In Lab #1, there was one entry; Lab #2 had seven entries (see Figure 5).  Wording 

was “off” (e.g. grammatical errors, missing words, incomplete thoughts) for many of the 

entries (e.g. #21, 64, 104, 133, and 319).  It was found that students used their own 

words, partially explained the salient concepts, and neglected to mention the nuanced 

concepts that were essential for a fuller understanding (see Table 4).  For example, entry 

#64 only identified the processes; no mention was made of how those processes 

transform the rocks, much less mentioned the rocks specifically.   

 

 

Figure 5. Frequency distribution of needs improvement rating for each writing frames of reflective 

conclusions.  The bar graph compares the frequency distribution of needs improvement ratings for Labs #1 

and #2. 
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Table 4 

 

Content Analysis Results of Writing Frames with Needs Improvement Rating 

Entry Number Writing Frame Number and Content Observations 

10 2.  No summary/explanation of procedure 

21 

1.  Wording in frame is "off"; components of rock cycle but not how 

they interact to form "new" rocks 

2. Didn’t describe the procedure (or summarize) tools used to 

investigate the problem/topic of the lab 

31 

2. Explained what they were supposed to do; did not summarize/ 

explain how to do it 

3.  Had claim; evidence & reasoning were missing; expressed that 

hypothesis was correct 

4. Didn’t articulate if results were accurate; attempted to explain that 

they were accurate (implied) 

61 

2. Attempted to complete the frame but did so incorrectly; the wording 

is "off"; didn't summarize/explain the procedure used to investigate the 

physical appearance of rocks 

3. Claim present; evidence & reasoning missing; stated sedimentary 

rock, didn't mention metamorphic or igneous rocks; stated hypothesis 

was correct 

4. Described methods of investigation to compare hardness to other 

rocks; stated results were accurate because of comparison to other 

rocks; no explicit indication of accuracy 

5. Described checking additional sources but not clearly articulated 

64 

1.  Wording is "off"; components of rock cycle but not how they 

interact to form "new" rocks 

2. Attempted to complete the frame; ideas are not expressed clearly; 

circled word can't read 

94 

2. "It" = rocks; discusses one way the rocks were examined (texture); 

compared textures; didn't identify which rocks were compared 

3.  Wording is not clear; expression/articulation of ideas aren't clear; 

has claim but no evidence or reasoning; indicated the hypothesis was 

correct 

4.  Expressions not clear; how were data "checked"?  (e.g. compared to 

the notes or to a neighbor’s results); stated results were accurate 

because it was self-verified. 

5.  Very vague response; didn’t describe what would be done 

procedurally to achieve different results; described what was not done; 

perhaps student is explaining what could be done overall to make the 

investigation easier? 
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104 

1.  Wording is "off"; components of rock cycle but not how they 

interact to form "new" rocks 

2. Used vocab words; some unclear wording; describes only one part of 

the procedure; maybe didn't finish because of attendance or just didn't 

address the other processes of the rock cycle or maybe this is what was 

most memorable; doesn't summarize the entire process. 

3.  Used vocab & describes procedure; no C-E-R; wording unclear; 

discussed #2 succinctly as #3 (this is what also makes it incorrect); 

hypothesis as correct/incorrect not indicated 

120 

2. Didn’t summarize/explain the procedure used 

3.  Didn’t discuss all the results; didn't indicate if hypothesis was 

correct; claim is a sentence fragment, no E-R. 

127 

1. Identified two processes of the rock cycle; no mention of other 

processes or components of rock cycle. 

2.  Stated how to complete the frame, but didn't follow the explanation; 

directions to complete the frame correctly 

133 

1. Incomplete idea expression (types of rocks); but attempted to 

complete frame 

2. Attempted to complete (but incorrect); no explanation of process to 

complete procedure 

3. Response unclear, can't tell if the rocks were numbered #1-3 or if the 

rocks are just listed; didn't express if hypothesis was correct; no CER 

4. Indicated results are accurate; didn't indicate the measures taken to 

make sure they were good; attempted to complete the frame. 

160 

2. Didn’t express the procedure; the response is a restatement of #1 

4. No indication of accuracy of results; attempted to explain measures 

taken to ensure good data 

192 
1. Articulated the process but not its effects; sentence fragment 

3. Indicated the hypothesis was correct; no CER 

206 

3. Claim, but no evidence or reasoning; expressed the hypothesis as 

correct 

4. Didn’t indicate if results are accurate; did discuss measures taken to 

ensure accurate data 

217 

2. Attempted to summarize the procedure; discussed/summarized the 

igneous formation parts of weathering /erosions 

4. No explicit indication of accurate result—implied results are 

accurate because there's an explanation of what was done to make sure 

results were accurate 

256 2. Discussed procedure for one type of rock; not the other two 
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277 

1. Mentions two process but not the effect on rocks; didn't use own 

words 

2. Wording isn't clear; attempted to summarize 2/3 processes with the 

model 

3. No CER; stated hypothesis was correct; restated process, didn't 

articulate the effect of the processes in the type of rock generated 

4.  No explicit articulation of accurate results; it's implied because 

student states what was done to make sure good data was obtained; no 

explicit mention of what was checked in the notes. 

288 
2. Stated what was done, but not how it was done—partial explanation 

5. Completed with erroneous & unintelligible info 

299 

2. Stated what should have been done, but didn't summarize how it was 

done; mixed model; sedimentary, igneous, & metamorphic rock (not 

crayons) 

313 
4. Did not indicate if results were accurate or inaccurate; it is implied 

(states’ s/he tried his/her best) 

319 

1. Incomplete thought; attempted to complete frame with 2 of 5 

processes 

2. Summarized 2 of 5 processes (erosion/weathering & melting) for 

rock formation 

3. Stated correct hypothesis; no CER 

 

Entries #21, 104, 192, 277, and 319 followed suit with that of entry #64.  Entry #127 

identified two of the processes (the requirement was three of the five processes) but did 

not describe the processes’ effects on the components of the rocks (i.e. crayons).  Also, 

students did not explicitly articulate that crayons were representative of the three types of 

rocks. Writing Frame Two had a total 17 entries. Students’ responses to Writing Frame 

Two reflected a diversity of misunderstanding.  It was found that many did not describe 

and/or summarize the process used to complete the investigation.  For example, entries 

#21, 133, 160, and 192 provided completely irrelevant responses to Writing Frame Two.  

Entry #133 was unintelligible. Entries #104, 217, 256, and 319 explained one part of the 

procedure, as opposed to the entire process. Entries #127 and 299 explained how to 

complete Writing Frame Two, but did not follow the explanation written to satisfactorily 
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complete Writing Frame Two.   Entry #277 had the most comprehensive response to 

Writing Frame Two. The response described a majority of the procedure, but the wording 

and grammar were so poor that it was difficult to properly interpret.  Writing Frame 

Three had a total of 10 entries rated needs improvement.  A diversity of 

misunderstanding in fundamental concepts persisted; claims were made but omitted 

evidence and reasoning, and some entries omitted claims, evidence, and reasoning 

altogether. It was also found that many students indicated correct hypotheses or omitted 

reference to the hypothesis. Furthermore, entries #104 and 207 had irrelevant responses 

for Writing Frame Three. Writing Frame Four had nine entries. The entries had very 

vague explanations of the accuracy of results. Students’ explanations did not indicate (by 

circling) if the results were accurate; entries #160, 206, 217, 277, and 313 implied 

accuracy. Some responses included following directions, checking notes, or trying their 

best. Entries #94 and #133 explicitly expressed accuracy, but the measures taken to do so 

were not indicated. Writing Frame Five had the least number of entries.  Across both 

labs, three entries were rated needs improvement. There was no general description of 

what could be done, procedurally, to achieve different results/outcomes of the 

investigation. Entry #61 responded, “look at more definitions.” Entry #94 had an equally 

vague response.  To further investigate the problem, the student responded “to listen.”  

Entry #288 completed the frame, however, the student’s response was unintelligible and 

erroneous.  

2.13 Rated Incomplete  

There were 36 total incomplete ratings across both labs (see Figure 6). Writing 

Frames One and Two each had three total entries.  Writing Frame Three had the most 
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incomplete ratings with 11 total entries. Writing Frames Four and Five had 10 total 

entries each.  

Based on the overwhelming amount of writing frames needing improvement or that 

were incomplete, it appears that students were not able to fully explain their science 

experience.  Based on verbal class feedback, it was found that many students were unsure 

and not confident participating in inquiry; they were uncomfortable with using the 

language of inquiry and became frustrated while writing reflective conclusions because 

they had little to no command of inquiry language or process.  At best, students were able 

to partially explain their inquiry experience. 

 

Figure 6. Frequency distribution of incomplete ratings for each writing frames of reflective conclusions.  

The bar graph compares the frequency distribution of incomplete ratings for Labs #1 and #2. 

 

3.0 Science Notebook Results: Semiotic Taxonomy Analysis  

Sixteen notebooks were disassembled. There were 326 pages retrieved from 

notebooks. The contents were given an entry number, a student identification code, and 

analyzed according to Wiebe et al. (2009a; 2009b) semiotic taxonomy. A chi-square test 
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was calculated to compare the frequency distributions of the six categorical qualities of 

graphic representations in notebooks across three phases of inquiry. 

3.1 Text Graphic Relationship 

Table 5 shows the frequency distribution and percentages of the text-graphic 

representation across the phases of inquiry.  Across the phases, sub-categorical entries 

were “balanced” and “drawing driven” during lab. “Text-driven” entries were mostly 

distributed in the pre-lab phase.  The majority of entries across the phases were text-

driven. 

Within respective phases, there was relatively little distribution of text-graphic 

entries post-lab (see Table 6).  However, the pre-lab had the most text-graphic entries and 

98.5% of the text-graphic relationships were text-driven; the remaining entries were 

drawing-driven. During lab, this trend essentially reversed.  The majority of text-graphic 

entries were drawing-driven (70%) while small portions of text-graphic entries were text-

driven or unknown (see Table 6).  A significantly strong association was found between 

the three phases of inquiry and the text-graphic relationship (2
(6) = 140.68,  = 0.682, p< 

0.05). 

Table 5 

 

Frequency Distribution and Percentage of Semiotic Notebook Codes: Text-Graphic Across Phases 

Text Graphic Relationship Pre-Lab During-Lab Post-Lab Total 

Drawing-driven 

 

4% 

(1) 

 

96% 

(28) 

0% 

(0) 

100% 

(29) 

Text-driven 73% 

(65) 

 

1% 

(1) 

26% 

(23) 

100% 

(89) 

Balanced 0% 

(0) 

 

100% 

(10) 

0% 

(0) 

100% 

(10) 

Unknown 0% 

(0) 

100% 

(1) 

0% 

(0) 

100% 

(1) 
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  Table 6 

Frequency Distribution and Percentage of Semiotic Notebook Codes: Text-Graphic Within Phases 

 

 

 

 
 

      3.2 Spatial Organization 

Table 7 displays the frequency distribution and percentages of the spatial 

organization relationship across the inquiry phases. Across the phases, there was equal 

distribution in the “1-dimentional” subcategory while all “2 or more” and most 

“unknown” were distributed in pre-lab (see Table 7).  The spatial organization was 

unknown for most entries, while very few entries displayed “1-dimension” spatial 

organization. 

Table 7 

 

Frequency Distribution and Percentage of Semiotic Notebook Codes: Spatial Organization Across Phases 

 

 

 
 
 
 

 

Within each respective phase, the spatial organization was largely unknown (see 

Table 8). Pre-lab had the majority of spatial organization entries.  These entries were 

Text Graphic Relationship Pre-Lab During-Lab Post-Lab 

Drawing-driven 
1.5% 

(1) 

 

70% 

(28) 

0% 

(0) 

Text-driven 
98.5% 

(65) 

 

2.5% 

(1) 

100% 

(23) 

Balanced 
0% 

(0) 

 

25% 

(10) 

0% 

(0) 

Unknown 
0% 

(0) 

 

2.5% 

(1) 

0% 

(0) 

Total 100% 

(66) 

100% 

(40) 

100% 

(23) 

Spatial Organization Pre-Lab During-Lab Post-Lab Total 

1-dimension 33.3% 

(1) 

 

33.3% 

(1) 

33.3% 

(1) 

100% 

(3) 

2 or more dimensions 100% 

(16) 

 

0% 

(0) 

0% 

(0) 

100% 

(16) 

Unknown 60% 

(59) 

20% 

(20) 

20% 

(20) 

100% 

(99) 
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mostly two or more dimensions.  “One-dimensional” spatial organization accounted for 

only 5% of during and post-lab entries.  A significantly moderate association was found 

between the three phases of inquiry and spatial organization (2
(4) = 16.25,  = 0.217, p< 

0.05). 

Table 8 

 

Frequency Distribution and Percentage of Semiotic Notebook Codes: Spatial Organization Within Phases 

3.3 Scale Representation 

Table 9 displays the frequency distribution and percentages of the scale 

representation relationship. Across the phases, all macro, macro-micro, and super macro 

frequencies were only distributed during lab. No entries displayed macro-molecular, 

micro, or molecular level scale. For most entries, the scale was unknown and there was 

uneven distribution with the most unknown scale occurring in the pre-lab (≅ 74%; see 

Table 9). For the entries that could be categorized by their scale, most were at the macro 

or macro-micro level. 

 

 

 

 

 

 

 

Spatial Organization Pre-Lab During-Lab Post-Lab 

1-dimension 1.4% 

(1) 

 

5% 

(1) 

5% 

(1) 

2 or more dimension 21% 

(16) 

 

0% 

(0) 

0% 

(0) 

Unknown 77.6% 

(59) 

 

95% 

(20) 

95% 

(20) 

Total 100% 

(76) 

100% 

(21) 

100% 

(21) 
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Table 9 

 

Frequency Distribution and Percentage of Semiotic Notebook Codes: Scale Representation Across Phases 

 

Within the phases, nearly all “unknown” scale frequency was in the pre-lab and 

post-lab (see Table 10). The majority of scale representation entries were in pre-lab and 

during lab. However, a particular scale could only be identified during lab.  A 

significantly strong association was found between the three phases of inquiry and scale 

representation (2
(6) = 192.61,  = 0.697, p< 0.05).  

Table 10 

 

Frequency Distribution and Percentage of Semiotic Notebook Codes: Scale Representation Within Phases 

Scale Representation Pre-Lab During-Lab Post-Lab Total 

Macro 0% 

(0) 

 

100% 

(36) 

0% 

(0) 

100% 

(36) 

Macro-micro 0% 

(0) 

 

100% 

(28) 

0% 

(0) 

100% 

(28) 

Macro-molecular 0% 

(0) 

0% 

(0) 

0% 

(0) 

0% 

(0) 

 

Micro 0% 

(0) 

0% 

(0) 

0% 

(0) 

0% 

(0) 

 

Molecular 0% 

(0) 

0% 

(0) 

0% 

(0) 

0% 

(0) 

 

Super-macro 0% 

(0) 

 

100% 

(1) 

0% 

(0) 

100% 

(1) 

Unknown 73.5% 

(61) 

1.2 % 

(1) 

25.3% 

(21) 

100%  

(83) 

Scale Representation Pre-Lab During-Lab Post-Lab 

Macro 0% 

(0) 

 

54.5% 

(36) 

0% 

(0) 

Macro-micro 0% 

(0) 

 

42.4% 

(28) 

0% 

(0) 

Macro-molecular 0% 

(0) 

 

0% 

(0) 

0% 

(0) 
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3.4 Drawing’s Temporal Representation 

 Table 11 displays the frequency distribution and percentages of drawing’s 

temporal representation. Across all phases, there was uneven distribution demonstrated 

on the temporal scale (see Table 11). Temporal representation was mostly not applicable. 

Comparatively, real-time, slower than real time, faster than real time, and unknown were 

all under-represented across the phases.     

Table 11 

Frequency Distribution and Percentage of Semiotic Notebook Codes: Drawing’s Temporal Representation 

Across Phases 

 

Micro 0% 

(0) 

 

0% 

(0) 

0% 

(0) 

Molecular 0% 

(0) 

 

0% 

(0) 

0% 

(0) 

Super-macro 0% 

(0) 

 

1.5% 

(1) 

0% 

(0) 

Unknown 100%  

(61) 

 

1.5% 

(1) 

100% 

(21) 

Total 100% 

(61) 

100% 

(66) 

100% 

(21) 

Drawing’s Temporal Representation Pre-Lab During-Lab Post-Lab Total 

Real-time 0% 

(0) 

100% 

(7) 

0% 

(0) 

100% 

(7) 

Slower than real time 0% 

(0) 

100% 

(3) 

0% 

(0) 

100% 

(3) 

Faster than real time 0% 

(0) 

100% 

(2) 

0% 

(0) 

100% 

(2) 

Not applicable 56.5% 

(61) 

 

24% 

(26) 

19.5% 

(21) 

100% 

(108) 

Unknown 50% 

(1) 

50% 

(1) 

0% 

(0) 

100% 

(2) 
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Within the phases, all “real-time”,  “slower than real time,” and  “faster than real 

time,” frequencies were distributed during lab; these same sub-categories had no 

distribution in pre-lab and post-lab (see Table 12).   Pre-lab had the most entries while the 

post-lab had the least amount.  Examination of each phase revealed the majority or all 

frequencies were distributed in the “not applicable” sub-category (i.e. 98%, 66%, and 

100% for each respective investigation phase).  A significantly moderate association was 

found between the three phases of inquiry and drawings’ temporal representation (2
(8) = 

31.49,  = 0.346, p< 0.05). 

Table 12 

Frequency Distribution and Percentage of Semiotic Notebook Codes: Drawing’s Temporal Representation 

Within Phases 

 
 

 

 
 
 
 
 
 

3.5 Re-representation 

 Table 13 displays the frequency distribution and percentages of re-representations 

across the inquiry phases. There was uneven frequency distribution across all the phases 

for each sub-category.  The “no” sub-category had the most entries across the phases 

while the “unknown” sub-category had the least (see Table 13).  “Yes” and “no” 

Drawing’s Temporal Representation Pre-Lab During-Lab Post-Lab 

Real-time 0% 

(0) 

 

18% 

(7) 

0% 

(0) 

Slower than real time 0% 

(0) 

 

7.7% 

(3) 

0% 

(0) 

Faster than real time 0% 

(0) 

 

5% 

(2) 

0% 

(0) 

Not applicable 98% 

(61) 

 

66% 

(26) 

100% 

(21) 

Unknown 2% 

(1) 

 

3.3% 

(1) 

0% 

(0) 

Total 100% 

(62) 

100% 

(39) 

100% 

(21) 
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subcategories had their greatest distribution in the pre-lab phase and their least 

distribution in the post-lab. 

Table 13 

Frequency Distribution and Percentage of Semiotic Notebook Codes: Re-Representation Across Phases 

 

There was uneven distribution within the phases (see Table 14). Most re-

representations were generated in pre-lab; virtually no re-representation was unknown.  

During-lab, “no” was 97% of the frequencies distributed, indicating that the drawings 

constructed during lab were almost all student-generated. During-lab also had the least 

frequencies distributed. Post-lab, none of the re-representations were unknown. A 

significantly moderate association was found between the three phases of inquiry and re-

representation (2
(4) = 48.34,  = 0.306, p< 0.05). 

Table 14 

Frequency Distribution and Percentage of Semiotic Notebook Codes: Re-Representation Within Phases 

 

 

Re-Representation Pre-Lab During-Lab Post-Lab Total 

Yes 72.4% 

(55) 

 

0% 

(0) 

27.6% 

(21) 

100% 

 (76) 

No 45.3% 

(48) 

33.2% 

(37) 

21.5% 

(21) 

 

100% 

 (106) 

Unknown 50% 

(1) 

50% 

(1) 

0% 

(0) 

100% 

 (2) 

Re-Representation Pre-Lab During-Lab Post-Lab 

Yes 53% 

(55) 

0% 

(0) 

50% 

(21) 

 

No 46% 

(48) 

97% 

(37) 

50% 

(21) 

 

Unknown 1% 

(1) 

3% 

(1) 

0% 

(0) 

 

Total 100% 

 (104) 

100% 

 (38) 

100% 

 (42) 
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3.6 Driving Force of Notebook Entries  

 Table 15 displays the frequency distribution and percentages of the driving force 

of notebook entries. Across the investigation phases, notebook entries were mostly 

student-driven or teacher-student driven (see Table 15). Teacher-driven entries were 

concentrated in pre-lab (90%) while student-driven entries were primarily during lab 

(70%).  Furthermore, there were no teacher-driven, teacher-student driven, or unknown 

entries during lab. 

Table 15 

Frequency Distribution and Percentage of Semiotic Notebook Codes: Driving Force of Notebook Entries 

Across Phases 

 

Within each phase, pre-lab had the greatest distribution while post-lab had the 

least. Pre-lab had 65.6% and post-lab had 38% of the frequency distributed in “teacher-

student driven” sub-category.  During-lab had 100% and post-lab had 52% of the 

frequencies distributed as student-driven (see Table 16).  A significantly strong 

association was found between the three phases of inquiry and the driving force of 

notebook entries (2
(4) = 84.93, = 0.583, p< 0.05).   

 

 

Driving Force of Notebook Entries Pre-Lab During-Lab Post-Lab Total 

Teacher-driven 90% 

(18) 

0% 

(0) 

 

10% 

(2) 

100%  

(20) 

Student-driven 9.2% 

(5) 

 

70% 

(37) 

20.8% 

(11) 

100%  

(53) 

Teacher-Student driven 84.6% 

(44) 

0% 

(0) 

 

15.4% 

(8) 

100%  

(52) 

Unknown 0% 

(0) 

 

0% 

(0) 

 

0% 

(0) 

 

100%  

(0) 
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Table 16 

Frequency Distribution and Percentage of Semiotic Notebook Codes: Driving Force of Notebook Entries 

Within Phases 

 

 

 

 

 
 

 

 

                                       

 

 

 

 

 

 

 
 
 
 
 

Driving Force of Notebook Entries Pre-Lab During-Lab Post-Lab 

Teacher-driven 26.8% 

(18) 

0% 

(0) 

 

10% 

(2) 

Student-driven 7.6% 

(5) 

 

100% 

(37) 

52% 

(11) 

Teacher-Student driven 65.6% 

(44) 

0% 

(0) 

 

38% 

(8) 

Unknown 0% 

(0) 

 

0% 

(0) 

 

0% 

(0) 

 

Total 100%  

(67) 

100%  

(37) 

100%  

(21) 
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Chapter 5:  Conclusions and Recommendations 

 

This chapter presents a summary of the study and important conclusions drawn 

from the data presented in Chapter Four.  It provides a discussion of major findings, 

implications for practice, limitations, and conclusions. 

Learning progressions are systematic and conjectural models that are research-

based descriptions of students’ thinking and/or learning of a scientific concept and/or 

skill. There was a general consensus in the research field around a few fundamental 

features and the role learning progressions play as a means to transform science 

education. At the same time, there was much ambiguity in several arenas. Nevertheless, 

research demonstrated that learning progressions generally improved students’ science 

learning outcomes. 

The writings and drawings in students’ science notebooks portrayed and reflected 

how they practice inquiry within the science classroom (Aschbacher & Alonzo, 2006).  

Science notebooks contained “curricular evidence” that was a critical aspect of science 

teaching and learning (Baxter, Bass, & Glasser, 2000).  Teachers used science notebooks 

as a tool for teaching, learning, and assessment within the confines of inquiry (Baxter et 

al., 2000).  Many studies also demonstrated science notebooks to be beneficial to student 

science achievement (Huerta, Irby, Lara-Alecio, & Tong , 2015; Klentschy & de la Torre, 

2004). 

1.0 Summary of the Study 

Learning progressions were developed and validated in a variety of ways.  However, 

using learning progression with science notebooks was one method that had not been 
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researched explicitly.  The pedagogical importance and uses of science notebooks have 

been heavily researched (e.g. Klentschy, 2005).  While learning progression research 

results, overall, demonstrated positive student outcomes, no learning progression to date 

explicitly employed science notebooks as the cornerstone to the development and/or 

validation process.  Many learning progressions were diagnostic; very few learning 

progressions were progressive—fostering students’ conceptual change toward a scientific 

level of understanding. As such, the phenomenological perspective was rarely examined. 

Furthermore, learning progression research was rarely conducted in urban schools and, 

therefore, the various complicated and fragile nuances that strain urban students, teachers, 

and schools have largely been ignored in learning progression research. Consequently, 

three concerns led to the research study: a) establishment of learning progression utility; 

b) phenomenological perspective of learning progression research; and c) facilitating 

learning progression research in low SES and non-mainstream learning environments. 

  The purpose of the study was twofold: a) to develop a middle school science 

learning progression validated in the context of inquiry by using science notebooks; and 

b) to study the impact of the notebook-based learning progression on middle school 

students’ learning. The study sought to answer the question: what is the impact on 

students’ science learning outcomes when a middle school science learning progression is 

developed and validated using science notebooks as part of an inquiry-based instructional 

intervention? 

Situated cognition was the theoretical framework, Bruner’s spiral curriculum was 

the curricular framework, and Shepardson’s and Britsch’s (1997) instructional outline 

provided the definitive parameters for the intervention.  The study utilized a causal-
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comparative approach. First, the learning progression was developed using the Systems 

Thinking Hierarchy (STH) model. A three-week intervention was administered to 22 

rising 8th grade students in which the computer-assisted curriculum or the learning 

progression was facilitated. The Rock Cycle Assessment was administered as a pretest 

and posttest. Data collected consisted of:  a) Rock Cycle Assessment pretest-posttest 

scores; b) symbolic media from notebooks; and c) reflective conclusions from notebooks.  

Data were analyzed with a t-test for independent means, semiotic taxonomy, and constant 

comparative analysis.  

2.0 Impact of Learning Progression on Students’ Rock Cycle Learning 

The learning progression group had a smaller average pretest score  (n=16, M= 

7.25, SD =3.6) and posttest score (n=16, M= 10.43, SD = 3.52) than that of the On-

campus group (n=6, M=10.67, SD=2.42; M=11.5, SD=3.39). The trend was the same for 

the Off-campus group average pretest score (n= 10, M = 10.1, SD = 3.48) and average 

posttest score (n= 10, M = 13.8, SD = 3.88).  To determine if the average difference 

between the On-campus/Off-campus and learning progression groups was statistically 

significant, an independent sample t-test was performed. There was no statistically 

significant difference between the On-campus group and learning progression group. 

However, there was a statistically significant difference between the Off-campus group 

and the learning progression group.  Therefore because of unforeseeable selection bias, 

the researcher failed to reject the null hypothesis.  

The results run counter to the general trend in learning progression research 

literature.  For example, Plummer and Maynard’s (2014) study explored how student 

learning of the seasons was impacted by classroom instruction that incorporated a 
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learning progression. Thirty-eight 8th grade students participated in a 10-day curriculum. 

The authors administered a 13-question pretest three weeks prior to instruction, 

administered the posttest one week after instruction, and incorporated open-ended items 

in the data collection.  Three findings materialized: a) 29 students improved, six stayed at 

the same level, and three regressed; b) posttest mean score was much higher than pretest 

mean score; and c) the difference between the mean pretest-posttest scores was 

significantly different.  

Several possible explanations exist as to why the results ran counter to Plummer 

and Maynard (2014).  Primarily, the ethnic/racial and economic demographics and 

methodology differed. Demographically, the Plummer and Maynard (2014) sample was 

94% white and approximately 50% of the school population was low SES. This is in 

contrast to the author’s study where the sample was approximately 90% black had low 

SES.  The sociological challenges associated with urban schools, teachers, and students 

are well documented (e.g. Barton, 2007; Lee and Luykx, 2007). In the author’s study, 

challenges such as attendance and transiency influenced the amount of data able to be 

collected.  The off-campus program also impacted the results of the study.  Effective 

urban schools build relationships with resources.  In the case of the author’s study, the 

resource was the off-campus program at a local university.  Students were selected to 

participate based on their academics, attendance, behavior, and citizenship.  Essentially, 

these students were ambassadors for the school.  So while the school made strides to be a 

high achieving urban school, the other side of the school’s efforts contributed to 

predisposing the sample to students who were not necessarily ambassadors.   

Methodologically, Plummer’s and Maynard’s data collection, instrument design, 
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and data analysis were much more sophisticated and in-depth. The methodology used by 

Plummer and Maynard differed from that of the author’s study, which had a longer 

assessment instrument, lacked variety in the types of assessment questions, and used a 

different source for assessment items. In contrast to methodology of the author’s study, 

Plummer and Maynard had six multiple-choice and seven open-ended questions on their 

assessment. The selected assessment items were from Reason for Seasons, the SCALE-

uP project (a previously developed in-depth assessment of the seasons) and teacher 

generated. Plummer and Maynard’s learning progression development was grounded in a 

metric approach, whereas the author’s learning progression was grounded in a theoretical 

approach.  For example, Plummer and Maynard developed and revised a seasons 

construct map using the construct modeling approach for learning progression 

development. Construct modeling precipitated from assessment-based learning 

progression research. The author developed and validated her learning progression from 

science education learning progression research and systems-thinking research.  The 

Construct modeling used by the Plummer and Maynard was a four-step cycle of 

measurement that began with the researchers making observations to determine the 

subjects’ understanding of the construct, inferring the respondents’ level of the construct 

by categorizing, and scoring the responses to rank student responses according to their 

scientific accuracy. Finally, an interpretational model (a Rasch analysis and Wright map) 

was applied—this was a process by which the researcher compared results from the 

assessment to the hypothetical construct map.  The author did not utilize metric-based 

methods to develop her construct map.  
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The cross-sectional study by Songer et al. (2009) aligned with the author’s study 

in terms of sample ethnic/racial and economic demographic, plagues of urban school 

districts, and experimental design. However, Songer et al. findings differed from the 

author’s findings. Songer et al. described an empirically driven, five-step process to 

develop a three-year learning progression focused on complex thinking about 

biodiversity.  They sampled approximately 1800 Detroit Public School 4th through 6th 

graders. The control group engaged in the district-approved textbook-based curricular 

program while the experimental group received the learning progression intervention.  

Both groups participated for eight weeks, and the pretest and the posttest were 

administered. Songer et al. used multiple imputations for missing data and four findings 

emerged: a) posttest scores were descriptively higher than pretest scores; b) empirically, 

target domain achievement was substantially higher for intervention students; c) 

standardized measures were significantly better for intervention students; and d) 

intervention students gained 0.34 SD more on average. 

Several explanations accounted for the author’s results being counter to those of 

Songer et al. (2009). Foremost, the author conflated content and skill in the development-

validation process, whereas Songer et al. distinguished content and skill.  The author 

produced one content learning progression developed in conjunction with its validation 

process; validation included students’ using the skill of explanation in the form of 

reflective conclusions.  Songer et al. developed two preliminary learning progressions. 

One learning progression emphasized content (i.e. biodiversity) and the other emphasized 

skill (i.e. complex reasoning, specifically written explanations).  Validation consisted of 

an identical pretest-posttest, which had a total of 23 items. This fundamental difference 
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between the two studies could help explain why students’ reflective conclusions—

particularly Writing Frame Three—was very challenging.  Secondly, the validation 

instruments were very different for both studies.  The author used a simple 30-question 

multiple-choice adapted instrument from national databases.  Songer et al. used an 

instrument with 16 multiple choice/fill-in-the-blank items and seven open ended 

explanation items. Six items on the instrument were from released standardized tests (two 

multiple choice items) from the Michigan Educational Assessment Program and four 

items (two multiple choice, two open-ended explanations items) from the National 

Assessment of Educational Progress, and the remaining 17 items written and pilot tested 

for the curriculum by the research team.  This variety in Songer et al. instrument 

permitted greater variety in their analyses (e.g. HLM, growth model) and, therefore, a 

more in-depth explanation of students’ progression and pretest-posttest scores. Third, 

Songer et al. development-validation process was complex, time-consuming, and outside 

the scope of this researcher’s capacity and ability.  For example, the authors 

communicated closely with expert scientists’ in determining the focal points for learning 

progression development.  For seven years, the research project worked with zoologists 

to transform scientific resources (e.g. Animal Diversity Web) designed for an adult 

audience into resources (e.g. Critter Catalog) that support inquiry questioning and 

explanation-building for elementary students. First drafts arose from these conversations.  

The author did not have access to such a resource. Last, the author’s study limitations 

were not circumstantial constraints for Songer et al. For example, Songer et al. had the 

capacity to implement a bias-free quasi-experimental design in a much larger district: a) 

with fewer time constraints; b) a much larger sample and therefore more teachers in more 
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schools to implement the progressions; and d) access to sophisticated statistical methods.  

The aforementioned were limitations to the author’s study. 

2.1 Contribution of Rock Cycle Learning Progression and Intervention 

While results were unexpected, they are no less substantial. On the Rock Cycle 

Assessment, the learning progression group’s difference between the means (MD=3.18) 

was higher than that of the On-campus group (MD = 0.83), even though—numerically—

the On-campus group mean posttest score (M=11.5) was higher than that of the learning 

progression group’s (M=10.43).  The Off-campus group’s difference between the means 

(MD=3.7), pretest average score (M = 10.1), and average posttest score (M =13.8) were 

all higher than that of the learning progression group. And, although the Rock Cycle 

Assessment scores did not yield statistically significant results for the On-campus and 

Learning Progression groups, the notebook analysis revealed two things: a) there was a 

statistical relationship between every type of graphic representation in students’ 

notebooks and the phase in which the graphic representation was generated and b) 

students’ explanatory skills needed to be explicitly developed. 

Tangentially, the Rock Cycle learning progression was a product of this study.   

No prior learning progression existed which focused on rock cycle learning.  

Furthermore, none of the systems-based learning progressions utilized the STH model. 

Using the STH model provided a cohesive and systematic framework hierarchally 

arranged to clearly delineate the learning goals that foster systems-based thinking.  A 

learning progression for 6th, 7th, and 8th grades was developed an eight-level rock cycle 

during the study. 
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As part of the intervention, notebook function was multi-faceted, which is in 

harmony with science teaching, learning, and assessment with notebooks research (e.g. 

Aschbacher & Alonzo, 2006; Madden & Wiebe, 2013; Ruiz-Primo et al., 2002, Baxter et 

al., 2000). The notebooks helped support the learning progression intervention, tracked 

and organized students’ progress over the course of the intervention, and revealed how 

the experimental group practiced inquiry. They also provided a fractional account of 

students’ experience in the learning progression and contained students’ understanding of 

inquiry activities.  

Semiotic taxonomy was used to analyze students’ notebooks and it gave insight 

into students’ learning progression experience. Symbolic media’s categorical qualities 

were examined across the prelab, during lab, and post lab, in addition to between each 

group (e.g. prelab only).  Students were the driving force for notebook entries during lab.  

In contrast, prelab was primarily teacher-driven. By post lab, most entries were either 

student or teacher-student driven.   

A possible explanation is that students needed more assistance navigating their 

understanding in the beginning of the lab, because the teacher created the “situation;” this 

phenomenon was a function of the study’s theoretical framework.  As students 

transitioned to data collection (i.e. during lab), they needed little assistance from the 

teacher because they were able to refer back to their prelab notes and drawings.  Post lab, 

activities/entries were writing-based and completely independent, although some students 

required assistance. The text-graphic relationship results further support this explanation. 

Prelab entries were overwhelming text-driven (73% of all text-driven entries were in this 
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phase). During lab, entries were balanced (i.e. text and drawing) or drawing-driven. In 

post lab, the text-graphic relationships were all text-driven.  

Wiebe et al. (2009b) define spatial organization as the dimensionality of a 

drawing. When text was organized in the prelab, it was overwhelmingly in two or more 

dimensions (e.g. concept map, table).  Wiebe et al. also define re-representation as 

distinguishing if entries were copies of symbolic media (i.e. “yes”) or original 

generations of such (i.e. “no”).  In prelab, re-representation was an approximate balance 

of yes and no.  In other words, there was a balance of student-copied and student-

generated symbolic media. Post lab displayed the same trend.  However, during lab, re-

representations were nearly non-existent, and, therefore, entries were almost all student-

generated.  This indicates data collection was primarily the only place in the investigative 

process where students generated drawings.  Specifically, students generated symbolic 

media of various temporal and scale representations during lab.  Outside of this, students 

copied symbolic media in their notebooks.  

Some categorical descriptors were semiotically specific.  For example, a 

drawing’s temporal representation referred to the amount of time change occurs.  Wiebe 

et al. (2009) qualifies real time as change seen with the unaided eye in less than one hour.  

Temporally, “change” occurred during lab as students collected data; it was reflected in 

collected data. However, temporal representation was not applicable to any text entries, 

as alphanumeric characters do not display “change.” Scale representation was another 

semiotically specific categorical descriptor and it referred to a representative drawing that 

can be seen with the unaided eye in a single view. It was the baseline for macro scale 
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drawings.  Across phases, all entries were either at the super-macro, macro, or macro-

micro scale and they were generated during lab.  

Prelab entries were overwhelmingly text driven, re-representations and teacher-

student driven.  This indicated an overwhelming amount of symbolic media that was not 

student-generated in the prelab; rather, symbolic media were student-copied. For this 

result, one possible explanation is that students were encultrated, which was a function of 

the study’s theoretical framework.  The teacher gave students the necessary conceptual 

knowledge to navigate the upcoming authentic activity to occur during lab.  Also, writing 

frames were used, for example, to assists students’ formation of predictions/hypotheses. 

Spatial organization, scale representation, and temporal representation were not 

applicable as these categorical qualities were attributed to drawings and not to text. 

During lab, notebook entries were largely student-driven with a smaller portion of 

entries being a balance of text and drawing. Entries were student-generated (i.e. not re-

representations) and drawing-driven at the macro-scale. The spatial organization was 

unable to be determined while the temporal representation was not applicable for the 

majority of symbolic media. When applicable, the drawing’s temporal representation was 

in real time (i.e. under one hour).  This suggests students observed a change in variables 

during lab. Student-generated drawings were concrete, macro scale items—things that 

could be seen with the unaided eye in a single view.  

Symbolic media were produced the least post lab. Text-graphic, scale 

representation, temporal representation, and notebooks’ driving force all had the smallest 

frequencies distributed in the post lab; spatial organization and scale representation were 

unknown. Low frequency suggests many students did not make notebook entries post lab. 
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It also suggests that many reflective conclusions were incomplete, there were relatively 

few drawings generated and/or copied, and that drawings were not emphasized post lab. 

Waning attendance/attrition also could have contributed to the relatively few symbolic 

media post lab.  This result aligned with the higher frequency of text-driven symbolic 

media post lab. Temporal representations were not applicable after investigation. This 

was also consistent with text-driven entries.  

Songer and Gotwals (2012) was the only study to incorporate the use of 

notebooks. The 2012 study was conducted in an urban district that had high levels of 

student mobility and absenteeism plaguing the district. Songer and Gotwals focused on 

student explanations and integrated science notebooks to collect these explanations—

specifically claim, evidence, and reasoning— as part of the data analyses. Of particular 

interest was the use of scaffolding to support students’ explanations. No such scaffolding 

was employed with students’ explanatory reflective conclusion data in the author’s study. 

Also, Songer and Gotwals’ study had attendance/attrition issues very similar to the 

author’s study. In both studies, some students were missing either the pretest or posttest. 

However, missing pretest-posttest scores were removed in the author’s study, whereas 

Songer and Gotwals opted to impute data for missing 4th through 6th grade pretest-

posttest scores.  The imputed scores were not very different (in terms of achievement) 

from students who had all data. But, the authors were not able to fully empirically test the 

data set.  Nevertheless, pretest-posttest mean scores of both Songer and Gotwals and the 

author’s studies demonstrated learning progressions that contribute to students’ 

improvement.  
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2.3 Students’ Perspective of their Science Experience 

Students wrote reflective conclusions to articulate their science experience.  

Reflective conclusions provided an opportunity for students to explain what they learned 

and to make meaning out of what they studied.  Randall (1999) sentence starters were 

used as writing frames.  The five writing frames each addressed a critical portion of the 

inquiry process.  Students wrote reflective conclusions post lab. 

Writing Frame One expressed the purpose of the lab. Results suggest the majority 

of students had satisfactory understanding for Lab #1, but partial understanding in Lab 

#2.  A possible explanation is that the attempt to scaffold Writing Frame One in lab two, 

in conjunction with the steady decrease in student attendance, combined to cause the shift 

in students’ understanding of lab two’s purpose. Writing Frame Two articulated the 

investigative methods. Nearly all students had a partial understanding of the methods for 

both labs or Writing Frame Two was incomplete.  In Writing Frame Three, students were 

to explain the results of their investigation by stating a claim, supporting it with evidence 

from collected data, and justifying the reason the evidence supported the claim.  This 

proved to be the most challenging writing frame for students.  For both labs, all students 

had either partial understanding of their results or they did not complete the writing 

frame.  Writing Frame Four focused on elucidating the accuracy of the results.  Every 

student had a partial understanding of how to maintain accuracy of the results or they did 

not complete the writing frame for lab one. This trend continued in lab two, with the 

exception of two students. Writing Frame Five communicated the means to further 

investigate the topic of study.  Many students had partial understanding of how to extend 

an investigation of the lab’s problem in lab one; some also did not complete the writing 
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frame. For lab two, approximately half of the students had satisfactory understanding, 

while the other half had incomplete writing frames.   

Based on the results of students’ reflective conclusions, it was concluded that 

students were able to partially define, or unable to define, their scientific world as 

evidenced by the relatively few writing frames satisfactorily completed for both labs. The 

reflective conclusions revealed a breakdown of students’ ability and capacity to explain 

their science (and consequently their learning progression experience) to a wider 

audience. While notebooks used in conjunction with the learning progression helped 

students’ science outcomes, students were not able to fully explain their science 

experience.  Data analysis revealed many students correctly expressed the experiments’ 

purposes. However, very few students articulated the procedure, results (i.e. claim, 

evidence, and reasoning), or accuracy of the investigations.  Some students discussed 

further investigation of both labs.  Overall, an overwhelming majority either needed 

improvement in explaining their science experience or they had incomplete writing 

frames.  

3.0 Limitations 

The study was limited by three major factors. Length of the study was the most 

substantial factor. The full Rock Cycle learning progression was eight-levels at each 

grade level and it required more time to implement than what was available. Originally 

scheduled for an eight-week period during the academic year in a large school district, 

the intervention presented persisted for three weeks, occurred during the summer and 

took place at a small charter school. The allotted time was not sufficient for students to 

make adequate progress. Furthermore, Off-campus group participants were selected by 
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the school’s administration to participate in an off-campus enrichment program for eight 

of the 15 days of the intervention. School-wide field trips were also scheduled (prior to 

the researcher’s knowledge) during the school’s summer program. Consequently, all 

participants did not receive the potential maximum amount of time for the already 

truncated intervention.  

Methodologically, sample size was a second substantial limitation. Original 

enrollment was approximately 85 students.  However, absenteeism and attrition increased 

as the summer progressed.  After data were cleaned, a sample of 32 remained. The 

computer-assisted and learning progression groups each had 16 students.  However, 63% 

of the computer-assisted group participated in the summer off-campus program.  Students 

were selected based on their academic performance, attendance, citizenship and behavior. 

Essentially, these students were school ambassadors; the remaining students were not 

considered as such. Because of the reduced sample size and selection bias, the 

availability of data was also reduced. This impacted the reliability of the results.  

The third and most surprising limitation was the lack of released-items available 

for adapting the measurement instrument.  Over 70 released-items were initially selected 

for the Rock Cycle Assessment instrument.  After reviewing and eliminating irrelevant 

and repetitive items, 30 test items remained.  However, the available test items only 

addressed levels one, two, and two-three (i.e. L1, L2, and L2-3) of the Rock Cycle learning 

progression. Therefore, the synthesis and implication levels (i.e. the upper levels of the 

learning progression) were not addressed by the Rock Cycle Assessment because there 

were no released-items available. This limitation reduced the validity and reliability of 

the Rock Cycle Assessment.  The internal consistency of the Rock Cycle Assessment 
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indicated the instrument did not accurately measure students’ rock cycle learning 

outcomes (30 items;  = .315). 

4.0 Implication for Practice 

The study’s results have implications for learning progression researchers, 

educators, and educational stakeholders. The results give more insight into a different 

way of incorporating a learning progression with science notebooks, particularly with 

graphic representations. For example, teachers can identify and evaluate collected 

artifacts as evidence of students’ thinking and leaning. Teachers can then, in turn, use the 

results to modify instruction, revise the learning progression, and/or help students’ 

learning advance. Researchers can investigate students’ science understanding through 

collecting and surveying notebook artifacts, determining where students encounter 

symbolic media, and examine how symbolic media influences science learning outcomes 

based on where encountered. The results can inform professional development, as well as 

inform and assist in curriculum and/or instruction modification.  

Symbolic media results imply a need to utilize student-generated graphics more 

effectively.  Specifically, the focus should be on examining the use of student-generated 

graphic representations in the prelab and post lab stages of inquiry. Results also suggest a 

need for a science graphic representation canon.  In other words, there needs to be 

standard graphic representations that all students should utilize as they progress in their 

science education. The graphic representations canon should become increasingly 

complex as learning progresses, particularly for systems-based science graphic 

representations. Researchers in the emerging learning progression sub-division of 

models, modeling, and symbolic representations can best meet the need. The symbolic 
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media results can also support researchers and educational stakeholders in precisely 

identifying where symbolic media are student-generated in the inquiry process, and the 

nature of the graphic representation. That information can in turn be used to inform 

researchers of revisions and/or modifications for additional iterations of a learning 

progression and its curricular and instructional products.  

Reflective conclusions results can inform researchers concerned with students’ 

capacity to communicate their learning in science. In the author’s study, the results 

demonstrated a need for repeated practice in using and writing of science language. 

Repeated practice in using language and writing (and by implication reading) of science 

language can help students gain the knowledge and skills needed to handle the 

intellectual expanse of science classes.  By implication, writing in science and teaching 

students how scientist use writing is indicative for generating a model. Moreover, it 

implies relating the nature of science to middle school science writing and writing-to-

learn progressions. Songer et al. (2009) is the only learning progression to offer a model-

based mechanism for communicating science. 

Independent t-test results imply a need to re-examine some current sampling 

practices in the research field. Learning progression validated in the absence of 

ethnically, racially, and economically diverse populations have limited reliability, 

generalizability, and validity.  The unique challenges urban schools pose have been well 

documented (e.g. Barton, 2007; Lee and Luykx, 2007).  However, this demographic was 

virtually ignored by the learning progression research community. The methodological 

challenges that arose while conducting research were surprisingly difficult to foresee, 

accommodate and they potentially derailed the study.  Additionally, learning progression 
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research occurred during the academic year when data was collected from students, 

leaving the assumption that students’ grades were impacted by academic performance 

involving the learning progression research. Further iterations of the Rock Cycle 

Learning Progression must have revisions to the Rock Cycle Assessment.  Mainly, it 

should be conducted during the academic year when attendance rates are more stable, 

students are accountable for learning, there is less influence of extra-curricular programs 

during instructional time, and class assignment is less biased. 

The study informs the practice of professionals in the research and practical 

science education fields. Complex systems were emphasized in thinking and learning 

research, particularly in earth science. Systems thinking promoted an integrated 

understanding of complex, interconnected systems. The Frameworks (2014) recommends 

and emphasizes students’ exposure to the systems thinking approach. Yet, systems 

thinking has been ignored in learning progression development and validation, despite the 

prominence of systems-based topics in learning progression research. However, if STH 

model was ignored in learning progression research, there is a likelihood the model will 

be ignored by educational practitioners. Implementing STH model at the elementary and 

middle school levels can support students’ understanding of the interconnectedness of 

earth’s systems, develop systems-thinking skills, and encourage their awareness of the 

dynamic and cyclic nature of the world.  STH was not limited to geology, but to content 

and skills that are systems based. Therefore, a need exists for future research in the 

learning progression field.  
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5.0 Conclusions  

 As states give consideration to or are currently adopting and/or implementing 

NGSS, it is critical to take a serious look at the historical context of science education 

reform in light of the current and relevant research literature. Historically, children’s 

thinking and learning did not have an intentional focus (Kahle, 2007). Furthermore, after 

two decades of emphasizing standards-based reform, U.S. science curriculum and 

instruction have not yielded the type of science learning that resulted in student 

conceptual understanding and meaningful engagement (Duschl et al., 2007).  The 2009 

science NAEP results were evidence of this phenomenon.  The results showed that less 

than 50% of students performed at or above the proficient level in science at all three 

grade levels (NCES, 2011). Many researchers asserted and demonstrated learning 

progressions’ potential to transform science education because of their capacity to better 

align curriculum, instruction, and assessment (e.g. Duncan and Hmelo-Silver, 2009; 

Mohan, Chen, & Anderson, 2009).  

Consistent involvement in inquiry-based activities should be the cornerstone of 

science instruction and curriculum development at every school level.  For the past 25 

years, there was an intense instruction and curricular focus on literacy and numeracy. 

Consequently, elementary and middle school science was—by and large— neglected.  

Compounded with the tremendous breadth and shallow depth of NSES, science education 

focused on content mastery and not inquiry-based activities. Learning progressions and 

their associated products has the potential to turn the contemporary tide of science 

education from its two-decade course.  Even though there was no credible evidence to 

suggest the learning progression had a significant impact on students’ science learning 
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outcomes, and the data provided little evidence that the null hypothesis was false, there is 

one invaluable imperative:  researchers, stakeholders, and educators should critically 

examine practices associated with learning progression development and validation and 

move forward with caution. 
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Appendix A:  Test Blueprint 

 

Achievement 

Level 
Big Idea 

Test Item 

 (Item Code/Question ID) 

Test 

Percentage 

8-L1 

1. Earth is 

continuously 

changing. 

 

 

 

2.  Earth is a 

complex system of 

interacting rock, 

water, air & life. 

 

1.  011-8S11 #1 K119401 

5.  2009-8S10 #2 K111701 

9.  2005-4S13 #7 K036001 

13. PT007001 

17. PT019001 

21. PT017001 

25. PT029001 

27.  PT016001 

29.  CL014002 

30.  PT018001 

33% 

8-L2 

2.  2009-4S11 #10 K106601 

6.  2009-4S11 #12 K106604 

10.  WE037004 

14.  WE021002 

18.  WE042002 

22.  CL021002 

20% 

8-L3 

3. 2005-8S14 #9 K037801 

7.  PT025001 

11.  WE059001 

15.  WE039002 

19.  WE011002 

23.  WE056001 

20% 

8-L2 & 3 

4.  2009-4S11 #2K154301 

8.  WE064001 

12.  WE032003 

16.  WE014004 

20.  WE018003 

24.  WE012003 

26.  WE015003 

28.  WE053001 

27% 

8-L4 to 8-L8 N/A 0% 
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Appendix B:  The Frequency1 of Correct Responses on the Rock Cycle Assessment 

by Learning Progression Achievement Level2 

 

 
 

                                                        
1 Frequency refers to the number of times the event occurred.  In this case, the 
numbers of correct responses for each of the three groups were tallied for the 
pretest and posttest; they were then totaled.   
2 The Achievement Levels are the levels of the learning progression.  They represent 
what a student should be able to know and do at a particular point in the learning 
progression. 
3 On Achievement Level 8-L1, students should be able to identify rock cycle 
components and processes. 
4 On Achievement Level 8-L2, students should be able to identify relationships 
among rock cycle components.  
5 On Achievement Level 8-L3, students should be able to identify dynamic 
relationships within the rock cycle.  
6 On Achievement Level 8-L2&3, students should be able to identify rock cycle 
components, processes, and dynamic relationships. 

Achievement 

Level 

Comparison Group Pretest Posttest Total 

8-L13 
 

Learning Progression 33 48 81 

On-Campus Computer Assisted 14 18 21 

Off-Campus Computer Assisted 

 

22 37 59 

 
8-L24 

Learning Progression 32 36 68 

On-Campus Computer Assisted 16 14 30 

Off-Campus Computer Assisted 

 

25 31 56 

8-L35 

 

Learning Progression 23 42 65 

On-Campus Computer Assisted 12 11 23 

Off-Campus Computer Assisted 

 

20 27 47 

8-L2 & 36 
Learning Progression 27 42 69 

On-Campus Computer Assisted 14 21 35 

Off-Campus Computer Assisted 20 29 49 
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