
1 

 
 

Copyright, Chidambaram Subbiah, 2019 

 

 

Task-Based Estimation and Planning for Application Development 

Projects and Resources: Models, Methods and Applications 

 

Chidambaram Subbiah 

M.B.A, University of Missouri, Saint Louis, 2002 

B.E., Computer Science Engineering, Bhopal University, Bhopal 1995 

  

  

A Dissertation submitted to The Graduate School at the 

                         University of Missouri – St. Louis in 

                     partial fulfillment of the requirements for the degree 

             Doctor of Philosophy in Business Administration                                            

with an emphasis in Logistics & Supply Chain Management 

  

December, 2019   

Dissertation Committee  

                                                                                          Haitao Li, Ph.D., Chairperson 

       Andrea Hupman, Ph.D. 

                                                                                                        Donald Sweeney, Ph.D. 

                                                                                                          Joseph Simonis, Ph.D. 

     Kailash Joshi, Ph.D. 
  



2 

 
 

Copyright, Chidambaram Subbiah, 2019 

  

Contents 
List of Tables ...................................................................................................................... 4 

List of Figures ..................................................................................................................... 4 

Abstract ............................................................................................................................... 7 

Chapter 1: Introduction ....................................................................................................... 8 

1.1 Background and Research Motivation ...................................................................... 8 

1.2 The Framework of the Dissertation ......................................................................... 12 

Chapter 2: Literature Review ............................................................................................ 17 

2.1 Bottom-up estimating and measuring the size of software applications ................. 18 

2.2 Agile Release Planning Methodology ..................................................................... 26 

2.2.1 Definition of terms for an Agile project execution........................................... 26 

2.2.2 Agile release planning methodology literature review ..................................... 29 

2.3 Predictive modeling in the context of estimating effort for open systems web 

development projects..................................................................................................... 37 

2.4 Combining different methodologies and assessing the quality of the estimate ...... 44 

Chapter 3: Research Purpose and Contributions .............................................................. 50 

3.1 Advance the state of the art of estimating software development costs using design 

patterns. ......................................................................................................................... 51 

3.2 Quantify the economic impact of resources and other factors on overall labor cost.

 ....................................................................................................................................... 52 

3.3 Implementing multiple estimating models by combining executive judgment with 

quantitative modeling .................................................................................................... 53 

3.4 Applying prescriptive analytics (optimization) to build a new decision-support 

framework for Agile project planning ........................................................................... 54 

Chapter 4: Methodologies ................................................................................................. 55 

4.1 Estimating Tool Development ................................................................................ 57 

4.1.1 Function points related predictive models ........................................................ 57 

4.1.2: Two Stage Least Squares (2SLS) model and Decision Tree Analysis ............ 60 

4.1.3 Function points related suite of estimates......................................................... 64 

4.1.4  Development of the task based estimating model ........................................... 64 



3 

 
 

Copyright, Chidambaram Subbiah, 2019 

4.1.5 Estimating tool requirements: ........................................................................... 67 

4.2 Assessing the quality of the estimate from the estimating tool ............................... 69 

4.3 Optimization model for allocating resources to tasks in an Agile setting ............... 70 

Chapter 5: Data ................................................................................................................. 78 

5.1: Data for predictive models ..................................................................................... 78 

5.2: Use case for Agile Software Development epic and release planning ................... 93 

5.2.1: Introduction to optimization use case .............................................................. 93 

5.2.3: Use Case .......................................................................................................... 95 

Chapter 6: Model Testing Results and Experiments....................................................... 105 

6.1 Estimating tool development – related models and development of the tool ....... 105 

6.1.1 Function points related predictive models: ..................................................... 105 

6.1.2 Two Stage Least Squares (2SLS) model results and Decision Tree analysis 111 

6.1.3 Function points related suite of estimates: ..................................................... 123 

6.1.4 Implementation of the Estimating Tool: ......................................................... 126 

6.1.5 Creation of the Estimating Tool ..................................................................... 135 

6.1.6 Summary of the new estimating Process: ....................................................... 139 

6.2 Assessing the Quality of the Estimate from the Estimating Tool ......................... 143 

6.3 Optimization Model Results and Experiments...................................................... 154 

6.3.1 Current process of executing projects ............................................................ 160 

6.3.2 Base Case ........................................................................................................ 161 

6.3.3 Scenario 1:  Bringing more efficiencies by cross training resources on multiple 

skills ......................................................................................................................... 165 

6.3.4  Scenario 2: Combining all development tasks separately. ............................ 167 

6.3.5 Medium size case with  10 projects and 114 stories ....................................... 170 

6.3.6 Large size case with 20 projects and 228 stories ............................................ 171 

6.3.7 How to use the model at an organization ....................................................... 173 

6.3.8 Computational Experiments ........................................................................... 176 

Chapter 7: Conclusion and Future Work ........................................................................ 190 

7.1 Summary ............................................................................................................... 190 

7.2 Limitations ............................................................................................................ 195 



4 

 
 

Copyright, Chidambaram Subbiah, 2019 

7.3 Future Work .......................................................................................................... 196 

References ....................................................................................................................... 197 

 

List of Tables 
Table 1: Bottom-up estimating and measuring the size of software applications research

........................................................................................................................................... 18 

Table 2: Agile release planning methodology research .................................................... 30 

Table 2.1: Agile release planning optimization models research ..................................... 34 

Table 3:  Predictive modeling in the context of estimating effort for open systems web 

development projects ........................................................................................................ 38 

Table 4: Combining different methodologies and assessing the quality of the estimate .. 44 

Table 5: Function point repository .................................................................................... 80 

Table 6: High level data analysis of project data .............................................................. 89 

Table 7: Project data by phases ......................................................................................... 89 

Table 8: Data analysis by project phases .......................................................................... 90 

Table 9: Data analysis by resource type ........................................................................... 90 

Table 10: Data analysis based on usage of temporary resources ...................................... 91 

Table 11: Data analysis based on quality metrics ............................................................. 92 

Table 12: Project data for optimization use case ............................................................ 101 

Table 13: Skills data for use case .................................................................................... 103 

Table 14: Resource types for use case ............................................................................ 104 

Table 15: Summary statistics for Function points related metrics .................................. 108 

Table 16: Tableau Dashboard of Function Point Suite of Estimates and differences of the 

estimates from the actual labor cost ................................................................................ 125 

Table 17: Sample survey ................................................................................................. 132 

Table 18: Snippet of aggregated survey responses ......................................................... 134 

Table 19: Processing of survey results in SAS ............................................................... 135 

Table 20: Summary of task level data............................................................................. 154 

Table 21: Sample efficiency score prototype.................................................................. 156 

Table 22: Computational experiment results from the batch run ................................... 177 

Table 23: Sensitivity Analysis dataset ............................................................................ 181 

 

List of Figures 
Figure 1: Project Steps – Data Collection to Estimating Model to Resource Plannning .. 67 

Figure 2: Function points dataset ...................................................................................... 79 

Figure 3: Actual labor cost dataset sample ....................................................................... 81 



5 

 
 

Copyright, Chidambaram Subbiah, 2019 

Figure 4: Aggregated task level data sample .................................................................... 84 

Figure 5: Flow to get the aggregated dataset for modeling .............................................. 87 

Figure 6: Scatter plot of function point count with total labour hours.............................. 87 

Figure 7: Project execution with optimal resource allocation .......................................... 97 

Figure 8: Effect on project duration due to resource constraints ...................................... 97 

Figure 9: High-level diagram for use case ...................................................................... 100 

Figure 10: Tentative project plan .................................................................................... 105 

Figure 11: Function point repository visulization ........................................................... 106 

Figure 12: Scatter plot of adjusted function point and total labor hours ........................ 106 

Figure 13: Bar graph of cost per FP for total cost across all projects sorted in ascending 

order ................................................................................................................................ 107 

Figure 14: Bar graph of cost per FP for design and development across all projects sorted 

in ascending order ........................................................................................................... 108 

Figure 15: Box Whisker Plot of the difference between Actual Labor Cost and Predicted 

Cost. ................................................................................................................................ 111 

Figure 16: Histogram of total project labor hours .......................................................... 112 

Figure 17: Model description and summary for Two Stage Least Squares model with 

hours less than 7500 hours. ............................................................................................. 114 

Figure 18: Scatter plot of residuals with predicted values for 2SLS (less than 7550 hours)

......................................................................................................................................... 115 

Figure 19: Test on residuals for 2SLS model with hours less than 7500 hours .............. 116 

Figure 20: Model description and summary for Two Stage Least Squares model with 

hours less than 10000 hours. ........................................................................................... 117 

Figure 21: Scatter plot of residuals with predicted values for 2SLS (less than 10000 

hours) .............................................................................................................................. 118 

Figure 22: Test on residuals for 2SLS model with hours less than 10000 hours. ........... 119 

Figure 23: Model description and summary for Two Stage Least Squares model with 

hours less than 10000 hours less one outlier ................................................................... 120 

Figure 24: Decision Tree Analysis, Regression Tree (CART) ....................................... 121 

Figure 25: Decision Tree Analysis, Regression Tree (CHAID) ..................................... 122 

Figure 26: Snapshots of implemented COCOMO II tool ............................................... 123 

Figure 27: Masked high level design patterns at ABC Inc. ............................................ 128 

Figure 28 - Estimate Comparative tab in Estimating Tool ............................................. 136 

Figure 29: Design and development tasks entered by the SME ..................................... 136 

Figure 30: Pie charts in the overhead and summaries tab of Estimating Tool ............... 136 

Figure 31: Cost breakdown summary in Estimating Tool .............................................. 137 

Figure 32: Project data by phases for the past 12 months .............................................. 138 

Figure 33: Cost projection table in Estimating Tool ....................................................... 141 

Figure 34: Overhead and Summaries tab in Estimating Tool ......................................... 142 



6 

 
 

Copyright, Chidambaram Subbiah, 2019 

Figure 35: Suite of seven estimates ................................................................................ 142 

Figure 36: New software development estimating lifecycle ........................................... 143 

Figure 37: Tableau reporting for processing data from finished projects ....................... 144 

Figure 38: Tableau Analysis for analyzing task level data ............................................. 145 

Figure 39: Comparison of actual hours and estimate from Estimating Tool .................. 146 

Figure 40: Project comparison by type (Create vs. Modify) .......................................... 147 

Figure 41: Project comparison by complexity ................................................................ 148 

Figure 42: Project comparison by category (Open Systems vs. Back-end Systems) ..... 148 

Figure 43: Histograms assessing the quality of the estimate for five projects ................ 150 

Figure 44: Statistics on processing times at the task level .............................................. 153 

Figure 45: High level representation of use case data .................................................... 162 

Figure 46: Resource utilization for the base case execution ........................................... 164 

Figure 47: Sprint load across the five sprints.................................................................. 164 

Figure 47a: Allocation of stories to the five sprints in base case.................................... 165 

Figure 48: Sprint load across five sprints for the first scenario ...................................... 166 

Figure 49: Resource load utilization for the first scenario .............................................. 167 

Figure 50: Resource load for scenario two ..................................................................... 168 

Figure 51: Sprint load for scenario two .......................................................................... 169 

Figure 52: Resource load for medium size case (Ten Projects) ...................................... 170 

Figure 53: Sprint load for medium size case .................................................................. 171 

Figure 54: Resource load for large size case (20 Projects) ............................................. 172 

Figure 55: Sprint Load for large size case (20 projects) ................................................. 173 

Figure 56: Proposed new flow incorporating Optimization Model ................................ 174 

Figure 57: Result of computational experiments – Objective value analysis ................. 179 

Figure 58: Result of computational experiments – Number of stories allocated ............ 180 

Figure 59: Sensitivity analysis of objective value to varying efficiency scores and sizes

......................................................................................................................................... 182 

Figure 60: Sensitivity analysis of number of stories allocated to varying efficiency scores 

and sizes .......................................................................................................................... 183 

Figure 61: Sensitivity analysis of objective value to varying workload availability and 

sizes ................................................................................................................................. 184 

Figure 62: Sensitivity analysis of number of stories allocated to varying workload 

availability and sizes ....................................................................................................... 185 

Figure 63: Sensitivity analysis of objective value to varying payrates and sizes ........... 186 

Figure 64: Sensitivity analysis of number of stories allocated to varying payrates and 

sizes ................................................................................................................................. 187 

Figure 65: Computational Experiments results summary ............................................... 188 

Figure 66: Duration for all runs in the batch process ...................................................... 189 

Figure 67: Assignment of resources to a project ............................................................ 192 

 



7 

 
 

Copyright, Chidambaram Subbiah, 2019 

Abstract 
 

This dissertation takes a new approach to software development effort estimation 

from the perspective of design patterns at an organization. A new estimating tool is 

developed to provide bottom up estimates based on the design patterns of the organization. 

The research also offers guidelines for extracting the unique design patterns specific to an 

organization that are used to obtain baseline task level estimates in the Estimating Tool. In 

addition, the tool provides a suite of seven estimates using predictive analytics to estimate 

the labor hours required for a project using historical data, a bottom-up estimate that is 

rooted in the design patterns of the organization, a recommended estimate, plus four other 

estimates that are based on the function point count. The four estimates include a predictive 

model to estimate the project cost based on the function point count and three estimates are 

variants of the early design Construction Cost Model II (COCOMO II). Direct benefits of 

the tool include reduction of  process variability thereby resulting in consistency of 

estimates across teams in an organization.  

In Agile IT Project Management, there is an important need to better plan project 

timelines and to make better scheduling and resource allocation decisions to facilitate on-

time and on-budget project deliveries. This research thus also addresses the prescriptive 

aspect of the application, by  making better resource allocation decisions via  a new mixed-

integer linear programing (MILP) optimization model.  The model provides  data-driven 

decision-support for companies looking to make a transition from the waterfall to the agile 

paradigm with a structured approach to focus on skills development at the organization. A 
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real-world application of the use of the new Estimating Tool and the proposed models at a 

large firm is showcased as part of the research. A comprehensive sensitivity analysis was 

conducted as part of a  set of computational experiments to obtain managerial insights.   

Chapter 1: Introduction 
 

1.1 Background and Research Motivation 

 

Almost all types of organizations, either large or small, perform Application 

Development to meet the growing needs of business. Application Development often 

involves estimating the size of the effort upfront so that the organization can make 

appropriate budgeting and scheduling decisions. According to Gartner (2014), Application 

Development accounts for 34% of Information Technology budgets. One of the biggest 

challenges companies face is their inability to size the associated effort properly. 

Chemuturi (2009) defines Software Development Estimation as “the estimation of software 

size, software development effort, software development cost, and software development 

schedule for a specified software project in a specified environment, using defined 

methods, tools and techniques."  The effort is measured in person-days or person-hours, 

and the schedule is optimized based on the capacity of resources available. Every 

organization conducts software estimation differently, and there is very little consistency 

in the industry. While there are off-the-shelf tools that can be used for software 

development estimation, these tools do not account for the unique application environment 

and business rules under which companies operate, and cannot be customized for 

individual companies. Shepperd (2007) states that accurately predicting software 
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development effort is a crucial concern of many organizations. Halkjelsvik and Jørgensen 

(2012) present evidence that the average cost and effort overrun for software projects is 

about thirty percent. 

Application Development is often managed as a project, and the term project 

estimation can be used interchangeably with software development estimation. It is often 

the case where there are so many risk contingencies built into the estimate that one must 

peel off the layers to know the true cost of a project. I have personally been involved in 

Application Development for more than 22 years in various roles, including being a 

developer, subject matter expert (SME), and project leader. I have seen a wide range of 

methodologies and tools being used in this space to estimate projects. Most of these 

methods often rely on expert estimation or the subjective judgment of SMEs. Albrecht and 

Gaffney (1983) define function point as "a unit of measurement to express the amount of 

business functionality an Information system or application provides to a user." Many 

organizations use function points as a sizing measure. The estimating process can often go 

through multiple layers, including risk contingency through the approval hierarchy of the 

organization before obtaining the final estimate. The biggest disadvantage of this process 

is the lack of consistency in the process between different application teams that use the 

same technology stack to develop similar applications. There is significant variability in 

the estimates obtained by different teams for the same type of work.  

This research was motivated by the initiative at a service organization to develop a 

tool for project estimation. It is a large international firm with a Program Management 

Office (PMO) that manages the execution of information system projects. The information 
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system projects are centrally managed, and most of the projects are web-based projects that 

are executed to bring efficiencies in the workflow for their customers. The functionality 

delivered by these projects are unique to the organization, but the process and methodology 

can be applied to other organizations that use a similar technology stack. It is a mature 

organization, already using function points to size projects. The organization was looking 

to make a transition from the traditional Waterfall way of executing projects to the Agile 

environment. There were a few pilot initiatives in the Agile space. Jones (2007) makes the 

case for why an organization needs to use function points:   

1. Projects with function point analysis early in the process have lower “requirements 

creep” than uncounted projects.  

2. Projects with function point analysis have about 15% lower cost overruns than 

uncounted projects.  

3. Projects with function point analysis have about 25% less schedule slip than 

uncounted projects.  

4. Preliminary analysis indicates that function point analysis saves $15 to $50 per 

function point. ROI = 15 to 1 roughly. 

One of the most significant advantages is that the project team needs to go through a 

structured process to get the function points for a project counted. This often can get the 

team thinking about the first level design, and it lays the foundation for a quality design 

phase.  

 The organization had set up the foundation to use the COCOMO II model 

(COnstruction COst MOdel II), which  is an  approach  to estimate the cost, effort, and 
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schedule for a new software development project. It takes the number of function points as 

its input,  and it is a constructive software estimation model based mainly on regression 

techniques. The model is defined in terms of scaling factors and effort multipliers, which 

are used for estimating overall effort and cost (Cocomo, 2000). The company relied 

primarily on expert estimation, with SMEs in each area performing the design and 

estimates. It then used executive judgment in addition to the estimate from the SME to 

estimate the cost and effort associated with the project, which was then used to make 

scheduling decisions. As mentioned earlier, the two major disadvantages were the lack of 

consistency in estimates and variability that existed in estimates for work that was very 

similar. 

There is abundant research in software development estimation since the early 

1980s. Sehra, Brar, Kaur, and Sehra (2017) find that there are several articles in this space 

beginning in the early 1990s, and it continues to be actively researched. Myrtveit, Stensrud, 

and Shepperd (2005) mention that software cost estimation has been a complex and 

difficult task evidenced by the amount of research in this space. There have been numerous 

studies over the years comparing the accuracy of estimates regarding overall cost, duration 

and effort using different estimating models, but many of these approaches fail to consider 

the specific environment and business rules that are unique to the organization which is 

often the driver of costs in a software development effort. The business rules (or operations) 

of the organization often dictate what design patterns are used by the organization. There 

has been very little research around developing a task based estimating model while 

considering the unique design patterns used by an organization. A design pattern is a 

generic solution to a commonly occurring issue in software design and development. 
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Design patterns are useful in that they can speed up the development process in that a 

solution is often implemented the same way, and design patterns frequently can be reused. 

Many companies find their niche in rapid application development by standardizing on 

reusable design patterns. Organizations often rely on expert estimates, and those estimates 

are often from subject matter experts who have worked in those systems for a long time. 

Big organizations standardize on technology design patterns, and application development 

teams use the same technology stack and design patterns for most application development. 

This lends itself to bottom up estimating that is rooted at the task level.  The key to 

estimating then becomes uncovering the underlying unique design pattern of the 

organization and utilize it for better project effort estimation. 

Another thrust of my dissertation is to propose augmenting the use of the estimating 

tool by building a resource allocation and project scheduling framework that will help make 

better scheduling project tasks in an Agile environment. My goal is to build an optimization 

model that will account for the varied skill sets and domain expertise in the resource pool. 

The research on the estimating models will set the foundation for the resource allocation 

model. 

1.2 The Framework of the Dissertation 

 

My research aims to fill the gap in the existing research literature and practices in the 

real world. One thrust of my proposal is to develop a process to find the underlying design 

pattern of the organization, then decompose the design pattern into scenarios and tasks 

based on interviews with a small group of subject matter experts or technical architects in 

the company. Baselines for the tasks and scenarios can be constructed from surveys of 
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SME estimates. These baselines can be the basis for creating a bottom-up estimating model. 

One main contribution of this research is the development of an estimating tool that  helps 

a team complete a bottom up estimate right after completing a thorough design for the 

project. The tool will incorporate the capability to factor in the local environment of the 

organization and the tasks/scenarios that were decomposed from the design patterns at the 

company. It will also have other features to enhance the usability of the tool,  that cater to 

the unique environment of the company. Some of these features will include the capability 

to breakdown the estimate into smaller chunks by functionality, requirements, etc., and to 

override the baseline at the task level. The tool will then show the estimate from the subject 

matter expert with the override and compare it with the recommended cost from the tool 

without the overrides.  

This research has been conducted in the context of a service company that does 20-

25 application development projects every year. I was granted access to data from all 

application development projects going back seven years. The data from the past seven 

years was used in the development of a suite of predictive models to estimate the total labor 

hours needed to complete a project. Software development in the early 1990s used to have 

two major costs, system costs and labor costs. Over time, the cost of computing in terms 

of system costs has drastically decreased and is no longer a significant contributor to costs. 

Labor costs today are one of the main cost component in Software Application 

Development. 

There has been little attempt made by organizations to approach software 

estimating by predicting the labor cost associated with the project and identifying the 
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underlying drivers of labor cost.  This research fills this gap by creating an estimating 

model that estimates the total labor hours for a project, identifies the most important 

explanatory factors that contribute to the overall labor cost, and quantifies the economic 

impact of resources. Due to the endogenous nature of some explanatory variables in the 

models, we build two-stage regression predictive models to predict the number of labor 

hours that will be required for a project. We then translate the labor hours to a cost and add 

other costs associated with the project, including vendor costs, hardware costs, among 

others to come up with an overall estimate for the project. The fundamental assumption 

underlying these models is based on the analysis of the existing cost data, which indicates 

that labor costs are the single most important contributor to application development costs 

at the company.  

The models provide a suite of cost estimates to the decision makers, who integrate 

expert executive judgment with data science. The organization was already using function 

points to measure the size of development efforts, and I was also granted access to this 

data. I derived a predictive model to predict the cost of a project based on the historical 

data using function points and actual labor costs of a project. I also used the COCOMO II 

early design model to come up with three estimates based on varying a couple of scaling 

factors. The bottom-up estimate based on the design pattern completed by the subject 

matter expert and recommended estimate from the tool complete the suite of estimates. 

Overall, I obtained a suite of seven estimates for decision makers to assess and use their 

executive judgment to challenge the experts on the estimate. The suite of estimates are 

explained below. 
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SME/TL Estimate:  This is the estimate of the subject matter expert/Technical Lead, 

including the override time that they have chosen for all tasks in the newly created 

estimating tool.  

Recommended Cost: This the estimate for all the tasks considering only the time that the 

tool recommends leaving out the override time chosen for the individual tasks.  

Predictive Cost: This is the predicted cost for the project based on the historical data of 

projects from 2011 to 2017. This estimate considers factors such as # of associates, # of 

contractors, # of experienced contractors, duration of the project, # of development tasks, 

time spent in testing, time spent in planning, which area is doing the project, what type of 

project, etc. The most significant contributors to labor cost at the organization are 

considered to predict the cost. These contributors and associated weightages will be 

determined from the newly created two stage regression model.  

Function point baseline: This is the predicted cost at the organization for the project based 

on the historical data in the function point's database.  It is calculated based on calculated 

function points. We take the function point number and adjust it for a requirement creep of 

two percent per month and use the adjusted number to predict the cost of the project.  

COCOMO II Best Case, Middle of the Road, and Costliest:  These three numbers also 

consider the adjusted function point count.  It gives one a range of estimates based on 

adjusting  scale factors and cost drivers in the model. We only change two of the cost 

drivers in the model. One is able to obtain a range based on the function point count.  
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• The best case assumes one to have a high performing team and schedule 

pressure is relaxed. 

• The middle of the road case assumes one to have a nominal team and schedule 

pressure is normal. 

• The costliest case assumes one to have a nominal team and schedule pressure 

is high.  

All three scenarios assume the following scale factors and cost drivers.  

The scale factors were chosen in discussion with technology leaders at the firm. The 

process maturity is nominal, experience of similar projects is high, flexibility required in 

the system is nominal, team cohesiveness is high, project risk and architectural complexity 

is low.   

The cost drivers again were chosen in discussion with the technology leaders at the firm. 

System reliability, complexity, and size indicator are nominal, reusability is nominal, 

platform difficulty is nominal, application language and tool experience are high, and using 

case tools for development is high.  

 The estimating models set the stage for the development of a resource allocation 

framework that will help make better scheduling decisions. This framework relies on an 

optimization model that considers skill and domain expertise while assigning resources to 

tasks in an Agile Project Methodology setting. Agile practitioners typically do not approach 

the planning and scheduling of resources from an allocation framework that considers the 

skill and domain expertise of individuals. My model will address that need for small 
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projects in an Agile setting and will lay the foundation for project managers to make better 

scheduling decisions based on the best resource available to work on a task. Many 

organizations are considering or making a transition from a traditional Waterfall to an Agile 

methodology for execution projects. This research lays out a framework for making this 

transition focusing on skills development to best utilize the workload of resources 

available, and it employs a prescriptive optimization model at the core of this framework.  

 

Chapter 2: Literature Review  
 

There is abundant research on software development estimation since the early 

1980s. Sehra et al. (2017) find that there are several articles in this area beginning in the 

early 1990s, and it continues to be actively studied. There are more than 80 papers that 

have been published over a period of ten years from 2007 through 2016. Albrecht and 

Gaffney (1983) make the case that one of the most important problems faced by software 

developers and users is the prediction of the size of a programming system and its 

development effort. The literature review in this chapter is organized into four main 

sections.  

1. The first section reviews the papers that focus on bottom-up estimating and on 

various approaches to measure the size of software applications.  

2. The second section reviews the papers that focus on executing projects using the 

Agile Project Methodology, especially those dealing with release planning. This 
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section also reviews papers on optimizing resource allocation and scheduling 

stories in the Agile context.  

3. The third section reviews the papers that focus on estimating models in the context 

of estimating effort for open systems such as web development projects. 

4. The fourth section reviews the papers that make the case that a suite of estimates is 

better than having one estimate.  

2.1 Bottom-up estimating and measuring the size of software applications 

 

Bottom-up estimating is a way in which a big project is broken down into smaller 

subcomponents, and each subcomponent is estimated in terms of time needed for the 

subcomponent or task. The aggregation of the individual estimates of the subcomponents 

then becomes the estimate for the overall software project. Bottom-up estimating facilitates 

the generation of a work breakdown structure, which is then used for project scheduling 

and resource allocation. Table 1 summarizes the literature regarding bottom-up estimating 

and measuring the size of software applications. 

Table 1: Bottom-up estimating and measuring the size of software 

applications research 
Author Methodology Modeling Technique 

Albrecht and Gaffney 

(1983) 

Estimate the amount of 

"function" the software is 

to perform.  

Paper Introduction 

Function Points 

Low and Jeffery (1990) Empirical Research  Compare Estimates from 

different methodologies 

Symons (1991) Mark II Function points Paper Introducing Mark II 

function points 
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Author Methodology Modeling Technique 

Verner and Tate (1992) Case Study Regression 

Miyazaki, Terakado, 

Ozaki, and Nozaki (1994) 

Case Study Robust Regression 

Hakuta, Tone, and 

Ohminami (1997) 

Empirical Research and 

Survey for baselines 

Regression 

Pfleeger, Jeffery, Curtis, 

and Kitchenham (1997) 

Literature Review  

Raz and Elnathan (1999) Generic Model for costing 

of Projects 

Activity based Costing. 

Dolado (2000) Case Study Regression, Machine 

Learning, Neural 

Networks, Genetic 

Programming 

Hill, Thomas, and Allen 

(2000) 

Case Study Regression 

MacDonell (2003) Comparison of Regression 

with Fuzzy Logic 

Modeling 

Fuzzy Logic Modeling 

Regolin, De Souza, Pozo, 

and Vergilio (2003) 

Size Estimation Machine Learning 

Moløkken and Jørgensen 

(2003) 

Literature Review 
 

(Regolin, De Souza, Pozo, 

& Vergilio, 2003) 

Case Study using ISBSG 

data 

Genetic Programming, 

Neural Networks 

Jørgensen (2004a) Literature Review 
 

Jørgensen (2004b) Case Study Generic Statistical Models 

Costagliola, Ferrucci, 

Tortora, and Vitiello 

(2005) 

Introduces the Class Point 

approach 

Regression 

Pendharkar (2004) Case Study Regression, Decision trees 
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Author Methodology Modeling Technique 

Jørgensen (2007) Literature Review 
 

Kanmani, Kathiravan, 

Senthil Kumar, and 

Shanmugam (2007) 

Case study using 40 

student projects 

Machine Learning 

Forsyth and Burt (2008) Study of two experiments 

in a case study. 

Generic Statistical Models 

Wijayasiriwardhane and 

Lai (2008) 

Introduce Component 

Point approach. 

 

Cunha, Cruz, Costa, 

Rodrigues, and Vieira 

(2012) 

Case Study Comparison of Estimation 

Approaches 

Zhou, Yang, Xu, Leung, 

and Zhou (2014) 

Objective class points Regression  

Jørgensen (2014) Case Study  

 

 

Hill et al. (2000) analyze the accuracy of expert estimates for tasks. They study the 

link between task time and the number of subtasks involved in the task and find a 

significant relationship between the two attributes. The authors make the case that the way 

we breakdown tasks in a work breakdown structure to identify subtasks is also one of the 

most useful things that experts can do to estimate the times of the tasks better. Forsyth and 

Burt (2008) conduct three experiments in a non-software context to compare time 

allocation for a single task with the total time allocation given to all the subtasks that make 

up the single task. The authors advance the concept of a segmentation effect where they 

find higher estimates when tasks are decomposed. One other interesting conclusion from 
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the paper is that the decomposed estimates are more accurate when predicting larger 

subtasks as opposed to smaller subtasks. Cunha et al. (2012) present a case study 

implementing a bottom-up estimating approach in a software company. The authors find 

that the estimates greatly improved using the bottom-up estimating approach. 

Albrecht and Gaffney (1983) present a method to measure size based on the concept 

of function points. They define a function point as "a unit of measurement to express the 

amount of business functionality an Information system or application provides to a user." 

Low and Jeffery (1990) show how function points can be used to compute a functional 

value of an application in terms of external inputs, external outputs, external inquiries, 

internal logical files, and external interface files. Function points have been in use since 

the early 1990s and are used by companies to size a software development effort. Verner 

and Tate (1992) take up the case of a bottom up estimation based on size because size was 

critical to explaining overall effort. They identify the factors affecting size and obtain 

equations to predict size based on the explanatory factors. The authors present a method to 

come up with an overall system size based on the individual size of the subcomponents. 

The results were accurate to the extent to which knowledge about the system was known.  

Expert judgment plays an important role in the development of these models. 

Miyazaki et al. (1994) build on the model by Verner and Tate to propose improvements in 

measuring size by using the least squares of inverted balanced relative errors instead of the 

ordinary least squares method. Hakuta et al. (1997) introduce an estimation model that is 

independent of program type and is more generic in nature. They introduce the concept of 

a processing unit. The processing unit is defined as a module that completes a specific 
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function, and the size of the processing unit is estimated based on reference modules. It has 

adjustments for language level, complexity, and environmental factors. The authors make 

the case for refinement of size estimates based on the availability of more information. 

There is plenty of research that is being done in the field of software estimating, 

and new models are being developed. The existing research has a gap from a practitioner’s 

perspective in that the models being developed in academic research do not meet the 

everyday needs of a practitioner. The models are not intuitive enough to be employed in 

practice. Pfleeger et al. (1997) talk about the gap between measurement research and 

practice. They talk about software measurement as a broad term, including everything in 

the software development process that deals with metrics including monitoring the 

schedule and how managers look for measurable milestones to indicate the project health 

in terms of effort and schedule deliverables. They refer to the academic researchers as the 

measurement community and advocate the idea that the measurement community should 

not remain separate from the mainstream software engineering field. The authors make the 

case that academic researchers should try to understand the practitioners’ needs so that 

models that are more relevant for the real world can be produced.  

Raz and Elnathan (1999) outline an Activity-Based Costing (ABC) approach for 

software projects. ABC is a two-stage method of allocating overhead costs to various cost 

drivers at different levels of activity. The authors propose using the ABC method to track 

overhead costs for software projects. The focus in ABC is on consumption of resources as 

represented by the activities in the projects, while the traditional work breakdown structure 
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(WBS) in Waterfall project management groups together work packages according to the 

resources responsible for execution of that activity. 

Symons (1991) defines Mark II function points as a method that identifies and 

categorizes functional user requirements of the software into three types, inputs, exits, and 

objects. The functional size of the system is counted based on the count of the individual 

requirements. Dolado (2000) applies Genetic Programing to estimate the size of the 

software project. The author proposes various approaches to estimate the size of the project 

in terms of lines of code and demonstrates a relationship between lines of code and number 

of components (NOC). The model is a generic model, and the data for project effort was 

fitted using Mark II function points. MacDonell (2003) uses fuzzy logic modeling to 

predict effort size and evaluates if it could be used as an alternative to least squares 

regression. Regolin et al. (2003) uses machine learning (Genetic programming and Neural 

Networks) to predict the number of lines of code and number of components (NOC). The 

authors advocate for the use of machine learning techniques in size estimation. 

Moløkken and Jørgensen (2003) complete a systematic literature review  on 

software estimation. Two important findings point to the fact that 30-40% overruns are 

common for most software projects, and the mostly used estimation approach  is the expert-

based estimation method. Jørgensen (2004a) also completes a systematic review of papers 

on software development effort expert estimation. The author concludes that expert 

estimation is the preferred method when estimating for software development projects and 

that there is no hard evidence to prove the superiority of model estimates over that of the 

estimates from experts. Jørgensen (2004b) compares expert estimation from a top down 
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perspective and bottom up perspective. The author concludes that expert estimation might 

work better in a bottom up context when the estimators have less access to recall of similar 

projects. Jørgensen (2007) completes a systematic review of papers that used expert 

judgment, formal models, and a combination of both approaches to estimate software 

projects. The author finds that the models do not perform better than the experts when 

estimating the overall effort and makes the case for a combination approach in which both 

expert judgment and models are used. The author suggests that this might be the preferred 

approach. 

Costagliola et al. (2005) present a function point like approach called class point to 

estimate the size of a project. They consider factors such as number of external methods, 

number of services requested, and a complexity measure for each class. The class point 

approach provides a system-level size measure by considering specific aspects of a single 

class. The authors propose two measures, namely CP1 and CP2. CP1 is used early in 

development to get a measure of size, and CP2 is used later in the development process 

when information about the attributes associated with a class is known. Pendharkar (2004) 

introduces the concept of estimating object-oriented component size using regression. He 

uses regression tree models to predict object-oriented component size based on factors such 

as the number of  Graphical User Interface (GUI) elements, number of methods, number 

of subclasses, etc. Kanmani et al. (2007) build on the concept of class points to estimate 

size of the effort and use neural networks as the estimation method. The authors make the 

case that the results were comparable to the results obtained from regression models. 

Wijayasiriwardhane and Lai (2008) introduce the concept of component points, which are 

like function points to estimate size of a project. They apply it in the context of component-



25 

 
 

Copyright, Chidambaram Subbiah, 2019 

based systems. Zhou et al. (2014) introduce the concept of objective class points to estimate 

the size of an effort. 

 Jørgensen (2014) summarizes the state of software estimating based on decades of 

research in this space.  The author points out that there is no “best” effort estimation model 

or method despite years of research. There are many studies that compare the accuracy of 

estimation models and methods.  The author states that "A major reason for this lack of 

result stability seems to be that several core relationships, such as the one between 

development effort and project size, differs from context to context." The author’s findings  

imply that companies should focus on the local context and try to build their own estimation 

models. Jørgensen gives a set of recommendations, and one of the main recommendations 

was to develop and use a simple estimation model that is based on the local context in 

combination with expert estimation. He also recommends avoiding using early estimates 

based on highly incomplete information.  

A majority of papers reviewed thus far deal with the development of models and 

measuring the accuracy of models. We found various methodologies and models that 

predict size as it relates to software estimating, starting with the function points 

methodology to various other models dealing with the estimation of size. We see variants 

of the function points methodology, including Mark II function points, class points, 

component points, objective class points, etc. We also see various methodologies including 

regression, machine learning, and other predictive methodologies used in the context of 

predicting size, and there is a lot of literature on comparing the accuracy of the models.  
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There exists a branch of literature that deals with comparing estimates from experts 

with those from models. Findings suggest to combine expert-based estimating with model-

based estimating. Research also shows a case being made for bottom up estimating as 

yielding better estimates. There is a need to develop and use simple estimation models that 

meet the needs of the local context and can be used in conjunction with expert estimation.  

A design pattern is a generic solution to a commonly occurring issue in software 

design and development. Design patterns are useful in that they can speed up the 

development process in that a solution is often implemented the same way, and design 

patterns yield themselves to be reused. Design patterns often become a language in which 

experts in the software development field communicate. Many big organizations approach 

application development from the perspective of reusable standardized design patterns. 

There exists a gap in the literature where software estimating is not being viewed from the 

perspective of design patterns. Every mature organization is going to have its own niche in 

terms of reusable design patterns, and if we can find a way to identify the core design 

pattern and the tasks that form the basis for the design pattern, we will have the foundation 

for a new estimating model. Every design pattern can then be decomposed to a set of tasks 

or components and scenarios. We can then come up with a stepwise process to come up 

with a simple estimating model that meets the needs of a local context and one that 

combines expert estimation in the context of standardized design patterns.  

2.2 Agile Release Planning Methodology 

2.2.1 Definition of terms for an Agile project execution 
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CPrime (2013) defines Scrum as a subset of Agile. It is one of the most widely used 

process framework for Agile development. The Scrum team is self-organizing in that the 

team comes up with a solution to completing a task, and there is no hierarchy within the 

team. The projects move through a sequence of iterations or sprints in the Scrum model.  

At the outset, an idea for a project is considered and is taken through design sprints. 

The product owner or the business sponsor champions the project and requirements for the 

application are put together as a collection of stories into software like JIRA. JIRA is one 

of the more popular software programs used by organizations to organize sprints. 

The stories are prioritized in order of importance.  Each story is assigned story 

points when they are put into the system. Usually, more story points indicate more effort 

is involved in implementing the story. Each team might have its own method of assigning 

story points to a story. We take a collection of stories that form the crux of an application 

or deliverable and plan a release or epic. The collection of stories is sometimes referred to 

as a backlog of items. Long-term planning takes places at the release level. Short term 

planning takes place at the Sprint or Iteration level.  

An iteration or sprint is a time window during which development takes place. It 

usually varies between one to four weeks, and the duration is fixed for a given project.  The 

team decides to execute 2-4-week sprints, and they usually stick to that for the duration of 

the project. The entire release will consist of a sequence of sprints. When the team plans 

for a sprint, they pick up the highest prioritized stories from the backlog. The backlog can 

be viewed as the list of pending stories that need to be completed to deliver the 

functionality. When stories are prioritized, they can be classified as must have, should have, 
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and nice to have.  The must-have stories with the highest priority are usually taken up first 

for execution.   

Stories can be interdependent and related. For example, one story might be 

dependent on another story, and it often is useful to take up all the dependent stories 

together.   

The velocity of the team is the number of story points completed in a sprint.  We can 

obtain a high-level estimate of the remaining work in a project based on the velocity and 

number of story points remaining to be completed.  

There is a working agreement for the team.  The entire team negotiates and agrees 

to the working agreement upfront before the project starts. Each time a team member leaves 

the team, or a new team member enters the team, the working agreement is renegotiated.  

At the end of each sprint, we might have some rework based on feedback that then 

gets prioritized into the planning of the next sprint. At the sprint level, we could look at 

each story as a task. Each story is divided into sub-tasks and estimated in hours at the 

iteration planning level.  

Pair programming is a methodology where two resources share a single 

workstation. One person is usually the driver, and the other person is considered the 

navigator. This methodology is often used when there is a need to bring in a new person 

on the team or when there is a need to develop a subject matter expert, etc.  

Planning poker is one way of assigning story points to stories or hours to tasks. 

The business sponsor usually explains the intent of the story, and each person on the team 
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picks a number. Usually, the people with the lowest and highest estimate are requested to 

give justification, and the scrum master then helps the team reach a consensus towards an 

acceptable number. 

 

2.2.2 Agile release planning methodology literature review 

 

Logue and McDaid (2008) find that release planning is a crucial activity in the 

software development process. The estimate to develop a particular functionality and the 

likely return are subject to many uncertainties. In the Agile methodology, a sprint is period 

of time in which a defined unit of work or specific functionality has to be completed and 

be made ready for review. The unit of work is usually comprised of a set of user stories. A 

set of sprints often comprise a Release or an Epic. Decisions need to be made on which 

stories to include in a sprint and within the planning horizon of a release. This will often 

require a delicate balance between competing benefits and risks. G. Ruhe and Saliu (2005) 

identify the characteristics of a good release plan, which includes increasing the overall 

business value, satisfying the needs of the stakeholders, meeting the resource constraints, 

and accounting for dependencies between features. Table 2 summarizes the literature on 

Agile release planning and the related methodologies. 
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Table 2: Agile release planning methodology research 
Author Agile Concept Addressed Methodology 

G. Ruhe and Saliu (2005) Release Planning Multi Objective 

Optimization problem. 

(Cusumano, 2007) Extreme Programming and 

Iterative development 

Personal Experience, 

Interviews 

(Logue & McDaid, 2008) Release Planning Case Study 

(Moløkken-Østvold, 

Haugen, & Benestad, 

2008) 

Estimating using planning 

poker 

Case Study 

Szoke (2009) Iteration Planning. Resource-constrained 

project scheduling 

optimization problem 

(RCPSP). 

Szoke (2010) Feature Planning Optimization Model 

(Ktata & Lévesque, 2010) Estimating user stories Case Study, Interviews 

(Abdel-Hamid & Abdel-

Kader, 2011) 

Velocity Case Study 

(Da Silva, Martin, Maurer, 

& Silveira, 2011) 

User centered design and 

Agile methods 

Literature Review 

(Dong, Yang, Wang, Zhai, 

& Ruhe, 2011) 

Extreme Programming and 

Iteration planning 

Case Study. Knapsack 

based optimization 

solution. 

(Van Valkenhoef, 

Tervonen, De Brock, & 

Postmus, 2011) 

Release Planning and 

Extreme Programming 

Knapsack based 

optimization solution. 

Szke (2011) Release Planning. Multiple knapsack-based 

optimization model 

(Mahnič & Hovelja, 2012) Planning poker and user 

stories 

Case Study 

(Boschetti, Golfarelli, 

Rizzi, & Turricchia, 2014) 

Sprint Planning Optimization Model 
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Author Agile Concept Addressed Methodology 

(Grapenthin, Poggel, Book, 

& Gruhn, 2015) 

Task breakdown Case Study 

(Dragicevic, Celar, & 

Turic, 2017) 

Effort Estimation 
 

(Bilgaiyan, Sagnika, 

Mishra, & Das, 2017) 

Cost Estimation Literature Review 

(Hannay, Benestad, & 

Strand, 2017) 

Earned Business value Knapsack based  

Optimization Model. 

(Hoda, Salleh, Grundy, & 

Tee, 2017) 

Agile Software 

Development 

Literature Review 

(Usman, Mendes, Weidt, & 

Britto, 2014) 

Effort Estimation Literature Review 

(Usman, Mendes, & 

Börstler, 2015) 

Agile Software 

Development 

Survey 

Dragicevic, Celar, and 

Turic (2017) 

Estimate Tasks in an Agile 

Setting. 

Bayesian Model 

(Usman, Börstler, & 

Petersen, 2017) 

Agile Software 

Development 

Survey 

 

 

 Cusumano (2007) compares extreme programming with iterative development on 

multiple key concepts. One of the key concepts in the paper is the building of the product 

in small increments of functionality at regular intervals. The author introduces the concept 

of releases to deliver functionality in regular and small intervals. The key in this model is 

to get regular feedback from customers, and it results in an evolving product. Logue and 

McDaid (2008) complete a case study on a company using data from two projects and 

provide a method for decision makers to plan out a release in terms of which stories to 
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include in the release. They lay out the release planning process based on requesting users 

to give minimum, most likely and maximum estimates for each task.  

Planning poker is a way of assigning story points to stories or hours to tasks. The 

business sponsor usually explains the intent of the story, and each person on the team picks 

a number. The scrum master is a facilitator for an Agile development team. Usually, the 

people with the lowest and highest estimate are requested to give justification, and the 

scrum master then helps the team reach a consensus towards an acceptable number. 

Moløkken-Østvold, Haugen, and Benestad (2008) present a case study on a company to 

compare the estimate accuracy on a project. They compare the estimates using the planning 

poker methodology with that of estimates provided by experts or subject matter experts. 

They find very little difference between the two methods, but there were some tangible 

side benefits like possible improved code quality, etc. that was perceived from planning 

poker. The authors conclude that the use of planning poker moderates the effect of 

optimism and provides more accurate estimates as compared with expert estimation. Ktata 

and Lévesque (2010) complete a case study using data collected from structured interviews. 

The authors introduce the concept of technical debt, which is defined as any side of the 

current system that is considered sub-optimal from the technical perspective. The main 

contributor to technical debt is the desire of developers to cut corners to meet a deadline, 

and this results in more technical debt. The authors also research the causes for the errors 

in estimating user stories. Abdel-Hamid and Abdel-Kader (2011) complete a case study 

implementing Agile methodologies at five companies. Their study indicates implementing 

Agile practices results in improved velocity and better project morale. Grapenthin, Poggel, 

Book, and Gruhn (2015) complete a case study of two large scrum-based projects. They 



33 

 
 

Copyright, Chidambaram Subbiah, 2019 

find increasing communication as part of the process before and during the sprint help in 

better identification of tasks in a timely manner before the planning of a sprint. 

 G. Ruhe and Saliu (2005) show how different objectives related to implementation 

and requirements can be optimized using a multi-objective optimization model in the 

context of release planning. Szoke (2009) approaches the issue of iteration planning as a 

resource-constrained project scheduling optimization problem (RCPSP). The author 

identifies the developer as a unique resource and makes the case that the complexity in 

scheduling arises from various implicit and explicit dependencies around tasks like 

interdependence between tasks, priority for a task, etc. Szoke (2010) approaches the issue 

of feature planning and assigning features to teams as an optimization problem. Dong, 

Yang, Wang, Zhai, and Ruhe (2011) complete a case study at a Chinese software company 

and approach the problem of assigning user stories in an extreme programming 

environment as a knapsack problem. They provide an optimization model to help with 

iteration planning. Van Valkenhoef, Tervonen, De Brock, and Postmus (2011) approach 

the issue of release planning in an extreme programming environment in terms of a nested 

knapsack problem. Szke (2011) makes the case that Agile approaches tend to lean towards 

delivering software incrementally, where there is a sequence of small releases as opposed 

to delivering the whole system at once. He proposes "a conceptual model for Agile 

scheduling and a multiple knapsack-based optimization model with a branch-and-bound 

optimization algorithm for Agile release scheduling." Boschetti, Golfarelli, Rizzi, and 

Turricchia (2014) complete a case study using data from two projects in Italy and present 

an optimization model for sprint planning in an Agile environment to assign stories to a 

sprint. They assign a business value to each story in an approach rooted in the concept of 
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increasing the overall business value. The authors extend the model to use Lagrangian 

heuristic methods to reduce the solving time for the model. Hannay, Benestad, and Strand 

(2017) propose a knapsack problem where they maximize business value within a fixed 

cost. The authors make the case to maximize business value within fixed cost and introduce 

a new concept called business points, which are assigned to stories and tasks like story 

points. The authors introduce a new concept called earned business value and propose 

using the new metric in lieu of functionality delivered by a story. 

 Table 2.1 compares this research with the other papers in this space that have used 

optimization models to address similar problems.  

Table 2.1: Agile release planning optimization models research 

 

Numerous systematic reviews of Agile methodologies exist. Da Silva, Martin,   

Maurer, and Silveira (2011) complete a systematic review of literature dealing with papers 

that combine Agile methods with user centered design. The authors review 58 papers in 

this space and propose an integrated approach to incorporate design into the Agile process. 
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Bilgaiyan, Sagnika, Mishra, and Das (2017) complete a systematic literature review of all 

papers involving cost estimation in the Agile methodology space. They identify 26 relevant 

papers and find neural networks and expert judgment to be the most used techniques for 

estimating projects. Hoda, Salleh, Grundy, and Tee (2017) look at all systematic literature 

reviews in the Agile space and identify 28 relevant papers. These papers deal with various 

issues within the Agile Methodology like usability, human and social factors, etc. They 

conclude that there is no comprehensive study dealing with Agile practices around release 

planning.  Usman, Mendes, Weidt, and Britto (2014) finish a systematic literature review 

of effort estimation techniques within Agile software development. They identify 20 

relevant papers in this space and conclude that the most researched methods in the 

estimating context within the Agile space revolve around expert judgment, planning poker, 

and use case points. They also realize that this is an area that has still not been researched 

deeply. Usman, Mendes, and Börstler (2015) present and analyze a survey of 60 Agile 

practitioner’s in 16 countries. The authors conclude the most popular estimation techniques 

are planning poker, analogy, and expert judgment. They also find that story points were 

the most frequently used size metric. The respondents to the survey felt the dominant trend 

was towards under estimation in Agile projects. Usman, Börstler, and Petersen (2017) 

extend the previous study to include Globally Distributed Agile practices and compare 

results in terms of Effort Estimation techniques. They identify that the main differences 

were related to the secondary effort estimation techniques. Analogy was the preferred 

method for distributed Agile practitioners and use case point was the preferred metric for 

distributed Agile practitioners while function points were the preferred metric for co-

located Agile practitioners.  
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Dragicevic et al. (2017) develop a Bayesian model to help estimate tasks in an Agile 

setting. The authors propose a model that can be used in the early project phase to predict 

task effort. They make the case that the model is independent of Agile methods used. The 

authors validate the model against a database of 160 tasks from real Agile projects, and 

they found it to be accurate for estimating tasks.  

A majority of papers deal with the qualitative aspects of Agile methodology. Most 

of these papers are case studies and use the survey methodology to assess and understand 

the qualitative aspects. There are a few papers that deal with extreme programming. Most 

of the papers mostly deal with issues like various aspects of Agile, like usability, human 

and social factors, etc. There is no comprehensive study as such that deals with Agile 

practices around release planning. I found seven papers that deal with planning resources 

in a release planning context. Most of these papers approach the planning from an 

optimization context as a packing problem. They approach it as a knapsack problem and 

address the problem of assigning resources to tasks or stories based on given constraints. 

There is a gap in the literature where the skills of resources and domain expertise of 

resources is not considered when assigning resources to stories in a sprint and in a wider 

context of a release or an epic. There is also a gap in the literature where the results of 

developing a task-based bottom-up estimating model that is rooted in design patterns used 

in the company creates the foundation and sets the stage for developing an optimization 

model that helps in release planning. Agile project management is a technique of delivering 

software projects and has not been researched deeply from the perspective of optimizing 

the use of planning resources and schedules while retaining some tenets of traditional 

Waterfall-based project management such as centralized control by a Project Management 
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Office (PMO). There is a definite gap in the literature for a model that addresses the need 

of planning resources in a hybrid model where resources are managed as a pool of resources 

in the PMO while accounting for economies of scale that would result from accounting for 

skills and domain expertise of an individual.  

 

2.3 Predictive modeling in the context of estimating effort for open systems web 

development projects 

 

MacDonell and Shepperd (2003a) argue that the software community faces a 

significant challenge when it comes to effective resource prediction, and they make the 

case for accurately and consistently predicting resource requirements for effectively 

managing software projects. They make the case in 2003, and this continues to be the truth 

to date. Dejaeger, Verbeke, Martens, and Baesens (2012) find personnel costs are a 

significant contributor to expenses in the budget of software development companies. 

Software development companies often do a poor job estimating the number of resources 

needed to complete a software project. Labor costs today are one of the biggest contributors 

to cost in Software Application Development. There is limited research in this area that 

approaches software development cost giving more weightage to the labor costs in 

comparison to the overall cost. Table 3 summarizes the literature in the context of 

estimating effort for open systems web development projects.  
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Table 3:  Predictive modeling in the context of estimating effort for 

open systems web development projects 
Author Methodology Modeling Technique 

MacDonell and 

Shepperd (2003a) 

Expert Judgment, Case 

based reasoning and Linear 

Regression 

Case Based Reasoning, 

Linear Regression 

Dejaeger et al. (2012) Comparative Study Various estimating 

methodologies 

Reifer (2000) Based on Web Objects. 

Similar to COCOMO II 

WebMO model for 

estimating web projects 

Mendes and Counsell 

(2000) 

Case Study Estimation by Analogy 

Mendes, Watson, 

Triggs, Mosley, and 

Counsell (2002) 

Experimental study Multiple Regression and 

Case based Reasoning 

Mendes, Mosley, and 

Counsell (2003) 

Survey and Case Study 

using an industry database 

Case based reasoning 

Baresi, Morasca, and 

Paolini (2003) 

Empirical Study 
 

M. Ruhe, Jeffery, and 

Wieczorek (2003a) 

Case Study Combination of Cost 

Estimation, Benchmarking 

and Risk Assessment models 

M. Ruhe, Jeffery, and 

Wieczorek (2003b)  

Case Study Validation of the WEBMO 

methodology 

Mendes, Mosley, and 

Counsell (2005) 

Surveys and Case study Regression 

Costagliola et al. (2006) Experimental study COSMIC Full Function Point 

approach 

F. Ferrucci, Gravino, 

and Di Martino (2008) 

Case Study Regression 

Filomena Ferrucci, 

Gravino, Oliveto, Sarro, 

and Mendes (2010) 

Case Study using Industry 

database 

Tabu search and Support 

Vector regression 

Mendes, Abutalib, and 

Counsell (2012) 

Case Study Expert Elicitation 
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Author Methodology Modeling Technique 

Seo and Bae (2013) Case Study using industry 

datasets 

Outlier Elimination Models, 

Regression and Estimation 

by Analogy 

Čeke and Milašinović 

(2015) 

Case Study Combination of Size and 

Conceptual models 

Turhan and Mendes 

(2014) 

Comparative Study using 

cross company and single 

company datasets 

Stepwise Regression and 

Nearest Neighbor filtering. 

 

 

Reifer (2000) presents a model for web effort estimation that is rooted in specific 

metrics that applies to web-based development. He introduces the concept of Web Objects 

(WO) and WebMO as the new estimation model. WO was an extension to the function 

points approach, and WebMO took its inspiration from the COCOMO II model. The 

WebMO model uses only nine cost drivers.  

Mendes and Counsell (2000) perform a study to estimate efforts for web application 

development by using analogy. The authors use a tool (ANGEL) to obtain the most optimal 

combination of variables to predict efforts. They complete an analysis using data from 70 

web projects and conclude that analogy-based estimation is a viable method for estimating 

web projects. Mendes et al. (2002) perform a study on 37 web hypermedia applications to 

compare the prediction accuracy of case-based reasoning (CBR) techniques and then 

perform comparative analysis between the better performing CBR technique and other 

techniques including Stepwise Regression, Multiple Linear Regression and Regression 

Tree (CART) models. They find the prediction accuracy of Multiple linear and Stepwise 

regressions was better when compared with the prediction accuracy of the CBR and CART 



40 

 
 

Copyright, Chidambaram Subbiah, 2019 

models. Mendes et al. (2003) conduct a study to obtain early size measure for estimation 

of web application and investigate the prediction accuracy of company specific data with 

multi-organizational databases. The size measures were expressed using attributes of 

length, functionality, and complexity. They use 26 projects to research the accuracy of 

prediction models on company based and multi-company-based datasets. They conclude 

the prediction accuracy of company specific dataset outperformed multi-company datasets. 

Baresi et al. (2003) perform a study to investigate the impact of design efforts on 

aggregate web development efforts. This study identifies various dependent and 

independent attributes that impacts design efforts. They use Ordinary Least Squares (OLS) 

method to measure the impact and conclude that the design phase plays an important role 

in total effort estimation. 

M. Ruhe et al. (2003a) perform effort estimation of web application by using 

COBRA method (Cost Estimation, Benchmarking, and Risk Assessment), and they find 

analogy-based estimation performs better in sixty percent of cases. They introduce a new 

method Web-COBRA to enhance the accuracy of the COBRA model for web projects. 

They validate their model using 12 web projects from a company in Australia and conclude 

that their new model outperformed the Ordinary Least Squares (OLS) method. M. Ruhe et 

al. (2003b) in their subsequent study compare traditional function points and Web Objects 

using OLS. They complete a case study using 12 web projects, and the results obtained in 

this study reveal that size expressed in WO were almost 55% more in comparison to FPs, 

and this difference increases as the complexity of the projects increases. The authors 

conclude that the results reveal effort estimation by Web Objects (WO) with OLS 
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regression tree produced significantly better estimates and WO outperforms estimates 

based on expert opinion as well.  

Mendes et al. (2005) conduct a study to research web size measures and cost drivers 

used in early effort estimation of web application development. They validate their results 

using the Tukutuku database, a database containing information from multiple companies 

about web application projects. They analyze 67 web application projects and conclude the 

total number of web pages and number of features and functionality were the two most 

influential factors for effort prediction. 

Di Martino, Ferrucci, Gravino, and Mendes (2007) explain the genesis of the 

second generation of function points that were defined by the Common Software 

Measurement International Consortium (COSMIC), and it was known as the COSMIC-

FFP (COSMIC Full Function Point). COSMIC FFP was considered to be the second 

generation functional sizing method. Costagliola et al. (2006) research about the 

effectiveness of COSMIC function points to estimate for web application development. 

They use data from 44 web applications developed by students and conclude that the 

counting of data movements in an application is an important contributor for estimating 

the effort associated with the development of web applications. 

F. Ferrucci et al. (2008) conduct a study to compare the performance of COSMIC 

FP and Web Objects to predict accuracy in web development efforts. They use data from 

15 web applications and conclude that both COSMIC FP and web objects were good 

methodologies to predict effort size. Filomena Ferrucci et al. (2010) research the 

effectiveness of Tabu Search in combination with Support Vector Regression for 
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estimating web applications. They use 195 projects from the Tukutuku database to measure 

the accuracy of the estimated efforts. They compare their results with another study by 

Mendes that used the same database and conclude that Tabu Search in combination with 

Support Vector Regression produces better estimates.  

Mendes et al. (2012) developed an expert-based Bayesian Network model to 

estimate web application efforts. They did a case study using a single company dataset and 

used 22 web projects to build the model. They conclude that the results obtained show that 

expert-based Bayesian Network models can be used to estimate effort for web development 

projects.  

Seo and Bae (2013) study the effect of outliers in software effort estimation. They 

research the effect of outliers on the overall estimation accuracy using publicly available 

repositories like ISBSG. They use estimation by analogy and ordinary least squares for the 

research and conclude that removing outliers has a positive effect on the accuracy of the 

estimate. 

Čeke and Milašinović (2015) develop a hybrid model by combining COSMIC-FP 

and Unified Modeling Language (UML). They use data from 19 web-based projects and 

validate their results using simple linear regression. They infer that their results show the 

model they developed was appropriate to estimate efforts in the early stages of web 

development.  

Turhan and Mendes (2014) use data from 125 web projects to compare the accuracy 

of estimates from industry datasets and single-company models. They find stepwise 
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regression performs better in the field of software effort estimation when applied to cross-

company or industry datasets. They also suggest and make the case for companies to build 

their own estimating model using their own data when feasible. 

Most of papers reviewed in the context of estimating effort for open systems web 

development projects again deal with the development of models and measuring the 

accuracy of models. We see various methodologies and models to predict size that builds 

on the function points methodology like Web Objects Methodology and COSMIC function 

points. We see various models that use methodologies like regression, machine learning, 

Bayesian networks, and there has been one predominant database, the Tukutuku database 

used by a lot of researchers in this space. There are a lot of papers that again compare 

estimates from experts with those from models and comparing models from an accuracy 

perspective. We see a branch of literature that deals with researching web size measures 

and cost drivers that can be used for early effort estimation of web development 

applications.   

Software development in the early 1990s used to have two major costs, system 

costs, and labor costs. Over time, the cost of computing in terms of system costs has 

drastically come down and is no longer a significant contributor to costs. Labor costs today 

are one of the biggest contributors to cost in Software Application Development. There is 

a gap in the literature in that there very few attempts have been made to approach software 

estimating by predicting the labor cost associated with the project and identifying the 

underlying drivers of labor cost. For example, some of the drivers of cost include the use 

of temporary labor through hiring contractors to help fill the temporary need of completing 
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a software project, a common practice at many companies.  This research creates an 

estimating model that estimates the total labor hours for a project, identifies the most 

important explanatory factors that contribute to the overall labor cost, and quantifies the 

economic impact of resources and other factors on overall labor cost. 

 

2.4 Combining different methodologies and assessing the quality of the estimate 

 

MacDonell and Shepperd (2003a) make the case for combining estimation 

techniques. They argue there is never one method that is superior to other methods. 

MacDonell and Shepperd (2003b) in a later study make the case for the use of more than 

one predictive modeling technique. Combining estimates from different models and 

methodologies usually sets the stage for combining expert judgment with data science, and 

this can lead to more robust discussion and overall better estimates.  Table 4 summarizes 

the literature in the context of combining different methodologies and assessing the quality 

of the estimate.  

Table 4: Combining different methodologies and assessing the 

quality of the estimate 
Author Methodology Modeling Technique 

MacDonell and Shepperd 

(2003a) 

Expert Judgment, Case 

based reasoning and Linear 

Regression 

Case Based Reasoning, 

Linear Regression 

MacDonell and Shepperd 

(2003b) 

Case study based on 

historical project data. 

Linear Regression 

Mair and Shepperd (2005) Literature Review Focused on Regression and 

Analogy based models. 
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Author Methodology Modeling Technique 

Jørgensen (2007) Literature Review Expert Judgment, Formal 

methods and a combination 

of these approaches 

Bibi and Stamelos (2006) Literature Review Machine Learning 

Techniques 

Bibi, Stamelos, and 

Angelis (2008) 

Case Study  Machine Learning 

Techniques 

Hsu, Rodas, Huang, and 

Peng (2010) 

Empirical Research using 

existing datasets 

Combination Forecast 

using multiple 

methodologies, including 

regression, machine 

learning, etc.  

Mittas and Angelis (2010) Empirical Research Combination Methodology 

using regression and 

estimation by Analogy 

Dejaeger et al. (2012) Comparative Study Various estimating 

methodologies 

Kocaguneli, Menzies, and 

Keung (2012) 

Case Study Ensemble Estimates from 

multiple methodologies 

Wen, Li, Lin, Hu, and 

Huang (2012) 

Systematic Literature 

Review 

Machine Learning Based 

Estimating models 

Wu, Li, and Liang (2013) Combination Methods Case Based Reasoning 

Idri, Amazal, and Abran 

(2015) 

Systematic Literature 

Review 

Analogy based estimating 

Idri, Hosni, and Abran 

(2016a) 

Empirical Study Ensemble of Classical and 

Fuzzy analogy models. 

Idri, Hosni, and Abran 

(2016b) 

Systematic Literature 

Review 

Ensemble Effort 

Estimation 

 

MacDonell and Shepperd (2003a) compare three estimating techniques using data 

from the medical records information system. The three techniques chosen were expert 

judgment, least squares linear regression, and case-based reasoning. The authors make the 
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case for using a combination of techniques based on their conclusion that there was not one 

superior method. MacDonell and Shepperd (2003b), in a later study, analyze effort 

distribution in major Waterfall phases across 16 projects. They conclude that expert 

estimates can be improved by using estimating models that are based on historical data. 

They also conclude that the use of more than one predictive modeling technique usually 

led to more accurate estimates. Mair and Shepperd (2005) identify 20 empirical studies 

through a systematic literature review to compare the relative accuracy levels yielded by 

regression and analogy methods for effort estimation. However the results were 

inconclusive in terms of which technique should be preferred.  Jørgensen (2007) completes 

a systematic literature review of papers that compare estimating techniques using expert 

judgment, formal models and a combination of these two approaches. He concludes that a 

combined model usually produces a better estimate than an individual model. 

Bibi and Stamelos (2006) investigate five machine learning methods, including 

association rule, bayesian belief network, regression and classification trees, neural 

networks, and clustering approaches. The authors propose using a decision tree to select 

the best estimation technique, and they make the argument that the performance of the five 

techniques can change depending on the dataset and weights assigned to the model 

features. Bibi et al. (2008) come up with a model combining a couple of machine learning 

techniques. They combine Association Rules (AR) and Classification and Regression 

Trees (CART) to create a new conceptual estimation framework. Hsu et al. (2010) makes 

a case to use linearly weighted combination methods. They make the case to combine 

methods and argue that this will improve the accuracy of software effort estimation. 
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Mittas and Angelis (2010) combine Regression and Estimation by Analogy to 

create a semi-parametric model for Software Cost Estimation. They find an improvement 

when the combination models were used as compared to individually using regression or 

estimation by analogy. Dejaeger et al. (2012) investigate 13 different data mining 

techniques, representing different kinds of models on nine data sets. These techniques 

include various regression techniques and machine learning techniques. They make the 

case that their results indicate that data mining techniques make a valuable contribution to 

software estimation techniques and should be a complement to expert judgment. 

A standard machine learning approach is to try multiple methods on the available 

data and recommend the approach that performs the best. Ensemble learning, on the other 

hand, improves machine learning results by combining several models. Ensemble methods 

at a high level combine several machine learning techniques into one predictive model. 

Kocaguneli et al. (2012) make the case for ensemble methods to combine the estimates 

from multiple estimators. They make the case for combining various effort estimation 

methods and argue that this approach performs better in the scenario where there is no 

single best estimation method. Wen et al. (2012) complete a systematic literature review 

and identify eight types of machine learning techniques. The techniques identified include 

Case-Based Reasoning (CBR), Artificial Neural Networks (ANN), Decision Trees (DT), 

Bayesian Networks (BN), Support Vector Regression (SVR), Genetic Algorithms (GA), 

Genetic Programming (GP), and Association Rules (AR). They make the case that CBR, 

ANN, and DT are used most frequently and that both CBR and ANN are more accurate 

than DT. They also make the case that a machine learning model is more accurate than a 

non-machine learning model in general. The CBR method is the process of identifying 
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similar projects from the pool of historical projects that most closely match the current 

project and then setting the stage for deriving cost estimates based on the similar projects. 

Wu et al. (2013) make the case for a hybrid model combining CBR with particle swarm 

optimization (PSO) method to estimate the software effort and conclude that the hybrid 

model outperforms the independent methods.  

Idri et al. (2015) conduct a systematic literature review to examine the use of 

analogy-based software effort estimation (ASEE) techniques. They review 65 papers and 

conclude that the usage of ASEE techniques led to more acceptable estimates that  

outperform other prediction models. They also make the case that estimation accuracy is 

improved when analogy is used in combination with another technique like fuzzy logic, 

genetic algorithms, the model tree, and collaborative filtering to generate estimates. Idri et 

al. (2016a) analyze the possibility of improving the estimation accuracy through the usage 

of fuzzy and classical analogy ensemble techniques. They conclude that "Classical 

Analogy ensembles outperform solo Classical Analogy techniques, Fuzzy Analogy 

ensembles outperform solo Fuzzy Analogy techniques and that Fuzzy Analogy ensembles 

generally outperform the Classical Analogy ensembles."  Idri et al. (2016b) complete a 

systematic literature review of studies on ensemble effort estimation techniques and 

conclude that in a majority of cases, the ensemble techniques are more accurate than any 

single model.  

Many papers reviewed thus far in the context of combining estimating efforts from 

different methodologies approach it from the perspective of comparing estimates from an 

accuracy standpoint. Another stream of literature deals with creating an ensemble of 
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estimates. They conclude that we can always come up with the best combination of effort 

estimation methods even when there is no best single estimation method and that this 

approach performs better.  We saw earlier that there is stream of literature that deals with 

bottom up estimating.  

There is yet another stream of literature that is rooted in the estimation of efforts 

based on size. This research is rooted in the use of function points to estimate the size of 

the project. Many the papers reviewed thus far seem to deal with development of an 

estimation method using existing datasets and employed cost models based on function 

points. There is a gap in the literature where there is an opportunity to bring together 

executive judgment with quantitative modeling. We can try to bring together an ensemble 

of estimates that brings together a set of models that is rooted in bottom-up estimating and 

combine it with an ensemble of estimates that is rooted in the estimation of size based on 

function points. This will give an opportunity for executives to assess the quality of the 

estimates setting the stage to combine executive judgment with quantitative modeling. 

There is a case to be made to develop and use simple estimation models tailored to 

local or individual context of an organization in combination with expert estimation. There 

is a gap in the literature where no one has looked at estimating from the outside in 

perspective of design patterns. Design Patterns have been in been in vogue in the technical 

space of developing solutions for a long time, but it is not being extended to the concept of 

estimating software solutions. There is a gap in the literature where estimating is looked at 

more from the context of understanding the underlying labor cost associated with the 

project. Labor cost are usually the biggest contributor to costs these days, and there is an 
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opportunity here to understand the effects of various types of resources, including contract 

labor and employees on the overall cost of a project using real-world data. There are a lot 

of papers that make the case for an ensemble of estimates to be used, but we found that 

very little research has been done where both top-down and bottom-up approaches in 

addition to predictive modeling are brought together in an ensemble of estimates giving an 

opportunity for executives to combine executive judgment with quantitative modeling. 

Many papers explain various facets of the Agile methodology, and a few papers dealt with 

implementing the Agile process using optimization methods. There is an opportunity to 

develop a resource allocation model in an Agile context that will consider the individual 

skills of resources. The above-mentioned gaps have formed the basis for my Research 

Purpose and Contribution as outlined in the next chapter.  

 

Chapter 3: Research Purpose and Contributions 
 

The central theme of this dissertation is to advance the state of the art of estimating software 

development by approaching it from a new perspective. This research applies both 

predictive and prescriptive analytics to (1) develop a new estimating tool that produces a 

suite of estimates, and (2) develop a new optimization modeling framework for better 

planning and resource utilization in the Agile project environment. The main estimate will 

be based on the local environment of the company and on reusing the design patterns. This 

estimate will rely on a subject matter expert to break down the design into manageable 

slices of functionality or scenarios. The tool aims to provide estimates for these scenarios 

while at the same time giving the subject matter expert the capability to override an 
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estimate by providing a reason, when deemed appropriate. The optimization modeling 

framework will set the foundation for making better scheduling and resource assignment 

decisions, while considering the skill and domain expertise of resources.  We now highlight 

these components of my research contributions in greater detail.  

3.1 Advance the state of the art of estimating software development costs using 

design patterns.  

 

One of the main purposes of this research is to develop a cost estimating model that 

is based upon reusing design patterns in a bottom-up estimating context that brings 

consistency across software development in a large service organization. My contribution 

will be a detailed exploratory case study of a large service company that involves bringing 

disparate internal and external data sources together to clean, analyze and aggregate data 

to develop new software cost estimating models for traditional (Waterfall), new (Agile), 

and hybrid techniques of managing projects and then investigate implementing them as 

part of the project lifecycle.  

One outcome of this research is an estimating tool that explicitly accounts for local 

design patterns. This research outlines the development of the estimating model in generic 

terms so that the process can be repeated by other organizations to develop their own 

version of the estimating tool. This will be a tool that will set the stage to continuously 

improve estimates at the task level with the following functionalities: 

1. Analyze tasks from historical projects at the task level to come up with a set of 

design patterns that apply in the local context. 

2. Validate the design patterns with enterprise architects using thorough interviews.  
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3. Develop scenarios at the task level that are based on design patterns. 

4. Validate the scenarios with the enterprise architects and a selected subset of subject 

matter experts. 

5. Design a survey based on the above-defined scenarios. The purpose of the survey 

is to get estimates from subject matter experts for tasks that make up the scenarios.  

6. Use the survey to get input from subject matter experts who currently estimate 

software projects.  

7. Use the input from the survey in conjunction with actual past estimates to produce 

baseline estimates at the task level. 

8. Develop estimating models that are based on the scenarios developed above that 

use the baseline estimates for the tasks.  

9. Bring together the estimating models into a new estimating tool. 

3.2 Quantify the economic impact of resources and other factors on overall labor 

cost.  

 

 The second purpose of this research is to derive a predictive model to estimate the 

labor hours for a project that will be based on the underlying explanatory factors for the 

project. Typically, a project can draw on two different types of resources: employees and 

temporary labor in the form of contractors. Further, the relevant experience of resources 

can differentiate costs and productivity. This research considers the economic impact of 

resources and other factors on overall labor cost by developing a two-stage regression 

model where it predicts the labor cost. The research accounts for possible endogeneity in 
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the model and identifies the instrumental variables that help to predict the values of the 

endogenous variables in the model.  

3.3 Implementing multiple estimating models by combining executive judgment with 

quantitative modeling 

 

 The third purpose of this research is to produce two ensembles of estimating 

models. The first ensemble will bring together two estimates that are rooted in the new 

estimating model based on design patterns and one estimate that is based on the two-stage 

regression predictive model. It is based on subject matter experts completing a design and 

giving estimates at the task level based on scenarios. This ensemble is based on the bottom-

up estimating context.  

The first ensemble will consist of three estimates. 

1. SME/TL Estimate  

2. Recommended Cost  

3. Predictive Cost  

The second ensemble will rely on the company continuing to use function points to 

size projects. This ensemble uses more of the top-down approach to size projects. Function 

points are usually completed early in the design phase. It will consist of the following four 

estimates. 

1. Function Point Baseline Estimate 

2. COCOMO II Best Case Estimate 

3. COCOMO II Middle of the road Estimate 



54 

 
 

Copyright, Chidambaram Subbiah, 2019 

4. COCOMO II Costlier Estimate 

The estimates in the two ensembles will provide an opportunity for the company to 

combine executive judgment with data science to reach consensus on the final estimate for 

a project. More importantly, it will set the stage for executives to have discussions with 

project managers and technical leaders, helping to derive a more balanced estimate.  

3.4 Applying prescriptive analytics (optimization) to build a new decision-support 

framework for Agile project planning 

 

The final purpose of this research is to augment the use of the estimating model to 

build a resource allocation framework based on an optimization model that takes into 

consideration the varied skills and domain expertise of resources. The goal is to factor in 

the concepts of differentiated skill sets and domain expertise to improve the overall 

efficiency of a team over time and include possible economies of scale in the management 

of the resource pool. In the Agile release planning models, most of the existing literature 

deals with how best to increase the business value by allocating user stories to sprints and 

releases. There is little existing work that incorporates the concepts of considering skill 

levels, domain expertise, and possible economies of scale. Our initial research sets us up 

well for this final objective as we know the individual scenario level estimates and task 

level estimates. We can build on this knowledge by using skill levels for resources for 

individual scenarios or stories and come up with a model for resource planning in an Agile 

context where there are many small projects in the pipeline. 
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Chapter 4: Methodologies 
 

Business Analytics is comprised of three distinct types of methodologies: 

descriptive, predictive, and prescriptive (Mortenson, Doherty, and Robinson (2015). They 

define descriptive analytics as statistical methods designed to explore “what happened?”, 

predictive analytics as methods designed to predict “what will happen next” and 

prescriptive analytics as Operational Research/Management Science (OR/MS) methods 

designed to answer, “what should the business do next.” My research will approach the 

issue of software estimating from all three perspectives.  

According to Evans and Lindner (2012), descriptive analytics are the most 

commonly used and most well-understood type of analytics. The techniques used in this 

phase help us better understand, visualize the data, and set the stage to extract useful 

information for understanding the underlying story behind the data. I will use descriptive 

analytics to summarize the historical project data to identify trends and patterns with better 

visualization of the data for executives. This research maps the individual tasks in 20 of 

the most recent projects at ABC Inc. into design patterns, and this forms the basis for the 

design of the survey. The survey will bes used to elicit expert opinions that is then used to 

build a bottom-up estimating tool based on design patterns.  

Evans and Lindner (2012)  explain that predictive analytics examines historical data 

to detect correlations or relationships in the data, then extrapolates these relationships 

forward in time to predict what will happen in the future. The authors also mention that we 

may find relationships in data that are not clear with traditional analyses. We will use 
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predictive analytics models to estimate project costs. The predictive analytics models will 

lay the foundation for the descriptive analytics work next.   

Prescriptive analytics employs optimization to identify the best alternatives to 

minimize or maximize some objective (Evans and Lindner (2012). They explain the benefit 

of combining optimization with the mathematical and statistical techniques of predictive 

analytics to help make better decisions. This research develops a prescriptive analytics 

model built upon the detailed inputs provided by descriptive and predictive approaches. 

This results in better allocation of resources in an Agile project setting and helps create 

more efficient schedules and better manage resources.        

 This research will develop a mixed integer linear programming (MILP) model to 

optimally assign resources in an Agile software project development environment. The 

model considers the multi-skill requirement of each project and matches them with the best 

available resource with the corresponding skills. The MILP model can be solved by the 

exact branch and bound (B&B) and branch-and-cut (B&C) approach (Nemhauser and 

Wolsey (1988), which is readily available in many off-the-shelf solvers, such as IBM ILOG 

Cplex, Gurobi, Xpress, among others The IBM ILOG Cplex Studio is employed in this 

research.   
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4.1 Estimating Tool Development 

 

Models based on function point data are developed for estimation purposes. We also 

combine executive judgment with the quantitative models.  

4.1.1 Function points related predictive models 

 

Simple Linear Regression  

 The first function points-based model attempts to identify a simple relationship 

between the function point count of a project and the actual cost of the project. The data 

consists of a historical database of projects with function point counts and the final labor 

cost associated with the project.  

 In this model, the dependent variable is the estimated labor hours for a project, and 

the explanatory variable is the adjusted function point count of the project. A simple linear 

regression model is given as follows: 

 𝑦 =  𝛽0 + 𝛽1𝑥 +  𝜖, 

where 𝛽0  and 𝛽1  are parameters to be estimated in the model, and 𝑦  is the dependent 

variable, and 𝑥 is the explanatory variable. 𝜖 is the error terms associated with the model.  

Parlati (2011) mentions that the cost of a single function point can be estimated from past 

projects. We have a historical database of 80 projects available with actual design and 

development costs, plus the actual total labor costs associated with the projects.  

 

Two simple models are implemented in this research to understand the cost of a single 

function point.  
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𝐸(𝐷𝑒𝑠𝑖𝑔𝑛 𝑎𝑛𝑑 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡) = 𝛽0 +  𝛽1 ∗ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑃𝑜𝑖𝑛𝑡𝑠 𝐶𝑜𝑢𝑛𝑡  

𝐸(𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡) = 𝛽0 +  𝛽1 ∗ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑃𝑜𝑖𝑛𝑡𝑠 𝐶𝑜𝑢𝑛𝑡 

 

Multiple Regression 

 In a multiple regression model, the dependent variable is explained by multiple 

explanatory variables. The multiple regression model can be written as follows: 

𝑦 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +  𝛽3𝑥3 + ⋯ + 𝛽𝑛𝑥𝑛 +  𝜖, 

where 𝛽0, 𝛽1, 𝛽3 … . 𝛽𝑛are parameters in the model, and 𝜖 is the error terms associated with 

the model. 

One of the major activities in the planning phase of the project in the organization is the 

definition of business requirements for the project. The business users define these 

requirements in elaborate detail, which form the basis for the design phase of the project. 

There are typically over a hundred requirements associated with each project. One multiple 

regression model that is implemented to understand the impact of requirements and 

function point counts on the overall labor cost associated with the project can be written 

as: 

𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑠𝑡) = 𝛽0 +  𝛽1 ∗ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑃𝑜𝑖𝑛𝑡𝑠 𝐶𝑜𝑢𝑛𝑡 +  𝛽2 ∗ # 𝑜𝑓 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 

 

The function point count consists of five main components. One may view it as the 

partitioning of the overall count. Longstreet (2002) defines the five major components of 

function points as follows: 

Internal Logical File (ILF) refers to user identifiable group of data than can be grouped 

together. This group of data resides entirely within the application boundary. External 
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Interface File (EIF) is a user identifiable group of logically related data that resides entirely 

outside the application boundary and is maintained in an ILF by another application.  This 

data is used by the application for reference purposes only. The ILF and EIF are referred 

to as data functions within function points.  

It is valuable to understand the impact of ILF and EIF separately on the overall labor cost 

via the following multiple regression model: 

𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑠𝑡) = 𝛽0 +  𝛽1 ∗ # 𝑜𝑓 𝐼𝐿𝐹 +  𝛽2 ∗ # 𝑜𝑓 𝐸𝐼𝐹 

The other three components associated with function points are referred to as 

transaction function and are as defined by Longstreet (2002) as given below.  External 

Input (EI) refers to a process in which data crosses the boundary from outside to inside. 

External Output (EO) refers to a process in which data crosses the boundary from inside to 

outside. The data typically creates reports or output files. External Inquiry (EQ) refers to a 

process in which data is retrieved from one or more internal logical files and external 

interface files. It involves both input and output components.  

It will be valuable to understand the impact of the transaction functions on the 

overall labor cost. This research employs the following three such models to study the 

impact of the transaction functions on the overall cost.  

 

 𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑠𝑡) = 𝛽0 +  𝛽1 ∗ # 𝑜𝑓 𝐸𝑄 +  𝛽2 ∗ # 𝑜𝑓 𝐸𝐼 +  𝛽3 ∗ # 𝑜𝑓 𝐸O 

𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑠𝑡) = 𝛽0 +  𝛽1 ∗ # 𝑜𝑓 𝐸𝑄 +  𝛽2 ∗ # 𝑜𝑓 𝐸𝐼 +  𝛽3 ∗ # 𝑜𝑓 𝐸 O + 𝛽4 ∗

# 𝑜𝑓 𝐸𝐼𝐹 +  𝛽5 ∗ # 𝑜𝑓 𝐼𝐿𝐹 

𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑠𝑡) = 𝛽0 +  𝛽1 ∗ # 𝑜𝑓 𝐸𝑄 +  𝛽2 ∗ # 𝑜𝑓 𝐸𝐼 +  𝛽3 ∗ # 𝑜𝑓 𝐸 O + 𝛽4 ∗

# 𝑜𝑓 𝐸𝐼𝐹 +  𝛽5 ∗ # 𝑜𝑓 𝐼𝐿𝐹 + 𝛽6 ∗ # 𝑜𝑓 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 
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4.1.2: Two Stage Least Squares (2SLS) model and Decision Tree Analysis 

 

The two stage least squares model relates to the research contribution explained in Section 

3.2 with the purpose of quantifying the economic impact of resources and other factors on 

the overall labor cost. The two stage least squares (2SLS) technique is an extension of the 

ordinary least squares (OLS) method.  It is used when the dependent variable’s error terms 

are correlated with the independent variables. We have to take into account the possible 

existence of endogenous variables in our model. Nagler (1999) defines endogenous 

variables as variables that are functions of other variables present in the system. 

 In a multiple regression model, the dependent variable is explained by multiple 

explanatory variables. The goal of this research is to predict the total labor hours that will 

be needed for a project. The dependent variable, in this case, will be total labor hours. The 

following could be additional explanatory variables that can be considered in the regression 

models. 

1. Project Type 

2. Number of tasks 

3. Number of tasks by each phase, design, development, testing, implementation, 

and planning 

4. Number of resources 

5. Number of contracting resources considering experience of resources 

6. Number of associates 

7. Percentage time spent on design 

8. Percentage time spent on development 

9. Percentage time spent on planning 

10. Percentage time spent on verification/testing by IS 

11. Percentage time spent on meetings 

12. Percentage time spent by employees/contractors on the project 

13. Number of defects by category (sev1, sev2, sev3, and sev4) 
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14. Number of requirements 

15. Number of test plans 

16. Area doing the project  

17. Function point information 

18. Duration of the project 

19. Project type 

 

One example of the model can be written as:  

𝐸(𝐿𝑎𝑏𝑜𝑟 ℎ𝑜𝑢𝑟𝑠) = 𝛽0 +  𝛽1 ∗ # 𝑜𝑓 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠 +  𝛽2 ∗ # 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠 +  𝛽3 ∗

# 𝑜𝑓 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑡𝑎𝑠𝑘𝑠 +  𝛽4 ∗ 𝑇𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑖𝑛 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 +  𝛽5 ∗

𝐴𝑟𝑒𝑎 𝑑𝑜𝑖𝑛𝑔 𝑡ℎ𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡  

In our model above, it is quite possible that the variables # of employees and # of 

contractors are functions of other variables and hence could be endogenous variables.  

We could have a sample model as outlined below that estimates the number of 

contracting resources 

𝐸(# 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠)= 𝛽0 +  𝛽1 ∗ # 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠 + 𝛽2 ∗

# 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙 𝑡𝑎𝑠𝑘𝑠 +  𝛽3 ∗ # 𝑜𝑓 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 

Nagler (1999) observes that when a variable is endogenous, it will be correlated with the 

disturbance term resulting in the violation of the general model assumptions and make the 

Ordinary Least Squares (OLS) estimate biased. 

This endogeneity calls for the need of an instrumental variable, which is another 

variable used in regression analysis to deal with endogeneity in the model.  

The multiple regression model is given as follows 

𝑦 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +  𝛽3𝑥3 + ⋯ + 𝛽𝑛𝑥𝑛 +  𝜖, 
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where 𝛽0, 𝛽1, 𝛽3 … . 𝛽𝑛are parameters in the model, 𝜖 is the error terms associated with the 

model. 

Suppose  𝑥1is an endogenous variable (as a function of x2 and x3) and define  𝐼𝑉1 as an 

instrumental variable such that:  

𝑥1̂ =  𝛾0 +  𝛾1𝐼𝑉1 +  𝛾2𝑥2 +  𝛾3𝑥3 +  𝜈 

We can then plug in the fitted values of 𝑥1̂ into the original linear regression equation 

𝑦 =  𝛽0 + 𝛽1𝑥1̂ + 𝛽2𝑥2 +  𝛽3𝑥3 + ⋯ + 𝛽𝑛𝑥𝑛 +  𝜈, 

where 𝜈 is a composite error term that is uncorrelated with 𝑥1̂, 𝑥2𝑎𝑛𝑑 𝑥3. 

My work constructs the appropriate instrumental variables to explain the 

endogenous variables. We then use two stage least squares regression method as outlined 

by Kmenta (2011) to estimate the labor hours needed for a project. We also run the 

diagnostic tests as outlined by Kmenta (2011) to validate the model.  

Decision Trees 

The Decision Trees based model relates to the research contribution explained in 

Section 3.2 with the purpose of quantifying the economic impact of resources and other 

factors on overall labor cost.  

Bernard (2015) shows how decision tree models may be used for classification of 

occurrences into prespecified groups, for prediction of values of a dependent variable based 

on values of independent variables, and for data exploration in model building. The author 

also shows why decision trees have several advantages over other models, which include 

the capability of handling nonlinear relationships between variables, insights into input / 
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output relationships via data partitioning, estimated risk factor contained in each path of 

the tree, and the intuitive output.  Various decision tree algorithms, including Classification 

and Regression Tree (CART) and Chi-square Automatic Interaction Dedication (CHAID), 

build and prune decision trees in differing ways.   

Gray and MacDonell (1997) show how decision trees can be used to predict testing 

time for software development. The authors implement the decision trees that built upon 

variables such as program length, development time, number of screens, mean testing time, 

etc. This is an example of the Classification and Regression Tree (CART), where the 

algorithm creates binary trees by splitting records at each node. Bernard (2015) mentions 

that CHAID creates wider, non-binary trees often with many terminal nodes connected to 

a single branch, and automatically prunes the decision tree to avoid over fitting of the 

model.  

This research applies decision trees, using the main contributing explanatory 

variables to predict labor hours needed for a project. The explanatory variables that will be 

used to fit the tree include variables such as the number of employees used in a project, the 

number of contractors used in a project, the number of experienced contractors used in a 

project, the time spent in each phase of the project including in planning, design, 

development, testing, implementation and post-implementation, the number of tasks in 

each phase of the project, meeting time, etc. This research will not use the results from the 

decision tree analysis to estimate labor hours but rather use the results to better understand 

the underlying data and the most important explanatory variables. Results from the decision 

tree approach are then used in conjunction with the results from the multiple regression 
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model to understand and validate the most important explanatory variables to explain the 

total labor hours in the underlying data.  

4.1.3 Function points related suite of estimates 

 

The creation of the suite of estimates relates to the research contribution explained in 

Section 3.4 with the purpose of providing an opportunity for the company to combine 

executive judgment with data science to reach consensus on the final estimate for a project. 

The function point repository was split by function point ranges. The ranges that were used 

are 0-100, 100-200, 200-300, 300-400, 400-500, and above 500 function points.  

 This research created a new Excel based tool to calculate the suite of estimates 

based on the function point count for each individual project. These estimates were 

calculated for all projects in the repository, and the difference of each estimate from the 

actual cost of the project was also calculated. We then calculated the average for each of 

these differences across all function point ranges, as defined above. Based on the average 

difference in each range, a determination was made as to which method offered the better 

estimate in each range based on the average difference for each estimate.  

4.1.4  Development of the task based estimating model 

 

The development of the task based estimating model relates to the research contribution 

explained in Section 3.1 with the purpose of advancing the state of the art of estimating 

software development costs using design patterns and incorporating continuous 

improvement over time.  
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Expert Feedback and Surveys 

Jørgensen (2007) finds that expert estimation is one of the primary strategies when 

estimating software development effort and concludes that there is little evidence to 

support the superiority of model-based estimates over the estimates of experts. He also 

develops a combined model with estimates from both models and experts. Jørgensen, 

Boehm, and Rifkin (2009) find that expert judgment-based effort estimation methods lead 

to more accurate effort estimates than using sophisticated formal models. They also 

mention that bringing more structure to the estimation process such as introducing 

experience-based estimation checklists and a structured group process will further improve 

the estimation quality. My goal in this research is to leverage feedback from experts in the 

organization and bring consistency to the estimation process. Moløkken and Jørgensen 

(2003) complete a systematic review. They observe that expert estimation is the most 

frequently used method and that there was no evidence to show that the use of estimation 

methods based on models led to better estimates. They also find that project overruns are 

frequent, but at the same time major overruns were a rarity. Jenkins, Naumann, and 

Wetherbe (1984), Lederer and Prasad (1995), Moløkken-Østvold et al. (2004) use surveys 

to address the topic of estimation accuracy. Lederer and Prasad (1992), Moløkken-Østvold 

et al. (2004) address the issue of which estimation approach is better. Jørgensen and 

Shepperd (2007) conduct a systematic literature review of software estimation studies and 

find that nine percent of the studies reviewed used surveys as the primary research 

methodology. This research employs a combination of expert feedback and surveys to 

come up with baselines for the estimation tool.  

This research study builds and analyzes responses from a survey as outlined below.  
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1. Understand the data by taking up to 20 of the latest projects that were executed by 

the organization.  

a. Look at the individual tasks used in each phase of the project while paying 

more attention to the design and development tasks.  

2. Look for design patterns in the tasks and visualize the design patterns. 

a. We anticipate identifying multiple design patterns for the organization 

based on the type and nature of work being done in the projects. 

3. Validate the design patterns with experts (enterprise architects) in the organization.  

4. Come up with scenarios to estimate based on the design patterns.  

5. Validate the scenarios with experts (enterprise architects) in the organization.  

6. Convert the scenarios to individual tasks based on feedback from the historical data. 

7. Design a survey to get estimates at the task level based on the scenarios in the design 

patterns accounting for complexity at the task level. 

8. Validate the surveys with the experts (enterprise architects) in the organization.  

9. Send out the survey to all the technical leads or subject matter experts in the 

organization.  

10. Collect the responses from the survey.  

11. These responses will be validated again with the experts and will form the baseline 

for bottom-up estimates in the estimating tool.  

All the project steps are outlined in a visual representation in Figure 1. The diagram below 

shows all the steps that were undertaken as part of the research in working with the 

organization.  
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Figure 1: Project Steps – Data Collection to Estimating Model to Resource Plannning 

 

4.1.5 Estimating tool requirements:  

 

The requirements for the estimating tool were:  

1. The design patterns had to be reflected in the tool. 

2. The tool had to be user friendly and intuitive to use.  

3. The tool had to provide the capability to create a bottom-up estimate that was rooted 

in the design patterns of the organization.  
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4. The tool had to be capable of creating a subject matter expert estimate and a 

recommended estimate. The subject matter expert estimate also had to form the 

basis for the predictive model estimate.  

5. The above mentioned two estimates were part of a suite of estimates. 

6. The tool had to accommodate the capability to enter function points. The function 

point count would then form the basis for four estimates.  

7. All seven estimates would then be part of an estimates comparative tab in the tool. 

This would give the capability to combine executive judgment with data science.  

8. The tool had to have the capability to partition the overall cost by high level features 

and requirements.  

9. The tool had to have the capability to upload the final estimate to the time booking 

system for tracking purposes.  

10. The tool had to have the capability of producing a running total each time a task 

was added.  

11. The tool had to have the capability to keep track of time by each phase of the project 

and compare it to historical averages for the organization and each individual area.  

12. The tool had to have the built-in capability for the subject matter expert to override 

the recommended cost.  

13. The tool had to have the built-in capability to account for project management time 

and tech lead contingency time and meeting time. This time had to be allocated 

across phases based on the input of the project manager.  

The above-mentioned requirements were implemented as part of the new estimating tool.  
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4.2 Assessing the quality of the estimate from the estimating tool 

 

There was no existing framework to process the actual data from the execution of the 

project and compare it with the initial estimation data at the task level. This research created 

a framework to embed a hidden field containing all attributes of the individual task, 

including the original estimate with each task in the bottom-up estimate. That hidden field 

can be pulled out after the execution of the project to compare the actual time with the 

original estimate. The framework for processing this data was built in Tableau, and it is set 

to accommodate tasks from all projects as they complete.  

The foundation of the estimating tool was based on survey responses from the 

subject matter experts. There were 14 responses from the open systems SMEs and 14 

responses from the server-side SMEs. Each of the SMEs had given their estimates for the 

tasks that were based on the design pattern of the organization. The estimates for each task 

were given on a complexity scale of high, medium, and low.  

 An array of estimates for each of the projects was created using the survey 

responses from each SME as the basis. A Java program was written to go through each task 

in the estimate and match it up with the survey responses from the SME's. The Java 

program produced 14 open systems estimates and 14 server-side estimates for each project 

based on the assumption that each individual task was being estimated by a SME who 

completed a survey response. The Java program then matched up every open system's 

estimate with each of the server-side estimates to generate 196 estimates. Some projects 

did not have a server-side component, and so each project would have between 14 and 196 

possible estimates. 



70 

 
 

Copyright, Chidambaram Subbiah, 2019 

4.3 Optimization model for allocating resources to tasks in an Agile setting 

 

The development of the optimization model furthers the research contribution 

explained in section 3.4 by applying prescriptive analytics (optimization) to build a new 

decision-support framework for Agile project planning. The Agile project planning and 

resource allocation problem (APP-RAP) aims to optimally assign personnel with the 

appropriate skills to stories in every sprint to maximize the total discounted return of 

assigned stories. The mixed-integer linear programming (MILP) model can be formulated 

as follows...   

 

Sets and Parameters 

𝑅: Set of potential projects to be completed during the planning horizon 

𝑆𝑟: Set of stories belonging to project r ∈ R 

𝑆: Set of all stories across all projects 

𝑇: Set of all sprints in the planning horizon 

𝐾𝑠: Set of skills required by story s ∈ S 

𝐾: Set of all skills 

𝐼: Set of individuals available to be assigned to work on stories  

𝑀𝑟: Maximum number of sprints allowed from the start date to the complete date for 

project  r ∈ R 
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𝛱𝑠𝑟∶value (in $) of story s ∈ S in project r ∈ R 

𝑅𝑂𝐼𝑟:  ROI (in $) of a project 

𝛱𝑠𝑟 = 𝑅𝑂𝐼𝑟 ∗
𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑠𝑡𝑜𝑟𝑦 𝑠

𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑡𝑜𝑟𝑖𝑒𝑠 𝑖𝑛 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑟
 

The nominal time refers to the estimated time for story s in this context.  

The ROI is given at the project level. We calculate the value of a story in a project by 

calculating the contribution of a single story in terms of its estimate as a percentage 

contribution of the total estimate for all stories in a project 

For example, if we have three stories 𝑠1 , 𝑠2 𝑎𝑛𝑑 𝑠3 in project 1.  

𝑝1 is the nominal processing time for story 𝑠1 and is estimated to take 40 hours. 

𝑝2 is the nominal processing time for story 𝑠2 and is estimated to take 80 hours. 

𝑝3 is the nominal processing time for story 𝑠3 and is estimated to take 80 hours. 

Assume the ROI of the Project 1  is $47,469, and the total estimated time for all stories in 

project 1 is 540 hours 

The value of Story 1:  $47469 * (40/540) = $3516 

The value of Story 2: $47469 * (80/540) = $7032 

The value of Story 3:  $47469 * (80/540) = $7032 
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𝑊𝑖𝑡: Workload of individual 𝑖 ∈ 𝐼 in sprint 𝑡 ∈ 𝑇 

𝑃𝑠:The nominal processing time of story 𝑠 ∈ 𝑆  

𝑃𝑠𝑘  : The nominal processing time for skill 𝑘 ∈ 𝐾  in story 𝑠 ∈ 𝑆 

The nominal time above refers to the estimated time for a story and the estimated time for 

a skill in the story. For example, we have a story that has an estimate of 40 hours. This 

story is comprised of four skills S1, S2, S3, and S12. The individual estimate to complete 

those skills is S1(4 hours), S2(20 hours), S3(2 hours) and S12(14 hours). 

𝜃𝑖𝑘: Efficiency score of individual 𝑖 ∈ 𝐼 to work on skill 𝑘 ∈ 𝐾 

The efficiency score of an individual for a skill is computed based on the following factors:  

1. Total experience of an individual in a skill. 

2. The date when the skill was last employed by an individual.  

3. The self-rating for the skill by the individual. 

4. Rating of the individual on the skill by the SME or by all the other team members 

This research applies a weighted score based on the above factors.  A higher efficiency 

score means the individual is better suited for the skill, whereas a lower score close to 

zero means the individual is completely incapable for the corresponding skill. The lower 

bound for an efficiency score is 0.01, and the upper bound for an efficiency score is 1.  

𝑃𝑠𝑘

𝜃𝑖𝑘
: Time taken by individual 𝑖 to perform skill 𝑘 in story 𝑠 in hours 

𝐶𝑖: Pay Rate per hour of individual i ∈ I 
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𝐷:  Discounting Factor. We use a discount factor of 0.01 in the execution of the model 

for all runs.  

𝑆𝐴𝑁𝐷: Set of pairs of stories that must be assigned to the same sprint. It accounts for all 

stories that have the constraint which must be implemented in the same sprint. 

For example, if we have a requirement that stories 1, 2 and 3 must be completed in the 

same sprint, we would define it as shown below 

SAND = [{1, 2}, {2, 3}]; 

𝑆𝑂𝑅: Set of pairs of incompatible stories. It includes all the stories that cannot be 

implemented in the same sprint.  

For example, the definition below shows a case where stories 1 and 10 have to be 

executed in different sprints. Similarly, stories 11 and 23 have to be executed in different 

sprints.  

SOR = [{1, 10},{11, 23}]; 

𝐹: Set of precedent relationships of pairs of stories . For example, when story s need to 

precede story s′, the set {𝑠, 𝑠′} must be an element of  𝑆𝐴𝑁𝐷 or 𝐹. 

Assumptions: 

 Each story has been decomposed into sub-tasks that each require a single skill. Our 

first assumption is that each sub-task requiring a single skill will be completed in a single 

sprint. The estimate associated with these sub-tasks is often at or below 40 hours, which is 

typically the case in real life operations. The second assumption is that all skills/sub-tasks 
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associated with an assigned story are completed in the same sprint. It could often be the 

case that these sub-tasks can be worked on in parallel, thus this assumption is in-line with 

what happens in the real world where a story is often decomposed in such a way that it can 

be completed in one sprint. The time for a single story is 80 hours or less, and this is an 

assumption that will help avoid carryover stories from sprint to sprint and is in-line with 

real life operations. It implies that one story including all its sub-tasks can be completed in 

a single sprint. The final assumption we make is all projects can start at the same time. We 

have a constraint to enforce the deadline by which a project must be completed. This 

constraint ensures that all the stories with its associated sub-tasks/skills are available to be 

allocated to resources.  

Decision Variables:  

𝑋𝑖𝑡𝑠𝑘 = 1 if individual i is assigned to story s to perform skill k in sprint t 

        = 0 otherwise 

 𝑌𝑠𝑡 = 1  if story s is assigned to sprint t 

      = 0 otherwise 

𝑌𝑠𝑡 is an auxiliary or derived decision variable that denotes whether or not story 𝑠 is 

performed in sprint 𝑡.  
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Objective Function: 

The total net return is calculated as the difference between the total discounted return and 

the total staffing cost. The cost was not discounted in the objective function with the 

assumption that the staffing cost can be treated as sunk cost for the internal employees.  

The objective function can be easily revised to discount cost if needed.   

Maximize the total net return: Total discounted return - Total cost 

Maximize    

∑ ∑ ∑
(Πsr ∗ Yst)

(1+𝐷)𝑡  − ∑ ∑ ∑ ∑ Ci ∗ (Xitsk  ∗
Psk

θik
k∈Ks∈St∈Ti∈Is∈S )𝑟∈𝑅t∈T                     (1) 

Constraints: 

The constraint (2) below ensures that each story is assigned to at most one sprint. 

It is consistent with the possibility that all the stories may not be completed during the 

planning horizon.   

∑ Yst ≤ 1t∈T                            ∀ s ∊ S     (2) 

 

The constraint (3) below ensures that each skill is performed by exactly one 

individual for each story assigned to a sprint.  Note that no individual is assigned to a story 

if the story is not executed in a particular sprint.   

∑ Xitsk = Yst                                    ∀ s ∊ S, k ∊ Ks, t ∊ Ti∈I               (3) 
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We need to meet the requirements that the maximum workload of each individual 

cannot be exceeded. The maximum workload of individual i in sprint t is denoted by 𝑊𝑖𝑡 . 

The constraint (4) below ensures that the total time spent by individual 𝑖 to work on the 

story is less than or equal to the maximum workload of individual 𝑖 in sprint t 

∑ ∑ (Xitsk ∗
Psk

θik
) ≤ Wit                           ∀ t ∊ T , i ∊ Ik∊Kss∈S                (4) 

Side Constraints 

While Constraints (2) through (4) are the main constraints of the optimization 

problem, some additional requirements of can be modeled by the incorporating the 

following side constraints. For example, there might be a requirement that a set of stories 

must be all be completed in the same sprint. Constraint (5) below ensures that all the stories 

in the set 𝑆𝐴𝑁𝐷 are assigned in the same sprint. Specifically, for each set γ of stories in 

SAND, the number of assigned stories must equal the cardinality of γ, i.e., all the stories in 

γ are assigned.  

∑ ∑ 𝑌𝑠𝑡𝑡∈𝑇 = |γ|                            ∀  γ ∊ SAND
s∊γ                             (5) 

Constraint (6) below ensures that all the stories in the collection 𝑆𝐴𝑁𝐷 are assigned 

to the same sprint.  

 

∑ Yst ∗ tt∊T =  ∑ Ys′t ∗ t               ∀ s, s′ ∊ γ, s > s′t∊T                     (6) 
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Recall that  𝑆𝑂𝑅 contains the stories that are incompatible with each other, thus only 

one story from SOR can be assigned in a sprint. The constraint (7) guarantees that at most 

one story from the set 𝑆𝑂𝑅 will be assigned to a sprint.  

∑ Yst ≤ 1                                      ∀ γ ∊ SOR, t ∊ T s∊γ                         (7) 

We often have time-dependency constraints, i.e., precedence relationships, where 

story 𝑠 needs to be completed before story 𝑠′. These set of stories are contained in the set 

𝐹. The constraint (8) below ensures story 𝑠 is assigned before story 𝑠′.  

∑ Yst ∗ tt∊T ≤  ∑ Ys′t ∗ t                                ∀ (s, s′) ∊ Ft∊T                (8) 

 

We have a need to consider the constraint for the deadline on makespan  of the 

project. We introduced a new input parameter Mr, i.e., the maximum number of sprints 

allowed per project from the start date to complete the project for each project r ∈ R. For 

example, if a project’s end date is two months out, 𝑀𝑟  would have a value of three 

assuming each sprint is three weeks long. Similarly, if the project’s end date is one month 

out, 𝑀𝑟  would have a value of two. The constraint (9) below ensures all stories 𝑠𝑟 

belonging to a particular project 𝑟 will be completed before the end of 𝑀𝑟 which is the 

maximum number of sprints allowed to complete the projects. This ensures the end date 

constraint for each project is met.  

∑ Yst ∗ tt∊T  ≤ Mr                              ∀ s ∈ sr                                 (9) 
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Chapter 5: Data  
 

The first phase of the research creates a tool for project leaders to get a high-level 

estimate of effort for a project after the function points are calculated in the early design 

phase of the project. Data for the analysis were collected from the existing function point 

repository of projects completed since 2014.   

"ISBSG (International Software Benchmarking Standards Group) is a not-for-profit 

organization. The ISBSG was founded in 1997 by a group of national software metrics 

associations.  They aim to promote the use of IT industry data to improve software 

processes and products" ("About ISBSG,"). ISBSG has a repository of more than 8000 

projects. I gained access to this repository as a doctoral student. A high-level analysis of 

projects in the relevant comparable industry sector which used the same technology stack 

as the service company were analyzed, and a project delivery rate of 18 hours per function 

point was used as the ISBSG benchmark for our analysis.  

We had access to multiple data sources at the service company with over seven 

years of data from the Program Management Office (PMO) and data from the operational 

excellence area of the company for one part of the research. Real world data is being used 

in the research, and the models that have been developed have been made part of a custom-

tailored estimating tool that is currently being used by the company.  

5.1: Data for predictive models 
 

We had access to multiple datasets. The first dataset we had access to was the function 

point data repository. The organization collects and preserves data on projects that have 
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been through the function points counting process. We were given access to the entire 

function point repository. It consisted of over 70 projects over the past four years, and 

estimated costs which were inputs for calculating the counts. We now have access to the 

actual labor costs associated with the project in a separate dataset. Two datasets are merged 

for the modeling purpose.  

Figure 2: Function points dataset 

 

 

 

The key to merging the two datasets was the expense code/project ID associated with the 

project. We merged the two datasets using the query builder utility in SAS Enterprise 

Guide. See Table 5 below a few snapshots of the available data. The data has been masked 

to hide the proprietary information such as expense code, project name, director name, and 

team name.  

Actual Costs 

associated with the 

projects 

Merged function 

points Dataset for 

Modeling 

Function Point 

Repository 
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Table 5: Function point repository 

 

Actual Labor cost dataset: Please see Figure 3 below for a snapshot of the data that 

was provided. We had information on the total labor hours across all phases of the 

project and total labor hours for the design and development phases of the project.  
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Figure 3: Actual labor cost dataset sample 

 

Description of Individual Variables in the merged dataset:  

This dataset contains the following data fields. 

a. Project Name: This field has  been masked.  

b. Expense Code / Project ID: Unique ID associated with the project. This field 

is been masked. 

c. Team Name: Denotes the application development team responsible for the 

project. This field is been masked.  

d. Area Name: Domain area within the Application Development division 

executing the project. This field is been masked as well. Each area consists 

of 4-9 individual teams.  

e. Total Labor Hours for the Project: The total labor hours across all phases of 

the project, including planning, design, development, testing, 

implementation, and post-implementation.  

f. Total Design and Development hours for the project: The total design and 

development time in hours spent on the project.  

New Project ID New Project Name Total Labor Hours for the projec Actual Design and Development Labor

1 Project 1 5575.5 2121.75

2 Project 2 29326.25 17933.75

3 Project 3 3109.5 1542.5

4 Project 4 27446.5 19087.25

5 Project 5 4321 3424.25

6 Project 6 8803.5 7195.75

7 Project 7 43609 21264.6

8 Project 8 13334 3931.75

9 Project 9 19806.45 9205.15
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g. Total Labor Cost: The total labor cost in dollars associated with all phases 

of the project.  

h. Total Design and Development Cost: Total labor cost in dollars associated 

with the design and development phase of the project.  

i. Hours to Count: The total number of hours spent on doing the actual 

function point count by the application development teams. 

j. Total UFPs: Total unadjusted function points. 

k. Function Point Count: The function point count is made up of five 

components, and they are also given in the dataset 

i. Internal Logical Files (ILF) 

ii. External Interface Files (EIF) 

iii. External Inputs (EI) 

iv. External Outputs (EO) 

v. External Queries (EQ) 

l. Value adjustment Factor: The adjustment factor is calculated by the team 

for the project. The value adjustment factor is based on 14 system 

characteristics that rate the functionality in the application being counted, 

and these 14 characteristics are given values by the application development 

team.  

m. Adjusted Function Point Count: The unadjusted function points multiplied 

by the value adjustment factor. 

n. Cost per FP: Total labor cost divided by the adjusted function point. 
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2. Task level data for all projects that had executed in the past seven years. Task level 

data for each project was aggregated, resulting in nearly 60,000 rows containing 

information about each task for 400 projects. The task level data contained the 

following variables in the dataset. The project name and resource names have been 

masked in the dataset to protect proprietary information.  

 

a. Project Name: This field is been masked. 

b. Task Name: Every project is made up of hundreds of tasks split across 

all phases of the project. This field is the name given to the task in the 

time tracking system.  

c. Task Start Date: The date the task was put into the time tracking system.  

d. Task End Date: The date the task was closed in the time tracking system. 

e. Assignment Resource Name: This field identifies the resource who 

worked on the project. This field is being masked.  

f. Assignment Start Date: The date when the task was assigned. 

g. Assignment End Date: The date when the assigned task was completed.  

h. Assignment Total Actual Hours: The total time in hours taken by the 

resource to complete the task:  

i. Charge Code associated with the task: Identifies the phase associated 

with the project. The options were planning, design, development, 

testing, implementation, and post-implementation.  

j. Resource Type: Identifies if the resource was an employee or contractor. 
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At the high level, we aggregated the data to compute the following variables at the project 

level from the provided dataset. We used SAS Enterprise guide to aggregate individual 

variables from the above-given data and merged them to aggregate information at the 

project level. A few snapshots of the given data are given below in Figure 4.  

Figure 4: Aggregated task level data sample 

 

 

The aggregated dataset contains the following fields.  

• Project ID 

Project Name Task Name
Task Start 

Date

Task 

Finish Date

Project 25 ADV_SOL4-Design-Internal Transfers-PL 1/3/2012 3/23/2012

Project 25 ADV_SOL4-Design-Internal Transfers-PL 1/3/2012 3/23/2012

Project 25 ADV_SOL4-Design-Internal Transfers-SME 1/4/2012 7/20/2012

Project 25 ADV_SOL4-Design-Internal Transfers-SME 1/4/2012 7/20/2012

Project 25 ADV_SOL4-Design-Internal Transfers-SME 1/4/2012 7/20/2012

Project 25 ADV_SOL4-Design-Internal Transfers-SME 1/4/2012 7/20/2012

Project 25 ADV_SOL4-Design-ACAT 1/23/2012 1/23/2012

Project 25 ADV_SOL4-Design-Enhancements-PL 1/3/2012 2/17/2012

Project 25 ADV_SOL4-Design-Enhancements-PL 1/3/2012 2/17/2012

Project 25 ADV_SOL4-Design-Activation & NTE-SME 1/3/2012 3/30/2012

Project 25 ADV_SOL4-Design-Activation & NTE-SME 1/3/2012 3/30/2012

Assignment Resource
Assignment 

Start Date

Assignment 

Finish Date

Assignment 

Total Actual 

Hours

Resolved Charge 

Code

Resource = Associate 

or Contractor

Resource 1120 1/30/2012 3/23/2012 31 Design/Selectn Employee

Resource 156 1/3/2012 2/22/2012 64.5 Design/Selectn Employee

Resource 261 1/4/2012 5/11/2012 357.5 Design/Selectn Employee

Resource 1085 1/9/2012 3/21/2012 30 Design/Selectn Employee

Resource 1159 4/22/2012 7/20/2012 269 Design/Selectn Employee

Resource 623 1/4/2012 4/21/2012 261 Design/Selectn Employee

Resource 1326 1/23/2012 1/23/2012 6 Design/Selectn Contractor

Resource 1120 1/3/2012 2/17/2012 0 Design/Selectn Employee

Resource 53 1/3/2012 2/17/2012 93 Design/Selectn Employee

Resource 261 1/3/2012 3/27/2012 44 Design/Selectn Employee

Resource 332 1/17/2012 3/30/2012 64 Design/Selectn Employee
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• Project Name 

• Number of tasks associated with the project 

o Number of tasks by each phase of the project namely design, 

development, testing, implementation and planning 

• Number of resources used in the project 

o Number of contracting resources considering the experience of contractors 

o Number of associates 

• Total labor hours spent on the project across all phases of the project. 

• Total time in hours spent on design 

• Total time in hours spent on development 

• Total time in hours spent on planning 

• Total time in hours spent on verification/testing by IS 

• Total time in hours spent on implementation 

• Total time in hours spent on post implementation 

• Percentage time spent on design 

• Percentage time spent on development 

• Percentage time spent on planning 

• Percentage time spent on verification/testing by IS 

• Percentage time spent on implementation 

• Percentage time spent on post-implementation 

• Percentage time spent on meetings 

• Percentage work completed by employees on the project 

• Percentage work completed by associates on the project 
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• Number of core resources on a project: A core resource was defined as someone 

who stayed for the full length of the project or contributed 

• Number of supporting resources on a project 

 

We also had access to another dataset with summary project-level information. This 

dataset contained the following variables.  

• Project ID 

• Project Name 

• Project Type: The project types could be Application Development, Vendor 

related or Infrastructure 

• Regulatory Project: Indicates whether the project was executed to meet a 

regulatory requirement 

• Area doing the project: The area within Information Systems that executed the 

project.  

• Project Manager: The project manager who managed the project. 

• Project Start Date 

• Project End Date 

• Duration of the project in days 

We needed to build another dataset with aggregate quality information at the project level. 

We had this data for only 103 projects. This dataset contained the following information.  

• Project ID 

• Project Name 
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• Number of requirements in the project 

• Number of test plans in the project 

• Number of defects by defect severity: Defects could be classified as Sev1, Sev2, 

Sev3, and Sev4, and we had data for each category.  

Figure 5: Flow to get the aggregated dataset for modeling 

 

 

  

 

 

 

High-Level Data Analysis  

 We started with the analysis of the function points aggregated dataset. The scatter 

plot of the function point count and the total labor hours for the project is as shown below 

in Figure 6. 

Figure 6: Scatter plot of function point count with total labour hours 

 

Task Level Data Aggregated 

Project Level Data 

Summary Project 

Level Data 

Quality Center 

Project Level Data 

Aggregated 

Dataset for 

Modeling 
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At the outset, I divided the aggregated dataset by project size, as shown in Table 6, to better 

understand the data. This view helped us understand how the time was being spent on 

average across each phase of the project for different project sizes. This also helped us 

understand how we were using resources in different categories of projects based on 

different project sizes. The insight from this analysis was a better understanding of how 

resources were utilized across the various phases of the project. The resource utilization 

starts off slowly during the planning and design phases, and it ramps up during 

development and testing. The utilization drops off gradually during implementation, and 

only a few resources are kept for post implementation. We analyzed the data further from 

a descriptive analytics point of view, and those results are shown in Chapter 6.  
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Table 6: High level data analysis of project data 

 

The overall project data from 2012-2017 by phases is summarized below in Table 7. It 

shows the percentage of time spent each year across the six project phases.  

Table 7: Project data by phases 

 

Hours
On Average 1000-5000 labor hours 5000-10000 labor hours 10000-15000 labor hours 15000-20000 labor hours 20000-30000 labor hours Greater than 30000

Planning Time 354 926 1084 666 714 1300

Design Time 354 861 1633 3222 4954 6701

Development Time 1178 3309 5502 8787 10715 18696

Verification Time 554 1792 3164 3693 5648 9643

Implementation Time 202 506 798 565 1534 1624

Post implementation time 153 246 376 154 411 1094

Percentage
Planning Percent 13.1% 13.2% 8.3% 3.9% 2.9% 3.6%

Design Percent 14.1% 11.4% 13.3% 18.8% 20.5% 16.7%

Development Percent 41.7% 42.8% 43.0% 51.1% 44.3% 47.7%

Verification Percent 18.3% 22.9% 25.6% 21.8% 23.0% 24.9%

Implementation percent 7.0% 6.4% 6.6% 3.4% 6.2% 4.4%

Post implementation percent 4.9% 3.0% 3.0% 0.9% 1.7% 2.7%

Total 99.1% 99.8% 99.8% 99.9% 98.5% 100.0%

# of projects in each group 68 44 20 13 11 9

Resources
Planning phase resources 6.13 9.81 10.8 6.66 15 13

Design Phase resources 5.63 10.38 16.4 19.92 26.9 30.66

Development phase resources 8.92 17.32 24.1 28.69 32.54 37.66

Verification phase resources 7.33 13.97 18.73 19.1 27.9 31.33

Implementation phase resources 6.24 11.24 14.15 14.25 20 20.66

Post implementation phase resources 4.71 8.48 10 8.33 14.4 16.57

Weeks (36 Hours Per Week Per FTE)
Planning phase resources 1.604 2.622 2.788 2.778 1.322 2.778

Design Phase resources 1.747 2.304 2.766 4.493 5.116 6.071

Development phase resources 3.668 5.307 6.342 8.508 9.147 13.790

Verification phase resources 2.099 3.563 4.692 5.371 5.623 8.550

Implementation phase resources 0.899 1.250 1.567 1.101 2.131 2.184

Post implementation phase resources 0.902 0.806 1.044 0.514 0.793 1.834

Total Weeks 10.920 15.853 19.199 22.764 24.131 35.206
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We looked at the application development projects executed by each area within the 

organization, and these are the high-level statistics. These are average numbers for each 

phase by application development area.  

Table 8: Data analysis by project phases 
  # of 

projects 
Design % 

(Variance) 
Devl% 

(Variance) 
Test% 
(Variance) 

Plan% 
(Variance) 

Impl% 
(Variance) 

Application Development Area 1 57 11(1.8) 49(4.7) 17(1.5) 12(4.3) 9(1.3) 

Application Development Area 2 11 15(3.2) 41(2.8) 18(2.6) 17(4.1) 8(0.5) 
Application Development Area 3 19 19(5.1) 45(3.1) 16(1.9) 5.5(0.4) 13(1.7) 

Application Development Area 4 37 13(2.9) 39(4.1) 23(2.1) 14(6.5) 9(1.3) 
Application Development Area 5 33 16(2.0) 45(3.0) 22(1.8) 4(0.5) 12(1.8) 
Application Development Area 6 17 12(1.9) 43(4.5) 26(3.5) 12(4.1) 5(0.3) 

Other projects 5 27(3.4) 27(3.8) 16(2.5) 17(8.7) 12(3.8) 

 

We looked at the average duration of a project and how each application development area 

used the contingent workforce of contractors in their projects. All the numbers indicated 

below are based on averages.  

Table 9: Data analysis by resource type 
  # of projects Avg Duration 

(days) 
# of contractors # of employees Contractors percent 

contribution 

Application 

Development Area 1 
57 466 days  7.6 12.7 42% 

Application 

Development Area 2 
11 454 days 1.5 13.8 10% 

Application 

Development Area 3 
19 488 days 4.6 

  
10.3 35% 
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Application 

Development Area 4 
37 542 days 5.6 12.7 36% 

Application 

Development Area 5 
33 504 days 10 19 43% 

Application 

Development Area 6 
17 506 days 6.6 15 35% 

Other projects 5 345 days 2.8 12.2 12.4% 

 

We looked at how the contingent workforce was used in 2016, 2015, and in all years prior 

to that. We found that contractors contributed on average around 34-36% of the overall 

labor. It was further found that contractors were used more during the development and 

testing phases. Their contribution peaked during those two phases and declined during the 

implementation phases. This finding was validated in our conversation with the 

management at the organization as it was employees who worked on the project during the 

planning and design phases of the project. They carried the workload during those phases, 

and the contingent workforce was brought in to help during the development phase of the 

project.  

 

Table 10: Data analysis based on usage of temporary resources 
  # of contractors (on average) # of employees (on average) Contractors percent contribution 

(on average) 

2016 5.3 10.3 36% 
2015 8.3 16.8 36% 
Prior to 2015 6.4 14.2 34% 
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We had data about requirements, test plans, and defects for 103 projects, and this is the 

high-level analysis of the data. The numbers provided are based on averages for each area.  

Table 11: Data analysis based on quality metrics 
  # of 

projects 
Requirements Test 

plans 
Defects Defect 

ratio 
Sev1 Sev2 Sev3 Sev 4 

Application 

Development 

Area 1 

35 817 597 326 0.54 53 123 92 40 

Application 

Development 

Area 2 

6 413 213 114 0.53 9 20 14 10 

Application 

Development 

Area 3 

10 609 299 256 0.85 25 129 69 27 

Application 

Development 

Area 4 

21 1480 1641 362 0.22 90 172 74 20 

Application 

Development 

Area 5 

18 1202 1022 413 0.40 65 202 89 36 

Application 

Development 

Area 6 

10 508 1102 213 0.19 31 82 48 18 

Other 

projects 
3 311 516 410 0.79 93 161 99 50 
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5.2: Use case for Agile Software Development epic and release planning 
 

 

5.2.1: Introduction to optimization use case 

 

Sliger and Broderick (2008) explain that a key feature of the Waterfall approach is 

the capturing and documentation of all requirements before the design and development of 

the software. The requirements are typically not subject to change once development starts. 

The risk in this approach is that testing takes place after development, and because of 

incomplete requirements, design flaws are uncovered only in the testing phase. The 

industry saw the need to address some of the inherent risks of the Waterfall methodology. 

They wanted to address how requirements were defined in advance of project execution 

and how the finished product is tested post development. The solution was an Agile 

development process that was rooted in an iterative approach. Variants of the Agile 

approach like Scrum, Extreme Programming, Pair Programming now exists. Beck et al. 

(2001) defined a new process for delivering software known as Agile programming, and it 

was called the Agile Manifesto. The manifesto includes four statements and 12 principles 

that describe the overall philosophy. Five key principles from among the 12 principles in 

the manifesto are  

1. "Deliver working software frequently, from a couple of weeks to a couple of 

months, with a preference for a shorter timescale. 

2. Working software is the primary measure of progress. 

3. Agile processes promote sustainable development. The sponsors, developers, and 

users should be able to maintain a constant pace indefinitely. 
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4. Continuous attention to technical excellence and good design enhances agility. 

5. At regular intervals, the team reflects on how to become more effective then 

tunes and adjusts its behavior accordingly." 

Agile programming is like Waterfall development in that some of the steps in the workflow 

are the same. We still collect requirements, design, develop code, test code, and deploy. 

The main difference is that Agile executes these steps in an iterative approach that fosters 

continuous improvement of the product. Software requirements are still initially captured 

but at a less detailed level and documented in a product backlog. These requirements are 

often captured as user stories, which are requirements from the user perspective.  

 Hayata and Han (2011) explain that some organizations employ a hybrid model 

where the best of both models is incorporated. These organizations look to blend Scrum, 

an Agile method, into traditional plan-driven project development and management. 

Kuhrmann et al. (2017) make the case that a hybrid software development approach is a 

combination of Agile and traditional approaches that an organization adopts and 

customizes to its own context needs. They also argue that hybrid approaches are widely 

used in practice and found that hybrid approaches have become more prevalent and are 

used by all types of companies. West, Gilpin, Grant, and Anderson (2011) coined the term 

“Water-Scrum-Fall” and hypothesized that hybrid development methods would become 

the standard."  Our use case is rooted in a hybrid setting, and it will be based on a 

hypothetical case where requirements are spelled out, and overall project scopes is defined 

upfront. The projects will be relatively small with less than 1500 labor hours. The execution 

of the project could adopt Agile principles such as delivering working software frequently, 
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promoting sustainable development, reflecting on how to become more effective, etc. with 

some leeway for changing requirements from one iteration to the next.  

This research contributes to the literature by presenting a model of a scenario where 

the estimates that are developed at the task and scenario level are used in an Agile setting 

to optimize the use of limited resources. Our scenario accounts for economies of scale that 

can result from managing the skills and domain expertise of resources that are part of 

multiple projects. This model is important because it can be used in an environment of 

multiple small size projects to manage a pool of resources given that we always have a 

backlog of tasks to complete. This scenario will be a case study providing a proof of 

concept to optimize executing multiple small projects at the same time. The small projects 

are rooted in the design patterns of the company and will cater to the local context.  

5.2.3: Use Case  

 

In addition to executing large enterprise wide projects, ABC Inc. works on a lot of small 

projects that typically take between 1000-2000 hours. These projects are typically 

enhancements to existing systems, and there is a perceived decent return of investment in 

the short term (one year) and long term (3-5 years). These projects are typically seen as 

efforts that can be completed in a short span of time, but these projects also go through the 

planning, design, development, testing and implementation phases in quick succession. 

Today, these projects are completed using the traditional software development model. The 

resources that work on these projects are typically skilled in 1-2 skills, and the teams are 

confined to a single domain area of expertise. A project typically will require a good subset 

of the following set of resources 
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1. Business Subject Matter Expert (SME) 

2. Information Systems SME 

3. Business Project Manager 

4. Information System Project Manager 

5. Design Thinking coordinator 

6. User Experience (UX) specialist 

7. Front End Developers 

8. Back End Developers 

9. Quality Assurance Tester 

10. Database Administrator 

Some of these resources might be needed only for a limited time, and they typically might 

not be dedicated on the effort. Currently the issue is these projects take substantially more 

time to complete execution from initiation to finish due to the lack of resources with the 

right skill set to work on a task at the time when the task is ready to be executed. The 

resources are often prioritized for higher priority work. The tasks are typically scheduled 

in a sequence, and the following Gantt chart (Figure 7) shows a hypothetical scenario for 

project execution.  
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Figure 7: Project execution with optimal resource allocation 

 

 

Figure 8: Effect on project duration due to resource constraints 

 

 You can observe in the scenario above shown in Figure 8 that a project execution 

could be delayed by close to three months when it is not prioritized for the effort, and all 

the scarce resources are allocated across multiple projects. This typically happens in the 

case of subject matter experts both in the Information Systems space and in the Business 

areas.  

 ABC Inc. is also starting to execute some of its projects using the Agile 

methodology, and these projects would be ideal candidates to be executed using the new 

approach. ABC Inc. is also starting to cross train employees and is encouraging employees 

to have development plans that encourage employees to become proficient in multiple 
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skills. The company also has the concept of centers of excellence and is starting to evaluate 

cross functional teams within the application development area of Information Systems. It 

will be useful to have a model to evaluate how to plan out a schedule for multiple projects 

that are very similar in terms of skills needed for the individual stories in the project. There 

is an opportunity to evaluate the effect of having resources with multiple skills, the effect 

of cross training employees, the effect of centers of excellence and finally the effect of 

cross functional teams.  

The problem in this traditional method of project execution is that resources, for 

the most part, are not allocated based on matching of skills needed for a single task. A 

single task can be decomposed into multiple sub-tasks that each require a skill. A typical 

example could be the development of a webpage. This task is going to require SME skills, 

design thinking skills, front-end UX skills, back-end server-side skills, database 

administrator skills, testing skills and finally implementation skills. Schedules are built, 

and resources are assigned to tasks based on who becomes available first. It is often the 

case that a single task might require multiple skills and the entire task as it pertains to a 

single phase of the project is assigned to the same resource.  There is perceived scarcity of 

certain resources with certain skill sets, and there is no set measure of proficiency in a 

certain skill for a resource.  The gap in the current approach is there is no way to evaluate 

the effect of cross training resources on multiple skills and to measure the efficiencies it 

could bring to the overall process. Currently there is no way to evaluate how the schedule 

would look when you can try to match resources based on each of the skills needed for a 

task as opposed to allocating them on a first available basis. There is also no way today to 

incorporate a measure like an efficiency score for a skill, and finally there is no way to 
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evaluate how the schedule would change when the workload availability of resources 

changes.  

To evaluate the model performance, this research addresses a hypothetical scenario 

where the same set of projects which were executed using the traditional methodology is 

instead executed in an Agile setting. Each of the tasks is perceived to be a story in an Agile 

setting, and we have taken the effort to identify all the skills needed to complete each story. 

I also have a listing of resources with the current set of skills that they have. This data has 

been transformed to include an efficiency score on the skills for each of the resources. This 

data is mocked up to show the effect of the efficiency score in such a model. I had access 

to very high-level work load availability data, and this data is also been mocked up to show 

the effect of workload availability in the model. I want to consider the effect of matching 

resources with the right set of skills needed for a story. We want to bring in the concept of 

efficiency score for a skill for each resource and further want to understand the effect of 

having resources who are proficient in multiple skills and in measuring the proficiency of 

resources in a particular skill.  

The following high-level diagram explains the core principle that there is a resource 

pool that can be comprised or contractors and employees who each have a certain skill set. 

Each project is comprised of tasks that can decomposed into sub-tasks that each require 

one or more skills for them to be completed.  
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Figure 9: High-level diagram for use case 

 

 

 

 

 

The use case is set in a scenario where you have a sequence of small projects in the pipeline 

that need to be completed. Each of these projects will be less than 1500 hours, preferably 

and at the maximum can go up to 2000 hours. Each project has a set of stories associated 

with it across each phase of the traditional development model. These stories have an 

associated estimated time to complete. Each story also has a set of skills that are required 

for it to be completed.  Each resource also has a set of skills that they are familiar with. 

Our goal will be to match up the stories with the right resources and pack the maximum 

possible stories into a sprint based on the right allocation of resources while at the same 

time ensuring the timely completion of projects.  

Project and Resource Information 

1. There are multiple projects that need to be started and completed in the next few 

months. We have data for five projects. Each project consists of multiple phases, as 

indicated below.  

a. There are stories within each phase.  

Resource Pool 

Contractors / 

Employees 

Skill Set list 
 

 
 

 

Multiple 

Projects 

 

Domain 

Knowledge list 
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b. We have an estimate for each story. 

c. Each story needs a set of skills, and they are indicated. The estimate for the 

overall story is further decomposed into the estimate needed for each skill 

component associated with the story.  

d. We are given the ROI information for each project.  

Table 12: Project data for optimization use case 

 

Project 1 1st Year - $47,469 3rd Year - $144,456

Sprint Stories Estimate Skills Required

Sprint: BC Development Story 1: 40 S1(4), S2(20), S3(2), S12(14)

Story 2: 80 S1(20), S2(50), S19(10)

Story 3: 40 S2(20), S11 (20)

Story 4: 80 S3(60), S8(20)

Story 5: 80  S6(80)

Story 6: 80  S6(80)

Story 7: 40  S6(40)

Story 8: 40 S2(10), S9(10), S18 (20)

Story 9: 40 S17(30), S10 (10)

Sprint: Benefit Analysis Story 10: 20 S2(10), S12 (10)

Sprint: Testing & Validation

Sprint: Designing Requirements

Sprint: Development & Coding 
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Project 2 1st Year - $150,003   3rd Year - $444,965   

Sprint Stories Estimate Skills Required

Sprint: BC Development Story 11: 70 S1(5), S2(25), S3(5), S12(35)

Story 12: 70 S12(40), S3(30)

Story 13: 60 S1(30), S2(30) 

Story 14: 60 S17 (60)

Story 15: 80 S13(40), S14(40)

Story 16: 60 S13(60)

Story 17: 80 S16(80)

Story 18: 80 S16(80)

Story 19: 60 S16(60)

Story 20: 80 S16(80)

Story 21: 80 S2(10), S9(70)

Story 22: 60 S17(30), S10 (10), S18(20)

Sprint: Benefit Analysis Story 23: 40 S2(20), S12 (20)

Project 3 1st Year - $117,228   3rd Year - $357,275   

Sprint Stories Estimate Skills Required

Sprint: BC Development Story 24: 20 S1(4), S2(8), S3(2), S12(6)

Story 25: 60 S2(40), S20(20)

Story 26: 30 S1(20), S2(10), S19(10)

Story 27: 80 S2(80)

Story 28: 80 S11 (80)

Story 29: 80 S3(80)

Story 30: 80  S6(80)

Story 31: 80  S6(40), S7(40)

Story 32: 80 S7(60), S8(20)

Story 33: 80 S8(80)

Story 34: 80 S2(20), S9(5), S18 (55)

Story 35: 40 S17(30), S10 (11)

Sprint: Benefit Analysis Story 36: 40 S2(25), S12 (15)

Sprint: Testing & Validation

Sprint: Designing Requirements

Sprint: Development & Coding 

Sprint: Designing Requirements

Sprint: Development & Coding 

Project 4 1st Year - $5,438 3rd Year - $58,181

Sprint Stories Estimate Skills Required

Sprint: BC Development Story 36: 100 S1(5), S2(30), S3(5), S12(60)

Sprint: Designing Requirements Story 37: 80 S1(20), S2(50), S19(10)

Story 38: 80 S3(80)

Story 39: 80 S3(70), S5(10)

Story 40: 80 S13(80)

Story 41: 80 S13(80)

Story 42: 80 S13(80)

Story 43: 80 S13(80)

Story 44: 60 S2(10), S9(10), S18 (40)

Story 45: 80 S17(80)

Story 46: 15  S10 (15)

Sprint: Benefit Analysis Story 47: 40 S2(20), S12 (20)

Sprint: Testing & Validation

Sprint: Development & Coding 
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2. You have a set of skills.  We are going to need resources with certain skills for a project 

based on the needs of a project. We are going to keep the skills generic to cater to the 

design patterns of the company. The table below gives us information on the skills and 

indicates which resources possess those skills. We are also given the hourly pay rate 

for each type of resource.  

Table 13: Skills data for use case 

 

Project 5 1st Year - $4,238 3rd Year - $39,066 

Sprint Stories Estimate Skills Required

Sprint: BC Development Story 48: 20 S1(2), S2(11), S3(2), S12(5)

Sprint: Designing Requirements Story 49: 30 S1(10), S2(15), S19(5)

Sprint: Development & Coding Story 50: 80 S3(60), S5(20)

Story 51: 80 S7(80)

Story 52: 80 S7(80)

Story 53: 80 S7(80)

Story 54: 40 S2(10), S9(10), S18 (20)

Story 55: 67 S17(37), S10 (30)

Sprint: Benefit Analysis Story 56: 10 S2(20), S12 (20)

Sprint: Testing & Validation

Skill Skill ID Resource Pay (hourly rate)

Skill 1 S1 Business SME xx

Skill 2 S2 Business SME xx

Skill 3 S3 IS SME xx

Skill 4 S4 IS SME xx

Skill 5 S5 Developer xx

Skill 6 S6 Developer xx

Skill 7 S7 Developer xx

Skill 8 S8 Developer xx

Skill 9 S9 Developer xx

Skill 10 S10 IS SME xx

Skill 11 S11 Legal Analyst xx

Skill 12 S12 Project Manager xx

Skill 13 S13 Developer xx

Skill 14 S14 Developer xx

Skill 15 S15 Project Manager xx

Skill 16 S16 Developer xx

Skill 17 S17 IS SME xx

Skill 18 S18 Business SME xx

Skill 19 S19 Project Manager xx

Skill 20 S20 Design Thinking xx
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3. You have a resource pool comprising of associates and contractors. A typical project 

will need one Architect or Subject Matter Expert (SME) for the estimating, one SME 

to run the project/answer questions, and a bunch of other resources based on skill sets. 

The set of resources as indicated in the table above are shown below in Table 14. 

Table 14: Resource types for use case 

 

Our goal is to pack as many stories as possible into the next sprint while ensuring that all 

projects with end dates in that sprint are completed, while at the same time ensuring the 

most efficient allocation of resources to each of the stories. 

The tentative project plan for the five projects is as given below in Figure 10 

Resource Name

Business SME

Technical Lead

Developer

Project Manager

Design Thinking Specialist

Legal Analyst
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Figure 10: Tentative project plan 

 

 

Chapter 6: Model Testing Results and Experiments 

6.1 Estimating tool development – related models and development of the tool 

 

6.1.1 Function points related predictive models:  

 

This research uses simple linear regression and multiple regression to evaluate the effect 

of the Adjusted Function Points Count on the total design and development cost and on the 

total labor cost, resulting in the following models.  

𝐸(𝐷𝑒𝑠𝑖𝑔𝑛 𝑎𝑛𝑑 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡) = 𝛽0 +  𝛽1 ∗ 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑃𝑜𝑖𝑛𝑡𝑠 𝐶𝑜𝑢𝑛𝑡  

𝐸(𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡) = 𝛽0 +  𝛽1 ∗ 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑃𝑜𝑖𝑛𝑡𝑠 𝐶𝑜𝑢𝑛𝑡 
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We analyzed the data and obtained the summary statistics. The data for all projects in the 

repository can be summarized by the following visualization shown below in Figure 11. 

Figure 11: Function point repository visulization 

 

The scatter plot of the Adjusted Function Point count with the total labor hours is shown 

below in Figure 12. The scatter plot shows that a bulk of the projects are below 500 function 

points, and it also shows that there are a few outliers in the data.  

Figure 12: Scatter plot of adjusted function point and total labor hours 
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When we examine the cost per function point for the total cost, we obtain Figure 13. The 

outliers have been removed in this visualization, and the bar graph shows the cost per 

function point for total project cost sorted in ascending order across all projects. The cost 

per function point for total project cost ranges from $567 to $4,154.  

Figure 13: Bar graph of cost per FP for total cost across all projects sorted in ascending order 

 

 

When we examine the cost per function point for the design and development cost, we 

obtain Figure 14. The bar graph shows the cost per function point for total design and 

development cost sorted in ascending order across all projects. The cost per function point 

for total design and development cost ranges from $206 to $3,684. 
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Figure 14: Bar graph of cost per FP for design and development across all projects sorted in 

ascending order 

 

 

The summary statistics are shown below for the cost per function point for the design and 

development cost and total labor cost in Table 15. Table 15 also provides the summary 

statistics for the function point count and the five components that make up the function 

point count.  

Table 15: Summary statistics for Function points related metrics 
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I removed the projects that were below the 10th percentile and above the 90th 

percentile as outliers and used the resulting dataset for my modeling. I modeled the design 

and development costs separately, resulting in the following models. 

𝐸(𝐷𝑒𝑠𝑖𝑔𝑛 𝑎𝑛𝑑 𝐷𝑒𝑣𝑙 𝐶𝑜𝑠𝑡) = −23,001 +  930.66 ∗ 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑃𝑜𝑖𝑛𝑡𝑠 𝐶𝑜𝑢𝑛𝑡  

The above-mentioned model has an R-Square of 0.7068, and the results associated with 

the model are shown in Appendix 1.  

𝐸(𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡) = 50,369 +  1464.22 ∗ 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑃𝑜𝑖𝑛𝑡𝑠 𝐶𝑜𝑢𝑛𝑡 

The above-mentioned model has an R-Square of 0.7016, and the results associated with 

the model are shown in Appendix 2. This is one of the estimates used among the suite of 

estimates in the estimating tool.  

We also considered the following models.  

𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑠𝑡) = 𝛽0 +  𝛽1 ∗ # 𝑜𝑓 𝐼𝐿𝐹 +  𝛽2 ∗ # 𝑜𝑓 𝐸𝐼𝐹 

𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑠𝑡) = 𝛽0 +  𝛽1 ∗ # 𝑜𝑓 𝐸𝑄 +  𝛽2 ∗ # 𝑜𝑓 𝐸𝐼 +  𝛽3 ∗ # 𝑜𝑓 𝐸O 

𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑠𝑡) = 𝛽0 +  𝛽1 ∗ # 𝑜𝑓 𝐸𝑄 +  𝛽2 ∗ # 𝑜𝑓 𝐸𝐼 +  𝛽3 ∗ # 𝑜𝑓 𝐸 O + 𝛽4 ∗

# 𝑜𝑓 𝐼𝐿𝐹 +  𝛽5 ∗ # 𝑜𝑓 𝐸𝐼𝐹 

I used Forward Selection as the model selection method in SAS, and it resulted in the 

following models. The significance level chosen to enter the model was 0.2, and to stay in 

the model was 0.1.  

The resulting models are listed below. 

𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑠𝑡) = 99147 +  2581.11 ∗ # 𝑜𝑓 𝐼𝐿𝐹 +  4757.32 ∗ # 𝑜𝑓 𝐸𝐼𝐹 

The R-square for the above model is 0.47, and it explains 47% of the variability in the 

model. Both the variables are statistically significant in the model.  
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𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑠𝑡) = 67302 +  2924.39 ∗ # 𝑜𝑓 𝐸𝑄 +  4582.43 ∗ # 𝑜𝑓 𝐸𝐼 

The EO variable did not make it into the model, and the R-Square for this model is 0.71. 

This model explains 71% of the variability in the model.  

𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑠𝑡) = 30359 +  2466.42 ∗ # 𝑜𝑓 𝐸𝑄 +  3991.05 ∗ # 𝑜𝑓 𝐸𝐼 +

 2177.66 ∗ # 𝑜𝑓 𝐸𝐼𝐹 

The above mentioned three variables meet the requirements of the model, and other 

two variables do not enter the model. The R-Square on the model is 0.74.  

When we look at all the models, the number of external queries, external inputs, and 

external interface files contribute to a useful model, and it conveys an important message 

for the organization. It points to an organization where systems are tightly integrated, and 

this is reflected in the data.  

The difference between the actual labor cost and the predicted cost from the model 

is shown below in Figure 15 as a box whisker plot.  
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Figure 15: Box Whisker Plot of the difference between Actual Labor Cost and 

Predicted Cost.  

  

 

6.1.2 Two Stage Least Squares (2SLS) model results and Decision Tree analysis 

 

The histogram of the total labor hours for all projects in the repository is shown below in 

Figure 16. There are some clear outliers, as can be observed from the scatter plot. ABC 

Inc. as an organization was moving towards breaking down bigger projects into smaller 

projects to have a better handle on the execution of the projects. We had a good base of 

116 projects that were under 10,000 total labor hours of which 103 projects were under 

7,500 total labor hours. We separate the data by the total labor hours into two sets, one with 

projects under 7,500 total labor hours and the second with projects under 10,000 total labor 

hours based on the direction ABC Inc. was moving towards of breaking down bigger 

projects into multiple smaller projects.  We fit separate coefficients for each dataset.  
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Figure 16: Histogram of total project labor hours 

 

The goal was to predict the total labor hours, and the following explanatory variables were 

used in the model. A dataset with projects that had total labor hours that were less than 

7500 hours was first created. 

1. Project type 

2. Number of tasks by each phase, design, development, testing, implementation, 

and planning 

3. Number of contracting resources 

4. Number of contracting resources considering overall work experience of more 

than three years 

5. Number of employees 

6. Percentage time spent on design 

7. Percentage time spent on development 

8. Percentage time spent on planning 

9. Percentage time spent on verification/testing by IS 

10. Percentage time spent on meetings 

11. Number of defects by category (sev1, sev2, sev3, and sev4) 

12. Number of requirements 

13. Number of test plans 

14. Area doing the project  

15. Duration of the project 

16. Project type 
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This research used Forward Selection as the model selection method in SAS, and it 

generates the following results. The significance level chosen to enter the model was 0.2, 

and to stay in the model was 0.1.  

𝐸(𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑏𝑜𝑟 𝐻𝑜𝑢𝑟𝑠) = 785.39 +  404.58 ∗ # 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠 +  220.98 ∗

# 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠 + 130.62 ∗ # 𝑜𝑓 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠 + 2665.81 ∗

𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑖𝑚𝑝𝑙 + 21.40 ∗ # 𝑜𝑓 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑡𝑎𝑠𝑘𝑠 + 0.63 ∗ # 𝑜𝑓 𝑑𝑎𝑦𝑠 − 1452.73 ∗

𝑡𝑜𝑡𝑎𝑙 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 − 566.87 ∗ 𝑝𝑟𝑜𝑗 𝑡𝑦𝑝𝑒 1 − 697.57 ∗ 𝑎𝑟𝑒𝑎 1 − 1154 ∗ 𝑎𝑟𝑒𝑎 2 

 The collinearity diagnostics and Variance Inflation Factors (VIF’s) were generated 

as part of the output while running the OLS model above. The observation of the results 

did not indicate the presence of multicollinearity. The explanatory variables were not 

significantly correlated. I then ran the White test on the OLS estimates to test for 

Heteroscedasticity. The White Test came out to be insignificant. The insignificance of the 

test indicated homoscedastic errors and showed that these errors were not related to the 

explanatory variables.  

 This was followed by running separate OLS models to explore for possible 

endogeneity of some of the explanatory variables in the model. One such model is shown 

below that examines # of contractors. 

𝐸(# 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠) = 1.15 +  0.32 ∗ # 𝑜𝑓 𝑐𝑜𝑟𝑒 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 𝑐𝑜𝑢𝑛𝑡 − 3.17 ∗

𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑤𝑜𝑟𝑘 − 0.34  ∗ exp 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟 𝑐𝑜𝑢𝑛𝑡 + 4.18 ∗ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑖𝑚𝑝𝑙 +

0.02 ∗ # 𝑜𝑓 𝑑𝑒𝑠𝑖𝑔𝑛 𝑡𝑎𝑠𝑘𝑠 

The model above had an R-Square of 0.62.  We then followed this by running a two stage 

least squares model. The model description is shown below in Figure 17. 
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Figure 17: Model description and summary for Two Stage Least Squares model with 

hours less than 7500 hours. 

 

 

The model summary is shown below 
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𝐸(𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑏𝑜𝑟 𝐻𝑜𝑢𝑟𝑠) = 767.39 +  433.92 ∗ # 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠 +  216.31 ∗

# 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠 + 129.86 ∗ # 𝑜𝑓 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠 + 2623.1 ∗

𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑖𝑚𝑝𝑙 + 21.27 ∗ # 𝑜𝑓 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑡𝑎𝑠𝑘𝑠 + 0.621 ∗ # 𝑜𝑓 𝑑𝑎𝑦𝑠 − 1435.14 ∗

𝑡𝑜𝑡𝑎𝑙 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 − 567.47 ∗ 𝑝𝑟𝑜𝑗 𝑡𝑦𝑝𝑒 1 − 695.62 ∗ 𝑎𝑟𝑒𝑎 1 − 1158.65 ∗

𝑎𝑟𝑒𝑎 2 

SPSS generated two new variables as output from the run of the two stage least 

squares model, ERR_1 and FIT_1 for each of the 103 data points. The ERR_1 represents 

the residuals, and the FIT_1 represents the predicted value of the dependent variable. The 

first test that we did was to ensure that the residuals from the model ( ERR_1) was unrelated 

to the predicted values of the dependent variable (FIT_1). This was visualized in Excel by 

creating a scatter plot of ERR_1 with FIT_1 and then fitting a trendline to the data to see 

if there is a significant linear trend between the residuals and the fit values. 

Figure 18: Scatter plot of residuals with predicted values for 2SLS (less than 7550 

hours) 
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The second test was done to ensure the residuals (ERR_1) was normally distributed. This 

was done in SPSS Statistics, and the results are shown below in Figure 19. 

Figure 19: Test on residuals for 2SLS model with hours less than 7500 hours 
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We observe that the residuals (ERR_1) are normally distributed. Both of the diagnostic 

tests help validate the assumptions of the two stage least squares model as outlined by 

Kmenta, and it helps to explain the validity of the model.  

 A dataset with projects that had total labor hours less than 10,000 hours was then 

created. We went through the same process as above and eventually ended up with the 

model below from the two stage least squares model. The initial model that was the result 

of this run is as shown below.  

𝐸(𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑏𝑜𝑟 𝐻𝑜𝑢𝑟𝑠) = −360.29 +  467.36 ∗ # 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠 +  318.46 ∗

# 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠 + 140.62 ∗ # 𝑜𝑓 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠 + 3856.74 ∗

𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑖𝑚𝑝𝑙 + 22.69 ∗ # 𝑜𝑓 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑡𝑎𝑠𝑘𝑠 +  779.41 ∗ 𝑝𝑟𝑜𝑗 𝑡𝑦𝑝𝑒 2 −

660.17 ∗ 𝑎𝑟𝑒𝑎 1 − 1654.42 ∗ 𝑎𝑟𝑒𝑎 2. 

The model summary and description for the two stage least squares model with hours less 

than 10,000 hours is shown below in Figure 20. 

Figure 20: Model description and summary for Two Stage Least Squares model with 

hours less than 10000 hours. 
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The ERR_1 and FIT_1 for each of the 116 data points were generated. The first test that 

we did was to ensure that the residuals from the model ( ERR_1) was unrelated to the 

predicted values of the dependent variable (FIT_1). This was visualized in Excel by 

creating a scatter plot of ERR_1 with FIT_1 and then fitting a trendline to the data to see 

if there is a significant linear trend between the residuals and the fit values.  

Figure 21: Scatter plot of residuals with predicted values for 2SLS (less than 10000 

hours) 

 

The second test was done to ensure the residuals (ERR_1) was normally distributed. This 

was done in SPSS Statistics, and the results are shown below in Figure 22. 
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Figure 22: Test on residuals for 2SLS model with hours less than 10000 hours. 
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We removed one of the outliers with a residual value of -3901.36 from the dataset and reran 

the two stage least squares model. The model summary is shown below in Figure 23. This 

run had an R-Square of .744, and it was a better model as it has a better R-Square, as it 

explained more of the variability, and it shows that there are smaller differences between 

the observed and fitted values.  

Figure 23: Model description and summary for Two Stage Least Squares model with 

hours less than 10000 hours less one outlier 

 

 

The resulting model was as follows 

𝐸(𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑏𝑜𝑟 𝐻𝑜𝑢𝑟𝑠) = −358.59 +  402.82 ∗ # 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠 +  350.50 ∗

# 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠 + 163.12 ∗ # 𝑜𝑓 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠 + 3240.79 ∗

𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑖𝑚𝑝𝑙 + 20.97 ∗ # 𝑜𝑓 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑡𝑎𝑠𝑘𝑠 + 724.007 ∗ 𝑝𝑟𝑜𝑗 𝑡𝑦𝑝𝑒 2 −

332.22 ∗ 𝑎𝑟𝑒𝑎 1 − 1608.22 ∗ 𝑎𝑟𝑒𝑎 2. 

 

I then ran the decision tree analysis in SPSS modeler using the same dataset to 

validate our results. The results from the decision tree analysis are shown below in Figure 
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24. I first fit the data using the Regression Tree (CART) analysis in SPSS Modeler, and the 

results are summarized below.  

Figure 24: Decision Tree Analysis, Regression Tree (CART) 

 

 

We then fit the data using the CHAID decision tree analysis, and those results are 

summarized below in Figure 25. The decision tree analysis in conjunction with the analysis 

from the predictive modeling helped us better understand the most important contributing 

explanatory variables.  
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Figure 25: Decision Tree Analysis, Regression Tree (CHAID) 
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6.1.3 Function points related suite of estimates: 

 

6.1.3.1 Incorporating the COCOMO II early design model into the suite of estimates: 

 

I developed an Excel tool to input the function points that gives a suite of estimates, 

including three estimates from the COCOMO II early design model and the predictive 

model estimate based on function points.  Figure 26 provides an illustration of the tool.  

Figure 26: Snapshots of implemented COCOMO II tool 

 

     

Scaling Factors    
SF Description Level Value  
Maturity Process Maturity Nominal 4.68  

PREC 
Experience of similar 
Projects High 2.48  

FLEX 
Flexibility required in the 
System Nominal 2.03  

TEAM Team Cohesiveness High 2.19  

RESL 
Project Risk and 
Architectural Complexity Low 1.41  

     

Effort Multiplier EM    
EM Description Level Value  

RCPX 

System reliability, 
complexity and size 
indicator Nominal 1  

RUSE 

Reusability concern with 
respect to current and 
future projects Nominal 1  

PDIF Platform Difficulty Nominal 1  

Please enter the total unadjusted FP and the expected duration of the project

Total Unadjusted FP (Please enter) 495

Duration of the project in months (Please enter) 10

Function Point count adjusted 594
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PERS 

Personal capability of 
team. Like technical 
capability of 
Programmers, 
Designers and testers. Nominal 1  

PREX 
Application, Language 
and tool experience High 0.87  

FCIL 
Using Case tools for 
development etc. High 0.87  

SCED Schedule Pressure High 1.14  

     
Constants Value    
B 0.91    
A 2.94    
E 1.0379    
C 3.67    
D 0.28    
F 0.30558    
EM 0.862866     

    
Consolidated Size and Effort    
Technology Java    

Increase due to 
lifecycle 0%    
SLOC per FP 53    
SLOC 30170.25    
PM 87.0855    
Man-days 1828.7946    
FP from LOC 569.2500    
Hours per FP 25.7011    

 

6.1.3.1 Comparison of the Function points related suite of estimates 

 

We then calculated the four estimates for each project in the function point repository. We 

also calculated the ISBSG benchwork estimate for each project. The absolute value of the 

differences in estimates from the actual labor cost was calculated, and this gives us 

feedback on which estimate is closest to the actual labor cost in each individual range. The 

Total Cost $731,517.84

TDEV 14.37

Staff Estimate 6.06

The project will take about 14.37 months to complete with about 6.06 folks on the project.
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repository was split by function point ranges as shown below in Table 16. The ranges we 

used were 0-100, 100-200, 200-300, 300-400, 400-500 and above 500 function points.  

Table 16: Tableau Dashboard of Function Point Suite of Estimates 

and differences of the estimates from the actual labor cost 
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The results of the analysis is summarized below. On average, the COCOMO II best case 

estimate is the better estimate in the range of 0-100 function points, and the COCOMO II 

costlier estimate is the better estimate in the range of 100-200 function points. The 

predictive model offers the better estimate in all other ranges (200-300, 300-400, 400-500 

and above 500 function points).  

 

6.1.4 Implementation of the Estimating Tool: 

 

We examine the performance of the estimating tool by examining its implementation in 20 

projects. We selected 20 of the most recent projects executed at the organization and fitted 

them into multiple design patterns. We were dealing mostly with web development projects 

and created design patterns for 

1. Backend Processing 

2. Front end processing 

3. Document processing 

4. Batch processing 
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The process we followed is as follows: 

1. I extracted out the design and development tasks for each project. 

2. Read the description of each task and fit it into a scenario that was part of a bigger 

design pattern.  

3. Documented tasks that were repeated in the same project as part of different 

scenarios. We could be retrieving data from multiple data sources, interfacing with 

multiple systems, etc.  

4. We could have scenarios like retrieval of data, saving of data, etc. For example, I 

found the retrieval of data was done in different ways in multiple projects. I 

documented each of the methods to retrieve the data part of the design pattern. The 

same approach was used for other scenarios.  

5. Each project had between 50-500 tasks. I looked at each individual task and fitted 

it into the design pattern.  

6. Once we had the design patterns, I validated the design patterns with the two 

enterprise architects at the company and got their feedback.  

The design patterns that we came up with are listed below. Most of the scenarios have 

been masked to protect the actual design patterns practiced at the organization.  
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Figure 27: Masked high level design patterns at ABC Inc. 
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There were two other design patterns like the above design patterns, and they have 

been submitted to the doctoral committee along with the other documents related to the 

dissertation.  

These design patterns then formed the basis for a survey. The survey was sent out 

to all subject matter experts in the company.  

Please see below a few questions from the survey. The questions have been masked 

in this snapshot. The actual full survey is being submitted to the doctoral committee, 

along with the other documents related to the dissertation. Each scenario in the survey 

was a direct result of the scenario being in the design pattern. We requested each subject 

matter expert to give estimates for design and development. They were also requested 
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to give estimates considering the complexity of the scenario. We considered three 

levels for complexity: easy, medium and hard.  

Sample Survey: 

Time Estimates for Tasks related to Application Development  

Please give your estimates on how much time employees would spend on design and 

development/unit testing when creating these new artifacts.  Please include the time for 

writing junits into your estimate. Please estimate it for an employee doing the work.  

Table 17: Sample survey 
Description of Task  Design 

Hours 
Development/ 

Unit Testing 
Hours 

Are there 
Additional 
Items that 
Should Be 
Added to 

this 
Program 

Level 
Description? 

Retrieval of data. We 
can retrieve data 
through four 
different ways  

Retrieval Scenario 1 Easy    

Medium    

Hard    

Retrieval Scenario 2 Easy    

Medium    

Hard    

Retrieval Scenario 3 Easy    

Medium    

Hard    
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Retrieval Scenario 4 Easy    

Medium    

Hard    

Processing of the retrieved data to include 
business logic. This could include writing 
utility functions or helper classes to validate 
data on the open systems side and process 
it to be ready for the presentation layer. 

Easy    

Medium    

Hard    

Saving of data 
including four 
scenarios  

Save Scenario 1 Easy    

Medium    

Hard    

Save Scenario 2 Easy    

Medium    

Hard    

Save Scenario 3 Easy    

Medium    

Hard    

Save Scenario 4 Easy    

Medium    

Hard    

External system service integration.  Easy    

Medium    

Hard    



134 

 
 

Copyright, Chidambaram Subbiah, 2019 

Setting up a new project. Set up the 
repository.  

1. Look into whether the artifact is for 
internal or external application? 

2.  And what other applications or 
artifacts it interacts with and the call 
volumes approximately.  

3. What domain to deploy?  
4. Will you need cluster routing? 

Easy    

Medium    

Hard    

 

We had 95 scenarios each for design and development. We sent the survey to 30 subject 

matter experts and got responses back from 28 of them. The survey responses were 

collected and aggregated in the format shown in Table 18. 

Table 18: Snippet of aggregated survey responses 

 

We aggregated the survey responses and processed them in SAS to generate summary 

statistics for each scenario at the complexity level. Table 19 illustrates these summary 

statistics for some of the scenarios. 

rdctg_easy rdctg_med rdctg_hard rdmb_easy rdmb_med rdmb_hard rdsp_easy rdsp_med rdsp_hard rdjpa_easy rdjpa_med rdjpa_hard prdbl_eady

4 8 16 4 8 16 4 8 16 2 4 8 2

6 7.5 13.5 8 12 24 8 12 24 8

8 12 20 4 8 16 3 6 20 2 3 6 6

4 8 10 6 10 14 3

8 16 24 8 16 24 8 16 24 8 16 24 16

1 2 4 1 2 4 2 4 8 4

4 8 16 4 8 16 4

4 10 20 4 10 20 5

1 1 2 1 1 2 1 1 2 1 1 2 1

4 8 16 1 2 3 4 8 16 2

2 2 4 1 2 4 1 2 4 1

4 8 16 4 8 16 4 8 16 4

8 12 16 2 4 8 8 12 16 4

2 4 6 2 4 6 2 4 6 2



135 

 
 

Copyright, Chidambaram Subbiah, 2019 

Table 19: Processing of survey results in SAS  

 

We then went back to the two enterprise architects at the organization to review the results. 

All of us finally agreed to baseline estimates for each design and development tasks that 

comprised the scenarios in the design patterns. 

Once the results from the survey were processed, we were ready to develop the estimating 

tool.  

6.1.5 Creation of the Estimating Tool 

 The estimating tool was created in Excel and. incorporated all the requirements 

mentioned in chapter 4.1.5. I worked with the program management office at the 
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organization and worked with a couple of project leaders to develop and finalize the 

estimating tool. Figures 28 through 31 illustrate the estimating tool interface and outputs.  

Figure 28 - Estimate Comparative tab in Estimating Tool 

 

Figure 29: Design and development tasks entered by the SME 

 

Figure 30: Pie charts in the overhead and summaries tab of Estimating Tool 
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Figure 31: Cost breakdown summary in Estimating Tool 

 

 

A copy of the masked estimating tool is attached in the Appendix.  
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We analyzed the project data for the past 12 months and the breakdown of the overall 

hours by phases in shown below in Figure 32. 

Figure 32: Project data by phases for the past 12 months 

 

 

The estimating tool was setup to allocate time for verification, implementation, and 

post implementation based on how much time was estimated for the design and 

development phases. The numbers we agreed on were  

1. Verification is allocated as 25% of development time. 

2. Implementation is allocated as 10% of development time. 

3. Post Implementation is allocated as 5% of development time.  
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6.1.6 Summary of the new estimating Process: 

 

The organization came up with a revised process to incorporate the use of the 

estimating tool in the project life cycle. Every project starts off with a planning phase, 

followed by the definition of requirements by the business area for the project. This is 

followed by a system design by the technical team. The function point analysis is 

completed around this time. At this point, there is sufficient information to create a 

bottom-up estimate using the new estimating tool. The subject matter experts come up 

with a system design and translate the design into high level tasks that are then input 

into the estimating tool. It is often the case where there are multiple subject matter 

experts involved in a project, and each of them estimate a separate feature of the project.  

1. The SME's start on the "Cost Projection Form" tab and set up basic demographic 

information about the project.  

2. They then move onto the "Design and Development Estimates" tab to enter the task 

level estimate. The following fields are required for each task 

a. Activity Type: Indicates if the task is a design or a development task. 

b. Task Category: This indicates the high-level design pattern to which the 

task belongs. Some of the options include Open System Controller, Open 

Systems Model, and View, Document Processing, Mobile, etc.  

c. Create/Modify: This indicates whether the task involves creating a new 

artifact or modifying an existing artifact.  
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d. Task Type: The values in this drop-down are derived directly from the 

design patterns that we came up with. The values in the dropdown are 

populated based on the entries for the previous three fields.  

e. Task Complexity: The options for this field are high, medium, and low.  

f. Task Description: This is the description for the task that is used in the time 

tracking system.  

Once you enter the data for the above mentioned six fields, you get a 

recommended estimate.  This estimate initially is based on the baseline for each 

task that originates from the survey results and discussion with the enterprise 

architects at the organization.  

g. Recommended Estimate: This field is automatically populated when the 

above mentioned six fields are entered or chosen.  

h. Override Estimate: The SME can choose to override the estimate at the task 

level, and when they do so, the override value takes effect for the task.  

i. Override Comments: The SME is required to enter comments when a task 

is overridden.  

j. Estimate Component: This field is used to break down the cost by features.  

k. Requirement: Some project managers like to track the project by 

requirements. This field gives the capability to enter the requirement 

number related to the task.  

l. Owner: This field indicates the name of the SME doing the estimate and is 

considered the owner of the task.  
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As each task is entered, a running total of the overall cost for the project is 

shown at the top of the design and development estimates tab, as shown below 

in Figure 33.  

Figure 33: Cost projection table in Estimating Tool 

At any given point of time, we can see a comparison of the SME estimate (this 

includes the overridden cost for each task) and the recommended cost (this does 

not include the overrides). 

m. There are times when a task does not fit into one of the design patterns. In 

this case, there is always the option to "enter a new task" and manually put 

in the estimate for that task. When we see multiple application development 

teams requesting for a new task that is similar, we add it to the design pattern 

of the organization and incorporate it into the estimating tool.  

n. The tool also gives the capability to override the verification, 

implementation, and post-implementation time in the "Overhead and 

Summaries" tab. You also have the capability to enter the project 

management time, tech lead time and meeting time in the "Overhead and 

Summaries" tab as shown below in Figure 34.  
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Figure 34: Overhead and Summaries tab in Estimating Tool 

 

o. At this point, the subject matter expert works with the project manager and 

other managers in the organization to explain the estimate.  

p. The project manager now moves on to the "Estimate Comparative" tab and 

enters the adjusted function point number. You now have access to six of 

the seven estimates in the suite of estimates. The first two estimates are 

directly from the data that is entered in the "Design and Development 

Estimates" tab. The last four estimates are based off the function point's 

count. The suite of seven estimates is shown below in Figure 35 

Figure 35: Suite of seven estimates 

 

q. There are other fields that are required to be entered on the estimates 

comparative tab, and this populates the predictive cost for the organization. 

This is based on the historical data at the organization.  

 

1 Overall Overhead Tasks  

2 Overall Verification, Implementation, and Post-Implementation  

3 Overall Perform Verification Verification Fixed Duration #N/A

4 Overall Perform Implementation Implementation Fixed Duration #N/A

5 Overall Perform Post-Implementation Post Implmentn Fixed Duration #N/A

6 Overall  Project / Tech Lead Management # weeks Alloca tion

7 Overall PM - Design Design/Selectn Project Management Fixed Duration

8 Overall PM - Develop/Config Develop/Config Project Management Fixed Duration

9 Overall PM - Verification Verification Project Management Fixed Duration

10 Overall PM - Implementation Implementation Project Management Fixed Duration

11 Overall PM - Post-Implementation Post Implmentn Project Management Fixed Duration

12 Overall Tech Lead &  Chargable TAs - Design Design/Selectn Project Management Fixed Duration

13 Overall Tech Lead & Chargable TAs - Develop/Config Develop/Config Project Management Fixed Duration

14 Overall Tech Lead & Chargable TAs - Verification Verification Project Management Fixed Duration

15 Overall Tech Lead and Chargable TAs - Implementation Implementation Project Management Fixed Duration

16 Overall Tech Lead & Chargable TAs - Post-Implementation Post Implmentn Project Management Fixed Duration

17 Overall  Meetings # People #  Weeks Meeting Time per Week

18 Overall Team Meetings Planning Project Management Fixed Duration
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A representation of the new estimating lifecycle is outlined below in Figure 36.  

Figure 36: New software development estimating lifecycle 

 

  

6.2 Assessing the Quality of the Estimate from the Estimating Tool 
 

The estimating tool has been used to estimate close to 25 projects thus far. Five of 

those projects have completed execution. The projects ranged in size from 451 hours to 

3818 hours to complete the design and development phase of the project. This section of 

the chapter details the processing of the data to evaluate the estimating tool.  
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Processing of the actual data 

 Previously there was no framework to process the actual data from the execution 

of the project and compare it with the initial estimation data. A framework has now been 

created where this data can be processed seamlessly, and the data can be fed into a Tableau 

dashboard. All we need to do is update an Excel worksheet into a shared location on the 

network when a new project has data to be harvested, and Tableau will extract the 

information nightly. A hidden field was created in the estimating tool to capture the 

characteristics of the task, and that information was uploaded into the time tracking tool. 

When we extract the actual data, we now have the capability to pull down the hidden field 

as well. We then parse out this hidden field to create the framework for reporting in 

Tableau, as shown in Figure 37 below.  

Figure 37: Tableau reporting for processing data from finished projects 

 

This framework also helps us append data from multiple projects, and it creates the basis 

for refining the estimate at the task level on an ongoing basis. We have created a Tableau 

dashboard for the same, as shown below in Figure 38.  
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Figure 38: Tableau Analysis for analyzing task level data 

 

A comparative analysis of the five projects is as shown below in Figure 39. All five projects 

came in a little under the estimated cost for the design and development phase. 

Task Type Design/Development High Low Medium

Number of Records 1.0 3.0

Median Actual Work 37.0 0.0

Avg. Actual Work 37.0 4.0

Min. Actual Work 37.0 0.0

Max. Actual Work 37.0 12.0

Percentile (75) of Actual Work 37.0 6.0

Percentile (25) of Actual Work 37.0 0.0

Number of Records 1.0 3.0 3.0

Median Actual Work 4.0 0.0 24.0

Avg. Actual Work 4.0 17.3 24.0

Min. Actual Work 4.0 0.0 24.0

Max. Actual Work 4.0 52.0 24.0

Percentile (75) of Actual Work 4.0 26.0 24.0

Percentile (25) of Actual Work 4.0 0.0 24.0

Number of Records 1.0 1.0

Median Actual Work 120.3 8.0

Avg. Actual Work 120.3 8.0

Min. Actual Work 120.3 8.0

Max. Actual Work 120.3 8.0

Percentile (75) of Actual Work 120.3 8.0

Percentile (25) of Actual Work 120.3 8.0

Number of Records 1.0 1.0

Median Actual Work 5.0 48.3

Avg. Actual Work 5.0 48.3

Min. Actual Work 5.0 48.3

Max. Actual Work 5.0 48.3

Percentile (75) of Actual Work 5.0 48.3

Percentile (25) of Actual Work 5.0 48.3

Design

Development

Task 1

Design

Development

Task 2

Complexity
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Figure 39: Comparison of actual hours and estimate from Estimating Tool 

 

The project comparison by new development versus modification of existing artifacts is 

listed below. Each application development project will often involve the creation of new 

artifacts or modification to existing artifacts. One project was all new development. All 

other projects were a mix of new development and modifications to existing artifacts. A 

comparison based on this metric is shown below in Figure 40.  
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Figure 40: Project comparison by type (Create vs. Modify) 

 

Each task in the estimating tool is categorized as easy, medium, or hard to help the project 

manager assign the right type of resource to the task. This categorization also helps the 

project managers and upper management in making better decisions managing for risk in 

the execution phase of the project. The comparison of the projects based on complexity 

levels for tasks is shown below in Figure 41. 
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Figure 41: Project comparison by complexity 

 

There are two main categories under which the tasks in the estimating tool are categorized. 

These are open systems and back-end systems. The comparison of the projects based on 

this categorization is shown below in Figure 42. 

Figure 42: Project comparison by category (Open Systems vs. Back-end Systems) 
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Analysis of the quality of the estimate: 

 The array of estimates for each project was generated using the Java program, as 

outlined in section 4.2. Each project had between 14 to 196 estimates. A histogram of 

estimates for each project was generated using Tableau. The original estimate and actual 

cost from the project execution were then mapped back on the histogram to get a measure 

of the quality of the estimate. It is observed that the approved estimate of the project is 

close to the median and the actual cost is a little less than the approved estimate. The 

variability that existed in the estimating process prior to the rollout of the estimating tool 

is apparent when we look at the spread of the estimates. The biggest advantage from the 

usage of the estimating tool is that it has brought consistency to the process across all the 

application development teams within the organization.  

The histograms and the actual labor hours in comparison to the initial estimate for each of 

the five projects are shown below in Figure 43.  
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Figure 43: Histograms assessing the quality of the estimate for five projects 
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 I also analyzed the data from the perspective of how resources were used in the 

project, what type of resources were used, and how many systems did the project touch. A 

Tableau dashboard was created for this view as well. An interesting observation that lined 

up with my initial findings is that there was one project in this set of five projects that 

touched multiple systems, and it had a pool of contractors that were predominantly less 

experienced in the systems of ABC Inc. This project cost more and went over the overall 

estimated cost when the verification and implementation phases were completed. We had  

actual data processed for only five projects, and ongoing data collection is needed to 

continue to evaluate the approach. One possible hypothesis that can be tested going forward 

as we collect more data is outlined below. 

Hypothesis 𝐻1 : Projects tend to go over the estimated cost when less experienced 

contractors are used in the execution of the project and when they touch multiple systems 

due to poor quality in the design and development phase of the project.  
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 The hypothesis can be tested against the number of defects found in the verification 

phase, and this is something that can be pursued for future research. Individual dashboards 

were also setup for each of the projects. A framework has been established for extracting 

the data and setting up a dashboard for a new project should only take a few clicks going 

forward. The view below in Figure 44 shows at a high level how many types of tasks 

constituted the project and the aggregated stats around the processing times associated with 

those tasks.  

Figure 44: Statistics on processing times at the task level 

 

The task data across all projects is also summarized in Tableau, as shown in Table 20. The 

sample below is shown for ten task types, and the task names have been masked.  
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Table 20: Summary of task level data 

 

6.3 Optimization Model Results and Experiments 
 

 This section presents a case study that shows how estimates that are developed at 

the task and scenario level are used in an Agile setting to optimize the use of limited 

resources. Our scenario accounts for economies of scale that can result from managing the 

skills and domain expertise of resources that are part of multiple projects. This model can 

be used in an environment of multiple small size projects to manage a pool of resources 

given that we always have a backlog of tasks to complete. This scenario will be a case 

study providing a proof of concept to optimize executing multiple small projects at the 

same time. The small projects are rooted in the design patterns of ABC Inc. and will cater 

to the local context.  

In the Agile methodology, a few concepts are becoming more popular. One of them is 

the concept of using Full Stack Developers as part of the team. Traditionally, most 

Task Type High Low Medium

Avg. Actual Work 4.0 17.3 24.0

Number of Records 1.0 3.0 3.0

Avg. Predicted Work 40.0 12.0 24.0

Avg. Actual Work 5.0 48.3

Number of Records 1.0 1.0

Avg. Predicted Work 40.0 40.0

Avg. Actual Work 44.0 16.0 32.0

Number of Records 1.0 5.0 11.0

Avg. Predicted Work 64.0 16.0 36.4

Avg. Actual Work 4.0

Number of Records 1.0

Avg. Predicted Work 4.0

Avg. Actual Work 62.0 7.7

Number of Records 2.0 3.0

Avg. Predicted Work 60.0 8.0

Avg. Actual Work 0.0 0.0 0.0

Number of Records 2.0 3.0 4.0

Avg. Predicted Work 80.0 6.7 29.0

Avg. Actual Work 0.0 37.2 39.3

Number of Records 1.0 28.0 9.0

Avg. Predicted Work 121.0 36.8 65.9

Avg. Actual Work 19.0 37.0

Number of Records 1.0 1.0

Avg. Predicted Work 90.0 38.0

Avg. Actual Work 0.0 36.0

Number of Records 1.0 1.0

Avg. Predicted Work 80.0 34.0

Avg. Actual Work 31.5 82.0 14.0

Number of Records 1.0 1.0 1.0

Avg. Predicted Work 122.0 20.0 51.0

Complexity

Task 7

Task 8

Task 9

Task 10

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6
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application development teams were comprised of specialists in a domain or technology. 

We had UX (User Experience) specialists, developers who specialized in back-end server-

side coding, testers who specialized in writing automated tests, and in the testing of the 

application, database specialists, etc. A full stack developer is someone who conceptually 

specializes in all the above-mentioned technologies. The expectation is that they can handle 

front end, server side, databases, and testing while at the same team fulfilling the role of a 

subject matter expert (SME). A team comprised of several full stack developers is called a 

self-driven team. A company that is rooted in the traditional application development is 

going to start off with resources having 1-2 specialized skills. It will be important for a 

company to build a resource pool that specializes in multiple skill sets to make the 

transition to be a self-driven team.  

 It is in this context that the concept of an efficiency score is introduced. It is quite 

impractical in the real world, particularly in a company that has always done traditional 

application development to assume everyone is going to excel at all the skills. The 

efficiency score will be based on a few factors, such as:  

1. Total experience of an individual in a skill. 

2. The date when the skill was last used by an individual.  

3. The self-rating for the skill by the individual. 

4. Rating of the individual on the skill by the SME or by all the other team members 

It will be a weighted score based on the above factors. The core basis of the efficiency 

score is that an individual with the higher efficiency score for a skill will complete that 

story faster with a better quality. On the other hand, an individual with a lower efficiency 
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score for a skill will take more time to complete the task, and it might not have the best 

quality. The work might result in more defects that will need to be resolved during the 

validation phase.   

A sample prototype for calculating the efficiency score is shown below in Table 21.  

Table 21: Sample efficiency score prototype 

The whole concept of becoming self-driven teams with full stack developers is directly 

related to the concept of an efficiency score. The model considers the efficiency score for 

a skill and pay rate of an individual while assigning the appropriate resource to a skill that 

is needed for a story. The core premise of a self-driven team is that the efficiency scores of 

individuals for each skill will keep going up with experience. The model facilitates the 

analysis of strategic personnel assignment and shows how it can increase efficiency scores 

in the long term. Eventually, the increase in efficiency scores will result in increased 

profitability. This research shows how the work that originally required 14 individuals can 

in fact be completed by seven individuals when each of the individuals possesses multiple 

skills. This gets the organization to start thinking in terms of development plans that can 

be tailored around encouraging individuals to learn new skills. We assume that the 

efficiency score of an individual will go up over time and with experience. An individual 

who is an expert in particular skills over an extended period will always be a specialist in 

that skill and can learn new skills as part of the self-driven team. It will take some time for 

Skills Years of Experience Last time skill used Self Rating Peer Rating Efficiency Score

Spring Batch 3-5 years More than three years backMed Low 0.53

React JS 3-5 years More than three years backBeginner Beginner 0.38

Java 1-3 years More than five years backLow Med 0.42

Hadoop No Experience Never Beginner None/New to Firm 0.05
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that individual to be a specialist in the newer skills, and we need to account for that as we 

assign resources to stories. 

 The concept of cross functional teams is also becoming more popular in the context 

of self-driven teams. Again traditionally, companies encouraged people to develop domain 

expertise in an area. This could be Finance, Marketing, Human Resources, Legal, etc. 

These individuals typically would be subject matter experts who specialize in an area of 

expertise. In a cross functional team, individuals from different functional areas come 

together as a self-driven team, and this typically results in everyone become more familiar 

about other areas outside of their core functional area of expertise. The domain expertise 

of individuals in a cross functional team can also be looked at from the perspective of skills, 

and our model looks at subject matter expertise in a particular domain as a skill that can be 

viewed from the perspective of an efficiency score. We assume that subject matter 

expertise in a domain can be acquired over time and that developers can transition to 

acquire this skill over time. This happens in the real world in application development. The 

Agile methodology can aid in fast tracking the development of subject matter experts 

within an organization.  

Workload availability is to be seen in conjunction with upskilling of the resources 

in the context of the optimization model. My approach in the initial sprints is to allocate a 

percentage of time for cross training amongst the resources. The workload availability of 

resources will be adjusted accordingly in the initial sprints. The resources with a high 

efficiency scores in a skill will be transitioning knowledge to resources with low efficiency 

scores in that particular skill. The vision is that every individual has goals in terms of where 
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they need to be on the skills matrix, and the team has a goal of a desirable skills matrix 

state that they need to achieve in a set number of sprints. There are techniques like pair 

programming or mobbing that can be used in this context. Two programmers share the 

same computer and work on a single task in pair programming while one person who is 

proficient in a skill is sharing the knowledge with a group of programming in mobbing.  

  A hypothesized implication of using an efficiency score in the model is as follows. 

𝐻1:  A team comprised of resources with higher efficiency scores in multiple skills 

will result in more stories being allocated, thereby resulting in overall better objective 

value. 

It is often the case in traditional software development that key resources are 

stretched thin between projects. They are often allocated only for a percentage of time to 

work on a certain project, and it is reality that they have to spend time working on different 

projects at the same time. Resources often work on other support related initiatives in 

addition to working on a project. One need to account for time spent in administrative tasks, 

training time, etc.  The amount of time a resource is available for the project varies, and it 

is in this context that a workload availability of an individual resource becomes a critical 

factor in planning a project schedule. In addition, we must consider the time a team 

consciously spends in cross training and upskilling. The time spent in cross training is 

accounted for by adjusting the workload availability of resources. My model considers the 

workload availability of each individual resource for an individual sprint and ensures that 

the workload capacity of an individual for a sprint is not exceeded. 
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The following two hypotheses pertain to the effect of workload availability at the 

resource level for a sprint in the model and the effect of workload availability in 

conjunction with efficiency score in the model.  

𝐻2:   A team with higher workload resource availability will have a more efficient 

schedule with more stories being taken up for allocation, and it will result in overall better 

objective value. 

𝐻2𝑎:  Workload resource availability in conjunction with higher efficiency score 

will result in better outcomes in terms of schedule efficiency and overall better objective 

value. 

In software development, it is often the case where there is a difference in the 

payrate for employees and contractors. It is also the case that more experienced resources 

and resources who are proficient in multiple skills are paid differently. A subject matter 

expert is paid differently as compared to a starting developer. The model considers this 

factor and will try to allocate the person with the best payrate while considering other 

factors like workload availability to do the task and the efficiency score of the individual 

on the task.  

The hypothesized relationship between the overall utility of the project and the 

available resources can be stated as follows. 

𝐻3:  The overall objective value associated with the project is maximized when we 

can find the optimal pool of resources for the project with higher efficiency scores, higher 

workload availability at the most competitive hourly rate. 
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6.3.1 Current process of executing projects 

This following is a list of steps that are followed in the current process: 

1. The first step is to break down the project into high level tasks.  

2. The next step is to create a work breakdown structure (WBS), where each high-

level task is broken down into manageable chunks. The estimating tool that this 

research developed in essence creates a WBS for the design and development 

phases of your project. The WBS contains tasks at a level of detail which anyone 

working on it can understand and execute. 

3. The project manager then looks at the resource availability for each resource who 

is assigned to the project and builds a schedule based on the available information. 

a. At ABC Inc., resources on these small efforts are typically shared between 

multiple efforts. The resource availability in some cases was 20%. This 

means a resource will take five days to complete a task that typically takes 

a full-time resource one day to complete.  

b. The SMEs are typically assigned to multiple projects, and they are available 

for 10-20 percent of the time. Developers who are looking for feedback 

from SMEs typically have to wait, and this process is repeated over and 

over again.  

c. One such cycle can be summarized as follows 

i. Task from WBS ready to be assigned to chosen developer. 

ii. Developer starts work 

iii. Developer need feedback from SME. 

iv. Typically, there is a wait each time input is needed from the SME.  
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v. Developer completes the task. 

vi. SME needs to review the work, and this again results in more wait 

time. 

d. There are other resources like the UX specialist, Design thinking specialist, 

Legal analysts who are critical resources and not assigned full time to the 

project. There are tasks that can be executed only by these resources and are 

often on the critical path. This often results in additional wait time in the 

execution schedule.  

4. Once the schedule is built, the project execution starts. 

 

6.3.2 Base Case  

The base case analysis refers to the use case data that was described above. I had 

data for five projects that were executed using a hybrid approach where tenets of both 

Waterfall and Agile were used. These five projects had a total of 57 stories that needed to 

be completed in five sprints. A total of 20 skills were needed to complete all stories. Each 

story typically required 1-4 skills. We had a total of 13 resources that were available for 

the projects, and many of them were typically shared resources for the execution of these 

projects.  
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Figure 45: High level representation of use case data 

 

 

  

 

 

 

The estimated total number of hours across the 57 stories was 3522 hours. The resources 

that were initially needed to execute the projects were  

a. Multiple Information System SME’s 

b. Multiple Business side SME’s 

c. Design Thinking Specialist 

d. Information Systems Project Manager 

e. Business Side Project Manager 

f. Developers with Front End skills 

g. Developers with Back End server-side skills 

h. Legal Analyst 

i. QA Testers 

The data was setup for the base case with 13 resources. The assumption was made that an 

individual had skills that pertained to their core competency. A business area SME had 
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only skills that pertained to their area of expertise like making the business case, validating 

business requirements, etc., a front-end developer had only skills that pertained to the 

presentation layer and so on. The efficiency score for these individuals for the skills they 

had was assumed to be perfect and were given a 1.0 for all the relevant skills, and they 

were assigned a score of 0.01 on all other skills. The workload was adjusted as per the 

availability. None of the resources were available full-time for the effort. This was reflected 

in the data.  

 The planning horizon was five sprints. The model for the base case was executed 

on an Intel(R) Core (TM) i5-8250U CPU @1.60GHz, 1801 Mhz, 4 Core(s), 8 Logical 

Processors machine with 12 GB RAM. The total computational time (root+branch+cut) 

was 8.63 seconds, and the solution was optional with an optimality gap of 0.33% for the 

run.  We observed that only 36 stories could be allocated given the resource constraints. It 

was the workload constraint that mostly prevented the other stories from being taken into 

consideration. The resource load across the five sprints is shown below. We observed that 

the resource whose workload availability was higher were utilized more. The resource 

utilization is as shown below in Figure 46.  
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Figure 46: Resource utilization for the base case execution 

 

The sprint load across the five sprints is as shown below in Figure 47. More stories are 

allocated to the initial sprints as compared to the later sprints.  

Figure 47: Sprint load across the five sprints 
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The allocation of stories to the five sprints is as shown below. 

Figure 47a: Allocation of stories to the five sprints in base case 

The optimal objective value of maximum discounted total return was $135,653.13. The 

main takeaway here is that 21 stories could not be assigned due to the constraint that we 

assume all stories, including all the skills have to be completed in one sprint. Many of the 

resources were available only for part of the sprint, and the workload capacity constraint 

played a big part in these stories not being assigned. The optimization model is able to 

precisely prescribe the number of unassigned stories and which stories should not be 

assigned.  

6.3.3 Scenario 1:  Bringing more efficiencies by cross training resources on multiple 

skills 

The whole concept of becoming self-driven teams with full stack developers can 

be viewed from the context of efficiency score and cross functional teams.  In this scenario, 

we only have one skill called subject matter expertise, and everyone on the team could 
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have the skills with varying levels of efficiency scores. It is shown that the work that 

originally required 14 individuals can in-fact be completed by seven individuals when each 

of the individuals possessing multiple skills. This is particularly relevant in an organization 

that is starting to move from the traditional Waterfall method to the Agile methodology. In 

this scenario, we need the following type of resources.  

1. Subject Matter Expert 

2. Developer 

3. Project Manager 

The assumption here is one resource can acquire multiple skills and become proficient in 

them over time. For example, a developer can become a subject matter expert over time 

and can acquire testing skills over time as well. The sprint load across five sprints is shown 

below in figure 48. We see that the load is split pretty evenly across the five sprints.  

Figure 48: Sprint load across five sprints for the first scenario 

The resource load of seven resources across five sprints is shown below in Figure 49. We 

also see that all the seven resources are used evenly across the five sprints.  
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Figure 49: Resource load utilization for the first scenario 

 

The maximum discounted return is shown below. The objective value in this scenario is 

$199,494. All the stories are assigned and executed in this scenario. The model for scenario 

1 was executed on an Intel(R) Core (TM) i5-8250U CPU @1.60GHz, 1801 Mhz, 4 Core(s), 

8 Logical Processors machine with 12 GB RAM. The total computational time 

(root+branch+cut) was 60.33 seconds, and the solution was optional with an optimality gap 

of 0.01% for the run. 

 

6.3.4  Scenario 2: Combining all development tasks separately. 

 An additional observation is that every task is typically comprised of storyboarding, 

design, development, testing and validation, implementation, and finally feedback. 

Storyboarding can be thought as analogous to the requirements phase in a Waterfall project, 

but on a much smaller scale and the scope of it pertains to that of a single sprint. We 

typically have a sprint planning meeting where you discuss the requirements and needs for 

all stories in that sprint and follow it up with a high-level design approach. It is then 

followed up by assigning estimates for each story, and then we are ready to start working 

on the stories in the sprint. There is development, testing and implementation tasks within 

each sprint. In the context of our model and its usage, it is imperative that the product 
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owner or scrum master consider the skill levels of everyone for all skills that are going to 

be required for the next few sprints as they plan out an epic. The goal of a self-driven team 

is often that individuals are improving on the efficiency score associated with all skills that 

are needed to execute a project.  

 One alternative way to look at this is to finish the storyboarding for all stories 

upfront and then have a group of development stories across all five projects. I extracted 

out all the stories that were related to development or coding. We had a total of 26 such 

stories for an estimated 1960 hours. The planning for this scenario had four resources who 

possessed all the skills pertaining to coding and subject matter expertise.  The value of this 

scenario is that it matches the right resource for each skill within each story based on the 

efficiency score, workload constraints, and pay rate of the individual. It also shows the 

value of having a team of resources who are proficient in multiple skills. The resource load 

across the four sprints is shown below in Figure 50. One can observe that the load is spread 

more evenly across the four resources.   

Figure 50: Resource load for scenario two 
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The sprint load across the five sprints is shown below in Figure 51. 

Figure 51: Sprint load for scenario two 

 

The objective value for this run was $115,370. The takeaway from this scenario is that it 

provides an alternative way to think about how to group together stories and execute them. 

All planning for the epic (deliverable that encompasses multiple sprints) can be done 

separately, followed by the execution of all development related stories. Eventually all 

testing related stories across all five projects can be executed. This scenario can be 

considered when one does not have set dates for each project and all five projects can be 

delivered together. The model for scenario 2 was again executed on an Intel(R) Core (TM) 

i5-8250U CPU @1.60GHz, 1801 Mhz, 4 Core(s), 8 Logical Processors machine with 12 

GB RAM. The total computational time (root+branch+cut) was 5.58 seconds, and the 

solution was optional with an optimality gap of 0.06% for the run. 
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6.3.5 Medium size case with  10 projects and 114 stories 

 

 There was a total of five projects and 57 stories in the original data that was 

available. I used that as the base case. In this experiment, five new projects that were very 

similar to the original five projects were added for consideration. The total number of 

stories that were part of the planning process was 114 stories. This is a hypothetical 

scenario, and it gives us an idea on how to use the model for a larger planning horizon and 

plan accordingly. The total estimate for all 114 stories was 7182 hours. I considered using 

eight resources and tried to fit in all of the 114 stories  into eight sprints for this scenario. 

The resource load across the eight sprints is as shown below in Figure 52. 

Figure 52: Resource load for medium size case (Ten Projects) 

 

All 114 stories are assigned, and the workload is distributed across the seven sprints, as 

shown below in Figure 53.  
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Figure 53: Sprint load for medium size case 

 

The Cplex time limit for this run was set at 10 minutes, and the optimality gap was 0.24%. 

The objective value was $ 423045.01 for all of 114 stories that were assigned. The model 

for the medium size case again was executed on an Intel(R) Core (TM) i5-8250U CPU 

@1.60GHz, 1801 Mhz, 4 Core(s), 8 Logical Processors machine with 12 GB RAM.  

6.3.6 Large size case with 20 projects and 228 stories 

 

 In this experiment, fifteen new projects that were very similar to the original five 

projects were added for consideration. The total number of stories that were part of the 

planning process was 228 stories. This again is a hypothetical scenario, and it gives us an 

idea on how to use the model for a very long planning horizon. It is very unlikely that a 

project manager in the real world will need to plan for 228 stories at the same time. In the 

real world, most companies work on the sprint plus one model where you have detailed 

stories breakdown for two sprints, the current sprint, and the next sprint in line. I considered 

using eight resources and tried to fit in as many stories as possible into 16 sprints for this 

scenario. The Cplex time limit for this run was set at 10 minutes, and the optimality gap  

was 0.94%. I adjusted the data, the efficiency score and pay rate to ensure all the 228 stories 
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were assigned and executed. The workload was kept constant at 130 hours per sprint per 

resource. The objective value is $ 795984.13 for all 228 stories that were assigned across 

20 projects. The model for the large size case again was executed on an Intel(R) Core (TM) 

i5-8250U CPU @1.60GHz, 1801 Mhz, 4 Core(s), 8 Logical Processors machine with 12 

GB RAM. 

The resource allocation across the 16 sprints is shown below in Figure 54.   

Figure 54: Resource load for large size case (20 Projects) 

 

The workload is split across the 16 sprints, as shown below. The workload is pretty evenly 

split across the 16 sprints as shown below in Figure 55. 



173 

 
 

Copyright, Chidambaram Subbiah, 2019 

Figure 55: Sprint Load for large size case (20 projects) 

 

6.3.7 How to use the model at an organization 

  

The utility of the model is increased when there is an equivalent dashboard to look 

at historical data from a resource skill perspective. As part of the historical data that was 

given for developing the estimating tool, I had access to eight years of project data. I 

developed a query tool that could potentially be used to query on task names, program 

names, artifact names, etc., and this gives us a starting point to try to match resources based 

on skills that are needed for stories. As mentioned before, this model has the maximum 

utility for an organization that is making a transition from the traditional Waterfall method 

of project management to the Agile methodology for delivering projects.  

The proposed flow below in Figure 56 shows when skills are evaluated, when the 

skills matrix is built, and when the optimization model would be used in the project life 

cycle.  
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Figure 56: Proposed new flow incorporating Optimization Model 

 

 

The steps that need to be taken by a project team are outlined below.  

1. The project team, under the leadership of the scrum master and product owner, 

decomposes the overall deliverable into a set of sprints that are each composed of 

a set of stories. The project team find if there are any set end dates that have to be 

met.  

2. Each story is then decomposed into a set of skills that are needed for the story to be 

completed. We identify the stories that need to be completed together, the stories 

that are incompatible and have to be done independently and the finally the stories 

with precedence relationships.  

3. At this point, we have a high-level idea about the set of skills that are needed for 

the overall deliverable, and an attempt can be made to identify the best possible set 

of resources with the matching skill set. A team with a good blend of experience 

and resources all  across the hierarchy would be ideal to minimize overall costs.  
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4. The efficiency score of each resource as it pertains to each skill needed for the 

project is identified at the outset. At this point, development goals (both short-term 

and long-term) could be set for each resource to acquire new skills in the next few 

sprints and epics. 

5. The workload availability of each resource can be identified at this point. This is 

particularly important if certain resources are shared across projects and efforts.  

6. The data file can be created based on the above factors, and it should give the 

project manager a proposed schedule based on model constraints. The project 

manager can tweak the data file iteratively to understand various what-if scenarios 

based on which resource is available and what skill sets they bring to the table.  

7. The above process can be repeated each time we are ready to start a new epic, and 

this should help lay out a tentative schedule.  

The goal at the end of 3-4 epics should be to have a cross-functional team of full-stack 

developers that are proficient in multiple skills and can execute projects in the most optimal 

way. The model will have utility until the team reaches a point where everyone has the 

highest possible efficiency score for all skills. That very rarely happens in the real world 

and so we will always have the need for such a model.  
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6.3.8 Computational Experiments  

The goal of the computational experiments was to conduct sensitivity analyses to examine 

how varying levels of the efficiency score, workload, and payrate affect  the overall 

objective value and the number of stories allocated. We wrote a Java program to vary the 

efficiency score, workload availability, and payrate as listed below to generate 27 

combinations of the variables for the computational experiments. We then ran the model 

in batch mode three times, once for each sized set of projects, with each batch including 

these 27 combinations. The experiments were run on a machine with an Intel Quad Core 

3.0 GHz CPU with 8 GB RAM.  

• Vary Size 

o Low : Five Projects 

o Medium: Ten Projects 

o Large: Twenty Projects 

• Vary Efficiency Score for each size above 

o Low : Reduce Efficiency Score by 30% 

o Medium: Reduce Efficiency Score by 15% 

o High: At an optimal level, all stories are allocated 

• Vary Workload Availability for each size above 

o Low : Reduce Workload availability by 30% 

o Medium: Reduce Workload availability by 15% 

o High: At an optimal level, all stories are allocated 
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• Vary Payrate for each size above 

o Low : Reduce Pay Rate by 30% 

o Medium: Reduce Pay Rate by 15% 

o High : At an optimal level, all stories are allocated 

Each of the batch runs generated a text file. The output from the text file for the batch run 

of 27 files for the small size (five projects) is shown in Table 15. We generated similar files 

for the medium (10 projects) and large (20 projects) batch runs. A snippet of the data from 

the batch run for the small size grouping is shown below in Table 22.  

Table 22: Computational experiment results from the batch run 

 

Size WL EF PR # of projects # of Stories # of spirints # of skills # of resoures#together #incompatibleCplex StatusCplex Time Actual Time

1 3 3 3 5 57 4 20 8 1 5 102 2495365.953

1 3 3 1 5 57 4 20 8 1 5 102 2495372.484 6.531

1 3 3 2 5 57 4 20 8 1 5 102 2495377.375 4.891

1 3 1 3 5 57 4 20 8 1 5 102 2495394.515 17.14

1 3 1 1 5 57 4 20 8 1 5 11 2498996.859 3602.344

1 3 1 2 5 57 4 20 8 1 5 102 2499067.343 70.484

1 3 2 3 5 57 4 20 8 1 5 102 2499084.5 17.157

1 3 2 1 5 57 4 20 8 1 5 102 2500731.5 1647

1 3 2 2 5 57 4 20 8 1 5 102 2500936.046 204.546

1 1 3 3 5 57 4 20 8 1 5 11 2504537.218 3601.172

1 1 3 1 5 57 4 20 8 1 5 11 2508161 3623.782

1 1 3 2 5 57 4 20 8 1 5 11 2512091.265 3930.265

1 1 1 3 5 57 4 20 8 1 5 102 2512093.39 2.125

1 1 1 1 5 57 4 20 8 1 5 102 2512095.312 1.922

1 1 1 2 5 57 4 20 8 1 5 102 2512097.343 2.031

1 1 2 3 5 57 4 20 8 1 5 102 2512099 1.657

1 1 2 1 5 57 4 20 8 1 5 102 2512100.5 1.5

1 1 2 2 5 57 4 20 8 1 5 102 2512102.734 2.234

1 2 3 3 5 57 4 20 8 1 5 102 2512379.5 276.766

1 2 3 1 5 57 4 20 8 1 5 102 2513528.89 1149.39
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The results from the batch runs are summarized below. Figure 57 visualizes the results of 

the sensitivity analysis for the overall objective value. Each line represents the objective 

value for each unique combination of size, efficiency score, workload, and payrate. We 

observe higher objective values when the efficiency score is high, and the work load 

availability is high. The highest objective value is observed when the efficiency score is 

high, workload availability is high, and payrate is low. The lowest objective value is 

observed when the efficiency score is low, workload availability is low, and payrate is high.  

Figure 58 visualizes the results of the sensitivity analysis for the number of stories 

allocated. Each line represents the number of stories allocated for each unique combination 

of size, efficiency score, workload, and payrate. We observe that a greater number of stories 

is allocated when the efficiency score is high, and the work load availability is high. The 

greatest number of stories is allocated when the efficiency score is high, workload 

availability is high, and payrate is low. The lowest number of stories is allocated when the 

efficiency score is low, workload availability is low, and payrate is high.  

Objective Value MIP GAP RL1 RL2 RL3 RL4 RL5 RL6 RL7 RL8 SL1 SL2 SL3 SL4 Cost Value # of stories

217149.9844 0.000991 517 407 405 390 500 459 354 490 940 890 920 772 184177.8 401327.8 57

272505.2114 0.000327 499 417 405 370 520 484 340 487 900 920 870 832 128915.1 401420.3 57

246956.8417 0.000993 500 420 395 380 505 467 375 480 910 930 830 852 154506.9 401463.7 57

147824.707 0.001 360 275 320 320 362 320 185 248 650 660 580 500 176547.5 324372.2 40

203726.629 0.001827 360 286 320 320 359 360 310 340 670 670 670 645 138189.1 341915.7 45

177085.6399 0.000763 360 290 320 320 357 358 225 345 660 670 610 635 159483.9 336569.5 44

183938.7764 0.000565 438 342 400 360 440 315 212 375 820 760 775 527 174928.1 358866.9 49

242503.8313 0.000532 440 347 400 392 440 427 401 435 830 810 820 822 140888 383391.9 54

214649.0956 0.001 440 357 400 370 430 421 357 440 820 820 780 795 164755 379404.1 52

203373.9521 0.004227 362 274 320 320 362 345 295 339 660 640 657 660 136276.5 339650.5 44

245217.2145 0.005571 362 299 320 320 360 352 310 359 670 680 670 662 97350.09 342567.3 46

225871.4254 0.004189 361 296 320 320 361 343 320 334 660 670 660 665 115924.9 341796.4 45

47248.15427 0.000978 180 80 55 0 120 50 0 55 330 150 60 0 38240.87 85489.03 12

60600.28501 0.000967 232 105 65 0 140 95 0 105 330 272 80 60 37036.97 97637.26 17

54390.68114 0.000851 217 210 65 0 115 60 0 20 280 200 100 107 40119.87 94510.55 15

75216.19759 0.000589 255 120 185 70 157 65 0 75 460 287 140 40 54887.94 130104.1 18

92296.5819 0.000848 255 115 195 60 212 75 0 70 460 235 247 40 40705.34 133001.9 20

84895.6905 0.000805 277 245 190 65 90 65 0 50 460 220 187 115 48038.47 132934.2 20

210194.0273 0.000772 425 354 376 365 440 440 390 425 790 810 800 815 169150.5 379344.5 52

260874.0764 0.000612 440 349 377 361 425 440 398 425 790 810 810 805 118554.9 379428.9 52
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Figure 57: Result of computational experiments – Objective value analysis 
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Figure 58: Result of computational experiments – Number of stories allocated 
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All three batch files were then combined to generate one combined file with the following 

fields, as shown in Table 23 to do a sensitivity analysis on the overall objective value and 

the number of stories allocated to varying levels of efficiency score, workload, and payrate. 

We look at each of these attributes individually to garner insights.  

Table 23: Sensitivity Analysis dataset  

 

Size WL EF PR Objective Value # of stories Allocated

Small High High High 217149.9844 57

Small High High Low 272505.2114 57

Small High High Medium 246956.8417 57

Small High Low High 147824.707 40

Small High Low Low 203726.629 45

Small High Low Medium 177085.6399 44

Small High Medium High 183938.7764 49

Small High Medium Low 242503.8313 54

Small High Medium Medium 214649.0956 52

Small Low High High 203373.9521 44

Small Low High Low 245217.2145 46

Small Low High Medium 225871.4254 45

Small Low Low High 47248.15427 12

Small Low Low Low 60600.28501 17

Small Low Low Medium 54390.68114 15

Small Low Medium High 75216.19759 18

Small Low Medium Low 92296.5819 20

Small Low Medium Medium 84895.6905 20

Small Medium High High 210194.0273 52

Small Medium High Low 260874.0764 52

Small Medium High Medium 237363.4832 52

Small Medium Low High 57288.8107 14

Small Medium Low Low 74295.84362 19

Small Medium Low Medium 66451.76148 17

Small Medium Medium High 180529.2469 44

Small Medium Medium Low 229910.7105 45

Small Medium Medium Medium 206869.2513 45

Medium High High High 422427.184 114

Medium High High Low 532970.3436 114

Medium High High Medium 481869.0677 114

Medium High Low High 286071.9711 72

Medium High Low Low 396347.3062 89

Medium High Low Medium 342325.2425 89

Medium High Medium High 357331.0604 98



182 

 
 

Copyright, Chidambaram Subbiah, 2019 

 

The results of the sensitivity analysis of the overall objective value to varying levels 

of efficiency scores for different combinations of projects in terms of size (small: five 

projects, medium: ten projects, large: twenty projects) is shown in shown in Figure 59. The 

small size represents the run with five projects while the medium size represents the run 

with ten projects, and finally the large run represents the run with twenty projects. We 

observe that the higher efficiency scores result in higher overall objective values across all 

three project size groupings. Similarly, lower efficiency scores result in lower overall 

objective values across all three project size groupings. We also observe that the sensitivity 

of optimal objective value with respective to efficiency score increases when project group 

size increases.  

Figure 59: Sensitivity analysis of objective value to varying efficiency scores and sizes 
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The results of the sensitivity analysis of number of stories allocated to varying 

levels of efficiency scores for different combinations of projects in terms of size (small: 

five projects, medium: ten projects, large: twenty projects) is shown in Figure 60. We 

observe that the higher efficiency scores result in higher number of stories being allocated 

across all three project size groupings. Similarly, lower efficiency scores results in lower 

number of stories being allocated across all three project size groupings. We also observe 

that the sensitivity of the number of stories allocated with respective to efficiency score 

increases when project group size increases.  

Figure 60: Sensitivity analysis of number of stories allocated to varying efficiency 

scores and sizes 

 



184 

 
 

Copyright, Chidambaram Subbiah, 2019 

These findings support our first hypothesis that a team comprised of resources with 

higher efficiency scores in multiple skills will result in more stories being assigned, thereby 

resulting in overall better objective values.  

The results of the sensitivity analysis of overall objective value to varying levels of 

workload availability for different combinations of projects in terms of size (small: five 

projects, medium: ten projects, large: twenty projects) is shown in shown in Figure 61. We 

observe that the higher workload availability results in higher overall objective values 

across all three project size groupings. Similarly, lower workload availability results in 

lower overall objective values across all three project size groupings.  

Figure 61: Sensitivity analysis of objective value to varying workload availability and 

sizes 
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The results of the sensitivity analysis of number of stories allocated to varying 

levels of workload availability for different combinations of projects in terms of size 

(small: five projects, medium: ten projects, large: twenty projects) is shown in in Figure 

62. We observe that the higher workload availability results in higher number of stories 

being allocated across all three project size groupings. Similarly, lower workload 

availability results in lower number of stories being allocated across all three project size 

groupings.  

Figure 62: Sensitivity analysis of number of stories allocated to varying workload 

availability and sizes 

 

This observation supports our second hypothesis that a team with higher workload 

resource availability will have a more efficient schedule with more stories being taken up 

for allocation, and it will result in overall better objective value. 
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The results of the sensitivity analysis of objective value and number of stories 

allocated to varying levels of efficiency scores and workload availability as illustrated 

above support our hypothesis 2a that workload resource availability in conjunction with 

higher efficiency score will result in better outcomes in terms of overall better objective 

value and schedule efficiency in terms of number of stories allocated.  

The results of the sensitivity analysis of overall objective value to varying levels of 

payrates for different combinations of projects in terms of size (small: five projects, 

medium: ten projects, large: twenty projects) is shown in shown in Figure 63. We observe 

that decreasing the payrate results in results in higher objective value across all three project 

size groupings.  

Figure 63: Sensitivity analysis of objective value to varying payrates and sizes 
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The results of the sensitivity analysis of number of stories allocated to varying 

levels of payrates for different combinations of projects in terms of size (small: five 

projects, medium: ten projects, large: twenty projects) is shown in Figure 64. We observe 

that the increasing or decreasing the payrate does not directly result in more or less number 

of stories being allocated across all three project size groupings.  

Figure 64: Sensitivity analysis of number of stories allocated to varying payrates and 

sizes 

 

The results of the sensitivity analysis of objective value and number of stories 

allocated to varying levels of payrates, as illustrated above are mixed and not obvious. This 

results in our third hypothesis not being supported.  
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The results can be summarized, as shown in Figure 65. 

Figure 65: Computational Experiments results summary 

 

The effect of the first three hypotheses being supported by the results of the 

computational experiments can be summarized as follows. A team should strive to have a 

dedicated team of resources who are part of a cross functional team and are proficient in 

multiple skills to have the most efficient schedules. This will result in a greater number of 

stories being allocated and overall better return on investment (ROI) in terms of objective 

value. The resources should have the highest workload availability and highest efficiency 

scores for each of the skills that are required as part of delivering projects.    

Finally, the duration for each of the runs is summarized below. We had a time limit 

of 10 minutes computing time to stop the run.  
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Figure 66: Duration for all runs in the batch process 
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Chapter 7: Conclusion and Future Work 
 

7.1 Summary 

 

This research develops a new integrated predictive-prescriptive analytical approach 

to improve Software Estimating and Agile project management, based on Design Patterns 

that are unique to an organization. There was a quote given by an Enterprise Architect at 

ABC Inc., who was one of my mentors at the organization that helped me with the 

development of the baselines for the estimating tool. "To me patterns are just an approach 

to solving a problem that can be applied to multiple domains. I don’t need a fancy name to 

describe it, as long as I can describe the principles behind it". He also said, "In a nutshell, 

patterns are everywhere." This research developed a systematic and structured approach 

to analyze the data and identify those design patterns that were unique to ABC Inc. It was 

an eye-opening experience as we could fit in literally thousands of individual tasks from 

multiple projects into a finite set of less than 10 unique design patterns. It is a painstaking 

process to analyze thousands of lines of task level data and fit them into patterns, but the 

result of the effort was a clear understanding of how the organization executed application 

development projects. This research resulted in the development of a new estimating tool 

for ABC Inc. and has been implemented for the 28 projects over the past 15 months. We 

had five projects that completed execution, and the results from those projects were 

analyzed to assess the quality of estimation of the tool. The new tool has reduced the 

variability in the estimating process and has been adopted well by the technical subject 
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matter experts and the leadership at the organization. The estimating process has been 

incorporated into the formal project life cycle at the organization, and that resulted in the 

new software development estimating lifecycle as shown in Figure 36 above and shown 

again below.  

 

This research builds out the development of the estimating model in generic terms 

so that the process can be repeated by other organizations to develop their own version of 

the estimating tool. This tool will bring consistency to the estimating process and will 

reduce the variability in the process. It will significantly help reduce the likelihood for 

projects to exceed the budget.   

 The second part of this research dealt with better understanding labor costs 

associated with the project using a two-stage least squares model. The results of the 

predictive model enabled us to take a deeper look into how resources were allocated to 

projects. The model results pointed to the fact that new contractors were assigned to the 

project team, and this resulted in overall increased labor costs to the project as compared 
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to assigning experienced contractors or employees to the project. A deeper look into the 

onboarding of contractors pointed to the workflow outlined below in Figure 67.  

Figure 67: Assignment of resources to a project 

There was a task force at ABC Inc. that was already looking into how to improve the 

process of onboarding contractors at the organization. Our research findings were shared 

with the members of the task force. This has resulted in a revised process whereby 

contractors are familiarized with the development environment at the organization, and 

they work on small support tasks before being assigned to a project. We expect a better 

process flow and reduced labor costs over the long term, but we did not have the 

opportunity to analyze the impact of this revised flow. The aggregation of the various 

disparate data sources and descriptive analysis of the data pointed a lot of interesting trends 

at the organization. This research has given ABC Inc. a deeper understanding of how 

resources are used across the organization on different types of efforts including projects, 
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support, enhancements, etc. More importantly, it has given the organization a deeper 

understanding of how temporary resources are used to augment employees across the 

organization in all types of efforts.  

 The third part of this research produced two ensembles of estimating models. The 

first ensemble brought together two estimates that were rooted in the new estimating model 

based on design patterns and one estimate that was based on the two-stage least squares 

predictive model. The second ensemble relied on the company continuing to use function 

points to size projects, and it produced four estimates. The first ensemble was based on the 

bottom-up estimating approach, and the second ensemble used the top-down approach to 

size projects. The biggest takeaway for ABC Inc. was the opportunity for the organization 

to combine executive judgment with data science to reach consensus on the final estimate 

for a project. This process has set the stage for executive management to have discussions 

with project managers and technical leaders, and it has helped reach consensus on a more 

balanced estimate. This research also set the foundation by assessing the quality of the 

estimate for each project.  

 This research also took a deeper look into the function point repository from a 

historical perspective. We created a couple of predictive models using the function points 

data, and this has helped ABC Inc. get a deeper understanding of the underlying data. This 

research has provided ABC Inc. with a predictive model to estimate a project based on 

function points. It also points to the fact that systems are tightly integrated at the 

organization as borne out by the results of the second predictive model based on the 

individual components that make up the overall function points.  
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The final part of this research was to augment the use of the estimating model to 

build a data-driven resource allocation framework that was rooted in a prescriptive 

analytics (optimization) model that consider multiple skills and domain expertise of 

resources. This research provides thought leadership for companies considering a move 

from Waterfall to an Agile process. It provides a metric to measure skills development 

across multiple sprints, and also sets the foundation for cross training of skills among 

resources, and it helps the organization move towards self-driven teams. The perceived 

shortage of SMEs in organizations like ABC Inc. is addressed when this model is used, and 

it should not be an issue going forward. 

The prescriptive analytics model based Agile planning approach has the following benefits.  

1. Balance the effects of workload availability with skills development of resources 

within the project execution 

2. Lays the foundation for a self-driven and cross functional team that is rooted in a 

foundation of skills development/sharing of skills 

3. Efficiency score and workload availability are key metrics to be considered by 

organizations.  

Predictive Analytics in the estimating process generates credible and quality estimates, 

which serve as inputs to the Prescriptive Analytics model that  optimize the data-driven 

planning and resource allocation decisions in the Agile environment.  
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7.2 Limitations 

 

 This research built the new estimating tool but did not take up the continuous 

refinement of the task level estimates to adjust the baseline estimates in the estimating tool. 

We set up a Tableau dashboard to process the data at the task level and have set a solid 

foundation for the continuous refinement of the task level estimates. The continuous 

refinement of estimates at the task level will add more value to the estimating tool.  

 The estimating tool was used for more than 25 projects, but only five projects have 

completed execution. The remaining projects are in progress. It would have been helpful if 

we had a bigger base of projects that completed execution to better assess its financial 

benefit. We had access to data from the quality perspective or the testing area, but we could 

not relate that data back to the base project data due to variety of internal factors at ABC 

Inc. It will be good to spend some time after this research to fix the issues with this data 

and take a deeper dive into this data. This research has set up the foundation to collect good 

quality data in this space.  

 The organization is starting to execute a few projects in Agile. We took data from 

five small projects that were executed in a Waterfall methodology and mocked it up in an 

Agile context in consultation with the business users to form the basis for the optimization 

model. The optimization model and the usage of an efficiency score to track skills 

development is currently being considered on a pilot basis in a few Agile projects, and it 

will take some time to observe and analyze the outcomes.  
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7.3 Future Work 

 

There is an opportunity to use the actual data from projects that use the new 

estimating tool to create a Bayesian updating based approach to enhance the quality of 

estimates. This research created the foundation to aggregate the data in a Tableau 

dashboard for each individual task category, which facilitate the development of the 

Bayesian models in the future.  

 There will be a larger set of projects that are going to complete execution in the 

next 6-12 months, and there is an opportunity to assess the economic impact of the 

estimating tool. This research laid the foundation of assessing the quality of the estimate 

for each project. The next step would be to process the data after the development of the 

estimating tool and compare it to the era prior to the development of the estimating tool. 

This will provide a more accurate assessment of the economic benefit of the estimating 

tool.   

 There is an opportunity to extend the estimating tool to introduce risk at the task 

level and develop more sophisticated models and methods that explicitly cope with 

uncertainty. For example, one may start with a Monte Carlo Simulation to predict the 

likelihood of the project meeting its delivery date. This will provide useful information for 

project managers, and it can be the next logical step to extend the estimating tool.   

 There is additional opportunity to address other objective functions building on the 

established framework. We can maximize the number of stories allocated within the 

planning horizon. It is also possible to consider the minimum completion time for all stories 
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in the planning horizon, that is, the minimize the makespan of some selected stories. There 

is also good opportunity to implement the prescriptive analytics model on a pilot Agile 

project, and it will be helpful to get feedback and refine the model based on the feedback. 

This research proposed a framework to use the efficiency score as the basis to lay the 

foundation for skills development in an organization. An Agile Dojo is a physical space 

dedicated to accelerated learning for teams, and ABC Inc. is starting to encourage teams to 

learn in this new environment. It will be great to see this framework being implemented in 

an such an environment which encourages cross sharing among team members. ABC Inc. 

is investing and moving in this direction. We should soon have data available in this space. 

The optimization model needs to be made production-ready by getting it to accept input 

from an Excel sheet and write output to an Excel sheet. The interface for that can be written 

in Python or Java, and that will be needed for organizations to use the model on a regular 

basis.  
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