
1

Copyright, Chidambaram Subbiah, 2019

Task-Based Estimation and Planning for Application Development

Projects and Resources: Models, Methods and Applications

Chidambaram Subbiah

M.B.A, University of Missouri, Saint Louis, 2002

B.E., Computer Science Engineering, Bhopal University, Bhopal 1995

A Dissertation submitted to The Graduate School at the

 University of Missouri – St. Louis in

 partial fulfillment of the requirements for the degree

 Doctor of Philosophy in Business Administration

with an emphasis in Logistics & Supply Chain Management

December, 2019

Dissertation Committee

 Haitao Li, Ph.D., Chairperson

 Andrea Hupman, Ph.D.

 Donald Sweeney, Ph.D.

 Joseph Simonis, Ph.D.

 Kailash Joshi, Ph.D.

2

Copyright, Chidambaram Subbiah, 2019

Contents
List of Tables .. 4

List of Figures ... 4

Abstract ... 7

Chapter 1: Introduction ... 8

1.1 Background and Research Motivation .. 8

1.2 The Framework of the Dissertation ... 12

Chapter 2: Literature Review .. 17

2.1 Bottom-up estimating and measuring the size of software applications 18

2.2 Agile Release Planning Methodology ... 26

2.2.1 Definition of terms for an Agile project execution... 26

2.2.2 Agile release planning methodology literature review 29

2.3 Predictive modeling in the context of estimating effort for open systems web

development projects... 37

2.4 Combining different methodologies and assessing the quality of the estimate 44

Chapter 3: Research Purpose and Contributions .. 50

3.1 Advance the state of the art of estimating software development costs using design

patterns. ... 51

3.2 Quantify the economic impact of resources and other factors on overall labor cost.

 ... 52

3.3 Implementing multiple estimating models by combining executive judgment with

quantitative modeling .. 53

3.4 Applying prescriptive analytics (optimization) to build a new decision-support

framework for Agile project planning ... 54

Chapter 4: Methodologies ... 55

4.1 Estimating Tool Development .. 57

4.1.1 Function points related predictive models .. 57

4.1.2: Two Stage Least Squares (2SLS) model and Decision Tree Analysis 60

4.1.3 Function points related suite of estimates... 64

4.1.4 Development of the task based estimating model ... 64

3

Copyright, Chidambaram Subbiah, 2019

4.1.5 Estimating tool requirements: ... 67

4.2 Assessing the quality of the estimate from the estimating tool 69

4.3 Optimization model for allocating resources to tasks in an Agile setting 70

Chapter 5: Data ... 78

5.1: Data for predictive models ... 78

5.2: Use case for Agile Software Development epic and release planning 93

5.2.1: Introduction to optimization use case .. 93

5.2.3: Use Case .. 95

Chapter 6: Model Testing Results and Experiments... 105

6.1 Estimating tool development – related models and development of the tool 105

6.1.1 Function points related predictive models: ... 105

6.1.2 Two Stage Least Squares (2SLS) model results and Decision Tree analysis 111

6.1.3 Function points related suite of estimates: ... 123

6.1.4 Implementation of the Estimating Tool: ... 126

6.1.5 Creation of the Estimating Tool ... 135

6.1.6 Summary of the new estimating Process: ... 139

6.2 Assessing the Quality of the Estimate from the Estimating Tool 143

6.3 Optimization Model Results and Experiments.. 154

6.3.1 Current process of executing projects .. 160

6.3.2 Base Case .. 161

6.3.3 Scenario 1: Bringing more efficiencies by cross training resources on multiple

skills ... 165

6.3.4 Scenario 2: Combining all development tasks separately. 167

6.3.5 Medium size case with 10 projects and 114 stories 170

6.3.6 Large size case with 20 projects and 228 stories .. 171

6.3.7 How to use the model at an organization ... 173

6.3.8 Computational Experiments ... 176

Chapter 7: Conclusion and Future Work .. 190

7.1 Summary ... 190

7.2 Limitations .. 195

4

Copyright, Chidambaram Subbiah, 2019

7.3 Future Work .. 196

References ... 197

List of Tables
Table 1: Bottom-up estimating and measuring the size of software applications research

... 18

Table 2: Agile release planning methodology research .. 30

Table 2.1: Agile release planning optimization models research 34

Table 3: Predictive modeling in the context of estimating effort for open systems web

development projects .. 38

Table 4: Combining different methodologies and assessing the quality of the estimate .. 44

Table 5: Function point repository .. 80

Table 6: High level data analysis of project data .. 89

Table 7: Project data by phases ... 89

Table 8: Data analysis by project phases .. 90

Table 9: Data analysis by resource type ... 90

Table 10: Data analysis based on usage of temporary resources 91

Table 11: Data analysis based on quality metrics ... 92

Table 12: Project data for optimization use case .. 101

Table 13: Skills data for use case .. 103

Table 14: Resource types for use case .. 104

Table 15: Summary statistics for Function points related metrics 108

Table 16: Tableau Dashboard of Function Point Suite of Estimates and differences of the

estimates from the actual labor cost .. 125

Table 17: Sample survey ... 132

Table 18: Snippet of aggregated survey responses ... 134

Table 19: Processing of survey results in SAS ... 135

Table 20: Summary of task level data... 154

Table 21: Sample efficiency score prototype.. 156

Table 22: Computational experiment results from the batch run 177

Table 23: Sensitivity Analysis dataset .. 181

List of Figures
Figure 1: Project Steps – Data Collection to Estimating Model to Resource Plannning .. 67

Figure 2: Function points dataset .. 79

Figure 3: Actual labor cost dataset sample ... 81

5

Copyright, Chidambaram Subbiah, 2019

Figure 4: Aggregated task level data sample .. 84

Figure 5: Flow to get the aggregated dataset for modeling .. 87

Figure 6: Scatter plot of function point count with total labour hours.............................. 87

Figure 7: Project execution with optimal resource allocation .. 97

Figure 8: Effect on project duration due to resource constraints 97

Figure 9: High-level diagram for use case .. 100

Figure 10: Tentative project plan .. 105

Figure 11: Function point repository visulization ... 106

Figure 12: Scatter plot of adjusted function point and total labor hours 106

Figure 13: Bar graph of cost per FP for total cost across all projects sorted in ascending

order .. 107

Figure 14: Bar graph of cost per FP for design and development across all projects sorted

in ascending order ... 108

Figure 15: Box Whisker Plot of the difference between Actual Labor Cost and Predicted

Cost. .. 111

Figure 16: Histogram of total project labor hours .. 112

Figure 17: Model description and summary for Two Stage Least Squares model with

hours less than 7500 hours. ... 114

Figure 18: Scatter plot of residuals with predicted values for 2SLS (less than 7550 hours)

... 115

Figure 19: Test on residuals for 2SLS model with hours less than 7500 hours 116

Figure 20: Model description and summary for Two Stage Least Squares model with

hours less than 10000 hours. ... 117

Figure 21: Scatter plot of residuals with predicted values for 2SLS (less than 10000

hours) .. 118

Figure 22: Test on residuals for 2SLS model with hours less than 10000 hours. 119

Figure 23: Model description and summary for Two Stage Least Squares model with

hours less than 10000 hours less one outlier ... 120

Figure 24: Decision Tree Analysis, Regression Tree (CART) 121

Figure 25: Decision Tree Analysis, Regression Tree (CHAID) 122

Figure 26: Snapshots of implemented COCOMO II tool ... 123

Figure 27: Masked high level design patterns at ABC Inc. .. 128

Figure 28 - Estimate Comparative tab in Estimating Tool ... 136

Figure 29: Design and development tasks entered by the SME 136

Figure 30: Pie charts in the overhead and summaries tab of Estimating Tool 136

Figure 31: Cost breakdown summary in Estimating Tool .. 137

Figure 32: Project data by phases for the past 12 months .. 138

Figure 33: Cost projection table in Estimating Tool ... 141

Figure 34: Overhead and Summaries tab in Estimating Tool ... 142

6

Copyright, Chidambaram Subbiah, 2019

Figure 35: Suite of seven estimates .. 142

Figure 36: New software development estimating lifecycle ... 143

Figure 37: Tableau reporting for processing data from finished projects 144

Figure 38: Tableau Analysis for analyzing task level data ... 145

Figure 39: Comparison of actual hours and estimate from Estimating Tool 146

Figure 40: Project comparison by type (Create vs. Modify) .. 147

Figure 41: Project comparison by complexity .. 148

Figure 42: Project comparison by category (Open Systems vs. Back-end Systems) 148

Figure 43: Histograms assessing the quality of the estimate for five projects 150

Figure 44: Statistics on processing times at the task level .. 153

Figure 45: High level representation of use case data .. 162

Figure 46: Resource utilization for the base case execution ... 164

Figure 47: Sprint load across the five sprints.. 164

Figure 47a: Allocation of stories to the five sprints in base case.................................... 165

Figure 48: Sprint load across five sprints for the first scenario 166

Figure 49: Resource load utilization for the first scenario .. 167

Figure 50: Resource load for scenario two ... 168

Figure 51: Sprint load for scenario two .. 169

Figure 52: Resource load for medium size case (Ten Projects) 170

Figure 53: Sprint load for medium size case .. 171

Figure 54: Resource load for large size case (20 Projects) ... 172

Figure 55: Sprint Load for large size case (20 projects) ... 173

Figure 56: Proposed new flow incorporating Optimization Model 174

Figure 57: Result of computational experiments – Objective value analysis 179

Figure 58: Result of computational experiments – Number of stories allocated 180

Figure 59: Sensitivity analysis of objective value to varying efficiency scores and sizes

... 182

Figure 60: Sensitivity analysis of number of stories allocated to varying efficiency scores

and sizes .. 183

Figure 61: Sensitivity analysis of objective value to varying workload availability and

sizes ... 184

Figure 62: Sensitivity analysis of number of stories allocated to varying workload

availability and sizes ... 185

Figure 63: Sensitivity analysis of objective value to varying payrates and sizes 186

Figure 64: Sensitivity analysis of number of stories allocated to varying payrates and

sizes ... 187

Figure 65: Computational Experiments results summary ... 188

Figure 66: Duration for all runs in the batch process .. 189

Figure 67: Assignment of resources to a project .. 192

7

Copyright, Chidambaram Subbiah, 2019

Abstract

This dissertation takes a new approach to software development effort estimation

from the perspective of design patterns at an organization. A new estimating tool is

developed to provide bottom up estimates based on the design patterns of the organization.

The research also offers guidelines for extracting the unique design patterns specific to an

organization that are used to obtain baseline task level estimates in the Estimating Tool. In

addition, the tool provides a suite of seven estimates using predictive analytics to estimate

the labor hours required for a project using historical data, a bottom-up estimate that is

rooted in the design patterns of the organization, a recommended estimate, plus four other

estimates that are based on the function point count. The four estimates include a predictive

model to estimate the project cost based on the function point count and three estimates are

variants of the early design Construction Cost Model II (COCOMO II). Direct benefits of

the tool include reduction of process variability thereby resulting in consistency of

estimates across teams in an organization.

In Agile IT Project Management, there is an important need to better plan project

timelines and to make better scheduling and resource allocation decisions to facilitate on-

time and on-budget project deliveries. This research thus also addresses the prescriptive

aspect of the application, by making better resource allocation decisions via a new mixed-

integer linear programing (MILP) optimization model. The model provides data-driven

decision-support for companies looking to make a transition from the waterfall to the agile

paradigm with a structured approach to focus on skills development at the organization. A

8

Copyright, Chidambaram Subbiah, 2019

real-world application of the use of the new Estimating Tool and the proposed models at a

large firm is showcased as part of the research. A comprehensive sensitivity analysis was

conducted as part of a set of computational experiments to obtain managerial insights.

Chapter 1: Introduction

1.1 Background and Research Motivation

Almost all types of organizations, either large or small, perform Application

Development to meet the growing needs of business. Application Development often

involves estimating the size of the effort upfront so that the organization can make

appropriate budgeting and scheduling decisions. According to Gartner (2014), Application

Development accounts for 34% of Information Technology budgets. One of the biggest

challenges companies face is their inability to size the associated effort properly.

Chemuturi (2009) defines Software Development Estimation as “the estimation of software

size, software development effort, software development cost, and software development

schedule for a specified software project in a specified environment, using defined

methods, tools and techniques." The effort is measured in person-days or person-hours,

and the schedule is optimized based on the capacity of resources available. Every

organization conducts software estimation differently, and there is very little consistency

in the industry. While there are off-the-shelf tools that can be used for software

development estimation, these tools do not account for the unique application environment

and business rules under which companies operate, and cannot be customized for

individual companies. Shepperd (2007) states that accurately predicting software

9

Copyright, Chidambaram Subbiah, 2019

development effort is a crucial concern of many organizations. Halkjelsvik and Jørgensen

(2012) present evidence that the average cost and effort overrun for software projects is

about thirty percent.

Application Development is often managed as a project, and the term project

estimation can be used interchangeably with software development estimation. It is often

the case where there are so many risk contingencies built into the estimate that one must

peel off the layers to know the true cost of a project. I have personally been involved in

Application Development for more than 22 years in various roles, including being a

developer, subject matter expert (SME), and project leader. I have seen a wide range of

methodologies and tools being used in this space to estimate projects. Most of these

methods often rely on expert estimation or the subjective judgment of SMEs. Albrecht and

Gaffney (1983) define function point as "a unit of measurement to express the amount of

business functionality an Information system or application provides to a user." Many

organizations use function points as a sizing measure. The estimating process can often go

through multiple layers, including risk contingency through the approval hierarchy of the

organization before obtaining the final estimate. The biggest disadvantage of this process

is the lack of consistency in the process between different application teams that use the

same technology stack to develop similar applications. There is significant variability in

the estimates obtained by different teams for the same type of work.

This research was motivated by the initiative at a service organization to develop a

tool for project estimation. It is a large international firm with a Program Management

Office (PMO) that manages the execution of information system projects. The information

10

Copyright, Chidambaram Subbiah, 2019

system projects are centrally managed, and most of the projects are web-based projects that

are executed to bring efficiencies in the workflow for their customers. The functionality

delivered by these projects are unique to the organization, but the process and methodology

can be applied to other organizations that use a similar technology stack. It is a mature

organization, already using function points to size projects. The organization was looking

to make a transition from the traditional Waterfall way of executing projects to the Agile

environment. There were a few pilot initiatives in the Agile space. Jones (2007) makes the

case for why an organization needs to use function points:

1. Projects with function point analysis early in the process have lower “requirements

creep” than uncounted projects.

2. Projects with function point analysis have about 15% lower cost overruns than

uncounted projects.

3. Projects with function point analysis have about 25% less schedule slip than

uncounted projects.

4. Preliminary analysis indicates that function point analysis saves $15 to $50 per

function point. ROI = 15 to 1 roughly.

One of the most significant advantages is that the project team needs to go through a

structured process to get the function points for a project counted. This often can get the

team thinking about the first level design, and it lays the foundation for a quality design

phase.

 The organization had set up the foundation to use the COCOMO II model

(COnstruction COst MOdel II), which is an approach to estimate the cost, effort, and

11

Copyright, Chidambaram Subbiah, 2019

schedule for a new software development project. It takes the number of function points as

its input, and it is a constructive software estimation model based mainly on regression

techniques. The model is defined in terms of scaling factors and effort multipliers, which

are used for estimating overall effort and cost (Cocomo, 2000). The company relied

primarily on expert estimation, with SMEs in each area performing the design and

estimates. It then used executive judgment in addition to the estimate from the SME to

estimate the cost and effort associated with the project, which was then used to make

scheduling decisions. As mentioned earlier, the two major disadvantages were the lack of

consistency in estimates and variability that existed in estimates for work that was very

similar.

There is abundant research in software development estimation since the early

1980s. Sehra, Brar, Kaur, and Sehra (2017) find that there are several articles in this space

beginning in the early 1990s, and it continues to be actively researched. Myrtveit, Stensrud,

and Shepperd (2005) mention that software cost estimation has been a complex and

difficult task evidenced by the amount of research in this space. There have been numerous

studies over the years comparing the accuracy of estimates regarding overall cost, duration

and effort using different estimating models, but many of these approaches fail to consider

the specific environment and business rules that are unique to the organization which is

often the driver of costs in a software development effort. The business rules (or operations)

of the organization often dictate what design patterns are used by the organization. There

has been very little research around developing a task based estimating model while

considering the unique design patterns used by an organization. A design pattern is a

generic solution to a commonly occurring issue in software design and development.

12

Copyright, Chidambaram Subbiah, 2019

Design patterns are useful in that they can speed up the development process in that a

solution is often implemented the same way, and design patterns frequently can be reused.

Many companies find their niche in rapid application development by standardizing on

reusable design patterns. Organizations often rely on expert estimates, and those estimates

are often from subject matter experts who have worked in those systems for a long time.

Big organizations standardize on technology design patterns, and application development

teams use the same technology stack and design patterns for most application development.

This lends itself to bottom up estimating that is rooted at the task level. The key to

estimating then becomes uncovering the underlying unique design pattern of the

organization and utilize it for better project effort estimation.

Another thrust of my dissertation is to propose augmenting the use of the estimating

tool by building a resource allocation and project scheduling framework that will help make

better scheduling project tasks in an Agile environment. My goal is to build an optimization

model that will account for the varied skill sets and domain expertise in the resource pool.

The research on the estimating models will set the foundation for the resource allocation

model.

1.2 The Framework of the Dissertation

My research aims to fill the gap in the existing research literature and practices in the

real world. One thrust of my proposal is to develop a process to find the underlying design

pattern of the organization, then decompose the design pattern into scenarios and tasks

based on interviews with a small group of subject matter experts or technical architects in

the company. Baselines for the tasks and scenarios can be constructed from surveys of

13

Copyright, Chidambaram Subbiah, 2019

SME estimates. These baselines can be the basis for creating a bottom-up estimating model.

One main contribution of this research is the development of an estimating tool that helps

a team complete a bottom up estimate right after completing a thorough design for the

project. The tool will incorporate the capability to factor in the local environment of the

organization and the tasks/scenarios that were decomposed from the design patterns at the

company. It will also have other features to enhance the usability of the tool, that cater to

the unique environment of the company. Some of these features will include the capability

to breakdown the estimate into smaller chunks by functionality, requirements, etc., and to

override the baseline at the task level. The tool will then show the estimate from the subject

matter expert with the override and compare it with the recommended cost from the tool

without the overrides.

This research has been conducted in the context of a service company that does 20-

25 application development projects every year. I was granted access to data from all

application development projects going back seven years. The data from the past seven

years was used in the development of a suite of predictive models to estimate the total labor

hours needed to complete a project. Software development in the early 1990s used to have

two major costs, system costs and labor costs. Over time, the cost of computing in terms

of system costs has drastically decreased and is no longer a significant contributor to costs.

Labor costs today are one of the main cost component in Software Application

Development.

There has been little attempt made by organizations to approach software

estimating by predicting the labor cost associated with the project and identifying the

14

Copyright, Chidambaram Subbiah, 2019

underlying drivers of labor cost. This research fills this gap by creating an estimating

model that estimates the total labor hours for a project, identifies the most important

explanatory factors that contribute to the overall labor cost, and quantifies the economic

impact of resources. Due to the endogenous nature of some explanatory variables in the

models, we build two-stage regression predictive models to predict the number of labor

hours that will be required for a project. We then translate the labor hours to a cost and add

other costs associated with the project, including vendor costs, hardware costs, among

others to come up with an overall estimate for the project. The fundamental assumption

underlying these models is based on the analysis of the existing cost data, which indicates

that labor costs are the single most important contributor to application development costs

at the company.

The models provide a suite of cost estimates to the decision makers, who integrate

expert executive judgment with data science. The organization was already using function

points to measure the size of development efforts, and I was also granted access to this

data. I derived a predictive model to predict the cost of a project based on the historical

data using function points and actual labor costs of a project. I also used the COCOMO II

early design model to come up with three estimates based on varying a couple of scaling

factors. The bottom-up estimate based on the design pattern completed by the subject

matter expert and recommended estimate from the tool complete the suite of estimates.

Overall, I obtained a suite of seven estimates for decision makers to assess and use their

executive judgment to challenge the experts on the estimate. The suite of estimates are

explained below.

15

Copyright, Chidambaram Subbiah, 2019

SME/TL Estimate: This is the estimate of the subject matter expert/Technical Lead,

including the override time that they have chosen for all tasks in the newly created

estimating tool.

Recommended Cost: This the estimate for all the tasks considering only the time that the

tool recommends leaving out the override time chosen for the individual tasks.

Predictive Cost: This is the predicted cost for the project based on the historical data of

projects from 2011 to 2017. This estimate considers factors such as # of associates, # of

contractors, # of experienced contractors, duration of the project, # of development tasks,

time spent in testing, time spent in planning, which area is doing the project, what type of

project, etc. The most significant contributors to labor cost at the organization are

considered to predict the cost. These contributors and associated weightages will be

determined from the newly created two stage regression model.

Function point baseline: This is the predicted cost at the organization for the project based

on the historical data in the function point's database. It is calculated based on calculated

function points. We take the function point number and adjust it for a requirement creep of

two percent per month and use the adjusted number to predict the cost of the project.

COCOMO II Best Case, Middle of the Road, and Costliest: These three numbers also

consider the adjusted function point count. It gives one a range of estimates based on

adjusting scale factors and cost drivers in the model. We only change two of the cost

drivers in the model. One is able to obtain a range based on the function point count.

16

Copyright, Chidambaram Subbiah, 2019

• The best case assumes one to have a high performing team and schedule

pressure is relaxed.

• The middle of the road case assumes one to have a nominal team and schedule

pressure is normal.

• The costliest case assumes one to have a nominal team and schedule pressure

is high.

All three scenarios assume the following scale factors and cost drivers.

The scale factors were chosen in discussion with technology leaders at the firm. The

process maturity is nominal, experience of similar projects is high, flexibility required in

the system is nominal, team cohesiveness is high, project risk and architectural complexity

is low.

The cost drivers again were chosen in discussion with the technology leaders at the firm.

System reliability, complexity, and size indicator are nominal, reusability is nominal,

platform difficulty is nominal, application language and tool experience are high, and using

case tools for development is high.

 The estimating models set the stage for the development of a resource allocation

framework that will help make better scheduling decisions. This framework relies on an

optimization model that considers skill and domain expertise while assigning resources to

tasks in an Agile Project Methodology setting. Agile practitioners typically do not approach

the planning and scheduling of resources from an allocation framework that considers the

skill and domain expertise of individuals. My model will address that need for small

17

Copyright, Chidambaram Subbiah, 2019

projects in an Agile setting and will lay the foundation for project managers to make better

scheduling decisions based on the best resource available to work on a task. Many

organizations are considering or making a transition from a traditional Waterfall to an Agile

methodology for execution projects. This research lays out a framework for making this

transition focusing on skills development to best utilize the workload of resources

available, and it employs a prescriptive optimization model at the core of this framework.

Chapter 2: Literature Review

There is abundant research on software development estimation since the early

1980s. Sehra et al. (2017) find that there are several articles in this area beginning in the

early 1990s, and it continues to be actively studied. There are more than 80 papers that

have been published over a period of ten years from 2007 through 2016. Albrecht and

Gaffney (1983) make the case that one of the most important problems faced by software

developers and users is the prediction of the size of a programming system and its

development effort. The literature review in this chapter is organized into four main

sections.

1. The first section reviews the papers that focus on bottom-up estimating and on

various approaches to measure the size of software applications.

2. The second section reviews the papers that focus on executing projects using the

Agile Project Methodology, especially those dealing with release planning. This

18

Copyright, Chidambaram Subbiah, 2019

section also reviews papers on optimizing resource allocation and scheduling

stories in the Agile context.

3. The third section reviews the papers that focus on estimating models in the context

of estimating effort for open systems such as web development projects.

4. The fourth section reviews the papers that make the case that a suite of estimates is

better than having one estimate.

2.1 Bottom-up estimating and measuring the size of software applications

Bottom-up estimating is a way in which a big project is broken down into smaller

subcomponents, and each subcomponent is estimated in terms of time needed for the

subcomponent or task. The aggregation of the individual estimates of the subcomponents

then becomes the estimate for the overall software project. Bottom-up estimating facilitates

the generation of a work breakdown structure, which is then used for project scheduling

and resource allocation. Table 1 summarizes the literature regarding bottom-up estimating

and measuring the size of software applications.

Table 1: Bottom-up estimating and measuring the size of software

applications research
Author Methodology Modeling Technique

Albrecht and Gaffney

(1983)

Estimate the amount of

"function" the software is

to perform.

Paper Introduction

Function Points

Low and Jeffery (1990) Empirical Research Compare Estimates from

different methodologies

Symons (1991) Mark II Function points Paper Introducing Mark II

function points

19

Copyright, Chidambaram Subbiah, 2019

Author Methodology Modeling Technique

Verner and Tate (1992) Case Study Regression

Miyazaki, Terakado,

Ozaki, and Nozaki (1994)

Case Study Robust Regression

Hakuta, Tone, and

Ohminami (1997)

Empirical Research and

Survey for baselines

Regression

Pfleeger, Jeffery, Curtis,

and Kitchenham (1997)

Literature Review

Raz and Elnathan (1999) Generic Model for costing

of Projects

Activity based Costing.

Dolado (2000) Case Study Regression, Machine

Learning, Neural

Networks, Genetic

Programming

Hill, Thomas, and Allen

(2000)

Case Study Regression

MacDonell (2003) Comparison of Regression

with Fuzzy Logic

Modeling

Fuzzy Logic Modeling

Regolin, De Souza, Pozo,

and Vergilio (2003)

Size Estimation Machine Learning

Moløkken and Jørgensen

(2003)

Literature Review

(Regolin, De Souza, Pozo,

& Vergilio, 2003)

Case Study using ISBSG

data

Genetic Programming,

Neural Networks

Jørgensen (2004a) Literature Review

Jørgensen (2004b) Case Study Generic Statistical Models

Costagliola, Ferrucci,

Tortora, and Vitiello

(2005)

Introduces the Class Point

approach

Regression

Pendharkar (2004) Case Study Regression, Decision trees

20

Copyright, Chidambaram Subbiah, 2019

Author Methodology Modeling Technique

Jørgensen (2007) Literature Review

Kanmani, Kathiravan,

Senthil Kumar, and

Shanmugam (2007)

Case study using 40

student projects

Machine Learning

Forsyth and Burt (2008) Study of two experiments

in a case study.

Generic Statistical Models

Wijayasiriwardhane and

Lai (2008)

Introduce Component

Point approach.

Cunha, Cruz, Costa,

Rodrigues, and Vieira

(2012)

Case Study Comparison of Estimation

Approaches

Zhou, Yang, Xu, Leung,

and Zhou (2014)

Objective class points Regression

Jørgensen (2014) Case Study

Hill et al. (2000) analyze the accuracy of expert estimates for tasks. They study the

link between task time and the number of subtasks involved in the task and find a

significant relationship between the two attributes. The authors make the case that the way

we breakdown tasks in a work breakdown structure to identify subtasks is also one of the

most useful things that experts can do to estimate the times of the tasks better. Forsyth and

Burt (2008) conduct three experiments in a non-software context to compare time

allocation for a single task with the total time allocation given to all the subtasks that make

up the single task. The authors advance the concept of a segmentation effect where they

find higher estimates when tasks are decomposed. One other interesting conclusion from

21

Copyright, Chidambaram Subbiah, 2019

the paper is that the decomposed estimates are more accurate when predicting larger

subtasks as opposed to smaller subtasks. Cunha et al. (2012) present a case study

implementing a bottom-up estimating approach in a software company. The authors find

that the estimates greatly improved using the bottom-up estimating approach.

Albrecht and Gaffney (1983) present a method to measure size based on the concept

of function points. They define a function point as "a unit of measurement to express the

amount of business functionality an Information system or application provides to a user."

Low and Jeffery (1990) show how function points can be used to compute a functional

value of an application in terms of external inputs, external outputs, external inquiries,

internal logical files, and external interface files. Function points have been in use since

the early 1990s and are used by companies to size a software development effort. Verner

and Tate (1992) take up the case of a bottom up estimation based on size because size was

critical to explaining overall effort. They identify the factors affecting size and obtain

equations to predict size based on the explanatory factors. The authors present a method to

come up with an overall system size based on the individual size of the subcomponents.

The results were accurate to the extent to which knowledge about the system was known.

Expert judgment plays an important role in the development of these models.

Miyazaki et al. (1994) build on the model by Verner and Tate to propose improvements in

measuring size by using the least squares of inverted balanced relative errors instead of the

ordinary least squares method. Hakuta et al. (1997) introduce an estimation model that is

independent of program type and is more generic in nature. They introduce the concept of

a processing unit. The processing unit is defined as a module that completes a specific

22

Copyright, Chidambaram Subbiah, 2019

function, and the size of the processing unit is estimated based on reference modules. It has

adjustments for language level, complexity, and environmental factors. The authors make

the case for refinement of size estimates based on the availability of more information.

There is plenty of research that is being done in the field of software estimating,

and new models are being developed. The existing research has a gap from a practitioner’s

perspective in that the models being developed in academic research do not meet the

everyday needs of a practitioner. The models are not intuitive enough to be employed in

practice. Pfleeger et al. (1997) talk about the gap between measurement research and

practice. They talk about software measurement as a broad term, including everything in

the software development process that deals with metrics including monitoring the

schedule and how managers look for measurable milestones to indicate the project health

in terms of effort and schedule deliverables. They refer to the academic researchers as the

measurement community and advocate the idea that the measurement community should

not remain separate from the mainstream software engineering field. The authors make the

case that academic researchers should try to understand the practitioners’ needs so that

models that are more relevant for the real world can be produced.

Raz and Elnathan (1999) outline an Activity-Based Costing (ABC) approach for

software projects. ABC is a two-stage method of allocating overhead costs to various cost

drivers at different levels of activity. The authors propose using the ABC method to track

overhead costs for software projects. The focus in ABC is on consumption of resources as

represented by the activities in the projects, while the traditional work breakdown structure

23

Copyright, Chidambaram Subbiah, 2019

(WBS) in Waterfall project management groups together work packages according to the

resources responsible for execution of that activity.

Symons (1991) defines Mark II function points as a method that identifies and

categorizes functional user requirements of the software into three types, inputs, exits, and

objects. The functional size of the system is counted based on the count of the individual

requirements. Dolado (2000) applies Genetic Programing to estimate the size of the

software project. The author proposes various approaches to estimate the size of the project

in terms of lines of code and demonstrates a relationship between lines of code and number

of components (NOC). The model is a generic model, and the data for project effort was

fitted using Mark II function points. MacDonell (2003) uses fuzzy logic modeling to

predict effort size and evaluates if it could be used as an alternative to least squares

regression. Regolin et al. (2003) uses machine learning (Genetic programming and Neural

Networks) to predict the number of lines of code and number of components (NOC). The

authors advocate for the use of machine learning techniques in size estimation.

Moløkken and Jørgensen (2003) complete a systematic literature review on

software estimation. Two important findings point to the fact that 30-40% overruns are

common for most software projects, and the mostly used estimation approach is the expert-

based estimation method. Jørgensen (2004a) also completes a systematic review of papers

on software development effort expert estimation. The author concludes that expert

estimation is the preferred method when estimating for software development projects and

that there is no hard evidence to prove the superiority of model estimates over that of the

estimates from experts. Jørgensen (2004b) compares expert estimation from a top down

24

Copyright, Chidambaram Subbiah, 2019

perspective and bottom up perspective. The author concludes that expert estimation might

work better in a bottom up context when the estimators have less access to recall of similar

projects. Jørgensen (2007) completes a systematic review of papers that used expert

judgment, formal models, and a combination of both approaches to estimate software

projects. The author finds that the models do not perform better than the experts when

estimating the overall effort and makes the case for a combination approach in which both

expert judgment and models are used. The author suggests that this might be the preferred

approach.

Costagliola et al. (2005) present a function point like approach called class point to

estimate the size of a project. They consider factors such as number of external methods,

number of services requested, and a complexity measure for each class. The class point

approach provides a system-level size measure by considering specific aspects of a single

class. The authors propose two measures, namely CP1 and CP2. CP1 is used early in

development to get a measure of size, and CP2 is used later in the development process

when information about the attributes associated with a class is known. Pendharkar (2004)

introduces the concept of estimating object-oriented component size using regression. He

uses regression tree models to predict object-oriented component size based on factors such

as the number of Graphical User Interface (GUI) elements, number of methods, number

of subclasses, etc. Kanmani et al. (2007) build on the concept of class points to estimate

size of the effort and use neural networks as the estimation method. The authors make the

case that the results were comparable to the results obtained from regression models.

Wijayasiriwardhane and Lai (2008) introduce the concept of component points, which are

like function points to estimate size of a project. They apply it in the context of component-

25

Copyright, Chidambaram Subbiah, 2019

based systems. Zhou et al. (2014) introduce the concept of objective class points to estimate

the size of an effort.

 Jørgensen (2014) summarizes the state of software estimating based on decades of

research in this space. The author points out that there is no “best” effort estimation model

or method despite years of research. There are many studies that compare the accuracy of

estimation models and methods. The author states that "A major reason for this lack of

result stability seems to be that several core relationships, such as the one between

development effort and project size, differs from context to context." The author’s findings

imply that companies should focus on the local context and try to build their own estimation

models. Jørgensen gives a set of recommendations, and one of the main recommendations

was to develop and use a simple estimation model that is based on the local context in

combination with expert estimation. He also recommends avoiding using early estimates

based on highly incomplete information.

A majority of papers reviewed thus far deal with the development of models and

measuring the accuracy of models. We found various methodologies and models that

predict size as it relates to software estimating, starting with the function points

methodology to various other models dealing with the estimation of size. We see variants

of the function points methodology, including Mark II function points, class points,

component points, objective class points, etc. We also see various methodologies including

regression, machine learning, and other predictive methodologies used in the context of

predicting size, and there is a lot of literature on comparing the accuracy of the models.

26

Copyright, Chidambaram Subbiah, 2019

There exists a branch of literature that deals with comparing estimates from experts

with those from models. Findings suggest to combine expert-based estimating with model-

based estimating. Research also shows a case being made for bottom up estimating as

yielding better estimates. There is a need to develop and use simple estimation models that

meet the needs of the local context and can be used in conjunction with expert estimation.

A design pattern is a generic solution to a commonly occurring issue in software

design and development. Design patterns are useful in that they can speed up the

development process in that a solution is often implemented the same way, and design

patterns yield themselves to be reused. Design patterns often become a language in which

experts in the software development field communicate. Many big organizations approach

application development from the perspective of reusable standardized design patterns.

There exists a gap in the literature where software estimating is not being viewed from the

perspective of design patterns. Every mature organization is going to have its own niche in

terms of reusable design patterns, and if we can find a way to identify the core design

pattern and the tasks that form the basis for the design pattern, we will have the foundation

for a new estimating model. Every design pattern can then be decomposed to a set of tasks

or components and scenarios. We can then come up with a stepwise process to come up

with a simple estimating model that meets the needs of a local context and one that

combines expert estimation in the context of standardized design patterns.

2.2 Agile Release Planning Methodology

2.2.1 Definition of terms for an Agile project execution

27

Copyright, Chidambaram Subbiah, 2019

CPrime (2013) defines Scrum as a subset of Agile. It is one of the most widely used

process framework for Agile development. The Scrum team is self-organizing in that the

team comes up with a solution to completing a task, and there is no hierarchy within the

team. The projects move through a sequence of iterations or sprints in the Scrum model.

At the outset, an idea for a project is considered and is taken through design sprints.

The product owner or the business sponsor champions the project and requirements for the

application are put together as a collection of stories into software like JIRA. JIRA is one

of the more popular software programs used by organizations to organize sprints.

The stories are prioritized in order of importance. Each story is assigned story

points when they are put into the system. Usually, more story points indicate more effort

is involved in implementing the story. Each team might have its own method of assigning

story points to a story. We take a collection of stories that form the crux of an application

or deliverable and plan a release or epic. The collection of stories is sometimes referred to

as a backlog of items. Long-term planning takes places at the release level. Short term

planning takes place at the Sprint or Iteration level.

An iteration or sprint is a time window during which development takes place. It

usually varies between one to four weeks, and the duration is fixed for a given project. The

team decides to execute 2-4-week sprints, and they usually stick to that for the duration of

the project. The entire release will consist of a sequence of sprints. When the team plans

for a sprint, they pick up the highest prioritized stories from the backlog. The backlog can

be viewed as the list of pending stories that need to be completed to deliver the

functionality. When stories are prioritized, they can be classified as must have, should have,

28

Copyright, Chidambaram Subbiah, 2019

and nice to have. The must-have stories with the highest priority are usually taken up first

for execution.

Stories can be interdependent and related. For example, one story might be

dependent on another story, and it often is useful to take up all the dependent stories

together.

The velocity of the team is the number of story points completed in a sprint. We can

obtain a high-level estimate of the remaining work in a project based on the velocity and

number of story points remaining to be completed.

There is a working agreement for the team. The entire team negotiates and agrees

to the working agreement upfront before the project starts. Each time a team member leaves

the team, or a new team member enters the team, the working agreement is renegotiated.

At the end of each sprint, we might have some rework based on feedback that then

gets prioritized into the planning of the next sprint. At the sprint level, we could look at

each story as a task. Each story is divided into sub-tasks and estimated in hours at the

iteration planning level.

Pair programming is a methodology where two resources share a single

workstation. One person is usually the driver, and the other person is considered the

navigator. This methodology is often used when there is a need to bring in a new person

on the team or when there is a need to develop a subject matter expert, etc.

Planning poker is one way of assigning story points to stories or hours to tasks.

The business sponsor usually explains the intent of the story, and each person on the team

29

Copyright, Chidambaram Subbiah, 2019

picks a number. Usually, the people with the lowest and highest estimate are requested to

give justification, and the scrum master then helps the team reach a consensus towards an

acceptable number.

2.2.2 Agile release planning methodology literature review

Logue and McDaid (2008) find that release planning is a crucial activity in the

software development process. The estimate to develop a particular functionality and the

likely return are subject to many uncertainties. In the Agile methodology, a sprint is period

of time in which a defined unit of work or specific functionality has to be completed and

be made ready for review. The unit of work is usually comprised of a set of user stories. A

set of sprints often comprise a Release or an Epic. Decisions need to be made on which

stories to include in a sprint and within the planning horizon of a release. This will often

require a delicate balance between competing benefits and risks. G. Ruhe and Saliu (2005)

identify the characteristics of a good release plan, which includes increasing the overall

business value, satisfying the needs of the stakeholders, meeting the resource constraints,

and accounting for dependencies between features. Table 2 summarizes the literature on

Agile release planning and the related methodologies.

30

Copyright, Chidambaram Subbiah, 2019

Table 2: Agile release planning methodology research
Author Agile Concept Addressed Methodology

G. Ruhe and Saliu (2005) Release Planning Multi Objective

Optimization problem.

(Cusumano, 2007) Extreme Programming and

Iterative development

Personal Experience,

Interviews

(Logue & McDaid, 2008) Release Planning Case Study

(Moløkken-Østvold,

Haugen, & Benestad,

2008)

Estimating using planning

poker

Case Study

Szoke (2009) Iteration Planning. Resource-constrained

project scheduling

optimization problem

(RCPSP).

Szoke (2010) Feature Planning Optimization Model

(Ktata & Lévesque, 2010) Estimating user stories Case Study, Interviews

(Abdel-Hamid & Abdel-

Kader, 2011)

Velocity Case Study

(Da Silva, Martin, Maurer,

& Silveira, 2011)

User centered design and

Agile methods

Literature Review

(Dong, Yang, Wang, Zhai,

& Ruhe, 2011)

Extreme Programming and

Iteration planning

Case Study. Knapsack

based optimization

solution.

(Van Valkenhoef,

Tervonen, De Brock, &

Postmus, 2011)

Release Planning and

Extreme Programming

Knapsack based

optimization solution.

Szke (2011) Release Planning. Multiple knapsack-based

optimization model

(Mahnič & Hovelja, 2012) Planning poker and user

stories

Case Study

(Boschetti, Golfarelli,

Rizzi, & Turricchia, 2014)

Sprint Planning Optimization Model

31

Copyright, Chidambaram Subbiah, 2019

Author Agile Concept Addressed Methodology

(Grapenthin, Poggel, Book,

& Gruhn, 2015)

Task breakdown Case Study

(Dragicevic, Celar, &

Turic, 2017)

Effort Estimation

(Bilgaiyan, Sagnika,

Mishra, & Das, 2017)

Cost Estimation Literature Review

(Hannay, Benestad, &

Strand, 2017)

Earned Business value Knapsack based

Optimization Model.

(Hoda, Salleh, Grundy, &

Tee, 2017)

Agile Software

Development

Literature Review

(Usman, Mendes, Weidt, &

Britto, 2014)

Effort Estimation Literature Review

(Usman, Mendes, &

Börstler, 2015)

Agile Software

Development

Survey

Dragicevic, Celar, and

Turic (2017)

Estimate Tasks in an Agile

Setting.

Bayesian Model

(Usman, Börstler, &

Petersen, 2017)

Agile Software

Development

Survey

 Cusumano (2007) compares extreme programming with iterative development on

multiple key concepts. One of the key concepts in the paper is the building of the product

in small increments of functionality at regular intervals. The author introduces the concept

of releases to deliver functionality in regular and small intervals. The key in this model is

to get regular feedback from customers, and it results in an evolving product. Logue and

McDaid (2008) complete a case study on a company using data from two projects and

provide a method for decision makers to plan out a release in terms of which stories to

32

Copyright, Chidambaram Subbiah, 2019

include in the release. They lay out the release planning process based on requesting users

to give minimum, most likely and maximum estimates for each task.

Planning poker is a way of assigning story points to stories or hours to tasks. The

business sponsor usually explains the intent of the story, and each person on the team picks

a number. The scrum master is a facilitator for an Agile development team. Usually, the

people with the lowest and highest estimate are requested to give justification, and the

scrum master then helps the team reach a consensus towards an acceptable number.

Moløkken-Østvold, Haugen, and Benestad (2008) present a case study on a company to

compare the estimate accuracy on a project. They compare the estimates using the planning

poker methodology with that of estimates provided by experts or subject matter experts.

They find very little difference between the two methods, but there were some tangible

side benefits like possible improved code quality, etc. that was perceived from planning

poker. The authors conclude that the use of planning poker moderates the effect of

optimism and provides more accurate estimates as compared with expert estimation. Ktata

and Lévesque (2010) complete a case study using data collected from structured interviews.

The authors introduce the concept of technical debt, which is defined as any side of the

current system that is considered sub-optimal from the technical perspective. The main

contributor to technical debt is the desire of developers to cut corners to meet a deadline,

and this results in more technical debt. The authors also research the causes for the errors

in estimating user stories. Abdel-Hamid and Abdel-Kader (2011) complete a case study

implementing Agile methodologies at five companies. Their study indicates implementing

Agile practices results in improved velocity and better project morale. Grapenthin, Poggel,

Book, and Gruhn (2015) complete a case study of two large scrum-based projects. They

33

Copyright, Chidambaram Subbiah, 2019

find increasing communication as part of the process before and during the sprint help in

better identification of tasks in a timely manner before the planning of a sprint.

 G. Ruhe and Saliu (2005) show how different objectives related to implementation

and requirements can be optimized using a multi-objective optimization model in the

context of release planning. Szoke (2009) approaches the issue of iteration planning as a

resource-constrained project scheduling optimization problem (RCPSP). The author

identifies the developer as a unique resource and makes the case that the complexity in

scheduling arises from various implicit and explicit dependencies around tasks like

interdependence between tasks, priority for a task, etc. Szoke (2010) approaches the issue

of feature planning and assigning features to teams as an optimization problem. Dong,

Yang, Wang, Zhai, and Ruhe (2011) complete a case study at a Chinese software company

and approach the problem of assigning user stories in an extreme programming

environment as a knapsack problem. They provide an optimization model to help with

iteration planning. Van Valkenhoef, Tervonen, De Brock, and Postmus (2011) approach

the issue of release planning in an extreme programming environment in terms of a nested

knapsack problem. Szke (2011) makes the case that Agile approaches tend to lean towards

delivering software incrementally, where there is a sequence of small releases as opposed

to delivering the whole system at once. He proposes "a conceptual model for Agile

scheduling and a multiple knapsack-based optimization model with a branch-and-bound

optimization algorithm for Agile release scheduling." Boschetti, Golfarelli, Rizzi, and

Turricchia (2014) complete a case study using data from two projects in Italy and present

an optimization model for sprint planning in an Agile environment to assign stories to a

sprint. They assign a business value to each story in an approach rooted in the concept of

34

Copyright, Chidambaram Subbiah, 2019

increasing the overall business value. The authors extend the model to use Lagrangian

heuristic methods to reduce the solving time for the model. Hannay, Benestad, and Strand

(2017) propose a knapsack problem where they maximize business value within a fixed

cost. The authors make the case to maximize business value within fixed cost and introduce

a new concept called business points, which are assigned to stories and tasks like story

points. The authors introduce a new concept called earned business value and propose

using the new metric in lieu of functionality delivered by a story.

 Table 2.1 compares this research with the other papers in this space that have used

optimization models to address similar problems.

Table 2.1: Agile release planning optimization models research

Numerous systematic reviews of Agile methodologies exist. Da Silva, Martin,

Maurer, and Silveira (2011) complete a systematic review of literature dealing with papers

that combine Agile methods with user centered design. The authors review 58 papers in

this space and propose an integrated approach to incorporate design into the Agile process.

35

Copyright, Chidambaram Subbiah, 2019

Bilgaiyan, Sagnika, Mishra, and Das (2017) complete a systematic literature review of all

papers involving cost estimation in the Agile methodology space. They identify 26 relevant

papers and find neural networks and expert judgment to be the most used techniques for

estimating projects. Hoda, Salleh, Grundy, and Tee (2017) look at all systematic literature

reviews in the Agile space and identify 28 relevant papers. These papers deal with various

issues within the Agile Methodology like usability, human and social factors, etc. They

conclude that there is no comprehensive study dealing with Agile practices around release

planning. Usman, Mendes, Weidt, and Britto (2014) finish a systematic literature review

of effort estimation techniques within Agile software development. They identify 20

relevant papers in this space and conclude that the most researched methods in the

estimating context within the Agile space revolve around expert judgment, planning poker,

and use case points. They also realize that this is an area that has still not been researched

deeply. Usman, Mendes, and Börstler (2015) present and analyze a survey of 60 Agile

practitioner’s in 16 countries. The authors conclude the most popular estimation techniques

are planning poker, analogy, and expert judgment. They also find that story points were

the most frequently used size metric. The respondents to the survey felt the dominant trend

was towards under estimation in Agile projects. Usman, Börstler, and Petersen (2017)

extend the previous study to include Globally Distributed Agile practices and compare

results in terms of Effort Estimation techniques. They identify that the main differences

were related to the secondary effort estimation techniques. Analogy was the preferred

method for distributed Agile practitioners and use case point was the preferred metric for

distributed Agile practitioners while function points were the preferred metric for co-

located Agile practitioners.

36

Copyright, Chidambaram Subbiah, 2019

Dragicevic et al. (2017) develop a Bayesian model to help estimate tasks in an Agile

setting. The authors propose a model that can be used in the early project phase to predict

task effort. They make the case that the model is independent of Agile methods used. The

authors validate the model against a database of 160 tasks from real Agile projects, and

they found it to be accurate for estimating tasks.

A majority of papers deal with the qualitative aspects of Agile methodology. Most

of these papers are case studies and use the survey methodology to assess and understand

the qualitative aspects. There are a few papers that deal with extreme programming. Most

of the papers mostly deal with issues like various aspects of Agile, like usability, human

and social factors, etc. There is no comprehensive study as such that deals with Agile

practices around release planning. I found seven papers that deal with planning resources

in a release planning context. Most of these papers approach the planning from an

optimization context as a packing problem. They approach it as a knapsack problem and

address the problem of assigning resources to tasks or stories based on given constraints.

There is a gap in the literature where the skills of resources and domain expertise of

resources is not considered when assigning resources to stories in a sprint and in a wider

context of a release or an epic. There is also a gap in the literature where the results of

developing a task-based bottom-up estimating model that is rooted in design patterns used

in the company creates the foundation and sets the stage for developing an optimization

model that helps in release planning. Agile project management is a technique of delivering

software projects and has not been researched deeply from the perspective of optimizing

the use of planning resources and schedules while retaining some tenets of traditional

Waterfall-based project management such as centralized control by a Project Management

37

Copyright, Chidambaram Subbiah, 2019

Office (PMO). There is a definite gap in the literature for a model that addresses the need

of planning resources in a hybrid model where resources are managed as a pool of resources

in the PMO while accounting for economies of scale that would result from accounting for

skills and domain expertise of an individual.

2.3 Predictive modeling in the context of estimating effort for open systems web

development projects

MacDonell and Shepperd (2003a) argue that the software community faces a

significant challenge when it comes to effective resource prediction, and they make the

case for accurately and consistently predicting resource requirements for effectively

managing software projects. They make the case in 2003, and this continues to be the truth

to date. Dejaeger, Verbeke, Martens, and Baesens (2012) find personnel costs are a

significant contributor to expenses in the budget of software development companies.

Software development companies often do a poor job estimating the number of resources

needed to complete a software project. Labor costs today are one of the biggest contributors

to cost in Software Application Development. There is limited research in this area that

approaches software development cost giving more weightage to the labor costs in

comparison to the overall cost. Table 3 summarizes the literature in the context of

estimating effort for open systems web development projects.

38

Copyright, Chidambaram Subbiah, 2019

Table 3: Predictive modeling in the context of estimating effort for

open systems web development projects
Author Methodology Modeling Technique

MacDonell and

Shepperd (2003a)

Expert Judgment, Case

based reasoning and Linear

Regression

Case Based Reasoning,

Linear Regression

Dejaeger et al. (2012) Comparative Study Various estimating

methodologies

Reifer (2000) Based on Web Objects.

Similar to COCOMO II

WebMO model for

estimating web projects

Mendes and Counsell

(2000)

Case Study Estimation by Analogy

Mendes, Watson,

Triggs, Mosley, and

Counsell (2002)

Experimental study Multiple Regression and

Case based Reasoning

Mendes, Mosley, and

Counsell (2003)

Survey and Case Study

using an industry database

Case based reasoning

Baresi, Morasca, and

Paolini (2003)

Empirical Study

M. Ruhe, Jeffery, and

Wieczorek (2003a)

Case Study Combination of Cost

Estimation, Benchmarking

and Risk Assessment models

M. Ruhe, Jeffery, and

Wieczorek (2003b)

Case Study Validation of the WEBMO

methodology

Mendes, Mosley, and

Counsell (2005)

Surveys and Case study Regression

Costagliola et al. (2006) Experimental study COSMIC Full Function Point

approach

F. Ferrucci, Gravino,

and Di Martino (2008)

Case Study Regression

Filomena Ferrucci,

Gravino, Oliveto, Sarro,

and Mendes (2010)

Case Study using Industry

database

Tabu search and Support

Vector regression

Mendes, Abutalib, and

Counsell (2012)

Case Study Expert Elicitation

39

Copyright, Chidambaram Subbiah, 2019

Author Methodology Modeling Technique

Seo and Bae (2013) Case Study using industry

datasets

Outlier Elimination Models,

Regression and Estimation

by Analogy

Čeke and Milašinović

(2015)

Case Study Combination of Size and

Conceptual models

Turhan and Mendes

(2014)

Comparative Study using

cross company and single

company datasets

Stepwise Regression and

Nearest Neighbor filtering.

Reifer (2000) presents a model for web effort estimation that is rooted in specific

metrics that applies to web-based development. He introduces the concept of Web Objects

(WO) and WebMO as the new estimation model. WO was an extension to the function

points approach, and WebMO took its inspiration from the COCOMO II model. The

WebMO model uses only nine cost drivers.

Mendes and Counsell (2000) perform a study to estimate efforts for web application

development by using analogy. The authors use a tool (ANGEL) to obtain the most optimal

combination of variables to predict efforts. They complete an analysis using data from 70

web projects and conclude that analogy-based estimation is a viable method for estimating

web projects. Mendes et al. (2002) perform a study on 37 web hypermedia applications to

compare the prediction accuracy of case-based reasoning (CBR) techniques and then

perform comparative analysis between the better performing CBR technique and other

techniques including Stepwise Regression, Multiple Linear Regression and Regression

Tree (CART) models. They find the prediction accuracy of Multiple linear and Stepwise

regressions was better when compared with the prediction accuracy of the CBR and CART

40

Copyright, Chidambaram Subbiah, 2019

models. Mendes et al. (2003) conduct a study to obtain early size measure for estimation

of web application and investigate the prediction accuracy of company specific data with

multi-organizational databases. The size measures were expressed using attributes of

length, functionality, and complexity. They use 26 projects to research the accuracy of

prediction models on company based and multi-company-based datasets. They conclude

the prediction accuracy of company specific dataset outperformed multi-company datasets.

Baresi et al. (2003) perform a study to investigate the impact of design efforts on

aggregate web development efforts. This study identifies various dependent and

independent attributes that impacts design efforts. They use Ordinary Least Squares (OLS)

method to measure the impact and conclude that the design phase plays an important role

in total effort estimation.

M. Ruhe et al. (2003a) perform effort estimation of web application by using

COBRA method (Cost Estimation, Benchmarking, and Risk Assessment), and they find

analogy-based estimation performs better in sixty percent of cases. They introduce a new

method Web-COBRA to enhance the accuracy of the COBRA model for web projects.

They validate their model using 12 web projects from a company in Australia and conclude

that their new model outperformed the Ordinary Least Squares (OLS) method. M. Ruhe et

al. (2003b) in their subsequent study compare traditional function points and Web Objects

using OLS. They complete a case study using 12 web projects, and the results obtained in

this study reveal that size expressed in WO were almost 55% more in comparison to FPs,

and this difference increases as the complexity of the projects increases. The authors

conclude that the results reveal effort estimation by Web Objects (WO) with OLS

41

Copyright, Chidambaram Subbiah, 2019

regression tree produced significantly better estimates and WO outperforms estimates

based on expert opinion as well.

Mendes et al. (2005) conduct a study to research web size measures and cost drivers

used in early effort estimation of web application development. They validate their results

using the Tukutuku database, a database containing information from multiple companies

about web application projects. They analyze 67 web application projects and conclude the

total number of web pages and number of features and functionality were the two most

influential factors for effort prediction.

Di Martino, Ferrucci, Gravino, and Mendes (2007) explain the genesis of the

second generation of function points that were defined by the Common Software

Measurement International Consortium (COSMIC), and it was known as the COSMIC-

FFP (COSMIC Full Function Point). COSMIC FFP was considered to be the second

generation functional sizing method. Costagliola et al. (2006) research about the

effectiveness of COSMIC function points to estimate for web application development.

They use data from 44 web applications developed by students and conclude that the

counting of data movements in an application is an important contributor for estimating

the effort associated with the development of web applications.

F. Ferrucci et al. (2008) conduct a study to compare the performance of COSMIC

FP and Web Objects to predict accuracy in web development efforts. They use data from

15 web applications and conclude that both COSMIC FP and web objects were good

methodologies to predict effort size. Filomena Ferrucci et al. (2010) research the

effectiveness of Tabu Search in combination with Support Vector Regression for

42

Copyright, Chidambaram Subbiah, 2019

estimating web applications. They use 195 projects from the Tukutuku database to measure

the accuracy of the estimated efforts. They compare their results with another study by

Mendes that used the same database and conclude that Tabu Search in combination with

Support Vector Regression produces better estimates.

Mendes et al. (2012) developed an expert-based Bayesian Network model to

estimate web application efforts. They did a case study using a single company dataset and

used 22 web projects to build the model. They conclude that the results obtained show that

expert-based Bayesian Network models can be used to estimate effort for web development

projects.

Seo and Bae (2013) study the effect of outliers in software effort estimation. They

research the effect of outliers on the overall estimation accuracy using publicly available

repositories like ISBSG. They use estimation by analogy and ordinary least squares for the

research and conclude that removing outliers has a positive effect on the accuracy of the

estimate.

Čeke and Milašinović (2015) develop a hybrid model by combining COSMIC-FP

and Unified Modeling Language (UML). They use data from 19 web-based projects and

validate their results using simple linear regression. They infer that their results show the

model they developed was appropriate to estimate efforts in the early stages of web

development.

Turhan and Mendes (2014) use data from 125 web projects to compare the accuracy

of estimates from industry datasets and single-company models. They find stepwise

43

Copyright, Chidambaram Subbiah, 2019

regression performs better in the field of software effort estimation when applied to cross-

company or industry datasets. They also suggest and make the case for companies to build

their own estimating model using their own data when feasible.

Most of papers reviewed in the context of estimating effort for open systems web

development projects again deal with the development of models and measuring the

accuracy of models. We see various methodologies and models to predict size that builds

on the function points methodology like Web Objects Methodology and COSMIC function

points. We see various models that use methodologies like regression, machine learning,

Bayesian networks, and there has been one predominant database, the Tukutuku database

used by a lot of researchers in this space. There are a lot of papers that again compare

estimates from experts with those from models and comparing models from an accuracy

perspective. We see a branch of literature that deals with researching web size measures

and cost drivers that can be used for early effort estimation of web development

applications.

Software development in the early 1990s used to have two major costs, system

costs, and labor costs. Over time, the cost of computing in terms of system costs has

drastically come down and is no longer a significant contributor to costs. Labor costs today

are one of the biggest contributors to cost in Software Application Development. There is

a gap in the literature in that there very few attempts have been made to approach software

estimating by predicting the labor cost associated with the project and identifying the

underlying drivers of labor cost. For example, some of the drivers of cost include the use

of temporary labor through hiring contractors to help fill the temporary need of completing

44

Copyright, Chidambaram Subbiah, 2019

a software project, a common practice at many companies. This research creates an

estimating model that estimates the total labor hours for a project, identifies the most

important explanatory factors that contribute to the overall labor cost, and quantifies the

economic impact of resources and other factors on overall labor cost.

2.4 Combining different methodologies and assessing the quality of the estimate

MacDonell and Shepperd (2003a) make the case for combining estimation

techniques. They argue there is never one method that is superior to other methods.

MacDonell and Shepperd (2003b) in a later study make the case for the use of more than

one predictive modeling technique. Combining estimates from different models and

methodologies usually sets the stage for combining expert judgment with data science, and

this can lead to more robust discussion and overall better estimates. Table 4 summarizes

the literature in the context of combining different methodologies and assessing the quality

of the estimate.

Table 4: Combining different methodologies and assessing the

quality of the estimate
Author Methodology Modeling Technique

MacDonell and Shepperd

(2003a)

Expert Judgment, Case

based reasoning and Linear

Regression

Case Based Reasoning,

Linear Regression

MacDonell and Shepperd

(2003b)

Case study based on

historical project data.

Linear Regression

Mair and Shepperd (2005) Literature Review Focused on Regression and

Analogy based models.

45

Copyright, Chidambaram Subbiah, 2019

Author Methodology Modeling Technique

Jørgensen (2007) Literature Review Expert Judgment, Formal

methods and a combination

of these approaches

Bibi and Stamelos (2006) Literature Review Machine Learning

Techniques

Bibi, Stamelos, and

Angelis (2008)

Case Study Machine Learning

Techniques

Hsu, Rodas, Huang, and

Peng (2010)

Empirical Research using

existing datasets

Combination Forecast

using multiple

methodologies, including

regression, machine

learning, etc.

Mittas and Angelis (2010) Empirical Research Combination Methodology

using regression and

estimation by Analogy

Dejaeger et al. (2012) Comparative Study Various estimating

methodologies

Kocaguneli, Menzies, and

Keung (2012)

Case Study Ensemble Estimates from

multiple methodologies

Wen, Li, Lin, Hu, and

Huang (2012)

Systematic Literature

Review

Machine Learning Based

Estimating models

Wu, Li, and Liang (2013) Combination Methods Case Based Reasoning

Idri, Amazal, and Abran

(2015)

Systematic Literature

Review

Analogy based estimating

Idri, Hosni, and Abran

(2016a)

Empirical Study Ensemble of Classical and

Fuzzy analogy models.

Idri, Hosni, and Abran

(2016b)

Systematic Literature

Review

Ensemble Effort

Estimation

MacDonell and Shepperd (2003a) compare three estimating techniques using data

from the medical records information system. The three techniques chosen were expert

judgment, least squares linear regression, and case-based reasoning. The authors make the

46

Copyright, Chidambaram Subbiah, 2019

case for using a combination of techniques based on their conclusion that there was not one

superior method. MacDonell and Shepperd (2003b), in a later study, analyze effort

distribution in major Waterfall phases across 16 projects. They conclude that expert

estimates can be improved by using estimating models that are based on historical data.

They also conclude that the use of more than one predictive modeling technique usually

led to more accurate estimates. Mair and Shepperd (2005) identify 20 empirical studies

through a systematic literature review to compare the relative accuracy levels yielded by

regression and analogy methods for effort estimation. However the results were

inconclusive in terms of which technique should be preferred. Jørgensen (2007) completes

a systematic literature review of papers that compare estimating techniques using expert

judgment, formal models and a combination of these two approaches. He concludes that a

combined model usually produces a better estimate than an individual model.

Bibi and Stamelos (2006) investigate five machine learning methods, including

association rule, bayesian belief network, regression and classification trees, neural

networks, and clustering approaches. The authors propose using a decision tree to select

the best estimation technique, and they make the argument that the performance of the five

techniques can change depending on the dataset and weights assigned to the model

features. Bibi et al. (2008) come up with a model combining a couple of machine learning

techniques. They combine Association Rules (AR) and Classification and Regression

Trees (CART) to create a new conceptual estimation framework. Hsu et al. (2010) makes

a case to use linearly weighted combination methods. They make the case to combine

methods and argue that this will improve the accuracy of software effort estimation.

47

Copyright, Chidambaram Subbiah, 2019

Mittas and Angelis (2010) combine Regression and Estimation by Analogy to

create a semi-parametric model for Software Cost Estimation. They find an improvement

when the combination models were used as compared to individually using regression or

estimation by analogy. Dejaeger et al. (2012) investigate 13 different data mining

techniques, representing different kinds of models on nine data sets. These techniques

include various regression techniques and machine learning techniques. They make the

case that their results indicate that data mining techniques make a valuable contribution to

software estimation techniques and should be a complement to expert judgment.

A standard machine learning approach is to try multiple methods on the available

data and recommend the approach that performs the best. Ensemble learning, on the other

hand, improves machine learning results by combining several models. Ensemble methods

at a high level combine several machine learning techniques into one predictive model.

Kocaguneli et al. (2012) make the case for ensemble methods to combine the estimates

from multiple estimators. They make the case for combining various effort estimation

methods and argue that this approach performs better in the scenario where there is no

single best estimation method. Wen et al. (2012) complete a systematic literature review

and identify eight types of machine learning techniques. The techniques identified include

Case-Based Reasoning (CBR), Artificial Neural Networks (ANN), Decision Trees (DT),

Bayesian Networks (BN), Support Vector Regression (SVR), Genetic Algorithms (GA),

Genetic Programming (GP), and Association Rules (AR). They make the case that CBR,

ANN, and DT are used most frequently and that both CBR and ANN are more accurate

than DT. They also make the case that a machine learning model is more accurate than a

non-machine learning model in general. The CBR method is the process of identifying

48

Copyright, Chidambaram Subbiah, 2019

similar projects from the pool of historical projects that most closely match the current

project and then setting the stage for deriving cost estimates based on the similar projects.

Wu et al. (2013) make the case for a hybrid model combining CBR with particle swarm

optimization (PSO) method to estimate the software effort and conclude that the hybrid

model outperforms the independent methods.

Idri et al. (2015) conduct a systematic literature review to examine the use of

analogy-based software effort estimation (ASEE) techniques. They review 65 papers and

conclude that the usage of ASEE techniques led to more acceptable estimates that

outperform other prediction models. They also make the case that estimation accuracy is

improved when analogy is used in combination with another technique like fuzzy logic,

genetic algorithms, the model tree, and collaborative filtering to generate estimates. Idri et

al. (2016a) analyze the possibility of improving the estimation accuracy through the usage

of fuzzy and classical analogy ensemble techniques. They conclude that "Classical

Analogy ensembles outperform solo Classical Analogy techniques, Fuzzy Analogy

ensembles outperform solo Fuzzy Analogy techniques and that Fuzzy Analogy ensembles

generally outperform the Classical Analogy ensembles." Idri et al. (2016b) complete a

systematic literature review of studies on ensemble effort estimation techniques and

conclude that in a majority of cases, the ensemble techniques are more accurate than any

single model.

Many papers reviewed thus far in the context of combining estimating efforts from

different methodologies approach it from the perspective of comparing estimates from an

accuracy standpoint. Another stream of literature deals with creating an ensemble of

49

Copyright, Chidambaram Subbiah, 2019

estimates. They conclude that we can always come up with the best combination of effort

estimation methods even when there is no best single estimation method and that this

approach performs better. We saw earlier that there is stream of literature that deals with

bottom up estimating.

There is yet another stream of literature that is rooted in the estimation of efforts

based on size. This research is rooted in the use of function points to estimate the size of

the project. Many the papers reviewed thus far seem to deal with development of an

estimation method using existing datasets and employed cost models based on function

points. There is a gap in the literature where there is an opportunity to bring together

executive judgment with quantitative modeling. We can try to bring together an ensemble

of estimates that brings together a set of models that is rooted in bottom-up estimating and

combine it with an ensemble of estimates that is rooted in the estimation of size based on

function points. This will give an opportunity for executives to assess the quality of the

estimates setting the stage to combine executive judgment with quantitative modeling.

There is a case to be made to develop and use simple estimation models tailored to

local or individual context of an organization in combination with expert estimation. There

is a gap in the literature where no one has looked at estimating from the outside in

perspective of design patterns. Design Patterns have been in been in vogue in the technical

space of developing solutions for a long time, but it is not being extended to the concept of

estimating software solutions. There is a gap in the literature where estimating is looked at

more from the context of understanding the underlying labor cost associated with the

project. Labor cost are usually the biggest contributor to costs these days, and there is an

50

Copyright, Chidambaram Subbiah, 2019

opportunity here to understand the effects of various types of resources, including contract

labor and employees on the overall cost of a project using real-world data. There are a lot

of papers that make the case for an ensemble of estimates to be used, but we found that

very little research has been done where both top-down and bottom-up approaches in

addition to predictive modeling are brought together in an ensemble of estimates giving an

opportunity for executives to combine executive judgment with quantitative modeling.

Many papers explain various facets of the Agile methodology, and a few papers dealt with

implementing the Agile process using optimization methods. There is an opportunity to

develop a resource allocation model in an Agile context that will consider the individual

skills of resources. The above-mentioned gaps have formed the basis for my Research

Purpose and Contribution as outlined in the next chapter.

Chapter 3: Research Purpose and Contributions

The central theme of this dissertation is to advance the state of the art of estimating software

development by approaching it from a new perspective. This research applies both

predictive and prescriptive analytics to (1) develop a new estimating tool that produces a

suite of estimates, and (2) develop a new optimization modeling framework for better

planning and resource utilization in the Agile project environment. The main estimate will

be based on the local environment of the company and on reusing the design patterns. This

estimate will rely on a subject matter expert to break down the design into manageable

slices of functionality or scenarios. The tool aims to provide estimates for these scenarios

while at the same time giving the subject matter expert the capability to override an

51

Copyright, Chidambaram Subbiah, 2019

estimate by providing a reason, when deemed appropriate. The optimization modeling

framework will set the foundation for making better scheduling and resource assignment

decisions, while considering the skill and domain expertise of resources. We now highlight

these components of my research contributions in greater detail.

3.1 Advance the state of the art of estimating software development costs using

design patterns.

One of the main purposes of this research is to develop a cost estimating model that

is based upon reusing design patterns in a bottom-up estimating context that brings

consistency across software development in a large service organization. My contribution

will be a detailed exploratory case study of a large service company that involves bringing

disparate internal and external data sources together to clean, analyze and aggregate data

to develop new software cost estimating models for traditional (Waterfall), new (Agile),

and hybrid techniques of managing projects and then investigate implementing them as

part of the project lifecycle.

One outcome of this research is an estimating tool that explicitly accounts for local

design patterns. This research outlines the development of the estimating model in generic

terms so that the process can be repeated by other organizations to develop their own

version of the estimating tool. This will be a tool that will set the stage to continuously

improve estimates at the task level with the following functionalities:

1. Analyze tasks from historical projects at the task level to come up with a set of

design patterns that apply in the local context.

2. Validate the design patterns with enterprise architects using thorough interviews.

52

Copyright, Chidambaram Subbiah, 2019

3. Develop scenarios at the task level that are based on design patterns.

4. Validate the scenarios with the enterprise architects and a selected subset of subject

matter experts.

5. Design a survey based on the above-defined scenarios. The purpose of the survey

is to get estimates from subject matter experts for tasks that make up the scenarios.

6. Use the survey to get input from subject matter experts who currently estimate

software projects.

7. Use the input from the survey in conjunction with actual past estimates to produce

baseline estimates at the task level.

8. Develop estimating models that are based on the scenarios developed above that

use the baseline estimates for the tasks.

9. Bring together the estimating models into a new estimating tool.

3.2 Quantify the economic impact of resources and other factors on overall labor

cost.

 The second purpose of this research is to derive a predictive model to estimate the

labor hours for a project that will be based on the underlying explanatory factors for the

project. Typically, a project can draw on two different types of resources: employees and

temporary labor in the form of contractors. Further, the relevant experience of resources

can differentiate costs and productivity. This research considers the economic impact of

resources and other factors on overall labor cost by developing a two-stage regression

model where it predicts the labor cost. The research accounts for possible endogeneity in

53

Copyright, Chidambaram Subbiah, 2019

the model and identifies the instrumental variables that help to predict the values of the

endogenous variables in the model.

3.3 Implementing multiple estimating models by combining executive judgment with

quantitative modeling

 The third purpose of this research is to produce two ensembles of estimating

models. The first ensemble will bring together two estimates that are rooted in the new

estimating model based on design patterns and one estimate that is based on the two-stage

regression predictive model. It is based on subject matter experts completing a design and

giving estimates at the task level based on scenarios. This ensemble is based on the bottom-

up estimating context.

The first ensemble will consist of three estimates.

1. SME/TL Estimate

2. Recommended Cost

3. Predictive Cost

The second ensemble will rely on the company continuing to use function points to

size projects. This ensemble uses more of the top-down approach to size projects. Function

points are usually completed early in the design phase. It will consist of the following four

estimates.

1. Function Point Baseline Estimate

2. COCOMO II Best Case Estimate

3. COCOMO II Middle of the road Estimate

54

Copyright, Chidambaram Subbiah, 2019

4. COCOMO II Costlier Estimate

The estimates in the two ensembles will provide an opportunity for the company to

combine executive judgment with data science to reach consensus on the final estimate for

a project. More importantly, it will set the stage for executives to have discussions with

project managers and technical leaders, helping to derive a more balanced estimate.

3.4 Applying prescriptive analytics (optimization) to build a new decision-support

framework for Agile project planning

The final purpose of this research is to augment the use of the estimating model to

build a resource allocation framework based on an optimization model that takes into

consideration the varied skills and domain expertise of resources. The goal is to factor in

the concepts of differentiated skill sets and domain expertise to improve the overall

efficiency of a team over time and include possible economies of scale in the management

of the resource pool. In the Agile release planning models, most of the existing literature

deals with how best to increase the business value by allocating user stories to sprints and

releases. There is little existing work that incorporates the concepts of considering skill

levels, domain expertise, and possible economies of scale. Our initial research sets us up

well for this final objective as we know the individual scenario level estimates and task

level estimates. We can build on this knowledge by using skill levels for resources for

individual scenarios or stories and come up with a model for resource planning in an Agile

context where there are many small projects in the pipeline.

55

Copyright, Chidambaram Subbiah, 2019

Chapter 4: Methodologies

Business Analytics is comprised of three distinct types of methodologies:

descriptive, predictive, and prescriptive (Mortenson, Doherty, and Robinson (2015). They

define descriptive analytics as statistical methods designed to explore “what happened?”,

predictive analytics as methods designed to predict “what will happen next” and

prescriptive analytics as Operational Research/Management Science (OR/MS) methods

designed to answer, “what should the business do next.” My research will approach the

issue of software estimating from all three perspectives.

According to Evans and Lindner (2012), descriptive analytics are the most

commonly used and most well-understood type of analytics. The techniques used in this

phase help us better understand, visualize the data, and set the stage to extract useful

information for understanding the underlying story behind the data. I will use descriptive

analytics to summarize the historical project data to identify trends and patterns with better

visualization of the data for executives. This research maps the individual tasks in 20 of

the most recent projects at ABC Inc. into design patterns, and this forms the basis for the

design of the survey. The survey will bes used to elicit expert opinions that is then used to

build a bottom-up estimating tool based on design patterns.

Evans and Lindner (2012) explain that predictive analytics examines historical data

to detect correlations or relationships in the data, then extrapolates these relationships

forward in time to predict what will happen in the future. The authors also mention that we

may find relationships in data that are not clear with traditional analyses. We will use

56

Copyright, Chidambaram Subbiah, 2019

predictive analytics models to estimate project costs. The predictive analytics models will

lay the foundation for the descriptive analytics work next.

Prescriptive analytics employs optimization to identify the best alternatives to

minimize or maximize some objective (Evans and Lindner (2012). They explain the benefit

of combining optimization with the mathematical and statistical techniques of predictive

analytics to help make better decisions. This research develops a prescriptive analytics

model built upon the detailed inputs provided by descriptive and predictive approaches.

This results in better allocation of resources in an Agile project setting and helps create

more efficient schedules and better manage resources.

 This research will develop a mixed integer linear programming (MILP) model to

optimally assign resources in an Agile software project development environment. The

model considers the multi-skill requirement of each project and matches them with the best

available resource with the corresponding skills. The MILP model can be solved by the

exact branch and bound (B&B) and branch-and-cut (B&C) approach (Nemhauser and

Wolsey (1988), which is readily available in many off-the-shelf solvers, such as IBM ILOG

Cplex, Gurobi, Xpress, among others The IBM ILOG Cplex Studio is employed in this

research.

57

Copyright, Chidambaram Subbiah, 2019

4.1 Estimating Tool Development

Models based on function point data are developed for estimation purposes. We also

combine executive judgment with the quantitative models.

4.1.1 Function points related predictive models

Simple Linear Regression

 The first function points-based model attempts to identify a simple relationship

between the function point count of a project and the actual cost of the project. The data

consists of a historical database of projects with function point counts and the final labor

cost associated with the project.

 In this model, the dependent variable is the estimated labor hours for a project, and

the explanatory variable is the adjusted function point count of the project. A simple linear

regression model is given as follows:

 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜖,

where 𝛽0 and 𝛽1 are parameters to be estimated in the model, and 𝑦 is the dependent

variable, and 𝑥 is the explanatory variable. 𝜖 is the error terms associated with the model.

Parlati (2011) mentions that the cost of a single function point can be estimated from past

projects. We have a historical database of 80 projects available with actual design and

development costs, plus the actual total labor costs associated with the projects.

Two simple models are implemented in this research to understand the cost of a single

function point.

58

Copyright, Chidambaram Subbiah, 2019

𝐸(𝐷𝑒𝑠𝑖𝑔𝑛 𝑎𝑛𝑑 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡) = 𝛽0 + 𝛽1 ∗ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑃𝑜𝑖𝑛𝑡𝑠 𝐶𝑜𝑢𝑛𝑡

𝐸(𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡) = 𝛽0 + 𝛽1 ∗ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑃𝑜𝑖𝑛𝑡𝑠 𝐶𝑜𝑢𝑛𝑡

Multiple Regression

 In a multiple regression model, the dependent variable is explained by multiple

explanatory variables. The multiple regression model can be written as follows:

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + ⋯ + 𝛽𝑛𝑥𝑛 + 𝜖,

where 𝛽0, 𝛽1, 𝛽3 … . 𝛽𝑛are parameters in the model, and 𝜖 is the error terms associated with

the model.

One of the major activities in the planning phase of the project in the organization is the

definition of business requirements for the project. The business users define these

requirements in elaborate detail, which form the basis for the design phase of the project.

There are typically over a hundred requirements associated with each project. One multiple

regression model that is implemented to understand the impact of requirements and

function point counts on the overall labor cost associated with the project can be written

as:

𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑠𝑡) = 𝛽0 + 𝛽1 ∗ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑃𝑜𝑖𝑛𝑡𝑠 𝐶𝑜𝑢𝑛𝑡 + 𝛽2 ∗ # 𝑜𝑓 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠

The function point count consists of five main components. One may view it as the

partitioning of the overall count. Longstreet (2002) defines the five major components of

function points as follows:

Internal Logical File (ILF) refers to user identifiable group of data than can be grouped

together. This group of data resides entirely within the application boundary. External

59

Copyright, Chidambaram Subbiah, 2019

Interface File (EIF) is a user identifiable group of logically related data that resides entirely

outside the application boundary and is maintained in an ILF by another application. This

data is used by the application for reference purposes only. The ILF and EIF are referred

to as data functions within function points.

It is valuable to understand the impact of ILF and EIF separately on the overall labor cost

via the following multiple regression model:

𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑠𝑡) = 𝛽0 + 𝛽1 ∗ # 𝑜𝑓 𝐼𝐿𝐹 + 𝛽2 ∗ # 𝑜𝑓 𝐸𝐼𝐹

The other three components associated with function points are referred to as

transaction function and are as defined by Longstreet (2002) as given below. External

Input (EI) refers to a process in which data crosses the boundary from outside to inside.

External Output (EO) refers to a process in which data crosses the boundary from inside to

outside. The data typically creates reports or output files. External Inquiry (EQ) refers to a

process in which data is retrieved from one or more internal logical files and external

interface files. It involves both input and output components.

It will be valuable to understand the impact of the transaction functions on the

overall labor cost. This research employs the following three such models to study the

impact of the transaction functions on the overall cost.

 𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑠𝑡) = 𝛽0 + 𝛽1 ∗ # 𝑜𝑓 𝐸𝑄 + 𝛽2 ∗ # 𝑜𝑓 𝐸𝐼 + 𝛽3 ∗ # 𝑜𝑓 𝐸O

𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑠𝑡) = 𝛽0 + 𝛽1 ∗ # 𝑜𝑓 𝐸𝑄 + 𝛽2 ∗ # 𝑜𝑓 𝐸𝐼 + 𝛽3 ∗ # 𝑜𝑓 𝐸 O + 𝛽4 ∗

𝑜𝑓 𝐸𝐼𝐹 + 𝛽5 ∗ # 𝑜𝑓 𝐼𝐿𝐹

𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑠𝑡) = 𝛽0 + 𝛽1 ∗ # 𝑜𝑓 𝐸𝑄 + 𝛽2 ∗ # 𝑜𝑓 𝐸𝐼 + 𝛽3 ∗ # 𝑜𝑓 𝐸 O + 𝛽4 ∗

𝑜𝑓 𝐸𝐼𝐹 + 𝛽5 ∗ # 𝑜𝑓 𝐼𝐿𝐹 + 𝛽6 ∗ # 𝑜𝑓 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠

60

Copyright, Chidambaram Subbiah, 2019

4.1.2: Two Stage Least Squares (2SLS) model and Decision Tree Analysis

The two stage least squares model relates to the research contribution explained in Section

3.2 with the purpose of quantifying the economic impact of resources and other factors on

the overall labor cost. The two stage least squares (2SLS) technique is an extension of the

ordinary least squares (OLS) method. It is used when the dependent variable’s error terms

are correlated with the independent variables. We have to take into account the possible

existence of endogenous variables in our model. Nagler (1999) defines endogenous

variables as variables that are functions of other variables present in the system.

 In a multiple regression model, the dependent variable is explained by multiple

explanatory variables. The goal of this research is to predict the total labor hours that will

be needed for a project. The dependent variable, in this case, will be total labor hours. The

following could be additional explanatory variables that can be considered in the regression

models.

1. Project Type

2. Number of tasks

3. Number of tasks by each phase, design, development, testing, implementation,

and planning

4. Number of resources

5. Number of contracting resources considering experience of resources

6. Number of associates

7. Percentage time spent on design

8. Percentage time spent on development

9. Percentage time spent on planning

10. Percentage time spent on verification/testing by IS

11. Percentage time spent on meetings

12. Percentage time spent by employees/contractors on the project

13. Number of defects by category (sev1, sev2, sev3, and sev4)

61

Copyright, Chidambaram Subbiah, 2019

14. Number of requirements

15. Number of test plans

16. Area doing the project

17. Function point information

18. Duration of the project

19. Project type

One example of the model can be written as:

𝐸(𝐿𝑎𝑏𝑜𝑟 ℎ𝑜𝑢𝑟𝑠) = 𝛽0 + 𝛽1 ∗ # 𝑜𝑓 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠 + 𝛽2 ∗ # 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠 + 𝛽3 ∗

𝑜𝑓 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑡𝑎𝑠𝑘𝑠 + 𝛽4 ∗ 𝑇𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑖𝑛 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 + 𝛽5 ∗

𝐴𝑟𝑒𝑎 𝑑𝑜𝑖𝑛𝑔 𝑡ℎ𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡

In our model above, it is quite possible that the variables # of employees and # of

contractors are functions of other variables and hence could be endogenous variables.

We could have a sample model as outlined below that estimates the number of

contracting resources

𝐸(# 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠)= 𝛽0 + 𝛽1 ∗ # 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠 + 𝛽2 ∗

𝑜𝑓 𝑇𝑜𝑡𝑎𝑙 𝑡𝑎𝑠𝑘𝑠 + 𝛽3 ∗ # 𝑜𝑓 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠

Nagler (1999) observes that when a variable is endogenous, it will be correlated with the

disturbance term resulting in the violation of the general model assumptions and make the

Ordinary Least Squares (OLS) estimate biased.

This endogeneity calls for the need of an instrumental variable, which is another

variable used in regression analysis to deal with endogeneity in the model.

The multiple regression model is given as follows

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + ⋯ + 𝛽𝑛𝑥𝑛 + 𝜖,

62

Copyright, Chidambaram Subbiah, 2019

where 𝛽0, 𝛽1, 𝛽3 … . 𝛽𝑛are parameters in the model, 𝜖 is the error terms associated with the

model.

Suppose 𝑥1is an endogenous variable (as a function of x2 and x3) and define 𝐼𝑉1 as an

instrumental variable such that:

𝑥1̂ = 𝛾0 + 𝛾1𝐼𝑉1 + 𝛾2𝑥2 + 𝛾3𝑥3 + 𝜈

We can then plug in the fitted values of 𝑥1̂ into the original linear regression equation

𝑦 = 𝛽0 + 𝛽1𝑥1̂ + 𝛽2𝑥2 + 𝛽3𝑥3 + ⋯ + 𝛽𝑛𝑥𝑛 + 𝜈,

where 𝜈 is a composite error term that is uncorrelated with 𝑥1̂, 𝑥2𝑎𝑛𝑑 𝑥3.

My work constructs the appropriate instrumental variables to explain the

endogenous variables. We then use two stage least squares regression method as outlined

by Kmenta (2011) to estimate the labor hours needed for a project. We also run the

diagnostic tests as outlined by Kmenta (2011) to validate the model.

Decision Trees

The Decision Trees based model relates to the research contribution explained in

Section 3.2 with the purpose of quantifying the economic impact of resources and other

factors on overall labor cost.

Bernard (2015) shows how decision tree models may be used for classification of

occurrences into prespecified groups, for prediction of values of a dependent variable based

on values of independent variables, and for data exploration in model building. The author

also shows why decision trees have several advantages over other models, which include

the capability of handling nonlinear relationships between variables, insights into input /

63

Copyright, Chidambaram Subbiah, 2019

output relationships via data partitioning, estimated risk factor contained in each path of

the tree, and the intuitive output. Various decision tree algorithms, including Classification

and Regression Tree (CART) and Chi-square Automatic Interaction Dedication (CHAID),

build and prune decision trees in differing ways.

Gray and MacDonell (1997) show how decision trees can be used to predict testing

time for software development. The authors implement the decision trees that built upon

variables such as program length, development time, number of screens, mean testing time,

etc. This is an example of the Classification and Regression Tree (CART), where the

algorithm creates binary trees by splitting records at each node. Bernard (2015) mentions

that CHAID creates wider, non-binary trees often with many terminal nodes connected to

a single branch, and automatically prunes the decision tree to avoid over fitting of the

model.

This research applies decision trees, using the main contributing explanatory

variables to predict labor hours needed for a project. The explanatory variables that will be

used to fit the tree include variables such as the number of employees used in a project, the

number of contractors used in a project, the number of experienced contractors used in a

project, the time spent in each phase of the project including in planning, design,

development, testing, implementation and post-implementation, the number of tasks in

each phase of the project, meeting time, etc. This research will not use the results from the

decision tree analysis to estimate labor hours but rather use the results to better understand

the underlying data and the most important explanatory variables. Results from the decision

tree approach are then used in conjunction with the results from the multiple regression

64

Copyright, Chidambaram Subbiah, 2019

model to understand and validate the most important explanatory variables to explain the

total labor hours in the underlying data.

4.1.3 Function points related suite of estimates

The creation of the suite of estimates relates to the research contribution explained in

Section 3.4 with the purpose of providing an opportunity for the company to combine

executive judgment with data science to reach consensus on the final estimate for a project.

The function point repository was split by function point ranges. The ranges that were used

are 0-100, 100-200, 200-300, 300-400, 400-500, and above 500 function points.

 This research created a new Excel based tool to calculate the suite of estimates

based on the function point count for each individual project. These estimates were

calculated for all projects in the repository, and the difference of each estimate from the

actual cost of the project was also calculated. We then calculated the average for each of

these differences across all function point ranges, as defined above. Based on the average

difference in each range, a determination was made as to which method offered the better

estimate in each range based on the average difference for each estimate.

4.1.4 Development of the task based estimating model

The development of the task based estimating model relates to the research contribution

explained in Section 3.1 with the purpose of advancing the state of the art of estimating

software development costs using design patterns and incorporating continuous

improvement over time.

65

Copyright, Chidambaram Subbiah, 2019

Expert Feedback and Surveys

Jørgensen (2007) finds that expert estimation is one of the primary strategies when

estimating software development effort and concludes that there is little evidence to

support the superiority of model-based estimates over the estimates of experts. He also

develops a combined model with estimates from both models and experts. Jørgensen,

Boehm, and Rifkin (2009) find that expert judgment-based effort estimation methods lead

to more accurate effort estimates than using sophisticated formal models. They also

mention that bringing more structure to the estimation process such as introducing

experience-based estimation checklists and a structured group process will further improve

the estimation quality. My goal in this research is to leverage feedback from experts in the

organization and bring consistency to the estimation process. Moløkken and Jørgensen

(2003) complete a systematic review. They observe that expert estimation is the most

frequently used method and that there was no evidence to show that the use of estimation

methods based on models led to better estimates. They also find that project overruns are

frequent, but at the same time major overruns were a rarity. Jenkins, Naumann, and

Wetherbe (1984), Lederer and Prasad (1995), Moløkken-Østvold et al. (2004) use surveys

to address the topic of estimation accuracy. Lederer and Prasad (1992), Moløkken-Østvold

et al. (2004) address the issue of which estimation approach is better. Jørgensen and

Shepperd (2007) conduct a systematic literature review of software estimation studies and

find that nine percent of the studies reviewed used surveys as the primary research

methodology. This research employs a combination of expert feedback and surveys to

come up with baselines for the estimation tool.

This research study builds and analyzes responses from a survey as outlined below.

66

Copyright, Chidambaram Subbiah, 2019

1. Understand the data by taking up to 20 of the latest projects that were executed by

the organization.

a. Look at the individual tasks used in each phase of the project while paying

more attention to the design and development tasks.

2. Look for design patterns in the tasks and visualize the design patterns.

a. We anticipate identifying multiple design patterns for the organization

based on the type and nature of work being done in the projects.

3. Validate the design patterns with experts (enterprise architects) in the organization.

4. Come up with scenarios to estimate based on the design patterns.

5. Validate the scenarios with experts (enterprise architects) in the organization.

6. Convert the scenarios to individual tasks based on feedback from the historical data.

7. Design a survey to get estimates at the task level based on the scenarios in the design

patterns accounting for complexity at the task level.

8. Validate the surveys with the experts (enterprise architects) in the organization.

9. Send out the survey to all the technical leads or subject matter experts in the

organization.

10. Collect the responses from the survey.

11. These responses will be validated again with the experts and will form the baseline

for bottom-up estimates in the estimating tool.

All the project steps are outlined in a visual representation in Figure 1. The diagram below

shows all the steps that were undertaken as part of the research in working with the

organization.

67

Copyright, Chidambaram Subbiah, 2019

Figure 1: Project Steps – Data Collection to Estimating Model to Resource Plannning

4.1.5 Estimating tool requirements:

The requirements for the estimating tool were:

1. The design patterns had to be reflected in the tool.

2. The tool had to be user friendly and intuitive to use.

3. The tool had to provide the capability to create a bottom-up estimate that was rooted

in the design patterns of the organization.

68

Copyright, Chidambaram Subbiah, 2019

4. The tool had to be capable of creating a subject matter expert estimate and a

recommended estimate. The subject matter expert estimate also had to form the

basis for the predictive model estimate.

5. The above mentioned two estimates were part of a suite of estimates.

6. The tool had to accommodate the capability to enter function points. The function

point count would then form the basis for four estimates.

7. All seven estimates would then be part of an estimates comparative tab in the tool.

This would give the capability to combine executive judgment with data science.

8. The tool had to have the capability to partition the overall cost by high level features

and requirements.

9. The tool had to have the capability to upload the final estimate to the time booking

system for tracking purposes.

10. The tool had to have the capability of producing a running total each time a task

was added.

11. The tool had to have the capability to keep track of time by each phase of the project

and compare it to historical averages for the organization and each individual area.

12. The tool had to have the built-in capability for the subject matter expert to override

the recommended cost.

13. The tool had to have the built-in capability to account for project management time

and tech lead contingency time and meeting time. This time had to be allocated

across phases based on the input of the project manager.

The above-mentioned requirements were implemented as part of the new estimating tool.

69

Copyright, Chidambaram Subbiah, 2019

4.2 Assessing the quality of the estimate from the estimating tool

There was no existing framework to process the actual data from the execution of the

project and compare it with the initial estimation data at the task level. This research created

a framework to embed a hidden field containing all attributes of the individual task,

including the original estimate with each task in the bottom-up estimate. That hidden field

can be pulled out after the execution of the project to compare the actual time with the

original estimate. The framework for processing this data was built in Tableau, and it is set

to accommodate tasks from all projects as they complete.

The foundation of the estimating tool was based on survey responses from the

subject matter experts. There were 14 responses from the open systems SMEs and 14

responses from the server-side SMEs. Each of the SMEs had given their estimates for the

tasks that were based on the design pattern of the organization. The estimates for each task

were given on a complexity scale of high, medium, and low.

 An array of estimates for each of the projects was created using the survey

responses from each SME as the basis. A Java program was written to go through each task

in the estimate and match it up with the survey responses from the SME's. The Java

program produced 14 open systems estimates and 14 server-side estimates for each project

based on the assumption that each individual task was being estimated by a SME who

completed a survey response. The Java program then matched up every open system's

estimate with each of the server-side estimates to generate 196 estimates. Some projects

did not have a server-side component, and so each project would have between 14 and 196

possible estimates.

70

Copyright, Chidambaram Subbiah, 2019

4.3 Optimization model for allocating resources to tasks in an Agile setting

The development of the optimization model furthers the research contribution

explained in section 3.4 by applying prescriptive analytics (optimization) to build a new

decision-support framework for Agile project planning. The Agile project planning and

resource allocation problem (APP-RAP) aims to optimally assign personnel with the

appropriate skills to stories in every sprint to maximize the total discounted return of

assigned stories. The mixed-integer linear programming (MILP) model can be formulated

as follows...

Sets and Parameters

𝑅: Set of potential projects to be completed during the planning horizon

𝑆𝑟: Set of stories belonging to project r ∈ R

𝑆: Set of all stories across all projects

𝑇: Set of all sprints in the planning horizon

𝐾𝑠: Set of skills required by story s ∈ S

𝐾: Set of all skills

𝐼: Set of individuals available to be assigned to work on stories

𝑀𝑟: Maximum number of sprints allowed from the start date to the complete date for

project r ∈ R

71

Copyright, Chidambaram Subbiah, 2019

𝛱𝑠𝑟∶value (in $) of story s ∈ S in project r ∈ R

𝑅𝑂𝐼𝑟: ROI (in $) of a project

𝛱𝑠𝑟 = 𝑅𝑂𝐼𝑟 ∗
𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑠𝑡𝑜𝑟𝑦 𝑠

𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑡𝑜𝑟𝑖𝑒𝑠 𝑖𝑛 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑟

The nominal time refers to the estimated time for story s in this context.

The ROI is given at the project level. We calculate the value of a story in a project by

calculating the contribution of a single story in terms of its estimate as a percentage

contribution of the total estimate for all stories in a project

For example, if we have three stories 𝑠1 , 𝑠2 𝑎𝑛𝑑 𝑠3 in project 1.

𝑝1 is the nominal processing time for story 𝑠1 and is estimated to take 40 hours.

𝑝2 is the nominal processing time for story 𝑠2 and is estimated to take 80 hours.

𝑝3 is the nominal processing time for story 𝑠3 and is estimated to take 80 hours.

Assume the ROI of the Project 1 is $47,469, and the total estimated time for all stories in

project 1 is 540 hours

The value of Story 1: $47469 * (40/540) = $3516

The value of Story 2: $47469 * (80/540) = $7032

The value of Story 3: $47469 * (80/540) = $7032

72

Copyright, Chidambaram Subbiah, 2019

𝑊𝑖𝑡: Workload of individual 𝑖 ∈ 𝐼 in sprint 𝑡 ∈ 𝑇

𝑃𝑠:The nominal processing time of story 𝑠 ∈ 𝑆

𝑃𝑠𝑘 : The nominal processing time for skill 𝑘 ∈ 𝐾 in story 𝑠 ∈ 𝑆

The nominal time above refers to the estimated time for a story and the estimated time for

a skill in the story. For example, we have a story that has an estimate of 40 hours. This

story is comprised of four skills S1, S2, S3, and S12. The individual estimate to complete

those skills is S1(4 hours), S2(20 hours), S3(2 hours) and S12(14 hours).

𝜃𝑖𝑘: Efficiency score of individual 𝑖 ∈ 𝐼 to work on skill 𝑘 ∈ 𝐾

The efficiency score of an individual for a skill is computed based on the following factors:

1. Total experience of an individual in a skill.

2. The date when the skill was last employed by an individual.

3. The self-rating for the skill by the individual.

4. Rating of the individual on the skill by the SME or by all the other team members

This research applies a weighted score based on the above factors. A higher efficiency

score means the individual is better suited for the skill, whereas a lower score close to

zero means the individual is completely incapable for the corresponding skill. The lower

bound for an efficiency score is 0.01, and the upper bound for an efficiency score is 1.

𝑃𝑠𝑘

𝜃𝑖𝑘
: Time taken by individual 𝑖 to perform skill 𝑘 in story 𝑠 in hours

𝐶𝑖: Pay Rate per hour of individual i ∈ I

73

Copyright, Chidambaram Subbiah, 2019

𝐷: Discounting Factor. We use a discount factor of 0.01 in the execution of the model

for all runs.

𝑆𝐴𝑁𝐷: Set of pairs of stories that must be assigned to the same sprint. It accounts for all

stories that have the constraint which must be implemented in the same sprint.

For example, if we have a requirement that stories 1, 2 and 3 must be completed in the

same sprint, we would define it as shown below

SAND = [{1, 2}, {2, 3}];

𝑆𝑂𝑅: Set of pairs of incompatible stories. It includes all the stories that cannot be

implemented in the same sprint.

For example, the definition below shows a case where stories 1 and 10 have to be

executed in different sprints. Similarly, stories 11 and 23 have to be executed in different

sprints.

SOR = [{1, 10},{11, 23}];

𝐹: Set of precedent relationships of pairs of stories . For example, when story s need to

precede story s′, the set {𝑠, 𝑠′} must be an element of 𝑆𝐴𝑁𝐷 or 𝐹.

Assumptions:

 Each story has been decomposed into sub-tasks that each require a single skill. Our

first assumption is that each sub-task requiring a single skill will be completed in a single

sprint. The estimate associated with these sub-tasks is often at or below 40 hours, which is

typically the case in real life operations. The second assumption is that all skills/sub-tasks

74

Copyright, Chidambaram Subbiah, 2019

associated with an assigned story are completed in the same sprint. It could often be the

case that these sub-tasks can be worked on in parallel, thus this assumption is in-line with

what happens in the real world where a story is often decomposed in such a way that it can

be completed in one sprint. The time for a single story is 80 hours or less, and this is an

assumption that will help avoid carryover stories from sprint to sprint and is in-line with

real life operations. It implies that one story including all its sub-tasks can be completed in

a single sprint. The final assumption we make is all projects can start at the same time. We

have a constraint to enforce the deadline by which a project must be completed. This

constraint ensures that all the stories with its associated sub-tasks/skills are available to be

allocated to resources.

Decision Variables:

𝑋𝑖𝑡𝑠𝑘 = 1 if individual i is assigned to story s to perform skill k in sprint t

 = 0 otherwise

 𝑌𝑠𝑡 = 1 if story s is assigned to sprint t

 = 0 otherwise

𝑌𝑠𝑡 is an auxiliary or derived decision variable that denotes whether or not story 𝑠 is

performed in sprint 𝑡.

75

Copyright, Chidambaram Subbiah, 2019

Objective Function:

The total net return is calculated as the difference between the total discounted return and

the total staffing cost. The cost was not discounted in the objective function with the

assumption that the staffing cost can be treated as sunk cost for the internal employees.

The objective function can be easily revised to discount cost if needed.

Maximize the total net return: Total discounted return - Total cost

Maximize

∑ ∑ ∑
(Πsr ∗ Yst)

(1+𝐷)𝑡 − ∑ ∑ ∑ ∑ Ci ∗ (Xitsk ∗
Psk

θik
k∈Ks∈St∈Ti∈Is∈S)𝑟∈𝑅t∈T (1)

Constraints:

The constraint (2) below ensures that each story is assigned to at most one sprint.

It is consistent with the possibility that all the stories may not be completed during the

planning horizon.

∑ Yst ≤ 1t∈T ∀ s ∊ S (2)

The constraint (3) below ensures that each skill is performed by exactly one

individual for each story assigned to a sprint. Note that no individual is assigned to a story

if the story is not executed in a particular sprint.

∑ Xitsk = Yst ∀ s ∊ S, k ∊ Ks, t ∊ Ti∈I (3)

76

Copyright, Chidambaram Subbiah, 2019

We need to meet the requirements that the maximum workload of each individual

cannot be exceeded. The maximum workload of individual i in sprint t is denoted by 𝑊𝑖𝑡 .

The constraint (4) below ensures that the total time spent by individual 𝑖 to work on the

story is less than or equal to the maximum workload of individual 𝑖 in sprint t

∑ ∑ (Xitsk ∗
Psk

θik
) ≤ Wit ∀ t ∊ T , i ∊ Ik∊Kss∈S (4)

Side Constraints

While Constraints (2) through (4) are the main constraints of the optimization

problem, some additional requirements of can be modeled by the incorporating the

following side constraints. For example, there might be a requirement that a set of stories

must be all be completed in the same sprint. Constraint (5) below ensures that all the stories

in the set 𝑆𝐴𝑁𝐷 are assigned in the same sprint. Specifically, for each set γ of stories in

SAND, the number of assigned stories must equal the cardinality of γ, i.e., all the stories in

γ are assigned.

∑ ∑ 𝑌𝑠𝑡𝑡∈𝑇 = |γ| ∀ γ ∊ SAND
s∊γ (5)

Constraint (6) below ensures that all the stories in the collection 𝑆𝐴𝑁𝐷 are assigned

to the same sprint.

∑ Yst ∗ tt∊T = ∑ Ys′t ∗ t ∀ s, s′ ∊ γ, s > s′t∊T (6)

77

Copyright, Chidambaram Subbiah, 2019

Recall that 𝑆𝑂𝑅 contains the stories that are incompatible with each other, thus only

one story from SOR can be assigned in a sprint. The constraint (7) guarantees that at most

one story from the set 𝑆𝑂𝑅 will be assigned to a sprint.

∑ Yst ≤ 1 ∀ γ ∊ SOR, t ∊ T s∊γ (7)

We often have time-dependency constraints, i.e., precedence relationships, where

story 𝑠 needs to be completed before story 𝑠′. These set of stories are contained in the set

𝐹. The constraint (8) below ensures story 𝑠 is assigned before story 𝑠′.

∑ Yst ∗ tt∊T ≤ ∑ Ys′t ∗ t ∀ (s, s′) ∊ Ft∊T (8)

We have a need to consider the constraint for the deadline on makespan of the

project. We introduced a new input parameter Mr, i.e., the maximum number of sprints

allowed per project from the start date to complete the project for each project r ∈ R. For

example, if a project’s end date is two months out, 𝑀𝑟 would have a value of three

assuming each sprint is three weeks long. Similarly, if the project’s end date is one month

out, 𝑀𝑟 would have a value of two. The constraint (9) below ensures all stories 𝑠𝑟

belonging to a particular project 𝑟 will be completed before the end of 𝑀𝑟 which is the

maximum number of sprints allowed to complete the projects. This ensures the end date

constraint for each project is met.

∑ Yst ∗ tt∊T ≤ Mr ∀ s ∈ sr (9)

78

Copyright, Chidambaram Subbiah, 2019

Chapter 5: Data

The first phase of the research creates a tool for project leaders to get a high-level

estimate of effort for a project after the function points are calculated in the early design

phase of the project. Data for the analysis were collected from the existing function point

repository of projects completed since 2014.

"ISBSG (International Software Benchmarking Standards Group) is a not-for-profit

organization. The ISBSG was founded in 1997 by a group of national software metrics

associations. They aim to promote the use of IT industry data to improve software

processes and products" ("About ISBSG,"). ISBSG has a repository of more than 8000

projects. I gained access to this repository as a doctoral student. A high-level analysis of

projects in the relevant comparable industry sector which used the same technology stack

as the service company were analyzed, and a project delivery rate of 18 hours per function

point was used as the ISBSG benchmark for our analysis.

We had access to multiple data sources at the service company with over seven

years of data from the Program Management Office (PMO) and data from the operational

excellence area of the company for one part of the research. Real world data is being used

in the research, and the models that have been developed have been made part of a custom-

tailored estimating tool that is currently being used by the company.

5.1: Data for predictive models

We had access to multiple datasets. The first dataset we had access to was the function

point data repository. The organization collects and preserves data on projects that have

79

Copyright, Chidambaram Subbiah, 2019

been through the function points counting process. We were given access to the entire

function point repository. It consisted of over 70 projects over the past four years, and

estimated costs which were inputs for calculating the counts. We now have access to the

actual labor costs associated with the project in a separate dataset. Two datasets are merged

for the modeling purpose.

Figure 2: Function points dataset

The key to merging the two datasets was the expense code/project ID associated with the

project. We merged the two datasets using the query builder utility in SAS Enterprise

Guide. See Table 5 below a few snapshots of the available data. The data has been masked

to hide the proprietary information such as expense code, project name, director name, and

team name.

Actual Costs

associated with the

projects

Merged function

points Dataset for

Modeling

Function Point

Repository

80

Copyright, Chidambaram Subbiah, 2019

Table 5: Function point repository

Actual Labor cost dataset: Please see Figure 3 below for a snapshot of the data that

was provided. We had information on the total labor hours across all phases of the

project and total labor hours for the design and development phases of the project.

81

Copyright, Chidambaram Subbiah, 2019

Figure 3: Actual labor cost dataset sample

Description of Individual Variables in the merged dataset:

This dataset contains the following data fields.

a. Project Name: This field has been masked.

b. Expense Code / Project ID: Unique ID associated with the project. This field

is been masked.

c. Team Name: Denotes the application development team responsible for the

project. This field is been masked.

d. Area Name: Domain area within the Application Development division

executing the project. This field is been masked as well. Each area consists

of 4-9 individual teams.

e. Total Labor Hours for the Project: The total labor hours across all phases of

the project, including planning, design, development, testing,

implementation, and post-implementation.

f. Total Design and Development hours for the project: The total design and

development time in hours spent on the project.

New Project ID New Project Name Total Labor Hours for the projec Actual Design and Development Labor

1 Project 1 5575.5 2121.75

2 Project 2 29326.25 17933.75

3 Project 3 3109.5 1542.5

4 Project 4 27446.5 19087.25

5 Project 5 4321 3424.25

6 Project 6 8803.5 7195.75

7 Project 7 43609 21264.6

8 Project 8 13334 3931.75

9 Project 9 19806.45 9205.15

82

Copyright, Chidambaram Subbiah, 2019

g. Total Labor Cost: The total labor cost in dollars associated with all phases

of the project.

h. Total Design and Development Cost: Total labor cost in dollars associated

with the design and development phase of the project.

i. Hours to Count: The total number of hours spent on doing the actual

function point count by the application development teams.

j. Total UFPs: Total unadjusted function points.

k. Function Point Count: The function point count is made up of five

components, and they are also given in the dataset

i. Internal Logical Files (ILF)

ii. External Interface Files (EIF)

iii. External Inputs (EI)

iv. External Outputs (EO)

v. External Queries (EQ)

l. Value adjustment Factor: The adjustment factor is calculated by the team

for the project. The value adjustment factor is based on 14 system

characteristics that rate the functionality in the application being counted,

and these 14 characteristics are given values by the application development

team.

m. Adjusted Function Point Count: The unadjusted function points multiplied

by the value adjustment factor.

n. Cost per FP: Total labor cost divided by the adjusted function point.

83

Copyright, Chidambaram Subbiah, 2019

2. Task level data for all projects that had executed in the past seven years. Task level

data for each project was aggregated, resulting in nearly 60,000 rows containing

information about each task for 400 projects. The task level data contained the

following variables in the dataset. The project name and resource names have been

masked in the dataset to protect proprietary information.

a. Project Name: This field is been masked.

b. Task Name: Every project is made up of hundreds of tasks split across

all phases of the project. This field is the name given to the task in the

time tracking system.

c. Task Start Date: The date the task was put into the time tracking system.

d. Task End Date: The date the task was closed in the time tracking system.

e. Assignment Resource Name: This field identifies the resource who

worked on the project. This field is being masked.

f. Assignment Start Date: The date when the task was assigned.

g. Assignment End Date: The date when the assigned task was completed.

h. Assignment Total Actual Hours: The total time in hours taken by the

resource to complete the task:

i. Charge Code associated with the task: Identifies the phase associated

with the project. The options were planning, design, development,

testing, implementation, and post-implementation.

j. Resource Type: Identifies if the resource was an employee or contractor.

84

Copyright, Chidambaram Subbiah, 2019

At the high level, we aggregated the data to compute the following variables at the project

level from the provided dataset. We used SAS Enterprise guide to aggregate individual

variables from the above-given data and merged them to aggregate information at the

project level. A few snapshots of the given data are given below in Figure 4.

Figure 4: Aggregated task level data sample

The aggregated dataset contains the following fields.

• Project ID

Project Name Task Name
Task Start

Date

Task

Finish Date

Project 25 ADV_SOL4-Design-Internal Transfers-PL 1/3/2012 3/23/2012

Project 25 ADV_SOL4-Design-Internal Transfers-PL 1/3/2012 3/23/2012

Project 25 ADV_SOL4-Design-Internal Transfers-SME 1/4/2012 7/20/2012

Project 25 ADV_SOL4-Design-Internal Transfers-SME 1/4/2012 7/20/2012

Project 25 ADV_SOL4-Design-Internal Transfers-SME 1/4/2012 7/20/2012

Project 25 ADV_SOL4-Design-Internal Transfers-SME 1/4/2012 7/20/2012

Project 25 ADV_SOL4-Design-ACAT 1/23/2012 1/23/2012

Project 25 ADV_SOL4-Design-Enhancements-PL 1/3/2012 2/17/2012

Project 25 ADV_SOL4-Design-Enhancements-PL 1/3/2012 2/17/2012

Project 25 ADV_SOL4-Design-Activation & NTE-SME 1/3/2012 3/30/2012

Project 25 ADV_SOL4-Design-Activation & NTE-SME 1/3/2012 3/30/2012

Assignment Resource
Assignment

Start Date

Assignment

Finish Date

Assignment

Total Actual

Hours

Resolved Charge

Code

Resource = Associate

or Contractor

Resource 1120 1/30/2012 3/23/2012 31 Design/Selectn Employee

Resource 156 1/3/2012 2/22/2012 64.5 Design/Selectn Employee

Resource 261 1/4/2012 5/11/2012 357.5 Design/Selectn Employee

Resource 1085 1/9/2012 3/21/2012 30 Design/Selectn Employee

Resource 1159 4/22/2012 7/20/2012 269 Design/Selectn Employee

Resource 623 1/4/2012 4/21/2012 261 Design/Selectn Employee

Resource 1326 1/23/2012 1/23/2012 6 Design/Selectn Contractor

Resource 1120 1/3/2012 2/17/2012 0 Design/Selectn Employee

Resource 53 1/3/2012 2/17/2012 93 Design/Selectn Employee

Resource 261 1/3/2012 3/27/2012 44 Design/Selectn Employee

Resource 332 1/17/2012 3/30/2012 64 Design/Selectn Employee

85

Copyright, Chidambaram Subbiah, 2019

• Project Name

• Number of tasks associated with the project

o Number of tasks by each phase of the project namely design,

development, testing, implementation and planning

• Number of resources used in the project

o Number of contracting resources considering the experience of contractors

o Number of associates

• Total labor hours spent on the project across all phases of the project.

• Total time in hours spent on design

• Total time in hours spent on development

• Total time in hours spent on planning

• Total time in hours spent on verification/testing by IS

• Total time in hours spent on implementation

• Total time in hours spent on post implementation

• Percentage time spent on design

• Percentage time spent on development

• Percentage time spent on planning

• Percentage time spent on verification/testing by IS

• Percentage time spent on implementation

• Percentage time spent on post-implementation

• Percentage time spent on meetings

• Percentage work completed by employees on the project

• Percentage work completed by associates on the project

86

Copyright, Chidambaram Subbiah, 2019

• Number of core resources on a project: A core resource was defined as someone

who stayed for the full length of the project or contributed

• Number of supporting resources on a project

We also had access to another dataset with summary project-level information. This

dataset contained the following variables.

• Project ID

• Project Name

• Project Type: The project types could be Application Development, Vendor

related or Infrastructure

• Regulatory Project: Indicates whether the project was executed to meet a

regulatory requirement

• Area doing the project: The area within Information Systems that executed the

project.

• Project Manager: The project manager who managed the project.

• Project Start Date

• Project End Date

• Duration of the project in days

We needed to build another dataset with aggregate quality information at the project level.

We had this data for only 103 projects. This dataset contained the following information.

• Project ID

• Project Name

87

Copyright, Chidambaram Subbiah, 2019

• Number of requirements in the project

• Number of test plans in the project

• Number of defects by defect severity: Defects could be classified as Sev1, Sev2,

Sev3, and Sev4, and we had data for each category.

Figure 5: Flow to get the aggregated dataset for modeling

High-Level Data Analysis

 We started with the analysis of the function points aggregated dataset. The scatter

plot of the function point count and the total labor hours for the project is as shown below

in Figure 6.

Figure 6: Scatter plot of function point count with total labour hours

Task Level Data Aggregated

Project Level Data

Summary Project

Level Data

Quality Center

Project Level Data

Aggregated

Dataset for

Modeling

88

Copyright, Chidambaram Subbiah, 2019

At the outset, I divided the aggregated dataset by project size, as shown in Table 6, to better

understand the data. This view helped us understand how the time was being spent on

average across each phase of the project for different project sizes. This also helped us

understand how we were using resources in different categories of projects based on

different project sizes. The insight from this analysis was a better understanding of how

resources were utilized across the various phases of the project. The resource utilization

starts off slowly during the planning and design phases, and it ramps up during

development and testing. The utilization drops off gradually during implementation, and

only a few resources are kept for post implementation. We analyzed the data further from

a descriptive analytics point of view, and those results are shown in Chapter 6.

89

Copyright, Chidambaram Subbiah, 2019

Table 6: High level data analysis of project data

The overall project data from 2012-2017 by phases is summarized below in Table 7. It

shows the percentage of time spent each year across the six project phases.

Table 7: Project data by phases

Hours
On Average 1000-5000 labor hours 5000-10000 labor hours 10000-15000 labor hours 15000-20000 labor hours 20000-30000 labor hours Greater than 30000

Planning Time 354 926 1084 666 714 1300

Design Time 354 861 1633 3222 4954 6701

Development Time 1178 3309 5502 8787 10715 18696

Verification Time 554 1792 3164 3693 5648 9643

Implementation Time 202 506 798 565 1534 1624

Post implementation time 153 246 376 154 411 1094

Percentage
Planning Percent 13.1% 13.2% 8.3% 3.9% 2.9% 3.6%

Design Percent 14.1% 11.4% 13.3% 18.8% 20.5% 16.7%

Development Percent 41.7% 42.8% 43.0% 51.1% 44.3% 47.7%

Verification Percent 18.3% 22.9% 25.6% 21.8% 23.0% 24.9%

Implementation percent 7.0% 6.4% 6.6% 3.4% 6.2% 4.4%

Post implementation percent 4.9% 3.0% 3.0% 0.9% 1.7% 2.7%

Total 99.1% 99.8% 99.8% 99.9% 98.5% 100.0%

of projects in each group 68 44 20 13 11 9

Resources
Planning phase resources 6.13 9.81 10.8 6.66 15 13

Design Phase resources 5.63 10.38 16.4 19.92 26.9 30.66

Development phase resources 8.92 17.32 24.1 28.69 32.54 37.66

Verification phase resources 7.33 13.97 18.73 19.1 27.9 31.33

Implementation phase resources 6.24 11.24 14.15 14.25 20 20.66

Post implementation phase resources 4.71 8.48 10 8.33 14.4 16.57

Weeks (36 Hours Per Week Per FTE)
Planning phase resources 1.604 2.622 2.788 2.778 1.322 2.778

Design Phase resources 1.747 2.304 2.766 4.493 5.116 6.071

Development phase resources 3.668 5.307 6.342 8.508 9.147 13.790

Verification phase resources 2.099 3.563 4.692 5.371 5.623 8.550

Implementation phase resources 0.899 1.250 1.567 1.101 2.131 2.184

Post implementation phase resources 0.902 0.806 1.044 0.514 0.793 1.834

Total Weeks 10.920 15.853 19.199 22.764 24.131 35.206

90

Copyright, Chidambaram Subbiah, 2019

We looked at the application development projects executed by each area within the

organization, and these are the high-level statistics. These are average numbers for each

phase by application development area.

Table 8: Data analysis by project phases
 # of

projects
Design %

(Variance)
Devl%

(Variance)
Test%
(Variance)

Plan%
(Variance)

Impl%
(Variance)

Application Development Area 1 57 11(1.8) 49(4.7) 17(1.5) 12(4.3) 9(1.3)

Application Development Area 2 11 15(3.2) 41(2.8) 18(2.6) 17(4.1) 8(0.5)
Application Development Area 3 19 19(5.1) 45(3.1) 16(1.9) 5.5(0.4) 13(1.7)

Application Development Area 4 37 13(2.9) 39(4.1) 23(2.1) 14(6.5) 9(1.3)
Application Development Area 5 33 16(2.0) 45(3.0) 22(1.8) 4(0.5) 12(1.8)
Application Development Area 6 17 12(1.9) 43(4.5) 26(3.5) 12(4.1) 5(0.3)

Other projects 5 27(3.4) 27(3.8) 16(2.5) 17(8.7) 12(3.8)

We looked at the average duration of a project and how each application development area

used the contingent workforce of contractors in their projects. All the numbers indicated

below are based on averages.

Table 9: Data analysis by resource type
 # of projects Avg Duration

(days)
of contractors # of employees Contractors percent

contribution

Application

Development Area 1
57 466 days 7.6 12.7 42%

Application

Development Area 2
11 454 days 1.5 13.8 10%

Application

Development Area 3
19 488 days 4.6

10.3 35%

91

Copyright, Chidambaram Subbiah, 2019

Application

Development Area 4
37 542 days 5.6 12.7 36%

Application

Development Area 5
33 504 days 10 19 43%

Application

Development Area 6
17 506 days 6.6 15 35%

Other projects 5 345 days 2.8 12.2 12.4%

We looked at how the contingent workforce was used in 2016, 2015, and in all years prior

to that. We found that contractors contributed on average around 34-36% of the overall

labor. It was further found that contractors were used more during the development and

testing phases. Their contribution peaked during those two phases and declined during the

implementation phases. This finding was validated in our conversation with the

management at the organization as it was employees who worked on the project during the

planning and design phases of the project. They carried the workload during those phases,

and the contingent workforce was brought in to help during the development phase of the

project.

Table 10: Data analysis based on usage of temporary resources
 # of contractors (on average) # of employees (on average) Contractors percent contribution

(on average)

2016 5.3 10.3 36%
2015 8.3 16.8 36%
Prior to 2015 6.4 14.2 34%

92

Copyright, Chidambaram Subbiah, 2019

We had data about requirements, test plans, and defects for 103 projects, and this is the

high-level analysis of the data. The numbers provided are based on averages for each area.

Table 11: Data analysis based on quality metrics
 # of

projects
Requirements Test

plans
Defects Defect

ratio
Sev1 Sev2 Sev3 Sev 4

Application

Development

Area 1

35 817 597 326 0.54 53 123 92 40

Application

Development

Area 2

6 413 213 114 0.53 9 20 14 10

Application

Development

Area 3

10 609 299 256 0.85 25 129 69 27

Application

Development

Area 4

21 1480 1641 362 0.22 90 172 74 20

Application

Development

Area 5

18 1202 1022 413 0.40 65 202 89 36

Application

Development

Area 6

10 508 1102 213 0.19 31 82 48 18

Other

projects
3 311 516 410 0.79 93 161 99 50

93

Copyright, Chidambaram Subbiah, 2019

5.2: Use case for Agile Software Development epic and release planning

5.2.1: Introduction to optimization use case

Sliger and Broderick (2008) explain that a key feature of the Waterfall approach is

the capturing and documentation of all requirements before the design and development of

the software. The requirements are typically not subject to change once development starts.

The risk in this approach is that testing takes place after development, and because of

incomplete requirements, design flaws are uncovered only in the testing phase. The

industry saw the need to address some of the inherent risks of the Waterfall methodology.

They wanted to address how requirements were defined in advance of project execution

and how the finished product is tested post development. The solution was an Agile

development process that was rooted in an iterative approach. Variants of the Agile

approach like Scrum, Extreme Programming, Pair Programming now exists. Beck et al.

(2001) defined a new process for delivering software known as Agile programming, and it

was called the Agile Manifesto. The manifesto includes four statements and 12 principles

that describe the overall philosophy. Five key principles from among the 12 principles in

the manifesto are

1. "Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference for a shorter timescale.

2. Working software is the primary measure of progress.

3. Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely.

94

Copyright, Chidambaram Subbiah, 2019

4. Continuous attention to technical excellence and good design enhances agility.

5. At regular intervals, the team reflects on how to become more effective then

tunes and adjusts its behavior accordingly."

Agile programming is like Waterfall development in that some of the steps in the workflow

are the same. We still collect requirements, design, develop code, test code, and deploy.

The main difference is that Agile executes these steps in an iterative approach that fosters

continuous improvement of the product. Software requirements are still initially captured

but at a less detailed level and documented in a product backlog. These requirements are

often captured as user stories, which are requirements from the user perspective.

 Hayata and Han (2011) explain that some organizations employ a hybrid model

where the best of both models is incorporated. These organizations look to blend Scrum,

an Agile method, into traditional plan-driven project development and management.

Kuhrmann et al. (2017) make the case that a hybrid software development approach is a

combination of Agile and traditional approaches that an organization adopts and

customizes to its own context needs. They also argue that hybrid approaches are widely

used in practice and found that hybrid approaches have become more prevalent and are

used by all types of companies. West, Gilpin, Grant, and Anderson (2011) coined the term

“Water-Scrum-Fall” and hypothesized that hybrid development methods would become

the standard." Our use case is rooted in a hybrid setting, and it will be based on a

hypothetical case where requirements are spelled out, and overall project scopes is defined

upfront. The projects will be relatively small with less than 1500 labor hours. The execution

of the project could adopt Agile principles such as delivering working software frequently,

95

Copyright, Chidambaram Subbiah, 2019

promoting sustainable development, reflecting on how to become more effective, etc. with

some leeway for changing requirements from one iteration to the next.

This research contributes to the literature by presenting a model of a scenario where

the estimates that are developed at the task and scenario level are used in an Agile setting

to optimize the use of limited resources. Our scenario accounts for economies of scale that

can result from managing the skills and domain expertise of resources that are part of

multiple projects. This model is important because it can be used in an environment of

multiple small size projects to manage a pool of resources given that we always have a

backlog of tasks to complete. This scenario will be a case study providing a proof of

concept to optimize executing multiple small projects at the same time. The small projects

are rooted in the design patterns of the company and will cater to the local context.

5.2.3: Use Case

In addition to executing large enterprise wide projects, ABC Inc. works on a lot of small

projects that typically take between 1000-2000 hours. These projects are typically

enhancements to existing systems, and there is a perceived decent return of investment in

the short term (one year) and long term (3-5 years). These projects are typically seen as

efforts that can be completed in a short span of time, but these projects also go through the

planning, design, development, testing and implementation phases in quick succession.

Today, these projects are completed using the traditional software development model. The

resources that work on these projects are typically skilled in 1-2 skills, and the teams are

confined to a single domain area of expertise. A project typically will require a good subset

of the following set of resources

96

Copyright, Chidambaram Subbiah, 2019

1. Business Subject Matter Expert (SME)

2. Information Systems SME

3. Business Project Manager

4. Information System Project Manager

5. Design Thinking coordinator

6. User Experience (UX) specialist

7. Front End Developers

8. Back End Developers

9. Quality Assurance Tester

10. Database Administrator

Some of these resources might be needed only for a limited time, and they typically might

not be dedicated on the effort. Currently the issue is these projects take substantially more

time to complete execution from initiation to finish due to the lack of resources with the

right skill set to work on a task at the time when the task is ready to be executed. The

resources are often prioritized for higher priority work. The tasks are typically scheduled

in a sequence, and the following Gantt chart (Figure 7) shows a hypothetical scenario for

project execution.

97

Copyright, Chidambaram Subbiah, 2019

Figure 7: Project execution with optimal resource allocation

Figure 8: Effect on project duration due to resource constraints

 You can observe in the scenario above shown in Figure 8 that a project execution

could be delayed by close to three months when it is not prioritized for the effort, and all

the scarce resources are allocated across multiple projects. This typically happens in the

case of subject matter experts both in the Information Systems space and in the Business

areas.

 ABC Inc. is also starting to execute some of its projects using the Agile

methodology, and these projects would be ideal candidates to be executed using the new

approach. ABC Inc. is also starting to cross train employees and is encouraging employees

to have development plans that encourage employees to become proficient in multiple

98

Copyright, Chidambaram Subbiah, 2019

skills. The company also has the concept of centers of excellence and is starting to evaluate

cross functional teams within the application development area of Information Systems. It

will be useful to have a model to evaluate how to plan out a schedule for multiple projects

that are very similar in terms of skills needed for the individual stories in the project. There

is an opportunity to evaluate the effect of having resources with multiple skills, the effect

of cross training employees, the effect of centers of excellence and finally the effect of

cross functional teams.

The problem in this traditional method of project execution is that resources, for

the most part, are not allocated based on matching of skills needed for a single task. A

single task can be decomposed into multiple sub-tasks that each require a skill. A typical

example could be the development of a webpage. This task is going to require SME skills,

design thinking skills, front-end UX skills, back-end server-side skills, database

administrator skills, testing skills and finally implementation skills. Schedules are built,

and resources are assigned to tasks based on who becomes available first. It is often the

case that a single task might require multiple skills and the entire task as it pertains to a

single phase of the project is assigned to the same resource. There is perceived scarcity of

certain resources with certain skill sets, and there is no set measure of proficiency in a

certain skill for a resource. The gap in the current approach is there is no way to evaluate

the effect of cross training resources on multiple skills and to measure the efficiencies it

could bring to the overall process. Currently there is no way to evaluate how the schedule

would look when you can try to match resources based on each of the skills needed for a

task as opposed to allocating them on a first available basis. There is also no way today to

incorporate a measure like an efficiency score for a skill, and finally there is no way to

99

Copyright, Chidambaram Subbiah, 2019

evaluate how the schedule would change when the workload availability of resources

changes.

To evaluate the model performance, this research addresses a hypothetical scenario

where the same set of projects which were executed using the traditional methodology is

instead executed in an Agile setting. Each of the tasks is perceived to be a story in an Agile

setting, and we have taken the effort to identify all the skills needed to complete each story.

I also have a listing of resources with the current set of skills that they have. This data has

been transformed to include an efficiency score on the skills for each of the resources. This

data is mocked up to show the effect of the efficiency score in such a model. I had access

to very high-level work load availability data, and this data is also been mocked up to show

the effect of workload availability in the model. I want to consider the effect of matching

resources with the right set of skills needed for a story. We want to bring in the concept of

efficiency score for a skill for each resource and further want to understand the effect of

having resources who are proficient in multiple skills and in measuring the proficiency of

resources in a particular skill.

The following high-level diagram explains the core principle that there is a resource

pool that can be comprised or contractors and employees who each have a certain skill set.

Each project is comprised of tasks that can decomposed into sub-tasks that each require

one or more skills for them to be completed.

100

Copyright, Chidambaram Subbiah, 2019

Figure 9: High-level diagram for use case

The use case is set in a scenario where you have a sequence of small projects in the pipeline

that need to be completed. Each of these projects will be less than 1500 hours, preferably

and at the maximum can go up to 2000 hours. Each project has a set of stories associated

with it across each phase of the traditional development model. These stories have an

associated estimated time to complete. Each story also has a set of skills that are required

for it to be completed. Each resource also has a set of skills that they are familiar with.

Our goal will be to match up the stories with the right resources and pack the maximum

possible stories into a sprint based on the right allocation of resources while at the same

time ensuring the timely completion of projects.

Project and Resource Information

1. There are multiple projects that need to be started and completed in the next few

months. We have data for five projects. Each project consists of multiple phases, as

indicated below.

a. There are stories within each phase.

Resource Pool

Contractors /

Employees

Skill Set list

Multiple

Projects

Domain

Knowledge list

101

Copyright, Chidambaram Subbiah, 2019

b. We have an estimate for each story.

c. Each story needs a set of skills, and they are indicated. The estimate for the

overall story is further decomposed into the estimate needed for each skill

component associated with the story.

d. We are given the ROI information for each project.

Table 12: Project data for optimization use case

Project 1 1st Year - $47,469 3rd Year - $144,456

Sprint Stories Estimate Skills Required

Sprint: BC Development Story 1: 40 S1(4), S2(20), S3(2), S12(14)

Story 2: 80 S1(20), S2(50), S19(10)

Story 3: 40 S2(20), S11 (20)

Story 4: 80 S3(60), S8(20)

Story 5: 80 S6(80)

Story 6: 80 S6(80)

Story 7: 40 S6(40)

Story 8: 40 S2(10), S9(10), S18 (20)

Story 9: 40 S17(30), S10 (10)

Sprint: Benefit Analysis Story 10: 20 S2(10), S12 (10)

Sprint: Testing & Validation

Sprint: Designing Requirements

Sprint: Development & Coding

102

Copyright, Chidambaram Subbiah, 2019

Project 2 1st Year - $150,003 3rd Year - $444,965

Sprint Stories Estimate Skills Required

Sprint: BC Development Story 11: 70 S1(5), S2(25), S3(5), S12(35)

Story 12: 70 S12(40), S3(30)

Story 13: 60 S1(30), S2(30)

Story 14: 60 S17 (60)

Story 15: 80 S13(40), S14(40)

Story 16: 60 S13(60)

Story 17: 80 S16(80)

Story 18: 80 S16(80)

Story 19: 60 S16(60)

Story 20: 80 S16(80)

Story 21: 80 S2(10), S9(70)

Story 22: 60 S17(30), S10 (10), S18(20)

Sprint: Benefit Analysis Story 23: 40 S2(20), S12 (20)

Project 3 1st Year - $117,228 3rd Year - $357,275

Sprint Stories Estimate Skills Required

Sprint: BC Development Story 24: 20 S1(4), S2(8), S3(2), S12(6)

Story 25: 60 S2(40), S20(20)

Story 26: 30 S1(20), S2(10), S19(10)

Story 27: 80 S2(80)

Story 28: 80 S11 (80)

Story 29: 80 S3(80)

Story 30: 80 S6(80)

Story 31: 80 S6(40), S7(40)

Story 32: 80 S7(60), S8(20)

Story 33: 80 S8(80)

Story 34: 80 S2(20), S9(5), S18 (55)

Story 35: 40 S17(30), S10 (11)

Sprint: Benefit Analysis Story 36: 40 S2(25), S12 (15)

Sprint: Testing & Validation

Sprint: Designing Requirements

Sprint: Development & Coding

Sprint: Designing Requirements

Sprint: Development & Coding

Project 4 1st Year - $5,438 3rd Year - $58,181

Sprint Stories Estimate Skills Required

Sprint: BC Development Story 36: 100 S1(5), S2(30), S3(5), S12(60)

Sprint: Designing Requirements Story 37: 80 S1(20), S2(50), S19(10)

Story 38: 80 S3(80)

Story 39: 80 S3(70), S5(10)

Story 40: 80 S13(80)

Story 41: 80 S13(80)

Story 42: 80 S13(80)

Story 43: 80 S13(80)

Story 44: 60 S2(10), S9(10), S18 (40)

Story 45: 80 S17(80)

Story 46: 15 S10 (15)

Sprint: Benefit Analysis Story 47: 40 S2(20), S12 (20)

Sprint: Testing & Validation

Sprint: Development & Coding

103

Copyright, Chidambaram Subbiah, 2019

2. You have a set of skills. We are going to need resources with certain skills for a project

based on the needs of a project. We are going to keep the skills generic to cater to the

design patterns of the company. The table below gives us information on the skills and

indicates which resources possess those skills. We are also given the hourly pay rate

for each type of resource.

Table 13: Skills data for use case

Project 5 1st Year - $4,238 3rd Year - $39,066

Sprint Stories Estimate Skills Required

Sprint: BC Development Story 48: 20 S1(2), S2(11), S3(2), S12(5)

Sprint: Designing Requirements Story 49: 30 S1(10), S2(15), S19(5)

Sprint: Development & Coding Story 50: 80 S3(60), S5(20)

Story 51: 80 S7(80)

Story 52: 80 S7(80)

Story 53: 80 S7(80)

Story 54: 40 S2(10), S9(10), S18 (20)

Story 55: 67 S17(37), S10 (30)

Sprint: Benefit Analysis Story 56: 10 S2(20), S12 (20)

Sprint: Testing & Validation

Skill Skill ID Resource Pay (hourly rate)

Skill 1 S1 Business SME xx

Skill 2 S2 Business SME xx

Skill 3 S3 IS SME xx

Skill 4 S4 IS SME xx

Skill 5 S5 Developer xx

Skill 6 S6 Developer xx

Skill 7 S7 Developer xx

Skill 8 S8 Developer xx

Skill 9 S9 Developer xx

Skill 10 S10 IS SME xx

Skill 11 S11 Legal Analyst xx

Skill 12 S12 Project Manager xx

Skill 13 S13 Developer xx

Skill 14 S14 Developer xx

Skill 15 S15 Project Manager xx

Skill 16 S16 Developer xx

Skill 17 S17 IS SME xx

Skill 18 S18 Business SME xx

Skill 19 S19 Project Manager xx

Skill 20 S20 Design Thinking xx

104

Copyright, Chidambaram Subbiah, 2019

3. You have a resource pool comprising of associates and contractors. A typical project

will need one Architect or Subject Matter Expert (SME) for the estimating, one SME

to run the project/answer questions, and a bunch of other resources based on skill sets.

The set of resources as indicated in the table above are shown below in Table 14.

Table 14: Resource types for use case

Our goal is to pack as many stories as possible into the next sprint while ensuring that all

projects with end dates in that sprint are completed, while at the same time ensuring the

most efficient allocation of resources to each of the stories.

The tentative project plan for the five projects is as given below in Figure 10

Resource Name

Business SME

Technical Lead

Developer

Project Manager

Design Thinking Specialist

Legal Analyst

105

Copyright, Chidambaram Subbiah, 2019

Figure 10: Tentative project plan

Chapter 6: Model Testing Results and Experiments

6.1 Estimating tool development – related models and development of the tool

6.1.1 Function points related predictive models:

This research uses simple linear regression and multiple regression to evaluate the effect

of the Adjusted Function Points Count on the total design and development cost and on the

total labor cost, resulting in the following models.

𝐸(𝐷𝑒𝑠𝑖𝑔𝑛 𝑎𝑛𝑑 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡) = 𝛽0 + 𝛽1 ∗ 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑃𝑜𝑖𝑛𝑡𝑠 𝐶𝑜𝑢𝑛𝑡

𝐸(𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡) = 𝛽0 + 𝛽1 ∗ 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑃𝑜𝑖𝑛𝑡𝑠 𝐶𝑜𝑢𝑛𝑡

106

Copyright, Chidambaram Subbiah, 2019

We analyzed the data and obtained the summary statistics. The data for all projects in the

repository can be summarized by the following visualization shown below in Figure 11.

Figure 11: Function point repository visulization

The scatter plot of the Adjusted Function Point count with the total labor hours is shown

below in Figure 12. The scatter plot shows that a bulk of the projects are below 500 function

points, and it also shows that there are a few outliers in the data.

Figure 12: Scatter plot of adjusted function point and total labor hours

107

Copyright, Chidambaram Subbiah, 2019

When we examine the cost per function point for the total cost, we obtain Figure 13. The

outliers have been removed in this visualization, and the bar graph shows the cost per

function point for total project cost sorted in ascending order across all projects. The cost

per function point for total project cost ranges from $567 to $4,154.

Figure 13: Bar graph of cost per FP for total cost across all projects sorted in ascending order

When we examine the cost per function point for the design and development cost, we

obtain Figure 14. The bar graph shows the cost per function point for total design and

development cost sorted in ascending order across all projects. The cost per function point

for total design and development cost ranges from $206 to $3,684.

108

Copyright, Chidambaram Subbiah, 2019

Figure 14: Bar graph of cost per FP for design and development across all projects sorted in

ascending order

The summary statistics are shown below for the cost per function point for the design and

development cost and total labor cost in Table 15. Table 15 also provides the summary

statistics for the function point count and the five components that make up the function

point count.

Table 15: Summary statistics for Function points related metrics

109

Copyright, Chidambaram Subbiah, 2019

I removed the projects that were below the 10th percentile and above the 90th

percentile as outliers and used the resulting dataset for my modeling. I modeled the design

and development costs separately, resulting in the following models.

𝐸(𝐷𝑒𝑠𝑖𝑔𝑛 𝑎𝑛𝑑 𝐷𝑒𝑣𝑙 𝐶𝑜𝑠𝑡) = −23,001 + 930.66 ∗ 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑃𝑜𝑖𝑛𝑡𝑠 𝐶𝑜𝑢𝑛𝑡

The above-mentioned model has an R-Square of 0.7068, and the results associated with

the model are shown in Appendix 1.

𝐸(𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡) = 50,369 + 1464.22 ∗ 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑃𝑜𝑖𝑛𝑡𝑠 𝐶𝑜𝑢𝑛𝑡

The above-mentioned model has an R-Square of 0.7016, and the results associated with

the model are shown in Appendix 2. This is one of the estimates used among the suite of

estimates in the estimating tool.

We also considered the following models.

𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑠𝑡) = 𝛽0 + 𝛽1 ∗ # 𝑜𝑓 𝐼𝐿𝐹 + 𝛽2 ∗ # 𝑜𝑓 𝐸𝐼𝐹

𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑠𝑡) = 𝛽0 + 𝛽1 ∗ # 𝑜𝑓 𝐸𝑄 + 𝛽2 ∗ # 𝑜𝑓 𝐸𝐼 + 𝛽3 ∗ # 𝑜𝑓 𝐸O

𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑠𝑡) = 𝛽0 + 𝛽1 ∗ # 𝑜𝑓 𝐸𝑄 + 𝛽2 ∗ # 𝑜𝑓 𝐸𝐼 + 𝛽3 ∗ # 𝑜𝑓 𝐸 O + 𝛽4 ∗

𝑜𝑓 𝐼𝐿𝐹 + 𝛽5 ∗ # 𝑜𝑓 𝐸𝐼𝐹

I used Forward Selection as the model selection method in SAS, and it resulted in the

following models. The significance level chosen to enter the model was 0.2, and to stay in

the model was 0.1.

The resulting models are listed below.

𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑠𝑡) = 99147 + 2581.11 ∗ # 𝑜𝑓 𝐼𝐿𝐹 + 4757.32 ∗ # 𝑜𝑓 𝐸𝐼𝐹

The R-square for the above model is 0.47, and it explains 47% of the variability in the

model. Both the variables are statistically significant in the model.

110

Copyright, Chidambaram Subbiah, 2019

𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑠𝑡) = 67302 + 2924.39 ∗ # 𝑜𝑓 𝐸𝑄 + 4582.43 ∗ # 𝑜𝑓 𝐸𝐼

The EO variable did not make it into the model, and the R-Square for this model is 0.71.

This model explains 71% of the variability in the model.

𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝑜𝑠𝑡) = 30359 + 2466.42 ∗ # 𝑜𝑓 𝐸𝑄 + 3991.05 ∗ # 𝑜𝑓 𝐸𝐼 +

 2177.66 ∗ # 𝑜𝑓 𝐸𝐼𝐹

The above mentioned three variables meet the requirements of the model, and other

two variables do not enter the model. The R-Square on the model is 0.74.

When we look at all the models, the number of external queries, external inputs, and

external interface files contribute to a useful model, and it conveys an important message

for the organization. It points to an organization where systems are tightly integrated, and

this is reflected in the data.

The difference between the actual labor cost and the predicted cost from the model

is shown below in Figure 15 as a box whisker plot.

111

Copyright, Chidambaram Subbiah, 2019

Figure 15: Box Whisker Plot of the difference between Actual Labor Cost and

Predicted Cost.

6.1.2 Two Stage Least Squares (2SLS) model results and Decision Tree analysis

The histogram of the total labor hours for all projects in the repository is shown below in

Figure 16. There are some clear outliers, as can be observed from the scatter plot. ABC

Inc. as an organization was moving towards breaking down bigger projects into smaller

projects to have a better handle on the execution of the projects. We had a good base of

116 projects that were under 10,000 total labor hours of which 103 projects were under

7,500 total labor hours. We separate the data by the total labor hours into two sets, one with

projects under 7,500 total labor hours and the second with projects under 10,000 total labor

hours based on the direction ABC Inc. was moving towards of breaking down bigger

projects into multiple smaller projects. We fit separate coefficients for each dataset.

112

Copyright, Chidambaram Subbiah, 2019

Figure 16: Histogram of total project labor hours

The goal was to predict the total labor hours, and the following explanatory variables were

used in the model. A dataset with projects that had total labor hours that were less than

7500 hours was first created.

1. Project type

2. Number of tasks by each phase, design, development, testing, implementation,

and planning

3. Number of contracting resources

4. Number of contracting resources considering overall work experience of more

than three years

5. Number of employees

6. Percentage time spent on design

7. Percentage time spent on development

8. Percentage time spent on planning

9. Percentage time spent on verification/testing by IS

10. Percentage time spent on meetings

11. Number of defects by category (sev1, sev2, sev3, and sev4)

12. Number of requirements

13. Number of test plans

14. Area doing the project

15. Duration of the project

16. Project type

113

Copyright, Chidambaram Subbiah, 2019

This research used Forward Selection as the model selection method in SAS, and it

generates the following results. The significance level chosen to enter the model was 0.2,

and to stay in the model was 0.1.

𝐸(𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑏𝑜𝑟 𝐻𝑜𝑢𝑟𝑠) = 785.39 + 404.58 ∗ # 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠 + 220.98 ∗

𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠 + 130.62 ∗ # 𝑜𝑓 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠 + 2665.81 ∗

𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑖𝑚𝑝𝑙 + 21.40 ∗ # 𝑜𝑓 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑡𝑎𝑠𝑘𝑠 + 0.63 ∗ # 𝑜𝑓 𝑑𝑎𝑦𝑠 − 1452.73 ∗

𝑡𝑜𝑡𝑎𝑙 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 − 566.87 ∗ 𝑝𝑟𝑜𝑗 𝑡𝑦𝑝𝑒 1 − 697.57 ∗ 𝑎𝑟𝑒𝑎 1 − 1154 ∗ 𝑎𝑟𝑒𝑎 2

 The collinearity diagnostics and Variance Inflation Factors (VIF’s) were generated

as part of the output while running the OLS model above. The observation of the results

did not indicate the presence of multicollinearity. The explanatory variables were not

significantly correlated. I then ran the White test on the OLS estimates to test for

Heteroscedasticity. The White Test came out to be insignificant. The insignificance of the

test indicated homoscedastic errors and showed that these errors were not related to the

explanatory variables.

 This was followed by running separate OLS models to explore for possible

endogeneity of some of the explanatory variables in the model. One such model is shown

below that examines # of contractors.

𝐸(# 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠) = 1.15 + 0.32 ∗ # 𝑜𝑓 𝑐𝑜𝑟𝑒 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 𝑐𝑜𝑢𝑛𝑡 − 3.17 ∗

𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑤𝑜𝑟𝑘 − 0.34 ∗ exp 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟 𝑐𝑜𝑢𝑛𝑡 + 4.18 ∗ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑖𝑚𝑝𝑙 +

0.02 ∗ # 𝑜𝑓 𝑑𝑒𝑠𝑖𝑔𝑛 𝑡𝑎𝑠𝑘𝑠

The model above had an R-Square of 0.62. We then followed this by running a two stage

least squares model. The model description is shown below in Figure 17.

114

Copyright, Chidambaram Subbiah, 2019

Figure 17: Model description and summary for Two Stage Least Squares model with

hours less than 7500 hours.

The model summary is shown below

115

Copyright, Chidambaram Subbiah, 2019

𝐸(𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑏𝑜𝑟 𝐻𝑜𝑢𝑟𝑠) = 767.39 + 433.92 ∗ # 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠 + 216.31 ∗

𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠 + 129.86 ∗ # 𝑜𝑓 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠 + 2623.1 ∗

𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑖𝑚𝑝𝑙 + 21.27 ∗ # 𝑜𝑓 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑡𝑎𝑠𝑘𝑠 + 0.621 ∗ # 𝑜𝑓 𝑑𝑎𝑦𝑠 − 1435.14 ∗

𝑡𝑜𝑡𝑎𝑙 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 − 567.47 ∗ 𝑝𝑟𝑜𝑗 𝑡𝑦𝑝𝑒 1 − 695.62 ∗ 𝑎𝑟𝑒𝑎 1 − 1158.65 ∗

𝑎𝑟𝑒𝑎 2

SPSS generated two new variables as output from the run of the two stage least

squares model, ERR_1 and FIT_1 for each of the 103 data points. The ERR_1 represents

the residuals, and the FIT_1 represents the predicted value of the dependent variable. The

first test that we did was to ensure that the residuals from the model (ERR_1) was unrelated

to the predicted values of the dependent variable (FIT_1). This was visualized in Excel by

creating a scatter plot of ERR_1 with FIT_1 and then fitting a trendline to the data to see

if there is a significant linear trend between the residuals and the fit values.

Figure 18: Scatter plot of residuals with predicted values for 2SLS (less than 7550

hours)

116

Copyright, Chidambaram Subbiah, 2019

The second test was done to ensure the residuals (ERR_1) was normally distributed. This

was done in SPSS Statistics, and the results are shown below in Figure 19.

Figure 19: Test on residuals for 2SLS model with hours less than 7500 hours

117

Copyright, Chidambaram Subbiah, 2019

We observe that the residuals (ERR_1) are normally distributed. Both of the diagnostic

tests help validate the assumptions of the two stage least squares model as outlined by

Kmenta, and it helps to explain the validity of the model.

 A dataset with projects that had total labor hours less than 10,000 hours was then

created. We went through the same process as above and eventually ended up with the

model below from the two stage least squares model. The initial model that was the result

of this run is as shown below.

𝐸(𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑏𝑜𝑟 𝐻𝑜𝑢𝑟𝑠) = −360.29 + 467.36 ∗ # 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠 + 318.46 ∗

𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠 + 140.62 ∗ # 𝑜𝑓 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠 + 3856.74 ∗

𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑖𝑚𝑝𝑙 + 22.69 ∗ # 𝑜𝑓 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑡𝑎𝑠𝑘𝑠 + 779.41 ∗ 𝑝𝑟𝑜𝑗 𝑡𝑦𝑝𝑒 2 −

660.17 ∗ 𝑎𝑟𝑒𝑎 1 − 1654.42 ∗ 𝑎𝑟𝑒𝑎 2.

The model summary and description for the two stage least squares model with hours less

than 10,000 hours is shown below in Figure 20.

Figure 20: Model description and summary for Two Stage Least Squares model with

hours less than 10000 hours.

118

Copyright, Chidambaram Subbiah, 2019

The ERR_1 and FIT_1 for each of the 116 data points were generated. The first test that

we did was to ensure that the residuals from the model (ERR_1) was unrelated to the

predicted values of the dependent variable (FIT_1). This was visualized in Excel by

creating a scatter plot of ERR_1 with FIT_1 and then fitting a trendline to the data to see

if there is a significant linear trend between the residuals and the fit values.

Figure 21: Scatter plot of residuals with predicted values for 2SLS (less than 10000

hours)

The second test was done to ensure the residuals (ERR_1) was normally distributed. This

was done in SPSS Statistics, and the results are shown below in Figure 22.

119

Copyright, Chidambaram Subbiah, 2019

Figure 22: Test on residuals for 2SLS model with hours less than 10000 hours.

120

Copyright, Chidambaram Subbiah, 2019

We removed one of the outliers with a residual value of -3901.36 from the dataset and reran

the two stage least squares model. The model summary is shown below in Figure 23. This

run had an R-Square of .744, and it was a better model as it has a better R-Square, as it

explained more of the variability, and it shows that there are smaller differences between

the observed and fitted values.

Figure 23: Model description and summary for Two Stage Least Squares model with

hours less than 10000 hours less one outlier

The resulting model was as follows

𝐸(𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑏𝑜𝑟 𝐻𝑜𝑢𝑟𝑠) = −358.59 + 402.82 ∗ # 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠 + 350.50 ∗

𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠 + 163.12 ∗ # 𝑜𝑓 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠 + 3240.79 ∗

𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑖𝑚𝑝𝑙 + 20.97 ∗ # 𝑜𝑓 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑡𝑎𝑠𝑘𝑠 + 724.007 ∗ 𝑝𝑟𝑜𝑗 𝑡𝑦𝑝𝑒 2 −

332.22 ∗ 𝑎𝑟𝑒𝑎 1 − 1608.22 ∗ 𝑎𝑟𝑒𝑎 2.

I then ran the decision tree analysis in SPSS modeler using the same dataset to

validate our results. The results from the decision tree analysis are shown below in Figure

121

Copyright, Chidambaram Subbiah, 2019

24. I first fit the data using the Regression Tree (CART) analysis in SPSS Modeler, and the

results are summarized below.

Figure 24: Decision Tree Analysis, Regression Tree (CART)

We then fit the data using the CHAID decision tree analysis, and those results are

summarized below in Figure 25. The decision tree analysis in conjunction with the analysis

from the predictive modeling helped us better understand the most important contributing

explanatory variables.

122

Copyright, Chidambaram Subbiah, 2019

Figure 25: Decision Tree Analysis, Regression Tree (CHAID)

123

Copyright, Chidambaram Subbiah, 2019

6.1.3 Function points related suite of estimates:

6.1.3.1 Incorporating the COCOMO II early design model into the suite of estimates:

I developed an Excel tool to input the function points that gives a suite of estimates,

including three estimates from the COCOMO II early design model and the predictive

model estimate based on function points. Figure 26 provides an illustration of the tool.

Figure 26: Snapshots of implemented COCOMO II tool

Scaling Factors
SF Description Level Value
Maturity Process Maturity Nominal 4.68

PREC
Experience of similar
Projects High 2.48

FLEX
Flexibility required in the
System Nominal 2.03

TEAM Team Cohesiveness High 2.19

RESL
Project Risk and
Architectural Complexity Low 1.41

Effort Multiplier EM
EM Description Level Value

RCPX

System reliability,
complexity and size
indicator Nominal 1

RUSE

Reusability concern with
respect to current and
future projects Nominal 1

PDIF Platform Difficulty Nominal 1

Please enter the total unadjusted FP and the expected duration of the project

Total Unadjusted FP (Please enter) 495

Duration of the project in months (Please enter) 10

Function Point count adjusted 594

124

Copyright, Chidambaram Subbiah, 2019

PERS

Personal capability of
team. Like technical
capability of
Programmers,
Designers and testers. Nominal 1

PREX
Application, Language
and tool experience High 0.87

FCIL
Using Case tools for
development etc. High 0.87

SCED Schedule Pressure High 1.14

Constants Value
B 0.91
A 2.94
E 1.0379
C 3.67
D 0.28
F 0.30558
EM 0.862866

Consolidated Size and Effort
Technology Java

Increase due to
lifecycle 0%
SLOC per FP 53
SLOC 30170.25
PM 87.0855
Man-days 1828.7946
FP from LOC 569.2500
Hours per FP 25.7011

6.1.3.1 Comparison of the Function points related suite of estimates

We then calculated the four estimates for each project in the function point repository. We

also calculated the ISBSG benchwork estimate for each project. The absolute value of the

differences in estimates from the actual labor cost was calculated, and this gives us

feedback on which estimate is closest to the actual labor cost in each individual range. The

Total Cost $731,517.84

TDEV 14.37

Staff Estimate 6.06

The project will take about 14.37 months to complete with about 6.06 folks on the project.

125

Copyright, Chidambaram Subbiah, 2019

repository was split by function point ranges as shown below in Table 16. The ranges we

used were 0-100, 100-200, 200-300, 300-400, 400-500 and above 500 function points.

Table 16: Tableau Dashboard of Function Point Suite of Estimates

and differences of the estimates from the actual labor cost

126

Copyright, Chidambaram Subbiah, 2019

The results of the analysis is summarized below. On average, the COCOMO II best case

estimate is the better estimate in the range of 0-100 function points, and the COCOMO II

costlier estimate is the better estimate in the range of 100-200 function points. The

predictive model offers the better estimate in all other ranges (200-300, 300-400, 400-500

and above 500 function points).

6.1.4 Implementation of the Estimating Tool:

We examine the performance of the estimating tool by examining its implementation in 20

projects. We selected 20 of the most recent projects executed at the organization and fitted

them into multiple design patterns. We were dealing mostly with web development projects

and created design patterns for

1. Backend Processing

2. Front end processing

3. Document processing

4. Batch processing

127

Copyright, Chidambaram Subbiah, 2019

The process we followed is as follows:

1. I extracted out the design and development tasks for each project.

2. Read the description of each task and fit it into a scenario that was part of a bigger

design pattern.

3. Documented tasks that were repeated in the same project as part of different

scenarios. We could be retrieving data from multiple data sources, interfacing with

multiple systems, etc.

4. We could have scenarios like retrieval of data, saving of data, etc. For example, I

found the retrieval of data was done in different ways in multiple projects. I

documented each of the methods to retrieve the data part of the design pattern. The

same approach was used for other scenarios.

5. Each project had between 50-500 tasks. I looked at each individual task and fitted

it into the design pattern.

6. Once we had the design patterns, I validated the design patterns with the two

enterprise architects at the company and got their feedback.

The design patterns that we came up with are listed below. Most of the scenarios have

been masked to protect the actual design patterns practiced at the organization.

128

Copyright, Chidambaram Subbiah, 2019

Figure 27: Masked high level design patterns at ABC Inc.

129

Copyright, Chidambaram Subbiah, 2019

130

Copyright, Chidambaram Subbiah, 2019

131

Copyright, Chidambaram Subbiah, 2019

There were two other design patterns like the above design patterns, and they have

been submitted to the doctoral committee along with the other documents related to the

dissertation.

These design patterns then formed the basis for a survey. The survey was sent out

to all subject matter experts in the company.

Please see below a few questions from the survey. The questions have been masked

in this snapshot. The actual full survey is being submitted to the doctoral committee,

along with the other documents related to the dissertation. Each scenario in the survey

was a direct result of the scenario being in the design pattern. We requested each subject

matter expert to give estimates for design and development. They were also requested

132

Copyright, Chidambaram Subbiah, 2019

to give estimates considering the complexity of the scenario. We considered three

levels for complexity: easy, medium and hard.

Sample Survey:

Time Estimates for Tasks related to Application Development

Please give your estimates on how much time employees would spend on design and

development/unit testing when creating these new artifacts. Please include the time for

writing junits into your estimate. Please estimate it for an employee doing the work.

Table 17: Sample survey
Description of Task Design

Hours
Development/

Unit Testing
Hours

Are there
Additional
Items that
Should Be
Added to

this
Program

Level
Description?

Retrieval of data. We
can retrieve data
through four
different ways

Retrieval Scenario 1 Easy

Medium

Hard

Retrieval Scenario 2 Easy

Medium

Hard

Retrieval Scenario 3 Easy

Medium

Hard

133

Copyright, Chidambaram Subbiah, 2019

Retrieval Scenario 4 Easy

Medium

Hard

Processing of the retrieved data to include
business logic. This could include writing
utility functions or helper classes to validate
data on the open systems side and process
it to be ready for the presentation layer.

Easy

Medium

Hard

Saving of data
including four
scenarios

Save Scenario 1 Easy

Medium

Hard

Save Scenario 2 Easy

Medium

Hard

Save Scenario 3 Easy

Medium

Hard

Save Scenario 4 Easy

Medium

Hard

External system service integration. Easy

Medium

Hard

134

Copyright, Chidambaram Subbiah, 2019

Setting up a new project. Set up the
repository.

1. Look into whether the artifact is for
internal or external application?

2. And what other applications or
artifacts it interacts with and the call
volumes approximately.

3. What domain to deploy?
4. Will you need cluster routing?

Easy

Medium

Hard

We had 95 scenarios each for design and development. We sent the survey to 30 subject

matter experts and got responses back from 28 of them. The survey responses were

collected and aggregated in the format shown in Table 18.

Table 18: Snippet of aggregated survey responses

We aggregated the survey responses and processed them in SAS to generate summary

statistics for each scenario at the complexity level. Table 19 illustrates these summary

statistics for some of the scenarios.

rdctg_easy rdctg_med rdctg_hard rdmb_easy rdmb_med rdmb_hard rdsp_easy rdsp_med rdsp_hard rdjpa_easy rdjpa_med rdjpa_hard prdbl_eady

4 8 16 4 8 16 4 8 16 2 4 8 2

6 7.5 13.5 8 12 24 8 12 24 8

8 12 20 4 8 16 3 6 20 2 3 6 6

4 8 10 6 10 14 3

8 16 24 8 16 24 8 16 24 8 16 24 16

1 2 4 1 2 4 2 4 8 4

4 8 16 4 8 16 4

4 10 20 4 10 20 5

1 1 2 1 1 2 1 1 2 1 1 2 1

4 8 16 1 2 3 4 8 16 2

2 2 4 1 2 4 1 2 4 1

4 8 16 4 8 16 4 8 16 4

8 12 16 2 4 8 8 12 16 4

2 4 6 2 4 6 2 4 6 2

135

Copyright, Chidambaram Subbiah, 2019

Table 19: Processing of survey results in SAS

We then went back to the two enterprise architects at the organization to review the results.

All of us finally agreed to baseline estimates for each design and development tasks that

comprised the scenarios in the design patterns.

Once the results from the survey were processed, we were ready to develop the estimating

tool.

6.1.5 Creation of the Estimating Tool

 The estimating tool was created in Excel and. incorporated all the requirements

mentioned in chapter 4.1.5. I worked with the program management office at the

136

Copyright, Chidambaram Subbiah, 2019

organization and worked with a couple of project leaders to develop and finalize the

estimating tool. Figures 28 through 31 illustrate the estimating tool interface and outputs.

Figure 28 - Estimate Comparative tab in Estimating Tool

Figure 29: Design and development tasks entered by the SME

Figure 30: Pie charts in the overhead and summaries tab of Estimating Tool

137

Copyright, Chidambaram Subbiah, 2019

Figure 31: Cost breakdown summary in Estimating Tool

A copy of the masked estimating tool is attached in the Appendix.

138

Copyright, Chidambaram Subbiah, 2019

We analyzed the project data for the past 12 months and the breakdown of the overall

hours by phases in shown below in Figure 32.

Figure 32: Project data by phases for the past 12 months

The estimating tool was setup to allocate time for verification, implementation, and

post implementation based on how much time was estimated for the design and

development phases. The numbers we agreed on were

1. Verification is allocated as 25% of development time.

2. Implementation is allocated as 10% of development time.

3. Post Implementation is allocated as 5% of development time.

139

Copyright, Chidambaram Subbiah, 2019

6.1.6 Summary of the new estimating Process:

The organization came up with a revised process to incorporate the use of the

estimating tool in the project life cycle. Every project starts off with a planning phase,

followed by the definition of requirements by the business area for the project. This is

followed by a system design by the technical team. The function point analysis is

completed around this time. At this point, there is sufficient information to create a

bottom-up estimate using the new estimating tool. The subject matter experts come up

with a system design and translate the design into high level tasks that are then input

into the estimating tool. It is often the case where there are multiple subject matter

experts involved in a project, and each of them estimate a separate feature of the project.

1. The SME's start on the "Cost Projection Form" tab and set up basic demographic

information about the project.

2. They then move onto the "Design and Development Estimates" tab to enter the task

level estimate. The following fields are required for each task

a. Activity Type: Indicates if the task is a design or a development task.

b. Task Category: This indicates the high-level design pattern to which the

task belongs. Some of the options include Open System Controller, Open

Systems Model, and View, Document Processing, Mobile, etc.

c. Create/Modify: This indicates whether the task involves creating a new

artifact or modifying an existing artifact.

140

Copyright, Chidambaram Subbiah, 2019

d. Task Type: The values in this drop-down are derived directly from the

design patterns that we came up with. The values in the dropdown are

populated based on the entries for the previous three fields.

e. Task Complexity: The options for this field are high, medium, and low.

f. Task Description: This is the description for the task that is used in the time

tracking system.

Once you enter the data for the above mentioned six fields, you get a

recommended estimate. This estimate initially is based on the baseline for each

task that originates from the survey results and discussion with the enterprise

architects at the organization.

g. Recommended Estimate: This field is automatically populated when the

above mentioned six fields are entered or chosen.

h. Override Estimate: The SME can choose to override the estimate at the task

level, and when they do so, the override value takes effect for the task.

i. Override Comments: The SME is required to enter comments when a task

is overridden.

j. Estimate Component: This field is used to break down the cost by features.

k. Requirement: Some project managers like to track the project by

requirements. This field gives the capability to enter the requirement

number related to the task.

l. Owner: This field indicates the name of the SME doing the estimate and is

considered the owner of the task.

141

Copyright, Chidambaram Subbiah, 2019

As each task is entered, a running total of the overall cost for the project is

shown at the top of the design and development estimates tab, as shown below

in Figure 33.

Figure 33: Cost projection table in Estimating Tool

At any given point of time, we can see a comparison of the SME estimate (this

includes the overridden cost for each task) and the recommended cost (this does

not include the overrides).

m. There are times when a task does not fit into one of the design patterns. In

this case, there is always the option to "enter a new task" and manually put

in the estimate for that task. When we see multiple application development

teams requesting for a new task that is similar, we add it to the design pattern

of the organization and incorporate it into the estimating tool.

n. The tool also gives the capability to override the verification,

implementation, and post-implementation time in the "Overhead and

Summaries" tab. You also have the capability to enter the project

management time, tech lead time and meeting time in the "Overhead and

Summaries" tab as shown below in Figure 34.

142

Copyright, Chidambaram Subbiah, 2019

Figure 34: Overhead and Summaries tab in Estimating Tool

o. At this point, the subject matter expert works with the project manager and

other managers in the organization to explain the estimate.

p. The project manager now moves on to the "Estimate Comparative" tab and

enters the adjusted function point number. You now have access to six of

the seven estimates in the suite of estimates. The first two estimates are

directly from the data that is entered in the "Design and Development

Estimates" tab. The last four estimates are based off the function point's

count. The suite of seven estimates is shown below in Figure 35

Figure 35: Suite of seven estimates

q. There are other fields that are required to be entered on the estimates

comparative tab, and this populates the predictive cost for the organization.

This is based on the historical data at the organization.

1 Overall Overhead Tasks

2 Overall Verification, Implementation, and Post-Implementation

3 Overall Perform Verification Verification Fixed Duration #N/A

4 Overall Perform Implementation Implementation Fixed Duration #N/A

5 Overall Perform Post-Implementation Post Implmentn Fixed Duration #N/A

6 Overall Project / Tech Lead Management # weeks Alloca tion

7 Overall PM - Design Design/Selectn Project Management Fixed Duration

8 Overall PM - Develop/Config Develop/Config Project Management Fixed Duration

9 Overall PM - Verification Verification Project Management Fixed Duration

10 Overall PM - Implementation Implementation Project Management Fixed Duration

11 Overall PM - Post-Implementation Post Implmentn Project Management Fixed Duration

12 Overall Tech Lead & Chargable TAs - Design Design/Selectn Project Management Fixed Duration

13 Overall Tech Lead & Chargable TAs - Develop/Config Develop/Config Project Management Fixed Duration

14 Overall Tech Lead & Chargable TAs - Verification Verification Project Management Fixed Duration

15 Overall Tech Lead and Chargable TAs - Implementation Implementation Project Management Fixed Duration

16 Overall Tech Lead & Chargable TAs - Post-Implementation Post Implmentn Project Management Fixed Duration

17 Overall Meetings # People # Weeks Meeting Time per Week

18 Overall Team Meetings Planning Project Management Fixed Duration

143

Copyright, Chidambaram Subbiah, 2019

A representation of the new estimating lifecycle is outlined below in Figure 36.

Figure 36: New software development estimating lifecycle

6.2 Assessing the Quality of the Estimate from the Estimating Tool

The estimating tool has been used to estimate close to 25 projects thus far. Five of

those projects have completed execution. The projects ranged in size from 451 hours to

3818 hours to complete the design and development phase of the project. This section of

the chapter details the processing of the data to evaluate the estimating tool.

144

Copyright, Chidambaram Subbiah, 2019

Processing of the actual data

 Previously there was no framework to process the actual data from the execution

of the project and compare it with the initial estimation data. A framework has now been

created where this data can be processed seamlessly, and the data can be fed into a Tableau

dashboard. All we need to do is update an Excel worksheet into a shared location on the

network when a new project has data to be harvested, and Tableau will extract the

information nightly. A hidden field was created in the estimating tool to capture the

characteristics of the task, and that information was uploaded into the time tracking tool.

When we extract the actual data, we now have the capability to pull down the hidden field

as well. We then parse out this hidden field to create the framework for reporting in

Tableau, as shown in Figure 37 below.

Figure 37: Tableau reporting for processing data from finished projects

This framework also helps us append data from multiple projects, and it creates the basis

for refining the estimate at the task level on an ongoing basis. We have created a Tableau

dashboard for the same, as shown below in Figure 38.

145

Copyright, Chidambaram Subbiah, 2019

Figure 38: Tableau Analysis for analyzing task level data

A comparative analysis of the five projects is as shown below in Figure 39. All five projects

came in a little under the estimated cost for the design and development phase.

Task Type Design/Development High Low Medium

Number of Records 1.0 3.0

Median Actual Work 37.0 0.0

Avg. Actual Work 37.0 4.0

Min. Actual Work 37.0 0.0

Max. Actual Work 37.0 12.0

Percentile (75) of Actual Work 37.0 6.0

Percentile (25) of Actual Work 37.0 0.0

Number of Records 1.0 3.0 3.0

Median Actual Work 4.0 0.0 24.0

Avg. Actual Work 4.0 17.3 24.0

Min. Actual Work 4.0 0.0 24.0

Max. Actual Work 4.0 52.0 24.0

Percentile (75) of Actual Work 4.0 26.0 24.0

Percentile (25) of Actual Work 4.0 0.0 24.0

Number of Records 1.0 1.0

Median Actual Work 120.3 8.0

Avg. Actual Work 120.3 8.0

Min. Actual Work 120.3 8.0

Max. Actual Work 120.3 8.0

Percentile (75) of Actual Work 120.3 8.0

Percentile (25) of Actual Work 120.3 8.0

Number of Records 1.0 1.0

Median Actual Work 5.0 48.3

Avg. Actual Work 5.0 48.3

Min. Actual Work 5.0 48.3

Max. Actual Work 5.0 48.3

Percentile (75) of Actual Work 5.0 48.3

Percentile (25) of Actual Work 5.0 48.3

Design

Development

Task 1

Design

Development

Task 2

Complexity

146

Copyright, Chidambaram Subbiah, 2019

Figure 39: Comparison of actual hours and estimate from Estimating Tool

The project comparison by new development versus modification of existing artifacts is

listed below. Each application development project will often involve the creation of new

artifacts or modification to existing artifacts. One project was all new development. All

other projects were a mix of new development and modifications to existing artifacts. A

comparison based on this metric is shown below in Figure 40.

147

Copyright, Chidambaram Subbiah, 2019

Figure 40: Project comparison by type (Create vs. Modify)

Each task in the estimating tool is categorized as easy, medium, or hard to help the project

manager assign the right type of resource to the task. This categorization also helps the

project managers and upper management in making better decisions managing for risk in

the execution phase of the project. The comparison of the projects based on complexity

levels for tasks is shown below in Figure 41.

148

Copyright, Chidambaram Subbiah, 2019

Figure 41: Project comparison by complexity

There are two main categories under which the tasks in the estimating tool are categorized.

These are open systems and back-end systems. The comparison of the projects based on

this categorization is shown below in Figure 42.

Figure 42: Project comparison by category (Open Systems vs. Back-end Systems)

149

Copyright, Chidambaram Subbiah, 2019

Analysis of the quality of the estimate:

 The array of estimates for each project was generated using the Java program, as

outlined in section 4.2. Each project had between 14 to 196 estimates. A histogram of

estimates for each project was generated using Tableau. The original estimate and actual

cost from the project execution were then mapped back on the histogram to get a measure

of the quality of the estimate. It is observed that the approved estimate of the project is

close to the median and the actual cost is a little less than the approved estimate. The

variability that existed in the estimating process prior to the rollout of the estimating tool

is apparent when we look at the spread of the estimates. The biggest advantage from the

usage of the estimating tool is that it has brought consistency to the process across all the

application development teams within the organization.

The histograms and the actual labor hours in comparison to the initial estimate for each of

the five projects are shown below in Figure 43.

150

Copyright, Chidambaram Subbiah, 2019

Figure 43: Histograms assessing the quality of the estimate for five projects

151

Copyright, Chidambaram Subbiah, 2019

152

Copyright, Chidambaram Subbiah, 2019

 I also analyzed the data from the perspective of how resources were used in the

project, what type of resources were used, and how many systems did the project touch. A

Tableau dashboard was created for this view as well. An interesting observation that lined

up with my initial findings is that there was one project in this set of five projects that

touched multiple systems, and it had a pool of contractors that were predominantly less

experienced in the systems of ABC Inc. This project cost more and went over the overall

estimated cost when the verification and implementation phases were completed. We had

actual data processed for only five projects, and ongoing data collection is needed to

continue to evaluate the approach. One possible hypothesis that can be tested going forward

as we collect more data is outlined below.

Hypothesis 𝐻1 : Projects tend to go over the estimated cost when less experienced

contractors are used in the execution of the project and when they touch multiple systems

due to poor quality in the design and development phase of the project.

153

Copyright, Chidambaram Subbiah, 2019

 The hypothesis can be tested against the number of defects found in the verification

phase, and this is something that can be pursued for future research. Individual dashboards

were also setup for each of the projects. A framework has been established for extracting

the data and setting up a dashboard for a new project should only take a few clicks going

forward. The view below in Figure 44 shows at a high level how many types of tasks

constituted the project and the aggregated stats around the processing times associated with

those tasks.

Figure 44: Statistics on processing times at the task level

The task data across all projects is also summarized in Tableau, as shown in Table 20. The

sample below is shown for ten task types, and the task names have been masked.

154

Copyright, Chidambaram Subbiah, 2019

Table 20: Summary of task level data

6.3 Optimization Model Results and Experiments

 This section presents a case study that shows how estimates that are developed at

the task and scenario level are used in an Agile setting to optimize the use of limited

resources. Our scenario accounts for economies of scale that can result from managing the

skills and domain expertise of resources that are part of multiple projects. This model can

be used in an environment of multiple small size projects to manage a pool of resources

given that we always have a backlog of tasks to complete. This scenario will be a case

study providing a proof of concept to optimize executing multiple small projects at the

same time. The small projects are rooted in the design patterns of ABC Inc. and will cater

to the local context.

In the Agile methodology, a few concepts are becoming more popular. One of them is

the concept of using Full Stack Developers as part of the team. Traditionally, most

Task Type High Low Medium

Avg. Actual Work 4.0 17.3 24.0

Number of Records 1.0 3.0 3.0

Avg. Predicted Work 40.0 12.0 24.0

Avg. Actual Work 5.0 48.3

Number of Records 1.0 1.0

Avg. Predicted Work 40.0 40.0

Avg. Actual Work 44.0 16.0 32.0

Number of Records 1.0 5.0 11.0

Avg. Predicted Work 64.0 16.0 36.4

Avg. Actual Work 4.0

Number of Records 1.0

Avg. Predicted Work 4.0

Avg. Actual Work 62.0 7.7

Number of Records 2.0 3.0

Avg. Predicted Work 60.0 8.0

Avg. Actual Work 0.0 0.0 0.0

Number of Records 2.0 3.0 4.0

Avg. Predicted Work 80.0 6.7 29.0

Avg. Actual Work 0.0 37.2 39.3

Number of Records 1.0 28.0 9.0

Avg. Predicted Work 121.0 36.8 65.9

Avg. Actual Work 19.0 37.0

Number of Records 1.0 1.0

Avg. Predicted Work 90.0 38.0

Avg. Actual Work 0.0 36.0

Number of Records 1.0 1.0

Avg. Predicted Work 80.0 34.0

Avg. Actual Work 31.5 82.0 14.0

Number of Records 1.0 1.0 1.0

Avg. Predicted Work 122.0 20.0 51.0

Complexity

Task 7

Task 8

Task 9

Task 10

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

155

Copyright, Chidambaram Subbiah, 2019

application development teams were comprised of specialists in a domain or technology.

We had UX (User Experience) specialists, developers who specialized in back-end server-

side coding, testers who specialized in writing automated tests, and in the testing of the

application, database specialists, etc. A full stack developer is someone who conceptually

specializes in all the above-mentioned technologies. The expectation is that they can handle

front end, server side, databases, and testing while at the same team fulfilling the role of a

subject matter expert (SME). A team comprised of several full stack developers is called a

self-driven team. A company that is rooted in the traditional application development is

going to start off with resources having 1-2 specialized skills. It will be important for a

company to build a resource pool that specializes in multiple skill sets to make the

transition to be a self-driven team.

 It is in this context that the concept of an efficiency score is introduced. It is quite

impractical in the real world, particularly in a company that has always done traditional

application development to assume everyone is going to excel at all the skills. The

efficiency score will be based on a few factors, such as:

1. Total experience of an individual in a skill.

2. The date when the skill was last used by an individual.

3. The self-rating for the skill by the individual.

4. Rating of the individual on the skill by the SME or by all the other team members

It will be a weighted score based on the above factors. The core basis of the efficiency

score is that an individual with the higher efficiency score for a skill will complete that

story faster with a better quality. On the other hand, an individual with a lower efficiency

156

Copyright, Chidambaram Subbiah, 2019

score for a skill will take more time to complete the task, and it might not have the best

quality. The work might result in more defects that will need to be resolved during the

validation phase.

A sample prototype for calculating the efficiency score is shown below in Table 21.

Table 21: Sample efficiency score prototype

The whole concept of becoming self-driven teams with full stack developers is directly

related to the concept of an efficiency score. The model considers the efficiency score for

a skill and pay rate of an individual while assigning the appropriate resource to a skill that

is needed for a story. The core premise of a self-driven team is that the efficiency scores of

individuals for each skill will keep going up with experience. The model facilitates the

analysis of strategic personnel assignment and shows how it can increase efficiency scores

in the long term. Eventually, the increase in efficiency scores will result in increased

profitability. This research shows how the work that originally required 14 individuals can

in fact be completed by seven individuals when each of the individuals possesses multiple

skills. This gets the organization to start thinking in terms of development plans that can

be tailored around encouraging individuals to learn new skills. We assume that the

efficiency score of an individual will go up over time and with experience. An individual

who is an expert in particular skills over an extended period will always be a specialist in

that skill and can learn new skills as part of the self-driven team. It will take some time for

Skills Years of Experience Last time skill used Self Rating Peer Rating Efficiency Score

Spring Batch 3-5 years More than three years backMed Low 0.53

React JS 3-5 years More than three years backBeginner Beginner 0.38

Java 1-3 years More than five years backLow Med 0.42

Hadoop No Experience Never Beginner None/New to Firm 0.05

157

Copyright, Chidambaram Subbiah, 2019

that individual to be a specialist in the newer skills, and we need to account for that as we

assign resources to stories.

 The concept of cross functional teams is also becoming more popular in the context

of self-driven teams. Again traditionally, companies encouraged people to develop domain

expertise in an area. This could be Finance, Marketing, Human Resources, Legal, etc.

These individuals typically would be subject matter experts who specialize in an area of

expertise. In a cross functional team, individuals from different functional areas come

together as a self-driven team, and this typically results in everyone become more familiar

about other areas outside of their core functional area of expertise. The domain expertise

of individuals in a cross functional team can also be looked at from the perspective of skills,

and our model looks at subject matter expertise in a particular domain as a skill that can be

viewed from the perspective of an efficiency score. We assume that subject matter

expertise in a domain can be acquired over time and that developers can transition to

acquire this skill over time. This happens in the real world in application development. The

Agile methodology can aid in fast tracking the development of subject matter experts

within an organization.

Workload availability is to be seen in conjunction with upskilling of the resources

in the context of the optimization model. My approach in the initial sprints is to allocate a

percentage of time for cross training amongst the resources. The workload availability of

resources will be adjusted accordingly in the initial sprints. The resources with a high

efficiency scores in a skill will be transitioning knowledge to resources with low efficiency

scores in that particular skill. The vision is that every individual has goals in terms of where

158

Copyright, Chidambaram Subbiah, 2019

they need to be on the skills matrix, and the team has a goal of a desirable skills matrix

state that they need to achieve in a set number of sprints. There are techniques like pair

programming or mobbing that can be used in this context. Two programmers share the

same computer and work on a single task in pair programming while one person who is

proficient in a skill is sharing the knowledge with a group of programming in mobbing.

 A hypothesized implication of using an efficiency score in the model is as follows.

𝐻1: A team comprised of resources with higher efficiency scores in multiple skills

will result in more stories being allocated, thereby resulting in overall better objective

value.

It is often the case in traditional software development that key resources are

stretched thin between projects. They are often allocated only for a percentage of time to

work on a certain project, and it is reality that they have to spend time working on different

projects at the same time. Resources often work on other support related initiatives in

addition to working on a project. One need to account for time spent in administrative tasks,

training time, etc. The amount of time a resource is available for the project varies, and it

is in this context that a workload availability of an individual resource becomes a critical

factor in planning a project schedule. In addition, we must consider the time a team

consciously spends in cross training and upskilling. The time spent in cross training is

accounted for by adjusting the workload availability of resources. My model considers the

workload availability of each individual resource for an individual sprint and ensures that

the workload capacity of an individual for a sprint is not exceeded.

159

Copyright, Chidambaram Subbiah, 2019

The following two hypotheses pertain to the effect of workload availability at the

resource level for a sprint in the model and the effect of workload availability in

conjunction with efficiency score in the model.

𝐻2: A team with higher workload resource availability will have a more efficient

schedule with more stories being taken up for allocation, and it will result in overall better

objective value.

𝐻2𝑎: Workload resource availability in conjunction with higher efficiency score

will result in better outcomes in terms of schedule efficiency and overall better objective

value.

In software development, it is often the case where there is a difference in the

payrate for employees and contractors. It is also the case that more experienced resources

and resources who are proficient in multiple skills are paid differently. A subject matter

expert is paid differently as compared to a starting developer. The model considers this

factor and will try to allocate the person with the best payrate while considering other

factors like workload availability to do the task and the efficiency score of the individual

on the task.

The hypothesized relationship between the overall utility of the project and the

available resources can be stated as follows.

𝐻3: The overall objective value associated with the project is maximized when we

can find the optimal pool of resources for the project with higher efficiency scores, higher

workload availability at the most competitive hourly rate.

160

Copyright, Chidambaram Subbiah, 2019

6.3.1 Current process of executing projects

This following is a list of steps that are followed in the current process:

1. The first step is to break down the project into high level tasks.

2. The next step is to create a work breakdown structure (WBS), where each high-

level task is broken down into manageable chunks. The estimating tool that this

research developed in essence creates a WBS for the design and development

phases of your project. The WBS contains tasks at a level of detail which anyone

working on it can understand and execute.

3. The project manager then looks at the resource availability for each resource who

is assigned to the project and builds a schedule based on the available information.

a. At ABC Inc., resources on these small efforts are typically shared between

multiple efforts. The resource availability in some cases was 20%. This

means a resource will take five days to complete a task that typically takes

a full-time resource one day to complete.

b. The SMEs are typically assigned to multiple projects, and they are available

for 10-20 percent of the time. Developers who are looking for feedback

from SMEs typically have to wait, and this process is repeated over and

over again.

c. One such cycle can be summarized as follows

i. Task from WBS ready to be assigned to chosen developer.

ii. Developer starts work

iii. Developer need feedback from SME.

iv. Typically, there is a wait each time input is needed from the SME.

161

Copyright, Chidambaram Subbiah, 2019

v. Developer completes the task.

vi. SME needs to review the work, and this again results in more wait

time.

d. There are other resources like the UX specialist, Design thinking specialist,

Legal analysts who are critical resources and not assigned full time to the

project. There are tasks that can be executed only by these resources and are

often on the critical path. This often results in additional wait time in the

execution schedule.

4. Once the schedule is built, the project execution starts.

6.3.2 Base Case

The base case analysis refers to the use case data that was described above. I had

data for five projects that were executed using a hybrid approach where tenets of both

Waterfall and Agile were used. These five projects had a total of 57 stories that needed to

be completed in five sprints. A total of 20 skills were needed to complete all stories. Each

story typically required 1-4 skills. We had a total of 13 resources that were available for

the projects, and many of them were typically shared resources for the execution of these

projects.

162

Copyright, Chidambaram Subbiah, 2019

Figure 45: High level representation of use case data

The estimated total number of hours across the 57 stories was 3522 hours. The resources

that were initially needed to execute the projects were

a. Multiple Information System SME’s

b. Multiple Business side SME’s

c. Design Thinking Specialist

d. Information Systems Project Manager

e. Business Side Project Manager

f. Developers with Front End skills

g. Developers with Back End server-side skills

h. Legal Analyst

i. QA Testers

The data was setup for the base case with 13 resources. The assumption was made that an

individual had skills that pertained to their core competency. A business area SME had

Five

Projects

57

Stories

Five

Sprints

20

Skills

Proj

ects

13

Resources

Skills

Projects

Each story needs one to

many skills.

Each resource has one to

many skills.

163

Copyright, Chidambaram Subbiah, 2019

only skills that pertained to their area of expertise like making the business case, validating

business requirements, etc., a front-end developer had only skills that pertained to the

presentation layer and so on. The efficiency score for these individuals for the skills they

had was assumed to be perfect and were given a 1.0 for all the relevant skills, and they

were assigned a score of 0.01 on all other skills. The workload was adjusted as per the

availability. None of the resources were available full-time for the effort. This was reflected

in the data.

 The planning horizon was five sprints. The model for the base case was executed

on an Intel(R) Core (TM) i5-8250U CPU @1.60GHz, 1801 Mhz, 4 Core(s), 8 Logical

Processors machine with 12 GB RAM. The total computational time (root+branch+cut)

was 8.63 seconds, and the solution was optional with an optimality gap of 0.33% for the

run. We observed that only 36 stories could be allocated given the resource constraints. It

was the workload constraint that mostly prevented the other stories from being taken into

consideration. The resource load across the five sprints is shown below. We observed that

the resource whose workload availability was higher were utilized more. The resource

utilization is as shown below in Figure 46.

164

Copyright, Chidambaram Subbiah, 2019

Figure 46: Resource utilization for the base case execution

The sprint load across the five sprints is as shown below in Figure 47. More stories are

allocated to the initial sprints as compared to the later sprints.

Figure 47: Sprint load across the five sprints

165

Copyright, Chidambaram Subbiah, 2019

The allocation of stories to the five sprints is as shown below.

Figure 47a: Allocation of stories to the five sprints in base case

The optimal objective value of maximum discounted total return was $135,653.13. The

main takeaway here is that 21 stories could not be assigned due to the constraint that we

assume all stories, including all the skills have to be completed in one sprint. Many of the

resources were available only for part of the sprint, and the workload capacity constraint

played a big part in these stories not being assigned. The optimization model is able to

precisely prescribe the number of unassigned stories and which stories should not be

assigned.

6.3.3 Scenario 1: Bringing more efficiencies by cross training resources on multiple

skills

The whole concept of becoming self-driven teams with full stack developers can

be viewed from the context of efficiency score and cross functional teams. In this scenario,

we only have one skill called subject matter expertise, and everyone on the team could

166

Copyright, Chidambaram Subbiah, 2019

have the skills with varying levels of efficiency scores. It is shown that the work that

originally required 14 individuals can in-fact be completed by seven individuals when each

of the individuals possessing multiple skills. This is particularly relevant in an organization

that is starting to move from the traditional Waterfall method to the Agile methodology. In

this scenario, we need the following type of resources.

1. Subject Matter Expert

2. Developer

3. Project Manager

The assumption here is one resource can acquire multiple skills and become proficient in

them over time. For example, a developer can become a subject matter expert over time

and can acquire testing skills over time as well. The sprint load across five sprints is shown

below in figure 48. We see that the load is split pretty evenly across the five sprints.

Figure 48: Sprint load across five sprints for the first scenario

The resource load of seven resources across five sprints is shown below in Figure 49. We

also see that all the seven resources are used evenly across the five sprints.

167

Copyright, Chidambaram Subbiah, 2019

Figure 49: Resource load utilization for the first scenario

The maximum discounted return is shown below. The objective value in this scenario is

$199,494. All the stories are assigned and executed in this scenario. The model for scenario

1 was executed on an Intel(R) Core (TM) i5-8250U CPU @1.60GHz, 1801 Mhz, 4 Core(s),

8 Logical Processors machine with 12 GB RAM. The total computational time

(root+branch+cut) was 60.33 seconds, and the solution was optional with an optimality gap

of 0.01% for the run.

6.3.4 Scenario 2: Combining all development tasks separately.

 An additional observation is that every task is typically comprised of storyboarding,

design, development, testing and validation, implementation, and finally feedback.

Storyboarding can be thought as analogous to the requirements phase in a Waterfall project,

but on a much smaller scale and the scope of it pertains to that of a single sprint. We

typically have a sprint planning meeting where you discuss the requirements and needs for

all stories in that sprint and follow it up with a high-level design approach. It is then

followed up by assigning estimates for each story, and then we are ready to start working

on the stories in the sprint. There is development, testing and implementation tasks within

each sprint. In the context of our model and its usage, it is imperative that the product

168

Copyright, Chidambaram Subbiah, 2019

owner or scrum master consider the skill levels of everyone for all skills that are going to

be required for the next few sprints as they plan out an epic. The goal of a self-driven team

is often that individuals are improving on the efficiency score associated with all skills that

are needed to execute a project.

 One alternative way to look at this is to finish the storyboarding for all stories

upfront and then have a group of development stories across all five projects. I extracted

out all the stories that were related to development or coding. We had a total of 26 such

stories for an estimated 1960 hours. The planning for this scenario had four resources who

possessed all the skills pertaining to coding and subject matter expertise. The value of this

scenario is that it matches the right resource for each skill within each story based on the

efficiency score, workload constraints, and pay rate of the individual. It also shows the

value of having a team of resources who are proficient in multiple skills. The resource load

across the four sprints is shown below in Figure 50. One can observe that the load is spread

more evenly across the four resources.

Figure 50: Resource load for scenario two

169

Copyright, Chidambaram Subbiah, 2019

The sprint load across the five sprints is shown below in Figure 51.

Figure 51: Sprint load for scenario two

The objective value for this run was $115,370. The takeaway from this scenario is that it

provides an alternative way to think about how to group together stories and execute them.

All planning for the epic (deliverable that encompasses multiple sprints) can be done

separately, followed by the execution of all development related stories. Eventually all

testing related stories across all five projects can be executed. This scenario can be

considered when one does not have set dates for each project and all five projects can be

delivered together. The model for scenario 2 was again executed on an Intel(R) Core (TM)

i5-8250U CPU @1.60GHz, 1801 Mhz, 4 Core(s), 8 Logical Processors machine with 12

GB RAM. The total computational time (root+branch+cut) was 5.58 seconds, and the

solution was optional with an optimality gap of 0.06% for the run.

170

Copyright, Chidambaram Subbiah, 2019

6.3.5 Medium size case with 10 projects and 114 stories

 There was a total of five projects and 57 stories in the original data that was

available. I used that as the base case. In this experiment, five new projects that were very

similar to the original five projects were added for consideration. The total number of

stories that were part of the planning process was 114 stories. This is a hypothetical

scenario, and it gives us an idea on how to use the model for a larger planning horizon and

plan accordingly. The total estimate for all 114 stories was 7182 hours. I considered using

eight resources and tried to fit in all of the 114 stories into eight sprints for this scenario.

The resource load across the eight sprints is as shown below in Figure 52.

Figure 52: Resource load for medium size case (Ten Projects)

All 114 stories are assigned, and the workload is distributed across the seven sprints, as

shown below in Figure 53.

171

Copyright, Chidambaram Subbiah, 2019

Figure 53: Sprint load for medium size case

The Cplex time limit for this run was set at 10 minutes, and the optimality gap was 0.24%.

The objective value was $ 423045.01 for all of 114 stories that were assigned. The model

for the medium size case again was executed on an Intel(R) Core (TM) i5-8250U CPU

@1.60GHz, 1801 Mhz, 4 Core(s), 8 Logical Processors machine with 12 GB RAM.

6.3.6 Large size case with 20 projects and 228 stories

 In this experiment, fifteen new projects that were very similar to the original five

projects were added for consideration. The total number of stories that were part of the

planning process was 228 stories. This again is a hypothetical scenario, and it gives us an

idea on how to use the model for a very long planning horizon. It is very unlikely that a

project manager in the real world will need to plan for 228 stories at the same time. In the

real world, most companies work on the sprint plus one model where you have detailed

stories breakdown for two sprints, the current sprint, and the next sprint in line. I considered

using eight resources and tried to fit in as many stories as possible into 16 sprints for this

scenario. The Cplex time limit for this run was set at 10 minutes, and the optimality gap

was 0.94%. I adjusted the data, the efficiency score and pay rate to ensure all the 228 stories

172

Copyright, Chidambaram Subbiah, 2019

were assigned and executed. The workload was kept constant at 130 hours per sprint per

resource. The objective value is $ 795984.13 for all 228 stories that were assigned across

20 projects. The model for the large size case again was executed on an Intel(R) Core (TM)

i5-8250U CPU @1.60GHz, 1801 Mhz, 4 Core(s), 8 Logical Processors machine with 12

GB RAM.

The resource allocation across the 16 sprints is shown below in Figure 54.

Figure 54: Resource load for large size case (20 Projects)

The workload is split across the 16 sprints, as shown below. The workload is pretty evenly

split across the 16 sprints as shown below in Figure 55.

173

Copyright, Chidambaram Subbiah, 2019

Figure 55: Sprint Load for large size case (20 projects)

6.3.7 How to use the model at an organization

The utility of the model is increased when there is an equivalent dashboard to look

at historical data from a resource skill perspective. As part of the historical data that was

given for developing the estimating tool, I had access to eight years of project data. I

developed a query tool that could potentially be used to query on task names, program

names, artifact names, etc., and this gives us a starting point to try to match resources based

on skills that are needed for stories. As mentioned before, this model has the maximum

utility for an organization that is making a transition from the traditional Waterfall method

of project management to the Agile methodology for delivering projects.

The proposed flow below in Figure 56 shows when skills are evaluated, when the

skills matrix is built, and when the optimization model would be used in the project life

cycle.

174

Copyright, Chidambaram Subbiah, 2019

Figure 56: Proposed new flow incorporating Optimization Model

The steps that need to be taken by a project team are outlined below.

1. The project team, under the leadership of the scrum master and product owner,

decomposes the overall deliverable into a set of sprints that are each composed of

a set of stories. The project team find if there are any set end dates that have to be

met.

2. Each story is then decomposed into a set of skills that are needed for the story to be

completed. We identify the stories that need to be completed together, the stories

that are incompatible and have to be done independently and the finally the stories

with precedence relationships.

3. At this point, we have a high-level idea about the set of skills that are needed for

the overall deliverable, and an attempt can be made to identify the best possible set

of resources with the matching skill set. A team with a good blend of experience

and resources all across the hierarchy would be ideal to minimize overall costs.

175

Copyright, Chidambaram Subbiah, 2019

4. The efficiency score of each resource as it pertains to each skill needed for the

project is identified at the outset. At this point, development goals (both short-term

and long-term) could be set for each resource to acquire new skills in the next few

sprints and epics.

5. The workload availability of each resource can be identified at this point. This is

particularly important if certain resources are shared across projects and efforts.

6. The data file can be created based on the above factors, and it should give the

project manager a proposed schedule based on model constraints. The project

manager can tweak the data file iteratively to understand various what-if scenarios

based on which resource is available and what skill sets they bring to the table.

7. The above process can be repeated each time we are ready to start a new epic, and

this should help lay out a tentative schedule.

The goal at the end of 3-4 epics should be to have a cross-functional team of full-stack

developers that are proficient in multiple skills and can execute projects in the most optimal

way. The model will have utility until the team reaches a point where everyone has the

highest possible efficiency score for all skills. That very rarely happens in the real world

and so we will always have the need for such a model.

176

Copyright, Chidambaram Subbiah, 2019

6.3.8 Computational Experiments

The goal of the computational experiments was to conduct sensitivity analyses to examine

how varying levels of the efficiency score, workload, and payrate affect the overall

objective value and the number of stories allocated. We wrote a Java program to vary the

efficiency score, workload availability, and payrate as listed below to generate 27

combinations of the variables for the computational experiments. We then ran the model

in batch mode three times, once for each sized set of projects, with each batch including

these 27 combinations. The experiments were run on a machine with an Intel Quad Core

3.0 GHz CPU with 8 GB RAM.

• Vary Size

o Low : Five Projects

o Medium: Ten Projects

o Large: Twenty Projects

• Vary Efficiency Score for each size above

o Low : Reduce Efficiency Score by 30%

o Medium: Reduce Efficiency Score by 15%

o High: At an optimal level, all stories are allocated

• Vary Workload Availability for each size above

o Low : Reduce Workload availability by 30%

o Medium: Reduce Workload availability by 15%

o High: At an optimal level, all stories are allocated

177

Copyright, Chidambaram Subbiah, 2019

• Vary Payrate for each size above

o Low : Reduce Pay Rate by 30%

o Medium: Reduce Pay Rate by 15%

o High : At an optimal level, all stories are allocated

Each of the batch runs generated a text file. The output from the text file for the batch run

of 27 files for the small size (five projects) is shown in Table 15. We generated similar files

for the medium (10 projects) and large (20 projects) batch runs. A snippet of the data from

the batch run for the small size grouping is shown below in Table 22.

Table 22: Computational experiment results from the batch run

Size WL EF PR # of projects # of Stories # of spirints # of skills # of resoures#together #incompatibleCplex StatusCplex Time Actual Time

1 3 3 3 5 57 4 20 8 1 5 102 2495365.953

1 3 3 1 5 57 4 20 8 1 5 102 2495372.484 6.531

1 3 3 2 5 57 4 20 8 1 5 102 2495377.375 4.891

1 3 1 3 5 57 4 20 8 1 5 102 2495394.515 17.14

1 3 1 1 5 57 4 20 8 1 5 11 2498996.859 3602.344

1 3 1 2 5 57 4 20 8 1 5 102 2499067.343 70.484

1 3 2 3 5 57 4 20 8 1 5 102 2499084.5 17.157

1 3 2 1 5 57 4 20 8 1 5 102 2500731.5 1647

1 3 2 2 5 57 4 20 8 1 5 102 2500936.046 204.546

1 1 3 3 5 57 4 20 8 1 5 11 2504537.218 3601.172

1 1 3 1 5 57 4 20 8 1 5 11 2508161 3623.782

1 1 3 2 5 57 4 20 8 1 5 11 2512091.265 3930.265

1 1 1 3 5 57 4 20 8 1 5 102 2512093.39 2.125

1 1 1 1 5 57 4 20 8 1 5 102 2512095.312 1.922

1 1 1 2 5 57 4 20 8 1 5 102 2512097.343 2.031

1 1 2 3 5 57 4 20 8 1 5 102 2512099 1.657

1 1 2 1 5 57 4 20 8 1 5 102 2512100.5 1.5

1 1 2 2 5 57 4 20 8 1 5 102 2512102.734 2.234

1 2 3 3 5 57 4 20 8 1 5 102 2512379.5 276.766

1 2 3 1 5 57 4 20 8 1 5 102 2513528.89 1149.39

178

Copyright, Chidambaram Subbiah, 2019

The results from the batch runs are summarized below. Figure 57 visualizes the results of

the sensitivity analysis for the overall objective value. Each line represents the objective

value for each unique combination of size, efficiency score, workload, and payrate. We

observe higher objective values when the efficiency score is high, and the work load

availability is high. The highest objective value is observed when the efficiency score is

high, workload availability is high, and payrate is low. The lowest objective value is

observed when the efficiency score is low, workload availability is low, and payrate is high.

Figure 58 visualizes the results of the sensitivity analysis for the number of stories

allocated. Each line represents the number of stories allocated for each unique combination

of size, efficiency score, workload, and payrate. We observe that a greater number of stories

is allocated when the efficiency score is high, and the work load availability is high. The

greatest number of stories is allocated when the efficiency score is high, workload

availability is high, and payrate is low. The lowest number of stories is allocated when the

efficiency score is low, workload availability is low, and payrate is high.

Objective Value MIP GAP RL1 RL2 RL3 RL4 RL5 RL6 RL7 RL8 SL1 SL2 SL3 SL4 Cost Value # of stories

217149.9844 0.000991 517 407 405 390 500 459 354 490 940 890 920 772 184177.8 401327.8 57

272505.2114 0.000327 499 417 405 370 520 484 340 487 900 920 870 832 128915.1 401420.3 57

246956.8417 0.000993 500 420 395 380 505 467 375 480 910 930 830 852 154506.9 401463.7 57

147824.707 0.001 360 275 320 320 362 320 185 248 650 660 580 500 176547.5 324372.2 40

203726.629 0.001827 360 286 320 320 359 360 310 340 670 670 670 645 138189.1 341915.7 45

177085.6399 0.000763 360 290 320 320 357 358 225 345 660 670 610 635 159483.9 336569.5 44

183938.7764 0.000565 438 342 400 360 440 315 212 375 820 760 775 527 174928.1 358866.9 49

242503.8313 0.000532 440 347 400 392 440 427 401 435 830 810 820 822 140888 383391.9 54

214649.0956 0.001 440 357 400 370 430 421 357 440 820 820 780 795 164755 379404.1 52

203373.9521 0.004227 362 274 320 320 362 345 295 339 660 640 657 660 136276.5 339650.5 44

245217.2145 0.005571 362 299 320 320 360 352 310 359 670 680 670 662 97350.09 342567.3 46

225871.4254 0.004189 361 296 320 320 361 343 320 334 660 670 660 665 115924.9 341796.4 45

47248.15427 0.000978 180 80 55 0 120 50 0 55 330 150 60 0 38240.87 85489.03 12

60600.28501 0.000967 232 105 65 0 140 95 0 105 330 272 80 60 37036.97 97637.26 17

54390.68114 0.000851 217 210 65 0 115 60 0 20 280 200 100 107 40119.87 94510.55 15

75216.19759 0.000589 255 120 185 70 157 65 0 75 460 287 140 40 54887.94 130104.1 18

92296.5819 0.000848 255 115 195 60 212 75 0 70 460 235 247 40 40705.34 133001.9 20

84895.6905 0.000805 277 245 190 65 90 65 0 50 460 220 187 115 48038.47 132934.2 20

210194.0273 0.000772 425 354 376 365 440 440 390 425 790 810 800 815 169150.5 379344.5 52

260874.0764 0.000612 440 349 377 361 425 440 398 425 790 810 810 805 118554.9 379428.9 52

179

Copyright, Chidambaram Subbiah, 2019

Figure 57: Result of computational experiments – Objective value analysis

180

Copyright, Chidambaram Subbiah, 2019

Figure 58: Result of computational experiments – Number of stories allocated

181

Copyright, Chidambaram Subbiah, 2019

All three batch files were then combined to generate one combined file with the following

fields, as shown in Table 23 to do a sensitivity analysis on the overall objective value and

the number of stories allocated to varying levels of efficiency score, workload, and payrate.

We look at each of these attributes individually to garner insights.

Table 23: Sensitivity Analysis dataset

Size WL EF PR Objective Value # of stories Allocated

Small High High High 217149.9844 57

Small High High Low 272505.2114 57

Small High High Medium 246956.8417 57

Small High Low High 147824.707 40

Small High Low Low 203726.629 45

Small High Low Medium 177085.6399 44

Small High Medium High 183938.7764 49

Small High Medium Low 242503.8313 54

Small High Medium Medium 214649.0956 52

Small Low High High 203373.9521 44

Small Low High Low 245217.2145 46

Small Low High Medium 225871.4254 45

Small Low Low High 47248.15427 12

Small Low Low Low 60600.28501 17

Small Low Low Medium 54390.68114 15

Small Low Medium High 75216.19759 18

Small Low Medium Low 92296.5819 20

Small Low Medium Medium 84895.6905 20

Small Medium High High 210194.0273 52

Small Medium High Low 260874.0764 52

Small Medium High Medium 237363.4832 52

Small Medium Low High 57288.8107 14

Small Medium Low Low 74295.84362 19

Small Medium Low Medium 66451.76148 17

Small Medium Medium High 180529.2469 44

Small Medium Medium Low 229910.7105 45

Small Medium Medium Medium 206869.2513 45

Medium High High High 422427.184 114

Medium High High Low 532970.3436 114

Medium High High Medium 481869.0677 114

Medium High Low High 286071.9711 72

Medium High Low Low 396347.3062 89

Medium High Low Medium 342325.2425 89

Medium High Medium High 357331.0604 98

182

Copyright, Chidambaram Subbiah, 2019

The results of the sensitivity analysis of the overall objective value to varying levels

of efficiency scores for different combinations of projects in terms of size (small: five

projects, medium: ten projects, large: twenty projects) is shown in shown in Figure 59. The

small size represents the run with five projects while the medium size represents the run

with ten projects, and finally the large run represents the run with twenty projects. We

observe that the higher efficiency scores result in higher overall objective values across all

three project size groupings. Similarly, lower efficiency scores result in lower overall

objective values across all three project size groupings. We also observe that the sensitivity

of optimal objective value with respective to efficiency score increases when project group

size increases.

Figure 59: Sensitivity analysis of objective value to varying efficiency scores and sizes

183

Copyright, Chidambaram Subbiah, 2019

The results of the sensitivity analysis of number of stories allocated to varying

levels of efficiency scores for different combinations of projects in terms of size (small:

five projects, medium: ten projects, large: twenty projects) is shown in Figure 60. We

observe that the higher efficiency scores result in higher number of stories being allocated

across all three project size groupings. Similarly, lower efficiency scores results in lower

number of stories being allocated across all three project size groupings. We also observe

that the sensitivity of the number of stories allocated with respective to efficiency score

increases when project group size increases.

Figure 60: Sensitivity analysis of number of stories allocated to varying efficiency

scores and sizes

184

Copyright, Chidambaram Subbiah, 2019

These findings support our first hypothesis that a team comprised of resources with

higher efficiency scores in multiple skills will result in more stories being assigned, thereby

resulting in overall better objective values.

The results of the sensitivity analysis of overall objective value to varying levels of

workload availability for different combinations of projects in terms of size (small: five

projects, medium: ten projects, large: twenty projects) is shown in shown in Figure 61. We

observe that the higher workload availability results in higher overall objective values

across all three project size groupings. Similarly, lower workload availability results in

lower overall objective values across all three project size groupings.

Figure 61: Sensitivity analysis of objective value to varying workload availability and

sizes

185

Copyright, Chidambaram Subbiah, 2019

The results of the sensitivity analysis of number of stories allocated to varying

levels of workload availability for different combinations of projects in terms of size

(small: five projects, medium: ten projects, large: twenty projects) is shown in in Figure

62. We observe that the higher workload availability results in higher number of stories

being allocated across all three project size groupings. Similarly, lower workload

availability results in lower number of stories being allocated across all three project size

groupings.

Figure 62: Sensitivity analysis of number of stories allocated to varying workload

availability and sizes

This observation supports our second hypothesis that a team with higher workload

resource availability will have a more efficient schedule with more stories being taken up

for allocation, and it will result in overall better objective value.

186

Copyright, Chidambaram Subbiah, 2019

The results of the sensitivity analysis of objective value and number of stories

allocated to varying levels of efficiency scores and workload availability as illustrated

above support our hypothesis 2a that workload resource availability in conjunction with

higher efficiency score will result in better outcomes in terms of overall better objective

value and schedule efficiency in terms of number of stories allocated.

The results of the sensitivity analysis of overall objective value to varying levels of

payrates for different combinations of projects in terms of size (small: five projects,

medium: ten projects, large: twenty projects) is shown in shown in Figure 63. We observe

that decreasing the payrate results in results in higher objective value across all three project

size groupings.

Figure 63: Sensitivity analysis of objective value to varying payrates and sizes

187

Copyright, Chidambaram Subbiah, 2019

The results of the sensitivity analysis of number of stories allocated to varying

levels of payrates for different combinations of projects in terms of size (small: five

projects, medium: ten projects, large: twenty projects) is shown in Figure 64. We observe

that the increasing or decreasing the payrate does not directly result in more or less number

of stories being allocated across all three project size groupings.

Figure 64: Sensitivity analysis of number of stories allocated to varying payrates and

sizes

The results of the sensitivity analysis of objective value and number of stories

allocated to varying levels of payrates, as illustrated above are mixed and not obvious. This

results in our third hypothesis not being supported.

188

Copyright, Chidambaram Subbiah, 2019

The results can be summarized, as shown in Figure 65.

Figure 65: Computational Experiments results summary

The effect of the first three hypotheses being supported by the results of the

computational experiments can be summarized as follows. A team should strive to have a

dedicated team of resources who are part of a cross functional team and are proficient in

multiple skills to have the most efficient schedules. This will result in a greater number of

stories being allocated and overall better return on investment (ROI) in terms of objective

value. The resources should have the highest workload availability and highest efficiency

scores for each of the skills that are required as part of delivering projects.

Finally, the duration for each of the runs is summarized below. We had a time limit

of 10 minutes computing time to stop the run.

189

Copyright, Chidambaram Subbiah, 2019

Figure 66: Duration for all runs in the batch process

190

Copyright, Chidambaram Subbiah, 2019

Chapter 7: Conclusion and Future Work

7.1 Summary

This research develops a new integrated predictive-prescriptive analytical approach

to improve Software Estimating and Agile project management, based on Design Patterns

that are unique to an organization. There was a quote given by an Enterprise Architect at

ABC Inc., who was one of my mentors at the organization that helped me with the

development of the baselines for the estimating tool. "To me patterns are just an approach

to solving a problem that can be applied to multiple domains. I don’t need a fancy name to

describe it, as long as I can describe the principles behind it". He also said, "In a nutshell,

patterns are everywhere." This research developed a systematic and structured approach

to analyze the data and identify those design patterns that were unique to ABC Inc. It was

an eye-opening experience as we could fit in literally thousands of individual tasks from

multiple projects into a finite set of less than 10 unique design patterns. It is a painstaking

process to analyze thousands of lines of task level data and fit them into patterns, but the

result of the effort was a clear understanding of how the organization executed application

development projects. This research resulted in the development of a new estimating tool

for ABC Inc. and has been implemented for the 28 projects over the past 15 months. We

had five projects that completed execution, and the results from those projects were

analyzed to assess the quality of estimation of the tool. The new tool has reduced the

variability in the estimating process and has been adopted well by the technical subject

191

Copyright, Chidambaram Subbiah, 2019

matter experts and the leadership at the organization. The estimating process has been

incorporated into the formal project life cycle at the organization, and that resulted in the

new software development estimating lifecycle as shown in Figure 36 above and shown

again below.

This research builds out the development of the estimating model in generic terms

so that the process can be repeated by other organizations to develop their own version of

the estimating tool. This tool will bring consistency to the estimating process and will

reduce the variability in the process. It will significantly help reduce the likelihood for

projects to exceed the budget.

 The second part of this research dealt with better understanding labor costs

associated with the project using a two-stage least squares model. The results of the

predictive model enabled us to take a deeper look into how resources were allocated to

projects. The model results pointed to the fact that new contractors were assigned to the

project team, and this resulted in overall increased labor costs to the project as compared

192

Copyright, Chidambaram Subbiah, 2019

to assigning experienced contractors or employees to the project. A deeper look into the

onboarding of contractors pointed to the workflow outlined below in Figure 67.

Figure 67: Assignment of resources to a project

There was a task force at ABC Inc. that was already looking into how to improve the

process of onboarding contractors at the organization. Our research findings were shared

with the members of the task force. This has resulted in a revised process whereby

contractors are familiarized with the development environment at the organization, and

they work on small support tasks before being assigned to a project. We expect a better

process flow and reduced labor costs over the long term, but we did not have the

opportunity to analyze the impact of this revised flow. The aggregation of the various

disparate data sources and descriptive analysis of the data pointed a lot of interesting trends

at the organization. This research has given ABC Inc. a deeper understanding of how

resources are used across the organization on different types of efforts including projects,

193

Copyright, Chidambaram Subbiah, 2019

support, enhancements, etc. More importantly, it has given the organization a deeper

understanding of how temporary resources are used to augment employees across the

organization in all types of efforts.

 The third part of this research produced two ensembles of estimating models. The

first ensemble brought together two estimates that were rooted in the new estimating model

based on design patterns and one estimate that was based on the two-stage least squares

predictive model. The second ensemble relied on the company continuing to use function

points to size projects, and it produced four estimates. The first ensemble was based on the

bottom-up estimating approach, and the second ensemble used the top-down approach to

size projects. The biggest takeaway for ABC Inc. was the opportunity for the organization

to combine executive judgment with data science to reach consensus on the final estimate

for a project. This process has set the stage for executive management to have discussions

with project managers and technical leaders, and it has helped reach consensus on a more

balanced estimate. This research also set the foundation by assessing the quality of the

estimate for each project.

 This research also took a deeper look into the function point repository from a

historical perspective. We created a couple of predictive models using the function points

data, and this has helped ABC Inc. get a deeper understanding of the underlying data. This

research has provided ABC Inc. with a predictive model to estimate a project based on

function points. It also points to the fact that systems are tightly integrated at the

organization as borne out by the results of the second predictive model based on the

individual components that make up the overall function points.

194

Copyright, Chidambaram Subbiah, 2019

The final part of this research was to augment the use of the estimating model to

build a data-driven resource allocation framework that was rooted in a prescriptive

analytics (optimization) model that consider multiple skills and domain expertise of

resources. This research provides thought leadership for companies considering a move

from Waterfall to an Agile process. It provides a metric to measure skills development

across multiple sprints, and also sets the foundation for cross training of skills among

resources, and it helps the organization move towards self-driven teams. The perceived

shortage of SMEs in organizations like ABC Inc. is addressed when this model is used, and

it should not be an issue going forward.

The prescriptive analytics model based Agile planning approach has the following benefits.

1. Balance the effects of workload availability with skills development of resources

within the project execution

2. Lays the foundation for a self-driven and cross functional team that is rooted in a

foundation of skills development/sharing of skills

3. Efficiency score and workload availability are key metrics to be considered by

organizations.

Predictive Analytics in the estimating process generates credible and quality estimates,

which serve as inputs to the Prescriptive Analytics model that optimize the data-driven

planning and resource allocation decisions in the Agile environment.

195

Copyright, Chidambaram Subbiah, 2019

7.2 Limitations

 This research built the new estimating tool but did not take up the continuous

refinement of the task level estimates to adjust the baseline estimates in the estimating tool.

We set up a Tableau dashboard to process the data at the task level and have set a solid

foundation for the continuous refinement of the task level estimates. The continuous

refinement of estimates at the task level will add more value to the estimating tool.

 The estimating tool was used for more than 25 projects, but only five projects have

completed execution. The remaining projects are in progress. It would have been helpful if

we had a bigger base of projects that completed execution to better assess its financial

benefit. We had access to data from the quality perspective or the testing area, but we could

not relate that data back to the base project data due to variety of internal factors at ABC

Inc. It will be good to spend some time after this research to fix the issues with this data

and take a deeper dive into this data. This research has set up the foundation to collect good

quality data in this space.

 The organization is starting to execute a few projects in Agile. We took data from

five small projects that were executed in a Waterfall methodology and mocked it up in an

Agile context in consultation with the business users to form the basis for the optimization

model. The optimization model and the usage of an efficiency score to track skills

development is currently being considered on a pilot basis in a few Agile projects, and it

will take some time to observe and analyze the outcomes.

196

Copyright, Chidambaram Subbiah, 2019

7.3 Future Work

There is an opportunity to use the actual data from projects that use the new

estimating tool to create a Bayesian updating based approach to enhance the quality of

estimates. This research created the foundation to aggregate the data in a Tableau

dashboard for each individual task category, which facilitate the development of the

Bayesian models in the future.

 There will be a larger set of projects that are going to complete execution in the

next 6-12 months, and there is an opportunity to assess the economic impact of the

estimating tool. This research laid the foundation of assessing the quality of the estimate

for each project. The next step would be to process the data after the development of the

estimating tool and compare it to the era prior to the development of the estimating tool.

This will provide a more accurate assessment of the economic benefit of the estimating

tool.

 There is an opportunity to extend the estimating tool to introduce risk at the task

level and develop more sophisticated models and methods that explicitly cope with

uncertainty. For example, one may start with a Monte Carlo Simulation to predict the

likelihood of the project meeting its delivery date. This will provide useful information for

project managers, and it can be the next logical step to extend the estimating tool.

 There is additional opportunity to address other objective functions building on the

established framework. We can maximize the number of stories allocated within the

planning horizon. It is also possible to consider the minimum completion time for all stories

197

Copyright, Chidambaram Subbiah, 2019

in the planning horizon, that is, the minimize the makespan of some selected stories. There

is also good opportunity to implement the prescriptive analytics model on a pilot Agile

project, and it will be helpful to get feedback and refine the model based on the feedback.

This research proposed a framework to use the efficiency score as the basis to lay the

foundation for skills development in an organization. An Agile Dojo is a physical space

dedicated to accelerated learning for teams, and ABC Inc. is starting to encourage teams to

learn in this new environment. It will be great to see this framework being implemented in

an such an environment which encourages cross sharing among team members. ABC Inc.

is investing and moving in this direction. We should soon have data available in this space.

The optimization model needs to be made production-ready by getting it to accept input

from an Excel sheet and write output to an Excel sheet. The interface for that can be written

in Python or Java, and that will be needed for organizations to use the model on a regular

basis.

References

Abdel-Hamid, A. N., & Abdel-Kader, M. A. (2011). Process increments: An agile

approach to software process improvement. Paper presented at the Proceedings -

2011 Agile Conference, Agile 2011.

About ISBSG. Retrieved from http://isbsg.org/about-isbsg/

Albrecht, A. J., & Gaffney, J. E. (1983). Software function, source lines of code, and

development effort prediction: a software science validation. IEEE Transactions on

Software Engineering(6), 639-648.

Baresi, L., Morasca, S., & Paolini, P. (2003). Estimating the design effort of web

applications. Paper presented at the Software Metrics Symposium, 2003.

Proceedings. Ninth International.

http://isbsg.org/about-isbsg/

198

Copyright, Chidambaram Subbiah, 2019

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., . .

. Jeffries, R. (2001). Manifesto for agile software development.

Bernard, J. M. (2015). An Application of Data Analytics to Outcomes of Missouri Motor

Vehicle Crashes.

Bibi, S., & Stamelos, I. (2006) Selecting the appropriate machine learning techniques for

the prediction of software development costs. In: Vol. 204. IFIP International

Federation for Information Processing (pp. 533-540).

Bibi, S., Stamelos, I., & Angelis, L. (2008). Combining probabilistic models for

explanatory productivity estimation. Information and Software Technology, 50(7-

8), 656-669. doi:10.1016/j.infsof.2007.06.004

Bilgaiyan, S., Sagnika, S., Mishra, S., & Das, M. (2017). A systematic review on software

cost estimation in Agile Software Development. Journal of Engineering Science

and Technology Review, 10(4), 51-64. doi:10.25103/jestr.104.08

Boschetti, M. A., Golfarelli, M., Rizzi, S., & Turricchia, E. (2014). A Lagrangian heuristic

for sprint planning in agile software development. Computers and Operations

Research, 43(1), 116-128. doi:10.1016/j.cor.2013.09.007

Čeke, D., & Milašinović, B. (2015). Early effort estimation in web application

development. Journal of Systems and Software, 103, 219-237.

doi:10.1016/j.jss.2015.02.006

Chemuturi, M. (2009). Software estimation best practices, tools & techniques: A complete

guide for software project estimators: J. Ross Publishing.

Cocomo, I. (2000). Model Definition Manual. Copyright Center for Software Engineering,

USC.

Costagliola, G., Di Martino, S., Ferrucci, F., Gravino, C., Tortora, G., & Vitiello, G. (2006).

A COSMIC-FFP approach to predict web application development effort. J. Web

Eng, 5(2), 93-120.

Costagliola, G., Ferrucci, F., Tortora, G., & Vitiello, G. (2005). Class point: An approach

for the size estimation of object-oriented systems. IEEE Transactions on Software

Engineering, 31(1), 52-74. doi:10.1109/TSE.2005.5

CPrime. (2013). Scrum-FAQ.

Cunha, J. C., Cruz, S., Costa, M., Rodrigues, A. R., & Vieira, M. (2012). Implementing

software effort estimation in a medium-sized company. Paper presented at the

Proceedings - 2011 34th IEEE Software Engineering Workshop, SEW 2011.

Cusumano, M. A. (2007). Extreme programming compared with Microsoft-style iterative

development. Communications of the ACM, 50(10), 15-18.

doi:10.1145/1290958.1290979

Da Silva, T. S., Martin, A., Maurer, F., & Silveira, M. (2011). User-centered design and

agile methods: A systematic review. Paper presented at the Proceedings - 2011

Agile Conference, Agile 2011.

Dejaeger, K., Verbeke, W., Martens, D., & Baesens, B. (2012). Data mining techniques for

software effort estimation: A comparative study. IEEE Transactions on Software

Engineering, 38(2), 375-397. doi:10.1109/TSE.2011.55

Di Martino, S., Ferrucci, F., Gravino, C., & Mendes, E. (2007). Comparing size measures

for predicting Web application development effort: A case study. Paper presented

199

Copyright, Chidambaram Subbiah, 2019

at the Proceedings - 1st International Symposium on Empirical Software

Engineering and Measurement, ESEM 2007.

Dolado, J. J. (2000). A validation of the component-based method for software size

estimation. IEEE Transactions on Software Engineering, 26(10), 1006-1021.

doi:10.1109/32.879821

Dong, X., Yang, Q. S., Wang, Q., Zhai, J., & Ruhe, G. (2011). Value-risk trade-off analysis

for iteration planning in eXtreme Programming. Paper presented at the Proceedings

- Asia-Pacific Software Engineering Conference, APSEC.

Dragicevic, S., Celar, S., & Turic, M. (2017). Bayesian network model for task effort

estimation in agile software development. Journal of Systems and Software, 127,

109-119. doi:10.1016/j.jss.2017.01.027

Evans, J. R., & Lindner, C. H. (2012). Business analytics: the next frontier for decision

sciences. Decision Line, 43(2), 4-6.

Ferrucci, F., Gravino, C., & Di Martino, S. (2008). A case study using web objects and

COSMIC for effort estimation of web applications. Paper presented at the

EUROMICRO 2008 - Proceedings of the 34th EUROMICRO Conference on

Software Engineering and Advanced Applications, SEAA 2008.

Ferrucci, F., Gravino, C., Oliveto, R., Sarro, F., & Mendes, E. (2010). Investigating tabu

search for web effort estimation. Paper presented at the Software Engineering and

Advanced Applications (SEAA), 2010 36th EUROMICRO Conference on.

Forsyth, D. K., & Burt, C. D. B. (2008). Allocating time to future tasks: The effect of task

segmentation on planning fallacy bias. Memory and Cognition, 36(4), 791-798.

doi:10.3758/MC.36.4.791

Gartner. (2014). Gartner Says Optimizing Application Development and Maintenance Can

Cut Costs by More Than 50 Percent Retrieved from STAMFORD, Conn:

https://www.gartner.com/newsroom/id/2711017

Grapenthin, S., Poggel, S., Book, M., & Gruhn, V. (2015). Improving task breakdown

comprehensiveness in agile projects with an Interaction Room. Information and

Software Technology, 67, 254-264. doi:10.1016/j.infsof.2015.07.008

Gray, A., & MacDonell, S. G. (1997). A comparison of techniques for developing

predictive models of software metrics.

Hakuta, M., Tone, F., & Ohminami, M. (1997). A software size estimation model and its

evaluation. Journal of Systems and Software, 37(3), 253-263.

Halkjelsvik, T., & Jørgensen, M. (2012). From Origami to software development: A review

of studies on judgment-based predictions of performance time. Psychological

Bulletin, 138(2), 238-271. doi:10.1037/a0025996

Hannay, J. E., Benestad, H. C., & Strand, K. (2017). Earned Business Value: See That You

Deliver Value to Your Customer. IEEE Software, 34(4), 58-70.

doi:10.1109/MS.2017.105

Hayata, T., & Han, J. (2011). A hybrid model for IT project with Scrum. Paper presented

at the Service Operations, Logistics, and Informatics (SOLI), 2011 IEEE

International Conference on.

Hill, J., Thomas, L. C., & Allen, D. E. (2000). Experts' estimates of task durations in

software development projects. International Journal of Project Management,

18(1), 13-21. doi:10.1016/S0263-7863(98)00062-3

https://www.gartner.com/newsroom/id/2711017

200

Copyright, Chidambaram Subbiah, 2019

Hoda, R., Salleh, N., Grundy, J., & Tee, H. M. (2017). Systematic literature reviews in

agile software development: A tertiary study. Information and Software

Technology, 85, 60-70. doi:https://doi.org/10.1016/j.infsof.2017.01.007

Hsu, C. J., Rodas, N. U., Huang, C. Y., & Peng, K. L. (2010). A study of improving the

accuracy of software effort estimation using linearly weighted combinations. Paper

presented at the Proceedings - International Computer Software and Applications

Conference.

Idri, A., Amazal, F. A., & Abran, A. (2015). Analogy-based software development effort

estimation: A systematic mapping and review. Information and Software

Technology, 58, 206-230. doi:10.1016/j.infsof.2014.07.013

Idri, A., Hosni, M., & Abran, A. (2016a). Improved estimation of software development

effort using Classical and Fuzzy Analogy ensembles. Applied Soft Computing

Journal, 49, 990-1019. doi:10.1016/j.asoc.2016.08.012

Idri, A., Hosni, M., & Abran, A. (2016b). Systematic literature review of ensemble effort

estimation. Journal of Systems and Software, 118, 151-175.

doi:10.1016/j.jss.2016.05.016

Jenkins, A. M., Naumann, J. D., & Wetherbe, J. C. (1984). Empirical investigation of

systems development practices and results. Information and Management, 7(2), 73-

82. doi:10.1016/0378-7206(84)90012-0

Jones, T. C. (2007). Estimating software costs: McGraw-Hill, Inc.

Jørgensen, M. (2004a). A review of studies on expert estimation of software development

effort. Journal of Systems and Software, 70(1-2), 37-60. doi:10.1016/S0164-

1212(02)00156-5

Jørgensen, M. (2004b). Top-down and bottom-up expert estimation of software

development effort. Information and Software Technology, 46(1), 3-16.

doi:10.1016/S0950-5849(03)00093-4

Jørgensen, M. (2007). Forecasting of software development work effort: Evidence on

expert judgement and formal models. International Journal of Forecasting, 23(3),

449-462. doi:10.1016/j.ijforecast.2007.05.008

Jørgensen, M. (2014). What We Do and Don't Know about Software Development Effort

Estimation. IEEE Software, 31(2), 37-40. doi:10.1109/MS.2014.49

Jørgensen, M., Boehm, B., & Rifkin, S. (2009). Software development effort estimation:

Formal models or expert judgment? IEEE Software, 26(2), 14-19.

doi:10.1109/MS.2009.47

Jørgensen, M., & Shepperd, M. (2007). A systematic review of software development cost

estimation studies. IEEE Transactions on Software Engineering, 33(1), 33-53.

doi:10.1109/TSE.2007.256943

Kanmani, S., Kathiravan, J., Senthil Kumar, S., & Shanmugam, M. (2007). Neural network

based effort estimation using class points for OO systems. Paper presented at the

Proceedings - International Conference on Computing: Theory and Applications,

ICCTA 2007.

Kmenta, J. Elements of Econometrics. 1971 (2nd edition 2011) (Vol. 391).

Kocaguneli, E., Menzies, T., & Keung, J. W. (2012). On the value of ensemble effort

estimation. IEEE Transactions on Software Engineering, 38(6), 1403-1416.

doi:10.1109/TSE.2011.111

https://doi.org/10.1016/j.infsof.2017.01.007

201

Copyright, Chidambaram Subbiah, 2019

Ktata, O., & Lévesque, G. (2010). Designing and implementing a measurement program

for scrum teams: What do agile developers really need and want? Paper presented

at the ACM International Conference Proceeding Series.

Kuhrmann, M., Diebold, P., Münch, J., Tell, P., Garousi, V., Felderer, M., . . . Hanser, E.

(2017). Hybrid software and system development in practice: waterfall, scrum, and

beyond. Paper presented at the Proceedings of the 2017 International Conference

on Software and System Process.

Lederer, A. L., & Prasad, J. (1992). Nine Management Guidelines for Better Cost

Estimating. Communications of the ACM, 35(2), 51-59.

doi:10.1145/129630.129632

Lederer, A. L., & Prasad, J. (1995). Causes of inaccurate software development cost

estimates. The Journal of Systems and Software, 31(2), 125-134. doi:10.1016/0164-

1212(94)00092-2

Logue, K., & McDaid, K. (2008). Agile release planning: Dealing with uncertainty in

development time and business value. Paper presented at the Proceedings -

Fifteenth IEEE International Conference and Workshops on the Engineering of

Computer-Based Systems, ECBS 2008.

Longstreet, D. (2002). Fundamentals of function point analysis. Longstreet Consulting,

Inc.

Low, G. C., & Jeffery, D. R. (1990). Function points in the estimation and evaluation of

the software process. IEEE Transactions on Software Engineering, 16(1), 64-71.

MacDonell, S. G. (2003). Software source code sizing using fuzzy logic modeling.

Information and Software Technology, 45(7 SPEC.), 389-404. doi:10.1016/S0950-

5849(03)00011-9

MacDonell, S. G., & Shepperd, M. J. (2003a). Combining techniques to optimize effort

predictions in software project management. Journal of Systems and Software,

66(2), 91-98. doi:10.1016/S0164-1212(02)00067-5

MacDonell, S. G., & Shepperd, M. J. (2003b). Using prior-phase effort records for re-

estimation during software projects. Paper presented at the Proceedings -

International Software Metrics Symposium.

Mair, C., & Shepperd, M. (2005). The consistency of empirical comparisons of regression

and analogy-based software project cost prediction. Paper presented at the 2005

International Symposium on Empirical Software Engineering, ISESE 2005.

Mendes, E., Abutalib, M., & Counsell, S. (2012). Applying knowledge elicitation to

improve web effort estimation: A case study. Paper presented at the Proceedings -

International Computer Software and Applications Conference.

Mendes, E., & Counsell, S. (2000). Web development effort estimation using analogy.

Paper presented at the Proceedings of the Australian Software Engineering

Conference, ASWEC.

Mendes, E., Mosley, N., & Counsell, S. (2003). Early Web size measures and effort

prediction for Web costimation. Paper presented at the Proceedings - International

Software Metrics Symposium.

Mendes, E., Mosley, N., & Counsell, S. (2005). Investigating Web size metrics for early

Web cost estimation. Journal of Systems and Software, 77(2), 157-172.

doi:10.1016/j.jss.2004.08.034

202

Copyright, Chidambaram Subbiah, 2019

Mendes, E., Watson, I., Triggs, C., Mosley, N., & Counsell, S. (2002). A comparison of

development effort estimation techniques for Web hypermedia applications. Paper

presented at the Proceedings - International Software Metrics Symposium.

Mittas, N., & Angelis, L. (2010). LSEbA: Least squares regression and estimation by

analogy in a semi-parametric model for Software Cost Estimation. Empirical

Software Engineering, 15(5), 523-555. doi:10.1007/s10664-010-9128-6

Miyazaki, Y., Terakado, M., Ozaki, K., & Nozaki, H. (1994). Robust regression for

developing software estimation models. The Journal of Systems and Software,

27(1), 3-16. doi:10.1016/0164-1212(94)90110-4

Moløkken-Østvold, K., Haugen, N. C., & Benestad, H. C. (2008). Using planning poker

for combining expert estimates in software projects. Journal of Systems and

Software, 81(12), 2106-2117. doi:10.1016/j.jss.2008.03.058

Moløkken-Østvold, K., Jørgensen, M., Tanilkan, S. S., Gallis, H., Lien, A. C., & Hove, S.

E. (2004). A survey on software estimation in the norwegian industry. Paper

presented at the Proceedings - International Software Metrics Symposium.

Moløkken, K., & Jørgensen, M. (2003). A review of software surveys on software effort

estimation. Paper presented at the Proceedings - 2003 International Symposium on

Empirical Software Engineering, ISESE 2003.

Mortenson, M. J., Doherty, N. F., & Robinson, S. (2015). Operational research from

Taylorism to Terabytes: A research agenda for the analytics age. European Journal

of Operational Research, 241(3), 583-595.

Myrtveit, I., Stensrud, E., & Shepperd, M. (2005). Reliability and validity in comparative

studies of software prediction models. IEEE Transactions on Software

Engineering, 31(5), 380-391. doi:10.1109/TSE.2005.58

Nagler, J. (1999). Notes on Simultaneous Equations and Two Stage Least Squares

Estimates

Nemhauser, G. L., & Wolsey, L. A. (1988). Integer programming and combinatorial

optimization. Wiley, Chichester. GL Nemhauser, MWP Savelsbergh, GS

Sigismondi (1992). Constraint Classification for Mixed Integer Programming

Formulations. COAL Bulletin, 20, 8-12.

Parlati, G., Larenza, R., & Caronia, L. . (2011). Measuring software 4 dummies. Paper

presented at the PMI® Global Congress 2011, Dallas Texas.

https://www.pmi.org/learning/library/software-measuring-function-point-

methodology-6201

Pendharkar, P. C. (2004). An exploratory study of object-oriented software component size

determinants and the application of regression tree forecasting models. Information

and Management, 42(1), 61-73. doi:10.1016/j.im.2003.12.004

Pfleeger, S. L., Jeffery, R., Curtis, B., & Kitchenham, B. (1997). Status report on software

measurement. IEEE Software, 14(2), 33-43. doi:10.1109/52.582973

Raz, T., & Elnathan, D. (1999). Activity based costing for projects. International Journal

of Project Management, 17(1), 61-67. doi:10.1016/S0263-7863(97)00073-2

Regolin, E. N., De Souza, G. A., Pozo, A. R. T., & Vergilio, S. R. (2003). Exploring

machine learning techniques for software size estimation. Paper presented at the

Proceedings - International Conference of the Chilean Computer Science Society,

SCCC.

https://www.pmi.org/learning/library/software-measuring-function-point-methodology-6201
https://www.pmi.org/learning/library/software-measuring-function-point-methodology-6201

203

Copyright, Chidambaram Subbiah, 2019

Reifer, D. J. (2000). Web development: Estimating quick-to-market software. IEEE

Software, 17(6), 57-64. doi:10.1109/52.895169

Ruhe, G., & Saliu, M. O. (2005). The art and science of software release planning. IEEE

Software, 22(6), 47-53.

Ruhe, M., Jeffery, R., & Wieczorek, I. (2003a). Cost estimation for web applications. Paper

presented at the Software Engineering, 2003. Proceedings. 25th International

Conference on.

Ruhe, M., Jeffery, R., & Wieczorek, I. (2003b). Using web objects for estimating software

development effort for web applications. Paper presented at the Software Metrics

Symposium, 2003. Proceedings. Ninth International.

Sehra, S. K., Brar, Y. S., Kaur, N., & Sehra, S. S. (2017). Research patterns and trends in

software effort estimation. Information and Software Technology, 91, 1-21.

Seo, Y. S., & Bae, D. H. (2013). On the value of outlier elimination on software effort

estimation research. Empirical Software Engineering, 18(4), 659-698.

doi:10.1007/s10664-012-9207-y

Shepperd, M. (2007). Software project economics: A roadmap. Paper presented at the

FoSE 2007: Future of Software Engineering.

Sliger, M., & Broderick, S. (2008). The software project manager's bridge to agility:

Addison-Wesley Professional.

Symons, C. R. (1991). Software sizing and estimating: Mk II FPA (function point analysis):

John Wiley & Sons, Inc.

Szke, A. (2011). Conceptual scheduling model and optimized release scheduling for agile

environments. Information and Software Technology, 53(6), 574-591.

doi:10.1016/j.infsof.2011.01.008

Szoke, Á. (2009) Decision support for iteration scheduling in agile environments. In: Vol.

32 LNBIP. Lecture Notes in Business Information Processing (pp. 156-170).

Szoke, Á. (2010) Optimized feature distribution in distributed agile environments. In: Vol.

6156 LNCS. Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics) (pp. 62-76).

Turhan, B., & Mendes, E. (2014). A comparison of cross-versus single-company effort

prediction models for web projects. Paper presented at the Proceedings - 40th

Euromicro Conference Series on Software Engineering and Advanced

Applications, SEAA 2014.

Usman, M., Börstler, J., & Petersen, K. (2017). An Effort Estimation Taxonomy for Agile

Software Development. International Journal of Software Engineering and

Knowledge Engineering, 27(4), 641-674. doi:10.1142/S0218194017500243

Usman, M., Mendes, E., & Börstler, J. (2015). Effort estimation in Agile software

development: A survey on the state of the practice. Paper presented at the ACM

International Conference Proceeding Series.

Usman, M., Mendes, E., Weidt, F., & Britto, R. (2014). Effort estimation in Agile Software

Development: A systematic literature review. Paper presented at the ACM

International Conference Proceeding Series.

Van Valkenhoef, G., Tervonen, T., De Brock, B., & Postmus, D. (2011). Quantitative

release planning in extreme programming. Information and Software Technology,

53(11), 1227-1235. doi:10.1016/j.infsof.2011.05.007

204

Copyright, Chidambaram Subbiah, 2019

Verner, J., & Tate, G. (1992). A software size model. IEEE Transactions on Software

Engineering, 18(4), 265-278. doi:10.1109/32.129216

Wen, J., Li, S., Lin, Z., Hu, Y., & Huang, C. (2012). Systematic literature review of

machine learning based software development effort estimation models.

Information and Software Technology, 54(1), 41-59.

doi:10.1016/j.infsof.2011.09.002

West, D., Gilpin, M., Grant, T., & Anderson, A. (2011). Water-scrum-fall is the reality of

agile for most organizations today. Forrester Research, 26.

Wijayasiriwardhane, T., & Lai, R. (2008). A method for measuring the size of a component-

based system specification. Paper presented at the Proceedings - International

Conference on Quality Software.

Wu, D., Li, J., & Liang, Y. (2013). Linear combination of multiple case-based reasoning

with optimized weight for software effort estimation. Journal of Supercomputing,

64(3), 898-918. doi:10.1007/s11227-010-0525-9

Zhou, Y., Yang, Y., Xu, B., Leung, H., & Zhou, X. (2014). Source code size estimation

approaches for object-oriented systems from UML class diagrams: A comparative

study. Information and Software Technology, 56(2), 220-237.

doi:10.1016/j.infsof.2013.09.003

