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Abstract

In data analysis and signal processing, the recovery of structured functions (in
terms of frequencies and coefficients) with respect to certain basis functions from
the given sampling values is a fundamental problem. The original Prony method is
the main tool to solve this problem, which requires the equispaced sampling values.

In this dissertation, we use the equispaced sampling values in the frequency
domain after the short time Fourier transform in order to reconstruct some signal
expansions, such as the exponential expansions and the cosine expansions. In par-
ticular, we consider the case that the phase of the cosine expansion is quadratic.
Moreover, we work on the expansion problem based on the eigenfunctions of some
linear operators. In addition, when the signals contain two different models, we
develop a method that separate the signals in single-models and then solve the
problem. We also consider the situation that when some of the sampling values
are corrupted.

Keywords: Prony Method, Exponential Sums, Eigenfunctions, Eigenvalues,
B-Spline, Fourier Transform, Short Time Fourier Transform, Frequency Domain,
Resultant, Sylvester Matrix.
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Chapter 1

Introduction

In applied mathematics and signal processing, we frequently encounter this fun-
damental problem: Given a set of sampling data points, how to choose suitable
modelling functions such that the data can be represented as an expansion of the
modelling functions.

The solution of this problem relies on two critical factors: the modelling func-
tions and the sampling data points. The first model that was brought to people’s
attention by Gaspard Riche de Prony was the exponential model. To recover an
exponential signal, we consider the following form

f(x) =
M∑
j=1

cje
xφj , (1.0.1)

where φj’s and cj’s are the parameters to be determined from a set of function
values. The well-known Prony method solves this problem with 2M equispaced
sampling values f(lh), l = 0, ..., 2M − 1 for some positive constant h. Since then
the Prony method has been extended and generalized to solve many different sig-
nal models.

During the last few years, the Prony method is widely used in different fields,
such as identification and spectral estimation [20], the approximation of Green
functions [20]. Several generalizations of the original Prony method formulation
[4, 12 , 13, 14 , 15 , 16 , 17, 18, 26, 30] have been developed over the last few
years. Peter and Plonka in [12, 15] generalized the Prony method to reconstruct
M-sparse expansions in term of eigenfunctions of some special linear operators.
They showed that all well-known Prony reconstruction methods can be uniformly
interpreted as special cases of their formulation.

A fundamental problem in signal processing is the estimation of parameters.
Potts and Tasche in [20] have shown that ESPRIT method (estimation of signal

10
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parameters via rotational technique ) [21], Matrix pencil method [8] and MUSIC
method (multiple signal classification) [22] can be viewed as Prony-like methods.

The generalizations of the Prony method have been also studied to recover
the parameters of Legendre expansion [14]. Moreover, Plonka and Marius in [19,
30] used the techniques of Fourier transform in order to recover the non-uniform
B-Spline expansion by using a small number of equidistantly sampling values. In
[17] Plonka and others presented the reconstruction of different signals by exploit-
ing the generalized shift operator.

In this dissertation, we explore several tools that can help us reconstruct the
signal functions with various structures. The short time Fourier transform (STFT)
is a prominent tool that helps us recover signals in several models from the short
time Fourier sampling values. Moreover, the non-stationary signal with quadratic
phase can also be reconstructed using the short time Fourier sampling. By knowing
the reconstruction of f(x) =

∑M
j=1 cjx

φj [12],[17], we connect it to several other
more complex models through appropriate inverse functions, and then apply the
variable substitution method to solve the problem. Another powerful tool that
is effective in many situations is based on the differential operators. When the
signals are represented as expansions of the eigenfunctions of some differential
operators, this method works well. We also consider the signals represented in
mixed models. For example, we study the signals with the following form

f(x) =
M∑
j=1

cj cos(φjx) +
N∑
k=1

dj sin(βkx), (1.0.2)

where cj’s, φj’s, dk’s, and βk’s are the parameters to be determined from a set
of function values. We separate the signals in the individual models using the
even-odd properties of the functions, and then recover the parameters using the
single-model methods. We also study the problem with oversampled data points.
We consider the situation that there are some sampling values that could be in-
correct. Since the Prony method has a property: If one sampling value changes
slightly, then the computation result would change dramatically. With this obser-
vation, in order to detect and fix those corrupted sampling values, we develop a
determinant-based method that allows us to recover the original signals.

This dissertation is organized as follow : Preliminaries in chapter 2 , which
provide us of the concepts that we will use through this dissertation. In chapter 3,
we introduce Prony method and we discuss some of its variation. In chapter 4, we
introduce new generalizations of the method in order to reconstruct more signals
types. In chapter 5, we present method that allow us to reconstruct signals that
have two different models.In chapter 6 we present our method for using the Prony
method to recover the signals even if the sampling values contain some incorrect
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values. Finally, we end this dissertation with a summary and future work.



Chapter 2

Preliminaries

2.1 Fourier Series

Given any periodic function f(x) with a period T (a commonly used T is 2π), (i.e
f(x + T ) = f(x) for any x ∈ R), then this type of functions can be decomposed
into an infinite series of sine and cosine functions, which is called the Fourier series
of f and denoted by Sf , and it has the form:

(Sf) =
a0
2

+
∞∑
k=1

(
ak cos

(kπx
L

)
+ bk sin

(kπx
L

))
, (2.1.1)

where 
ak = 1

L

∫ L
−L f(x) cos(kπx

L
)dx, k = 0, 1, ...;

bk = 1
L

∫ L
−L f(x) sin(kπx

L
)dx, k = 1, 2, ...

(2.1.2)

are called the Fourier coefficients of the function f . From (2.1.1), we can see

that
{

1, cos
(
kπx
L

)
, sin

(
kπx
L

)}
play a role of basis functions for the real-valued

functions defined on an interval of length L. The following theorem gives a more
precise description about this observation.

Theorem 2.1.1 (Fourier series). Given L > 0, the family{
1√
L
,

√
2

L
cos
(2πkx

L

)
,

√
2

L
sin
(2πkx

L

)
, k = 1, 2, ...

}
(2.1.3)

is an orthonormal basis of L2[−L
2
, L
2
]. Consequently, any f ∈ L2[−L

2
, L
2
] can be

represented by its Fourier series, namely

f(x) = (Sf) =
a0
2

+
∞∑
k=1

(
ak cos

(kπx
L

)
+ bk sin

(kπx
L

))
, (2.1.4)

13
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which converges to f in L2[−L
2
, L
2
] and a0,ak, bk, (k = 1, 2, ...) are the Fourier

coefficients defined in (2.1.2).

If we consider f as an even function on [−L
2
, L
2
], then (2.1.2) tells us that all

the bk coefficients vanish, which means that all the sine terms in the Fourier se-
ries expansion of f disappear. With this observation, when we have a function
on [0, L

2
], we can just do an even extension on this function, that is, define this

function on [−L
2
, 0] as f(x) = f(−x). In this way, we get an even function on

[−L
2
, L
2
]. Thus we have the following version derived from theorem (2.1.1), which

gives us an alternative way to process signals.

Theorem 2.1.2 (Fourier cosine series). Given L > 0, the family{
1√
L
,

√
2

L
cos
(2πkx

L

)
, k = 1, 2, ...

}
(2.1.5)

is an orthonormal basis of L2[0,
L
2
]. Consequently, any f ∈ L2[0,

L
2
] can be ex-

panded by its Fourier cosine series, namely

f(x) = (Sef) =
a0
2

+
∞∑
k=1

ak cos
(kπx
L

)
, (2.1.6)

which converges to f(x) in L2[0,
L
2
] where ak (k = 0, 1, ...) are the Fourier cosine

coefficients and given by

ak =
4

L

∫ L
2

0

f(x) cos
(2πkx

L

)
dx, k = 0, 1, ... (2.1.7)

2.2 Fourier Transform (FT)

The Fourier transform is one of the most important tools to analyse signals.The
Fourier series discussed in the section (2.1) allow us to deal with periodic functions
in order to study the frequency contents. In this section, we provide Fourier
transform and some useful properties that allow us to deal with non-periodic
functions.

Definition 2.2.1 (Fourier transform). Let L1 be the space of all integrable
functions and let f is a function in L1(R), then the Fourier transform of f denoted
by f̂ or F(f) is given by the integral

f̂(ω) = (Ff)(ω) =

∫ −∞
∞

f(x)e−i2πωxdx, ω ∈ R (2.2.1)
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Next, we state some useful properties for the Fourier transform which provide
us with some nice insights into the behaviour of the Fourier transform.

Definition 2.2.2. Given a > 0, b, c ∈ R , and f ∈ L1(R) then

1. The dilation operator Da is given by

(Daf)(x) := f(ax) (2.2.2)

2. The translation operator Tb is given by

(Tbf)(x) := f(x− b) (2.2.3)

3. The (frequency) modulation operator Mc is given by

(Mcf)(x) := f(x)ei2πcx, c 6= 0 (2.2.4)

Definition 2.2.3. Given two functions f, h on R, The convolution of f(x) and
h(x) denoted by (f ∗ h)(x) and is defined by

(f ∗ h)(x) =

∫ ∞
−∞

f(t)h(x− t)dt (2.2.5)

Theorem 2.2.4 (Properties of Fourier transform). The Fourier transform
defined in 2.2.1 has the following properties:

1. Given Da the dilation operator defined in (2.2.2), then for f ∈ L1(R),

(̂Daf)(ω) =
1

a
f̂(
ω

a
). (2.2.6)

2. Given Ta the translation operator defined in (2.2.3), then for f ∈ L1(R),

(̂Tbf)(ω) = e−i2πωbf̂(ω). (2.2.7)

3. Given Mc the (frequency) modulation operator defined in (2.2.4), then for
f ∈ L1(R),

(̂Mcf)(ω) = f̂(ω − c). (2.2.8)

4. Given f, h ∈ L1(R), then

(f̂ ∗ h)(ω) = f̂(ω)ĥ(ω). (2.2.9)
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2.3 Short-Time Fourier Transform (STFT)

Sometimes when we analyse signals, we are interested in certain local sections of
the signals. To this end, we introduce a window function w that makes our inter-
ested portion of the signals stand out.

Definition 2.3.1. Given a window function w ∈ (L1∩L2)(R) and τ ∈ R, then for
every f ∈ L2(R), the short time Fourier transform of f is defined by the integral

STFT (f(x)) = F(ω, τ) =

∫ ∞
−∞

f(x)w(x− τ)e−iωxdx. (2.3.1)

Short time Fourier transform preserves time shift up to modulation. Let us
define the shifted signal as g(x) = f(x− a), then its short time Fourier transform
becomes

STFT (g(x)) = G(ω, τ) =

∫ ∞
−∞

f(x− a)w(x− τ)e−iωxdx

=

∫ ∞
−∞

f(u)w(u− (τ − a))e−iωue−iωadu

= e−iωaG(ω, τ − a).

(2.3.2)

2.4 B-Splines

B-splines give us another powerful tool in data representation. A B-spline function
is a piecewise polynomial that is defined on a sequence of knots.

Definition 2.4.1. Given a non-decreasing knot sequence {Tj, Tj+1, ..., Tj+m} with
Tj < Tj+m, then the m-th order B-spline basis functions can be defined by the
following recurrence formula

Nm
j (x) =

x− Tj
Tj+m−1 − Tj

Nm−1
j (x) +

Tj+m − x
Tj+m − Tj+1

Nm−1
j+1 (x) (2.4.1)

with

N1
j (x) =

{
1, if x ∈ [Tj, Tj+1);

0, otherwise,
(2.4.2)

where the fractions with zero denominator are assumed to be zero.

Theorem 2.4.2 (Properties of B-spline Basis Functions). The B-spline basis
functions defined in (2.4.1) and (2.4.2) have the following properties
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1. Positivity,
Nm
j (x) > 0, for all x ∈ (Tj, Tj+m). (2.4.3)

2. Local support,
Nm
j (x) = 0, for all x 6∈ (Tj, Tj+m). (2.4.4)

3. Partition of Unity,

n∑
j=n+1−m

Nm
j (x) = 1, for all x ∈ [Tn, Tn+1). (2.4.5)

4. Smoothness at a knot,

Nm
j (x) ∈ Cm−ki(Ti), j = 1, ..., n, (2.4.6)

where ki is the multiplicity of Ti.

5. The derivative of B-spline basis functions is

d

dx

(
Nm
j (x)

)
=

m− 1

Tj+m−1 − Tj
Nm−1
j (x)− m− 1

Tj+m − Tj+1

Nm−1
j+1 (x). (2.4.7)

2.5 Hankel,Vandermonde and Toeplitz Matrices

There are some special types of matrices with special properties that are very use-
ful in solving certain types of problems. In this section, we introduce three of them.

Definition 2.5.1. Given a sequence of real numbers S = {α1, α2, ..., α2n−1}, the
Hankel matrix is an n× n matrix with the following structure

H =


α1 α2 . . . αn
α2 α3 . . . αn+1

...
...

...
αn αn+1 . . . α2n−1

 . (2.5.1)

Definition 2.5.2. Given a sequence of real numbers S = {x1, x2, ..., xn}, the
Vandermonde matrix is an n× n matrix with the following structure

V =


1 x1 x21 . . . xn−11

1 x2 x22 . . . xn−12
...

...
...

1 xn x2n . . . xn−1n

 . (2.5.2)
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Definition 2.5.3. Given a sequence of real numbers S = {β−n, ..., β0, ..., βn}, the
Toeplitz matrix is an (n+ 1)× (n+ 1) matrix with the following structure

T =


β0 β1 . . . βn
β−1 β0 . . . βn−1

...
...

...
β−n β−(n−1) . . . β0

 . (2.5.3)

Any non-singular Hankel matrix H can be factorized as two Vandermonde
matrices and diagonal matrix H = V TDV i.e


α1 α2 . . . αn
α2 α3 . . . αn+1

...
...

...
αn αn+1 . . . α2n−1

 =


1 1 . . . 1 1
x1 x2 . . . xn−1 xn

...
...

...
xn−11 xn−12 . . . xn−1n−1 xn−1n



d1 0 0 . . . 0
0 d2 0 . . . 0

...
...

...
0 0 0 . . . dn




1 x1 x21 . . . xn−11

1 x2 x22 . . . xn−12
...

...
...

1 xn x2n . . . xn−1n


(2.5.4)

Similarly, the Toeplitz matrix can be factorized as two Vandermonde matrices and
diagonal matrix.

2.6 Generalized Shift Operators

1. Given the shift operator Sh : C(R)→ C(R) with Shf(x) = f(x− h), where
h > 0, the symmetric shift operator is given by

Sh,−hf(x) :=
1

2

(
f(x− h) + f(x+ h)

)
=

1

2

(
S−h + Sh

)
f(x). (2.6.1)

2. For a given continuous function K : R2 → C such that

K(x, h1 + h2) = K(x, h1)K(x+ h1, h2) = K(x, h2)K(x+ h2, h1), (2.6.2)

the shift operator
SK,h : C(R)→ C(R)

where h 6= 0, can be defined by

SK,hf(x) = K(x, h)f(x+ h). (2.6.3)
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2.7 Gaussian Integral

There are many nice definite integrals that can be used to solve a lot of problems.
One of these integrals is the Gaussian integral, or probability integral. It is the
improper integral of the Gaussian function, which is a widely used function in dif-
ferent fields, such as signal processing and statistics. The integral of the Gaussian
function is very important for theory and practice, with the following property∫ ∞

−∞
exp(−x2)dx =

√
π. (2.7.1)

The Gaussian integral can be generalized to have different forms, such as∫ ∞
−∞

e−ax
2+bx+cdx =

√
π

a
e
b2

4a
+c. (2.7.2)

2.8 Chebyshev Polynomials

Chebyshev polynomials are very useful in different areas, such as numerical anal-
ysis and applied mathematics. We introduce the definition of Chebyshev polyno-
mials of the first kind.

Definition 2.8.1. Chebyshev polynomials of degree n ≥ 0 is defined as

Tn(x) = cos(n arccosx), x ∈ [−1, 1]. (2.8.1)

There is a recursive relation of the Chebyshev polynomials with the following
form

Tn+1(x) = 2xTn(x)−Tn−1(x). (2.8.2)

Here are the first few Chebyshev polynomials of the first kind

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

T5(x) = 16x5 − 20x3 + 5x

T6(x) = 32x6 − 48x4 + 18x2 − 1.

(2.8.3)
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2.9 Resultant and the Sylvester Matrix

The resultant is an important tool in algebra. It has been used as an alternative
technique other than the greatest common divisor method to find the common
zeros of two univariate polynomials. In this section, we introduce the definition of
the resultant and the related Sylvester matrix.

Definition 2.9.1. Let

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 (2.9.1)

and
g(x) = bmx

m + bm−1x
m−1 + · · ·+ b1x+ b0 (2.9.2)

be two univariate polynomials of degree n and m with n > 0 and m > 0, re-
spectively, such that their coefficients are in an arbitrary field F. Then the
resultant Res(f, g) is defined as the smallest-degree polynomial of the variables
(aj, j = 0, ..., n) and (bj, j = 0, ...,m) that vanishes if and only if f(x) and g(x)
have a common zero.

Definition 2.9.2. The Sylvester matrix of the polynomials f and g defined in
(2.9.1) and (2.9.2) is a square matrix with n+m rows and columns. The first m
rows contain shifted coefficient sequences of f and the last n rows contain shifted
coefficient sequences of g, and it is given by

Syl(f, g) =



an an−1 . . . a0
an an−1 . . . a0

. . . . . . . . .

an an−1 . . . a0
bm bm−1 . . . b0

bm bm−1 . . . b0
. . . . . . . . .

bm bm−1 . . . b0


. (2.9.3)

The resultant Res(f, g) is connected to the Sylvester matrix Syl(f, g) as follows,

Res(f, g) = det (Syl(f, g)) . (2.9.4)



Chapter 3

Prony Method and its Variations

The Prony method, introduced by Gaspard Riche de Prony in 1795 [17], is a
commonly-used method to recover signals from given samples. Given f(x) =∑M

j=1 cje
−ixφj , in order to recover the frequencies φj and their corresponding co-

efficients cj, Prony used equidistant sampling points f(lh), l = 0, ..., 2M − 1. The
Prony method has been applied in various fields, and its generalized version in
terms of sparse expansions of eigenfunctions covers all the well-known Prony prob-
lems, which are viewed as its special cases [12 15]. Moreover, Prony Method can
be generalized to reconstruct many types of expansions.

In sections (3.1) and (3.2) we describe the Prony method algorithm in details.
We consider in case cj are real, so we have 2M sampling values, while in the case
when cj are complex so we have fewer sampling value to recover the parameters
of the expansion f(x). In section (3.3), we describe generalized Prony method in
terms of eigenfunctions of linear operators. Lastly, in sections (3.4) , (3.5) and
(3.6), we describe some variations of this method.

3.1 Prony method with 2M sample values

The Prony method solves the following classic problem.

Problem P There is an unknown function f(x) that is in the exponential form

f(x) =
M∑
j=1

cje
−ixφj (3.1.1)

with M ≥ 1. A set of equispaced sampling values f(lh), l = 0, ..., 2M − 1 are
given, where h is some positive constant. How to recover the non-zero complex
parameters cj and distinct real-valued frequencies φj , j = 1, ...,M?

21
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Figure 3.1: The blue line shows the function f(x) in (3.2.9) while 6 red stars are
the sampling values.

To solve this problem, we consider the Prony polynomial

Λ(z) =
M∏
j=1

(z − e−ihφj) =
M∑
l=0

λlz
l, (3.1.2)

where λj, j = 0, ...,M are the coefficients of the monomial terms in (3.1.2) with
the leading coefficient λM = 1.

Let us consider the following linear homogeneous difference equation of order
M for the expansion f in (3.1.1) for m = 0, ...,M − 1, and we observe that

M∑
l=0

λlf(h(l +m)) =
M∑
l=0

λl

M∑
j=1

cje
−ih(l+m)φj =

M∑
j=1

cje
−ihmφj

M∑
l=0

λle
−ihlφj

=
M∑
j=1

cje
−ihmφj Λ(e−ihφj)︸ ︷︷ ︸

=0

= 0.

(3.1.3)

Thus, we obtain the following linear system

M−1∑
l=0

λlf(h(l +m)) = −f(h(M +m)), m = 0, 1, ...,M − 1. (3.1.4)

From the given sampling values f(lh), l = 0, ..., 2M − 1, the coefficient vectors
λ = (λ0, λ1, . . . , λM−1)

T can be determined by solving the inhomogeneous system
(3.1.4), or the following equivalent matrix form
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
f(0) f(h) . . . f(h(M − 1))
f(h) f(2h) . . . f(h(M))

...
...

...
f(h(M − 1)) f(h(M)) . . . f(h(2M − 2))




λ0
λ1
...

λM−1

 = −


f(h(M))

f(h(M + 1))
...

f(h(2M − 1))


(3.1.5)

Notice that the coefficient matrix of the system (3.1.5), denoted by H =
(f(h(l + m))M−1l,m=0, is an invertible matrix since it has a special Hankel structure,
which allows us to factorize it as a matrix product of one diagonal matrix sand-
wiched by two Vandermonde-type matrices. Specifically,

H =

(
f(h(l +m))

)M−1
l,m=0

=

( M∑
j=0

cje
−ih(l+m)φj

)M−1
l,m=0

=

( M∑
j=0

cje
−ihmφj .e−ihlφj

)M−1
l,m=0

=

(
cje
−ihmφj

)M−1
m=0,j=1

.

(
e−ihlφj

)M−1
j=1,l=0

=

(
e−ihmφj

)M−1
m=0,j=1

daig(c1, ..., cM).

(
e−ihlφj

)M−1
j=1,l=0

= V Tdiag(c1, ..., cM)V ,

(3.1.6)

where V = (e−ilhφj)M−1l,j=0 is a Vandermonde-type matrix, which is non-singular for
distinct φj’s, and c1, . . . cM are non-zero.

By solving the system (3.1.5), we can find the coefficients λl of the Prony
polynomial Λ(z). It follows that the unknown frequencies can be extracted from
the zeros of Λ(z), represented as zj = e−ihφj with hφj ∈ (−π, π] for j = 1, ...,M .
i.e

φj =
−Im(ln(zj))

h
, j = 1, ...,M. (3.1.7)

Finally, the coefficients cj, j = 1, ...,M can be determined by solving the
overdetermined Vandermonde linear system

f(lh) =
M∑
j=1

cje
−ilhφj , l = 0, ..., 2M − 1 (3.1.8)
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or its equivalent matrix form


1 1 . . . 1

e−ihφ1 e−ihφ2 . . . e−ihφM
...

...
...

e−i(2M−1)hφ1 e−i(2M−1)hφ2 . . . e−i(2M−1)hφM



c1
c2
...
cM

 =


f(0)
f(h)

...
f((2M − 1)h)

 .
(3.1.9)

Algorithm 1 Prony method with 2M sample values.
Input:

• Sampling values f(lh), l = 0, ..., 2M − 1.

• Choose sampling size h such that hφj ∈ (−π, π],∀j ∈ {1, ...,M}.

Calculation:

• Solve the inhomogeneous linear system

Hλ = −F ,

where H = (f(h(l + m)))M−1l,m=0 is a Hankel matrix, λ = (λl)
M
l=0 and F =

(f(h(l +M)))M−1l=0 .

• Find all the zeros zj := e−ihφj , j = 1, ...,M of the polynomial

Λ(z) =
M∑
l=1

λlz
l,

and then find φj, j = 1, . . . ,M from zj’s.

• Find the unknown coefficients cj, j = 1, ...,M by solving the Vandermonde
system

M∑
j=1

cje
−ilhφj = f(lh), l = 0, ..., 2M − 1.

Output:

• φj and cj, j = 1, ...,M .
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3.2 Prony method with M + 1 sample values

In section(3.1), we showed that the coefficients cj and the frequencies φj, j =
1, ...,M can be recovered by 2M equidistant sampling values where the coeffi-
cients cj, j = 1, ...,M are assumed to be complex parameters. If we know that
the coefficients cj’s are all real, then we only need approximately one half of the
sampling values, as described in the following problem.

Problem R There is an unknown function f(x) that is in the exponential form

f(x) =
M∑
j=1

cje
−ixφj (3.2.1)

with M ≥ 1. A set of equispaced sampling values f(lh), l = 0, ...,M are given,
where h is some positive constant. How to recover the non-zero real parameters
cj and distinct real-valued frequencies φj , j = 1, ...,M?

Observe that the expansion (3.2.1) satisfies the conjugate symmetry property

f(−x) =
M∑
j=1

cje
ixφj = f(x), (3.2.2)

and this property can help us to derive many sampling values from the given ones,
more specifically, we can get f(−lh) from f(lh). Therefore, the coefficients cj and
the frequencies φj, j = 1, ...,M can be recovered by using fewer sampling values:
f(0), f(h), . . . , f(Mh), which can still provide us the needed 2M + 1 sampling
values for the calculation.

Let us take our sampling values f(lh), l = −M, ...,−1, 0, 1, ...,M , by applying
the conjugate symmetry property (3.2.2) the sampling values f(lh), l = −M, ...,−1
can be calculated from the sampling values f(lh), l = 1, ...,M where h assumed
to be a positive constant as before satisfies hφj ∈ (−π, π].

Thus, M + 1 sampling values are sufficient to recover all coefficients cj and the
frequencies φj, j = 1, ...,M in (3.2.1).

As in the section (3.1), we consider the Prony polynomial

Λ(z) =
M∏
j=1

(z − e−ihφj) =
M∑
l=0

λlz
l, (3.2.3)

where λj, j = 1, ...,M are the coefficients of the monomial representation (3.2.3)
with λM = 1.
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Let us consider again the linear homogeneous difference equation of order M
for f in (3.2.1), then for all m = 0, ...,M − 1 and λM = 1, we observe that

M∑
l=0

λlf(h(l −m)) =
M∑
l=0

λl

M∑
j=1

cje
−ih(l−m)φj =

M∑
j=1

cje
ihmφj

M∑
l=0

λle
−ihlφj

=
M∑
j=1

cje
ihmφj Λ(e−ihφj)︸ ︷︷ ︸

=0

= 0.

(3.2.4)

Thus, we obtain the following linear system

M−1∑
l=0

λlf(h(l −m)) = −f(h(M −m)), m = 0, 1, ...,M − 1. (3.2.5)

or its equivalent matrix form


f(0) f(h) . . . f((M − 1)h)

f(h) f(0) . . . f((M − 2)h)
...

...
...

f((M − 1)h) f((M − 2)h) . . . f(0)




λ0
λ1
...

λM−1

 = −


f(h(M))

f(h(M − 1))
...

f(1)

 .
(3.2.6)

We also note that the coefficient matrix of the system (3.2.6), T = (f(h(l −
m)))M−1l,m=0, is no longer a Hankel matrix as in the section (3.1), but it has a Toeplitz
structure, which is also invertible. The matrix T can be factorized into a matrix
product of a diagonal matrix sandwiched by two Vandermonde-type matrices as
follow:

T =

(
f(h(l −m))

)M−1
l,m=0

=

( M∑
j=0

cje
−ih(l−m)φj

)M−1
l,m=0

=

( M∑
j=0

cje
ihmφj .e−ihlφj

)M−1
l,m=0

=

(
cje

ihmφj

)M−1
m=0,j=1

.

(
e−ihlφj

)M−1
j=1,l=0
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=

(
eihmφj

)M−1
m=0,j=1

daig(c1, ..., cM).

(
e−ihlφj

)M−1
j=1,l=0

= V ∗diag(c1, ..., cM)V ,

(3.2.7)

where V = (e−ilhφj)M−1l,j=0 is a Vandermonde-type matrix.

Again the solution of the system (3.2.6) provides us the coefficients λl of the
Prony polynomial Λ(z), and by using (3.1.7) we can extract the frequencies φj.

Finally, the coefficients cj, j = 1, ...,M can be determined by solving the linear
system

f(lh) =
M∑
j=1

cje
−ilhφj , l = 0, ...,M. (3.2.8)

Algorithm 2 Prony method with M + 1 sample values.
Input:

• Sampling values f(lh), l = 0, ...,M .

• Choose sampling size h such that hφj ∈ (−π, π],∀j ∈ {1, ...,M}.

Calculation:

• Calculate f(−lh), l = 1, ...,M using f(−lh) = f(lh).

• Solve the inhomogeneous linear system

Tλ = −F ,

where T = (f(h(l − m)))M−1l,m=0 is a Toeplitz matrix, λ = (λl)
M
l=0 and F =

(f(h(M − l)))M−1l=0 .

• Find all the zeros zj := eihφj , j = 1, ...,M of the polynomial

Λ(z) =
M∑
l=1

λlz
l,

and calculate φj, j = 1, . . . ,M from zj’s.
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• Find the unknown coefficients cj, j = 1, ...,M by solving the Vandermonde
system

M∑
j=1

cje
−ilhφj = f(lh), l = 0, ...,M.

Output:

• φj and cj, j = 1, ...,M.

To illustrate the algorithm, let us consider a simple signal

f(x) = f1(x) + f2(x) + f3(x) (3.2.9)

with three components

f1(x) = c1e
−ixφ1 , c1 = −3.5, φ1 = 1.5;

f2(x) = c1e
−ixφ2 , c2 = 0.8, φ2 = 4;

f3(x) = c1e
−ixφ3 , c3 = 2.5, φ3 = 5.5.

(3.2.10)

The table (3.1) shows the absolute reconstruction errors |cj − c∗j | and |φj − φ∗j |
where c∗j and φ∗j are the reconstructed parameters and frequencies respectively.

j cj φj |cj − c∗j | |φj − φ∗j |
1 -3.5 1.5 5.6344.10−15 6.6613.10−16

2 0.8 4 1.2610.10−15 7.1054.10−15

3 2.5 5.5 8.0351.10−15 3.5527.10−15

Table 3.1: Parameters of the function f(x) in (3.2.9) and approximate errors with
h = 0.5 .

.

3.3 Prony method for sparse expansion of eigen-

functions

In this section, we review the generalized Prony method [12]. The Prony method
can be generalized to reconstruct different expansion functions.
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Given a normed vector space V over the complex number field C, and given a
linear operator

A : V → V , (3.3.1)

where A is assumed to possess eigenvalues. Assume that Λ = {λj, j ∈ I} is a
(sub)set of pairwise distinct eigenvalues of A with suitable index set I. We also
assume W = {vj : j ∈ I} such that there is a unique correspondence between
eigenvalues λj and eigenfunction vj, i.e

Avj = λjvj, for all j ∈ I. (3.3.2)

The M-sparse expansion f of eigenfunctions of the operator A has only M-non
vanishing terms, i.e

f =
∑
j∈J

cjvj, with J ⊂ I, and |J | = M. (3.3.3)

Moreover, we assume that there exists a linear functional

F : V → C (3.3.4)

such that Fvj 6= 0, ∀j ∈ I. Then, by the Prony method (see [12]), the ex-
pansion f in (3.3.3) can be uniquely reconstructed from 2M sampling values,
F(Alf), l = 0, ..., 2M − 1.

Since the above setting is very general, we can use it as a framework to solve a
large number of sparse expansion problems. We would like to formulate it as the
following problem.

Problem O There is an unknown function f(x) that is in an expansion of the
eigenfunctions {vj, j ∈ J} of a linear operator A as follows,

f(x) =
M∑
j∈J

cjvj. (3.3.5)

Assume that there exists a linear functional F : V → C with Fvj 6= 0,∀j ∈ I.
How to recover the non-zero complex parameters cj from 2M sampling values,
F(Alf), l = 0, ..., 2M − 1?

As in the classical Prony method we introduce Prony polynomial

P (z) =
∏
j∈J

(z − λj) =
M∑
l=0

plz
l, (3.3.6)



CHAPTER 3. PRONY METHOD AND ITS VARIATIONS 30

where the zeros λj, j ∈ J of the P (z) in (3.3.6) are the eigenvalues corresponding
to the active eigenfunctions vj, j ∈ J with pM = 1. By using the expansion f in
(3.3.5), and for m = 0, 1...,M − 1, we can see that

M∑
l=0

plF(Al+mf) =
M∑
l=0

plF

(∑
j∈J

cjλ
l+m
j vj

)
=
∑
j∈J

cjλ
m
j

(
M∑
l=0

plλ
l
j

)
Fvj

=
∑
j∈J

cjλ
m
j P (λj)︸ ︷︷ ︸

=0

Fvj = 0.
(3.3.7)

Thus, we obtain the following linear system

M−1∑
l=0

plF(Al+mf) = −F(AM+mf), m = 0, ...,M − 1. (3.3.8)

Therefore, the vector of coefficients p = (p0, ..., pM−1)
T can be determined by

solving the inhomogeneous linear system

Hp = −G, (3.3.9)

where G := (F(AM+mf))M−1m=0 , and H := (F(Al+mf))M−1,M−1l,m=0 , and the matrix
H has a Hankel structure, which is invertible since it can be written as

H = Vλdiag(cj)j∈J .diag(Fvj)j∈JV T
λ , (3.3.10)

where V = (λl)M−1l=0,j∈J is of the Vandermonde-type.

By finding the coefficients (pl, l = 0, ...,M − 1), we can extract the eigenvalues
λj, j = 0, ...,M − 1 from the Prony polynomial (3.3.6), and since Avj = λjvj, the
eigenfunctions vj can be determined.

Finally, the coefficients cj, j ∈ J of the expansion (3.3.3) can be computed by
solving the Vandermonde linear system

F(Alf) =
∑
j∈J

cjλ
l
jvj, l = 0, ..., 2M − 1. (3.3.11)

Algorithm 3 Prony method for the sparse eigenfunction expansion (3.3.5).

Input:

• M ∈ N.

• Sampling values F(Alf), l = 0, ..., 2M − 1.
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Calculation:

• Solve the inhomogeneous linear system

Hp = −G, (3.3.12)

where H := (F(Al+mf))M−1,M−1l,m=0 and G := (F(AM+mf))M−1m=0 .

• Find all the zeros λj, j = 1, ...,M of the Prony polynomial (3.3.6), and then
compute the corresponding eigenfunctions vj, j ∈ J .

• Find the unknown coefficients cj, j = 1, ...,M by solving the Vandermonde
system

F(Alf) =
∑
j∈J

cjλ
l
jvj, l = 0, ..., 2M − 1.

Output:

• cj and vj, j ∈ J .

3.4 Non Uniform Spline Expansion

The original Prony method used to determine the parameters and the frequencies
of the exponential sum. In [19, 30] a nice technique has been used to convert
the B-spline expansion to the exponential sum and then apply the original Prony
method to determine the coefficients and the frequencies. In this section, we re-
view this technique.

Let

f(x) =
M∑
j=1

cmj N
m
j (x)

where Nm
j (x) are the B-spline of order m as defined in (2.4.1) of section(2.4). We

consider the following spline expansion problem.

Problem B1 There is an unknown function f(x) that is in the spline expansion
form

f(x) =
M∑
j=1

cjN
m
j (x) (3.4.1)
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with M ≥ 1. Assume that the B-splines {Nm
j (x), j = 1, 2, . . . ,M} are defined on

the knot sequence {φ1, φ2, . . . , φM+m} on the interval [a, b] satisfying

a = φ1 = · · · = φm < φm+1 < · · · < φM < φM+1 = · · · = φM+m = b.

If we are given the M +m Fourier sampling values f̂(lh), l = 1, ...,M +m, where
h is a positive constant satisfying hφj ∈ (−π, π], how to recover the non-zero real
parameters cj, j = 1, 2, . . . ,M and distinct knots φm+1, . . . , φM?

3.4.1 Reconstruction of Characteristic Expansion

Let us consider the expansion of the form

f(x) =
M∑
j=1

c1jN
1
j (x), (3.4.2)

where N1
j (x) are characteristic functions as defined in (2.4.2), and c1j , j = 1, .., N

are distinct real coefficients.

By applying Fourier transform to (3.4.2), discussed in section(2.2), we can get
(see [19, 30]).

f̂(ω) =
1

iω

[
M∑
j=1

c1je
−iωTj −

M+1∑
j=2

c1j−1e
−iωTj

]

=
1

iω

M+1∑
j=1

c
[1]
j e
−iωTj , ω 6= 0.

(3.4.3)

with c
[1]
j := c1j − c1j−1, j = 1, ...,M + 1, and with c10 = c1M+1 = 0, from the assump-

tion that c
[1]
j 6= 0, j = 1, ...,M + 1 .

Let

P (ω) = (iω)f̂(ω) =
M+1∑
j=1

c
[1]
j e
−iωφj (3.4.4)

Prony method can be applied to the expansion (3.4.4) to recover the coefficients
c1j and the frequencies φj, j = 1, ...,M + 1 uniquely. Since the coefficients cj, j =
1, ...,M + 1 assumed to be real as in the section(3.2), then we have

P (lh) = (ilh) · f̂(lh), l = 1, ...,M + 1,

P (−lh) = P (lh), l = 1, ...,M + 1,

P (0) = 0,

(3.4.5)
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where h is assumed to be a positive constant that satisfies hφj ∈ (−π, π].

Finally, the coefficients c1j , j = 0, ...,M can be obtained by using the following
recursion

c11 = c
[1]
1 ,

c1j = c1j−1 + c
[1]
j , j = 2, ...,M.

(3.4.6)

3.4.2 Reconstruction of Non Uniform Spline Expansion

Let us now consider the spline expansion when m ≥ 1

f(x) =
M∑
j=1

c
[0]
j N

m
j (x) (3.4.7)

In order to apply the Fourier transform and recover the parameters c
[0]
j and

knots φj of the expansion (3.4.7), we need to compute the derivatives of B-spline
functions.

The first derivatives of B-spline functions Nm
j when m ≥ 3 are given by (see

[30] page 23).

(Nm
j )′(x) = (m− 1) ·

(
Nm−1
j (x)

φj+m−1 − φj
−

Nm−1
j+1 (x)

φj+m − φj+1

)
. (3.4.8)

Indeed the kth derivative of the expansion (3.4.7) can be computed by

f (k)(x) =
M+k∑
j=1

c
[k]
j N

m−k
j (x), (3.4.9)

where the coefficients c
[k]
j , j = 1, ...M + k can be recursively computed by

c
[k]
j :=

(
m− k

φj+m−k − φj

)
· (c[k−1]j − c[k−1]j−1 ) (3.4.10)

with c
[k−1]
0 = c

[k−1]
M+k = 0.

Note that when k = m−2, the kth derivative f (k) of spline function is piecewise
linear functions which is not differentiable at the knots. In order to compute the
derivatives of B-spline of order one and two,i.e (m = 1,m = 2), we need to take
the distributional derivative (see [30] lemma 3.5 and lemma 3.6, page 25) .
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The m-th derivative of the expansion f in (3.4.7) can be derived as a linear
combination of weighted Dirac distributions

f (m)(x) =
M+m∑
j=1

c
[m]
j δ(x− φj). (3.4.11)

Hence, by using the properties of Fourier transform discussed in section (2.2), then
the Fourier transform of (3.4.11) can be given by

P (ω) = (iω)mf̂(ω) =
M+m∑
j=1

c
[m]
j e−iωφj (3.4.12)

The coefficients c
[m]
j and the frequencies φj, j = 1, ...,M + m of the expansion

sum (3.4.12) can be uniquely recovered by using M + m Fourier sampling values
f̂(lh), l = 1, ...,M + m, where h is assumed to be a positive constant satisfies
hφj ∈ (−π, π].

Indeed, as in the section(3.2), P (ω) has the conjugate symmetry property since

c
[0]
j , j = 1, ...,M +m are assumed to be real-valued coefficients. Then we have

P (−ω) = (−iω)mf̂(−ω) = ((iω)mf̂(ω) = P (ω). (3.4.13)

Therefore, we need just M +m Fourier sampling values in order to recover all the
parameters. Also, one can verify that P (0) = 0.

Finally, the coefficients c
[0]
j , j = 1, ...,M can be computed by the following

recursion formula

c
[k−1]
j =


c
[m]
1 for k = m, j = 1,

c
[m]
j + c

[m−1]
j−1 for k = m, j = 2, ...,M +m− 1,(

φ1+m−k−φ1
m−k

)
c
[k]
1 for k = m− 1, ..., 1, j = 1,(

φj+m−k−φj
m−k

)
c
[k]
j + c

[k+1]
j−1 for k = m− 1, ..., 1, j = 2, ...,M + k − 1.

(3.4.14)

3.5 Reconstruction of Cosine Expansions Using

the Chebyshev Polynomial

Let us consider the expansion of the form

f(x) =
M∑
j=1

cj cos(φjx), (3.5.1)
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where cj’s are non-zero coefficients and φj’s are real-valued frequencies for j =
1, ...,M . We want to reconstruct cj and φj in (3.5.1), with the frequencies φj
assumed to be in the range [0, K) ⊂ R and h = π

K
, [17].

Using the symmetric shift operator defined in (2.6.1), we have

Sh,−h cos(φx) =
1

2

[
cos(φ(x− h)) + cos(φ(x+ h))

]
= cos(φh) cos(φx). (3.5.2)

We observe that {cos(φh), φ ∈ C} is a set of distinct eigenvalues of the symmetric
shift operator Sh,−h.

The expansion f in (3.5.1) can be uniquely reconstructed using 2M sampling
values f(kh+ x0) for k = 0, ..., 2M − 1, and x0 ∈ R.

The Prony Polynomial can be defined as

Λ(z) =
M∏
j=1

(z − cos(hφj)). (3.5.3)

This polynomial can be written in terms of the Chebyshev polynomial of the
first kind of degree l as follows

Λ(z) =
M∑
l=0

λlTl(z), (3.5.4)

where Tl(z) := cos(l cos−1(z)). We note that the leading coefficient of the Cheby-
shev polynomial Tl(z) is 2l−1, then by the definition of the Prony polynomial Λ,
we have λM = 21−M .

Then we observe for m = 0, ...,M − 1 that

M∑
l=0

λl

(
(Slh,−lh)Smhf(x0)

)
=

1

2

M∑
l=0

λl

(
f(x0 + (m+ l)h+ f(x0 + (m− l)h)

)

=
1

2

M∑
l=0

λl

M∑
j=1

cj

(
cos(φj(x0 + (m+ l)h)) + cos(φj(x0 + (m− l)h))

)

=
M∑
j=1

cj cos(φj(x0 +mh))
M∑
l=0

λl cos(φjlh)
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=
M∑
j=1

cj cos(φj(x0 +mh))
M∑
l=0

λlTl(cos(φjlh))︸ ︷︷ ︸
=0

= 0.
(3.5.5)

Then for x0 = 0 we have the following linear system

M∑
l=0

λl

(
f(x0+(m+l)h+f(x0+(m−l)h)

)
= −21−Mf(x0+(M+l)h+f(x0+(M−l)h).

(3.5.6)
We also note that the signal f is an even function, therefore the sampling

values f(kh), k = 0, ..., 2M − 1 are enough to build this system.

H =

(
f((m+ l)h) + f((m− l)h)

)M−1
m,l=0

= 2

( M∑
j=1

cj cos(φjmh) cos(φjlh)

)M−1
m,l=0

= 2Vdiag(cj)
M
j=1V

T .

(3.5.7)

We observe that the terms cos(φjh) are non-zero and distinct, therefore the matrix
H is always invertible.

For x0 6= 0, we have also invertible matrix, (see [17]), but we need 4M−1 sam-
pling values f(x0 + hk), k = −2M + 1, ..., 2M − 1 for x0 ∈ R and φjh 6= (2k+ 1)π

2

to recover the parameters and the frequencies in (3.5.1).

By having the coefficients of the Prony polynomial, we can extract the zeros
cos(hφj), j = 1, ...,M . Finally, the coefficients cj, j = 1, ...,M can be found by
solving the following linear system

f(x0 + hk) =
M∑
j=1

cj cos(φj(x0 + hk)), k = 0, ..., 2M − 1. (3.5.8)

3.6 Reconstruction of Expansion of shift Gaus-

sian

We end this chapter by reviewing the reconstruction of the shifted Gaussian, which
has the form [16]
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f(x) =
M∑
j=1

cjg(x− φj) =
M∑
j=1

cje
−β(x−φj)2 , (3.6.1)

where β ∈ C\{0}, has been reconstructed by using the generalized shift operator
defined in (2.6.3).

Let us consider K(x, h) := eβh(2x+h), where β ∈ C\{0}, such that K satisfied
(2.6.2), then by (2.6.3) we can see

(SK,he−β(φj−.)
2

)(x) = eβh(2x+h)e−β(φj−(x+h))
2

= e2βφjhe−β(φj−x)
2

. (3.6.2)

Therefore e−β(.−φj)’s are eigenfunctions of SK,h for all φj ∈ R.

The expansion f in (3.6.1) can be reconstructed using 2M sampling values
f(x0 + hk), k = 0, ..., 2M − 1, x0 ∈ R is an arbitrary real number. If Reβ 6= 0,
then h ∈ R\{0}, while if Reβ = 0 then 0 < h ≤ π

2|Imβ|L , where φj ∈ (−L,L) for
j = 1, ...,M for some given L.

The Prony polynomial can be defined as:

Λ(z) =
M∏
j=1

(z − e2hβφj) =
M∑
j=0

λlz
l, (3.6.3)

where λl are the coefficients of the monomial representation Λ(z) with λM = 1.
Then we have the following linear system

M−1∑
l=0

λle
βh(l+m)(2x0+h(l+m))f(x0 + h(l +m))

= −eβh(l+M)(2x0+h(l+M))f(x0 + h(l +M)) m = 0, 1, ...,M − 1.

(3.6.4)

Therefore, the vector of the coefficients λ := (λ0, ..., λM−1)
T can be obtained

by solving the inhomogeneous system

Hλ = −G, (3.6.5)

whereG :=
(
(SK,(M+m)hf)(x0)

)M−1
m=0

, andH :=
(
(SK,(l+m)hf)(x0+(l+m)h)

)M−1,M−1
l,m=0

,
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which is a Hankel matrix and invertible.

H : =
(
(SK,(l+m)hf)(x0 + (l +m)h)

)M−1
l,m=0

=

(
K(x0, (l +m)h)f(x0 + (l +m)h

)M−1
l,m=0

=

(
eβh(l+m)(2x0+(l+m)h)

M∑
j=1

cje
−β(x0+(l+m)h−φj)2

)M−1
l,m=0

=

( M∑
j=1

cje
−β(x0−φj)2e2β(l+m)hφj

)M−1
l,m=0

= V diag(cje
−β(φj−x0)2)V T ,

(3.6.6)

with the Vandermonde matrix

V =


1 1 . . . 1

e2βhφ1 e2βhφ2 . . . e2βhφM
...

... . . .
...

e2(M−1)βhφ1 e2(M−1)βhφ2 . . . e2(M−1)βhφM

 .

Finally, the coefficients cj of the expansion (3.6.1) can be computed by solving
the following linear system:

f(x0 + lh) =
M∑
j=1

cje
−β(x0−φj+lh)2 , l = 0, ..., 2M − 1. (3.6.7)



Chapter 4

Generalization of Prony Method

In the recent years, Prony method has been generalized for reconstructing different
signal models using different techniques. By using suitable linear operator, signal
models can be represented as sparse expansions of eigenfunctions. In this chapter,
we provide some new generalizations of the Prony method.

In sections (4.1), (4.3) and (4.4) we use frequency domain in order to re-
construct the exponential sums (3.6.1), the cosine expansions (4.3.1) and non-
stationary signal (4.4.1). In section (4.5) we use variable substitution to recover
some expansions such as Gaussian expansion. In section (4.6), we use the poly-
nomial of differential operator to reconstruct the exponential sums and the cosine
expansions. In section (4.7), we reconstruct the Gaussian expansion using differ-
ential operator. In section (4.8), we define a new operator in order to reconstruct a
new model (4.8.1). Lastly, in section (4.9),we provide some numerical experiments.

4.1 Reconstruction of Exponential Sums Using

Short Time Fourier Transform

Let us consider a function f(x) to be recovered in the exponential form

f(x) =
M∑
j=1

cje
ixφj (4.1.1)

for non-zero complex parameters cj and distinct real-valued frequencies φj, j =
1, ...,M with M ≥ 1.

We use the frequency domain to recover the parameters cj and frequencies φj
, j = 1, ...,M . First we compute the STFT of (4.1.1) as follows:

39
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STFT (ω, τ) =

∫ ∞
−∞

(
M∑
j=1

cje
ixφj

)
w(x− τ)e−iωxdx

=
M∑
j=1

cj

∫ ∞
−∞

eixφjw(x− τ)e−iωxdx

(4.1.2)

By using a Gaussian window defined by

w(x) =
1√
2π
e−

x2

2σ2 (4.1.3)

then we observe that

STFT (ω, τ) =
1√
2π

M∑
j=1

cj

∫ ∞
−∞

e−
(x−τ)2

2σ2
+i(φj−ω)xdx

=
1√
2π

M∑
j=1

cj

∫ ∞
−∞

e−
x2

2σ2
+i(φj−ω− iτ

σ2
)x− τ2

2σ2 dx

=
1√
2π

M∑
j=1

cj
√

2πσ2e−
σ2

2
(φj−ω−iτ/σ2)2− τ2

2σ2

= σ
M∑
j=1

cje
−σ

2

2
(φj−ω−iτ/σ2)2− τ2

2σ2

(4.1.4)

Assume that τ = 0 and σ = 1 we have

P (ω) = STFT (ω, 0) =
M∑
j=1

cje
− 1

2
(φj−ω)2 , (4.1.5)

This model is related to the model in (3.6.1) when β = 1
2
. Therefore, the

coefficients cj and the frequencies φj in the expansion (4.1.1) can be recovered by
using 2M short time Fourier sampling P (ω), ω = 0, ..., 2M − 1.

Algorithm 4 Reconstruction of exponential sums using short time Fourier trans-
form (4.1.1).

Input:

• Number of terms M .

• Short time Fourier sampling, P (ω0 + lh), l = 0, ..., 2M − 1 ,using (4.1.5).

• Choose sampling size h.
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Calculation:

• Solve the inhomogeneous linear system

Hλ = −F ,

where H :=
(
(SK,(l+m)hP )(ω0)

)M−1,M−1
l,m=0

is a Hankel matrix, λ = (λl)
M−1
l=0

and F :=
(
(SK,(M+m)hP )(ω0)

)M−1
m=0

.

• Find all the zeros zj := ehφj , j = 1, ...,M of the polynomial

Λ(z) =
M∑
l=1

λlz
l,

and calculate φj from zj for all j = 1, . . . ,M .

• Find the unknown coefficients cj, j = 1, ...,M by solving the linear system

P (ω0 + lh) =
M∑
j=1

cje
− 1

2
(φj+ω0−lh)2 , l = 0, ..., 2M − 1.

Output:

• φj and cj, j = 1, ...,M .

4.2 Reconstruction of Mixed Expansions Using

Generalized Shifted Operator

In order to reconstruct cosine expansions that will be introduced in the next two
sections, we first reconstruct the mixed expansions of the form

f(x) =
M∑
j=1

cje
−β(φj−x)2 +

M∑
j=1

cje
−β(φj+x)2 (4.2.1)

to recover the unknown coefficients cj ∈ C and φj ∈ R, j = 1, ...,M .

Let us consider K(x, h) := eβh(2x+h), where β ∈ C\{0}, such that K satisfies
(2.6.2). Then by using the operator SK,h defined in (2.6.3) we have the following
properties:
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(SK,he−β(φj−·)
2

)(x) = eβh(2x+h)e−β(φj−(x+h))
2

= e2βφjhe−β(φj−x)
2

, (4.2.2)

(SK,he−β(φj+·)
2

)(x) = eβh(2x+h)e−β(φj+(x+h))2 = e2βφjhe−β(φj+x)
2

. (4.2.3)

Clearly e−β(·−φj) and e−β(·+φj) are eigenfunctions of SK,h for all φj ∈ R.

The expansion f in (4.2.1) can be reconstructed using 4M sampling values
f(x0+hk), k = 0, ..., 4M−1, where x0 ∈ R is an arbitrary real number. If Reβ 6= 0,
then h ∈ R\{0}, while if Reβ = 0 then 0 < h ≤ π

2|Imβ|L , where φj ∈ (−L,L) for
j = 1, ...,M for some given L.

The Prony polynomial can be defined as:

Λ(z) =
M∏
j=1

(z − e2hβφj)
M∏
j=1

(z − e−2hβφj)

=
2M∏
j=1

(z − e2hβρj) =
2M∑
l=0

λlz
l,

(4.2.4)

where

ρj =

{
φj, 1 ≤ j ≤M

−φj−M , M < j ≤ 2M,
(4.2.5)

and λl are the coefficients of the monomial terms in Λ(z) with λ2M = 1. Then we
can derive

2M∑
l=0

λl(SK,(l+m)hf)(ω0) =
2M∑
l=0

λle
βh(l+m)(2x0+h(l+m))f(x0 + h(l +m))

=
2M∑
l=0

λle
βh(l+m)(2x0+h(l+m))

(
M∑
j=1

cje
−β(φj−(x0+h(l+m)))2

+
M∑
j=1

cje
−β(φj+(x0+h(l+m)))2

)
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=
2M∑
l=0

λle
βh(l+m)(2x0+h(l+m))

M∑
j=1

cje
−β(φj−(x0+h(l+m)))2

+
2M∑
l=0

λle
βh(l+m)(2x0+h(l+m))

M∑
j=1

cje
−β(φj+(x0+h(l+m)))2

=

(
M∑
j=1

cje
−β(x0+hm−φj)2eβhm(2x0+hm)

)

.

(
2M∑
l=0

λle
−β(h2l2+2hl(x0+mh−φj))eβhl(2x0+h(l+2m))

)

+

(
M∑
j=1

cje
−β(x0+hm+φj)

2

eβhm(2ω0+hm)

)

.

(
2M∑
l=0

λle
−β(h2l2+2hl(x0+mh+φj))eβhl(2x0+h(l+2m))

)

=

(
M∑
j=1

cje
−β(ω0+hm−φj)2eβhm(2x0+hm)

)(
2M∑
l=0

λle
2βhlφj

)
︸ ︷︷ ︸

=0

+

(
M∑
j=1

cje
−β(x0+hm+φj)

2

eβhm(2x0+hm)

)(
2M∑
l=0

λle
−2βhlφj

)
︸ ︷︷ ︸

=0

= 0.

(4.2.6)

Thus, we obtain the following linear system

2M−1∑
l=0

λle
βh(l+m)(2x0+h(l+m))f(x0 + h(l +m))

= −eβh(m+2M)(2x0+h(m+2M))f(x0 + h(m+ 2M)) m = 0, 1, ..., 2M − 1.

(4.2.7)

Therefore, the vector of coefficients λ := (λ0, ..., λ2M−1)
T can be obtained by

solving the inhomogeneous system

Hλ = −G, (4.2.8)

where G :=
(
(SK,(M+m)hf)(x0)

)2M−1
m=0

, and H :=
(
(SK,(l+m)hf)(x0)

)2M−1,2M−1
l,m=0
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is the Hankel matrix, which is invertible since,

H : =

(
K(x0, h(l +m))f(x0 + h(l +m)

)2M−1

l,m=0

=

(
eβh(l+m)(2x0+h(l+m))

[
M∑
j=1

cje
−β(φj−(x0+h(l+m)))2 +

M∑
j=1

cje
−β(Tj+(x0+h(l+m)))2

])2M−1

l,m=0

=

(
M∑
j=1

cje
βh(l+m)(2x0+h(l+m))e−β(φj−(x0+h(l+m)))2

+
M∑
j=1

cje
βh(l+m)(2x0+h(l+m))e−β(φj+(x0+h(l+m)))2

)2M−1

l,m=0

=

(
M∑
j=1

cje
−β(φj−x0)2eh(l+m)φj +

M∑
j=1

cje
−β(φj+x0)2e−h(l+m)φj

)2M−1

l,m=0

= Vhdiag(cje
−β(φj−x0)2 + cje

−β(φj+x0)2)VT
h = VhDV

T
h

(4.2.9)

with Vandermonde block matrix

Vh =

(
A 0
0 B

)
(4.2.10)

where

A =


1 1 . . . 1

e2βhφ1 e2βhφ2 . . . e2βhφM
...

... . . .
...

e2(M−1)βhφ1 e2(M−1)βhφ2 . . . e2(M−1)βhφM



B =


1 1 . . . 1

e−2βhφ1 e−2βhφ2 . . . e−2βhφM
...

... . . .
...

e−2(M−1)βhφ1 e−2(M−1)βhφ2 . . . e−2(M−1)βhφM



and the diagonal block matrix
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D =


c1e

(φ1−x0)2

. . . cMe
(φM−x0)2

0

0
c1e

(φ1+x0)2

. . . cMe
(φM+x0)2

 . (4.2.11)

Finally, the coefficients cj of the expansion (4.2.1) can be computed by solving
the following linear system:

f(x0+lh) =
M∑
j=1

cje
−β(φj+x0−lh)2+

M∑
j=1

cje
−β(φj+x0+lh)2 , l = 0, ..., 4M−1. (4.2.12)

Remark. The parameters that we need to recover in the expansion (4.2.1) are
M coefficients and M frequencies, but in the calculation we get 2M coefficients
and 2M frequencies. As a result we have repeated coefficients cj’s, and pairs of
opposite frequencies (φj,−φj)’s.

Algorithm 5 Reconstruction of Mixed Expansions Using Generalized Shifted
Operator (4.2.1).

Input:

• Number of terms M .

• Sampling values , f(x0 + lh), l = 0, ..., 4M − 1.

• Choose sampling size h.

Calculation:

• Solve the inhomogeneous linear system

Hλ = −F ,

where H :=
(
(SK,(l+m)hf)(x0)

)2M−1,2M−1
l,m=0

is a Hankel matrix, λ = (λl)
2M−1
l=0

and F :=
(
(SK,(2M+m)hf)(x0)

)2M−1
m=0

.

• Find all the zeros zj := e2hβρj , j = 1, ..., 2M of the polynomial

Λ(z) =
2M∑
l=1

λlz
l

and calculate φj from zj for all j = 1, . . . , 2M .
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• Find the unknown coefficients cj, j = 1, ...,M by solving the linear system

f(x0 + lh) =
M∑
j=1

cje
−β(φj+x0−lh)2 +

M∑
j=1

cje
−β(φj+x0+lh)2 , l = 0, ..., 4M − 1.

Output:

• φj and cj, j = 1, ...,M .

4.3 Reconstruction of Cosine Expansion Using

Short Time Fourier Sample

One of the most commonly used expansions , specially in practice, in signal pro-
cessing is the cosine expansion. This expansion has been used to illustrate for
example the Empirical Mode decomposition (EMD) experiments . In this section,
we use a new technique to recover the parameters using Fourier data.

Let us consider our expansion in the form of

f(x) =
M∑
j=1

cj cos(φjx), (4.3.1)

for non-zero complex parameters cj and distinct real-valued frequencies φj , j =
1, ...,M with M ≥ 1.

In order to recover the parameters in the expansion f in (4.3.1) , we use the
short time Fourier data. First, we use the representation of the short time Fourier
transform ( STFT), defined in (2.3.1) to derive the transform of f in the frequency
domain.

Now, let us compute the STFT of the expansion (4.3.1)
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STFT (ω, τ) =

∫ ∞
−∞

( M∑
j=1

cj cos(φjx)

)
w(x− τ)e−iωxdx

=

∫ ∞
−∞

( M∑
j=1

cj

[
1

2

(
eiφjx + e−iφjx

)])
w(x− τ)e−iωxdx

=
1

2

M∑
j=1

cj

∫ ∞
−∞

eiφjxe−iωxw(x− τ)dx+
1

2

M∑
j=1

cj

∫ ∞
−∞

e−iφjxe−iωxw(x− τ)dx

=
1

2

M∑
j=1

cj

∫ ∞
−∞

ei(φj−ω)xw(x− τ)dx+
1

2

M∑
j=1

cj

∫ ∞
−∞

e−i(φj+ω)xw(x− τ)dx.

(4.3.2)

By using a Gaussian window defined in (4.1.3), we observe that

STFT (ω, τ) =
1

2

1√
2π

M∑
j=1

cj

∫ ∞
−∞

e−
(x−τ)2

2σ2
+i(φj−ω)xdx

+
1

2

1√
2π

M∑
j=1

cj

∫ ∞
−∞

e−
(x−τ)2

2σ2
−i(φj+ω)xdx

=
1√
8π

M∑
j=1

cj

∫ ∞
−∞

e−
x2

2σ2
+i(φj−ω− iτ

σ2
)x− τ2

2σ2 dx

+
1√
8π

M∑
j=1

cj

∫ ∞
−∞

e−
x2

2σ2
−i(φj+ω+ iτ

σ2
)x− τ2

2σ2 dx

=
1√
8π

M∑
j=1

cj
√

2πσ2e−2σ
2(
φj−ω−iτ/σ

2

2
)2− τ2

2σ2

+
1√
8π

M∑
j=1

cj
√

2πσ2e−2σ
2(
φj+ω+iτ/σ

2

2
)2− τ2

2σ2

=
σ

2

M∑
j=1

cje
−2σ2(

φj−ω−iτ/σ
2

2
)2− τ2

2σ2 +
σ

2

M∑
j=1

cje
−2σ2(

φj+ω+iτ/σ
2

2
)2− τ2

2σ2

=
M∑
j=1

c̃je
−2σ2(

φj−ω−iτ/σ
2

2
)2− τ2

2σ2 +
M∑
j=1

c̃je
−2σ2(

φj+ω+iτ/σ
2

2
)2− τ2

2σ2

(4.3.3)

where c̃j = σ
2
cj.
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By setting τ = 0 and σ = 1, we have

P (ω) = STFT (ω, 0) =
M∑
j=1

c̃je
− 1

2
(φj−ω)2 +

M∑
j=1

c̃je
− 1

2
(φj+ω)

2

, ω ∈ R. (4.3.4)

This model is related to the model in (4.2.1) when β = 1
2
. In the same way as

described in section (4.2), the coefficients cj and the frequencies φj in the ex-
pansion (4.3.1) can be recovered by using 4M short time Fourier sampling values
P (ω), ω = 0, ..., 4M − 1.

Remark. Similarly, the sine expansions of the form

f(x) =
M∑
j=1

cj sin(φjx) (4.3.5)

can also be reconstructed by using the method described in section (4.3).

Algorithm 6 Reconstruction of Cosine Expansion Using Short Time Fourier
Sample (4.3.1).

Input:

• Number of terms M .

• Sampling values , P (ω0 + lh), l = 0, ..., 4M − 1 using (4.3.4).

• Choose sampling size h and arbitrary number ω0.

Calculation:

• Solve the inhomogeneous linear system

Hλ = −F ,

where H :=
(
(SK,(l+m)hP )(ω0)

)2M−1,2M−1
l,m=0

is a Hankel matrix, λ = (λl)
2M−1
l=0

and F :=
(
(SK,(2M+m)hP )(ω0)

)2M−1
m=0

.

• Find all the zeros zj := ehρj , j = 1, ..., 2M of the polynomial

Λ(z) =
2M∑
l=1

λlz
l

and calculate φj from zj for j = 1, ..., 2M .
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• Find the unknown coefficients cj, j = 1, ...,M by solving the linear system

f(ω0 + lh) =
M∑
j=1

cje
− 1

2
(φj+ω0−lh)2 +

M∑
j=1

cje
− 1

2
(φj+ω0+lh)2 , l = 0, ..., 4M − 1.

Output: φj and cj, j = 1, ...,M .

4.4 Reconstruction of Non-stationary Signals with

Quadratic Phase Functions Using Short Time

Fourier Transform

In this section, we extend the cosine expansion to reconstruct a non-stationary
signal of a special form. We use the same idea that we used in the previous
section. For this end, we consider our signal in the following form

f(x) =
M∑
j=1

cj cos(x2 + φjx) (4.4.1)

for non-zero complex parameters cj and distinct real-valued frequencies φj , j =
1, ...,M with M ≥ 1.

First, we compute the STFT of the expansion (4.4.1) as follows:

STFT (ω, τ) =

∫ ∞
−∞

( M∑
j=1

cj cos(x2 + φjx)

)
w(x− τ)e−iωxdx

=

∫ ∞
−∞

( M∑
j=1

cj

[
1

2

(
ei(x

2+φjx) + e−i(x
2+φjx)

)])
w(x− τ)e−iωxdx

=
1

2

1√
2π

M∑
j=1

cj

∫ ∞
−∞

e−
(x−τ)2

2σ2
+i(x2+φjx)−iωxdx

+
1

2

1√
2π

M∑
j=1

cj

∫ ∞
−∞

e−
(x−τ)2

2σ2
−i(x2+φjx)−iωxdx
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=
1√
8π

M∑
j=1

cj

∫ ∞
−∞

e−(
1−2σ2i

2σ2
)x2+(iφj−iω+ τ

σ2
)x− τ2

2σ2 dx

+
1√
8π

M∑
j=1

cj

∫ ∞
−∞

e−(
1+2σ2i

2σ2
)x2+(−iφj−iω+ τ

σ2
)x− τ2

2σ2 dx

=
1√
8π

M∑
j=1

cj
√

2π

√
σ2

1− 2σ2i
e

σ2

2(1−2σ2i)
(iφj−iω− τ

σ2
)2− τ2

2σ2

+
1√
8π

M∑
j=1

cj
√

2π

√
σ2

1 + 2σ2i
e

σ2

2(1+2σ2i)
(−iφj−iω+ τ

σ2
)2− τ2

2σ2

=
1

2

√
σ2

1− 2σ2i

M∑
j=1

cje
− σ2

2(1−2σ2i)
(φj−ω−i τσ2 )

2− τ2

2σ2

+
1

2

√
σ2

1 + 2σ2i

M∑
j=1

cje
− σ2

2(1+2σ2i)
(φj+ω−i τσ2 )

2− τ2

2σ2

=
M∑
j=1

c̃je
− σ2

2(1−2σ2i)
(φj−ω−i τσ2 )

2− τ2

2σ2 +
M∑
j=1

˜̃cje
− σ2

2(1+2σ2i)
(φj+ω−i τσ2 )

2− τ2

2σ2

(4.4.2)

By setting τ = 0 and σ = 1, we have

P (ω) = STFT (ω, 0) =
M∑
j=1

c̃je
− 1

2(1−2i)
(φj−ω)2 +

M∑
j=1

˜̃cje
− 1

2(1+2i)
(φj+ω)

2

=
M∑
j=1

c̃je
− 1+2i

10
(φj−ω)2 +

M∑
j=1

˜̃cje
− 1−2i

10
(φj+ω)

2

(4.4.3)

where c̃j = 1
2

√
1−2i
5
cj and ˜̃cj = 1

2

√
1+2i
5
cj.

This model is related to the model in (4.2.1) when β = 1+2i
10

, and therefore the
parameters cj and φj can be reconstructed using 4M short time Fourier sampling
values.
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Algorithm 7 Reconstruction of Non-stationary Signals with Quadratic Phase
Functions Using Short time Fourier Transform(4.4.1).

Input:

• Number of terms M.

• Sampling values , P (ω0 + lh), l = 0, ..., 4M − 1 using (4.4.3).

• Choose sampling size h and ω0.

Calculation:

• Solve the inhomogeneous linear system

Hλ = −F

where H :=
(
(SK,(l+m)hP )(ω0)

)2M−1,2M−1
l,m=0

is a Hankel matrix, λ = (λl)
2M−1
l=0

and F :=
(
(SK,(2M+m)hP )(ω0)

)2M−1
m=0

.

• Find all the zeros zj := ehρj , j = 1, ..., 2M of the polynomial

Λ(z) =
2M∑
l=1

λlz
l

and calculate φj from zj for all j = 1, . . . , 2M .

• Find the unknown coefficients cj, j = 1, ...,M by solving the linear system

f(ω0+lh) =
M∑
j=1

cje
− 1+2i

10
(φj+ω0−lh)2+

M∑
j=1

cje
− 1−2i

10
(φj+ω0+lh)2 , l = 0, ..., 4M−1.

Output:

• φj and cj, j = 1, ...,M .
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4.5 Reconstruction of Expansions Using Vari-

able Substitutions

In this section, we study a general expansion that allow us to solve some special
expansions. In this purpose, we reconstruct expansions of the form

f(x) =
M∑
j=1

cj(G(x))φj (4.5.1)

where G(x) is continuous and strictly monotonous function in [a, b] .

First, let us review the expansion discussed in [12] and [17] of the form

f(x) =
M∑
j=1

cjx
φj (4.5.2)

with cj ∈ C\{0} and pairwise different φj ∈ C that satisfy Imφj ∈ [−π
h
, π
h
].

Let us define the dilation operator

(Dhf)(x) = f(ehx).

Then we have
(Dh(·)φj)(x0) = (ehx0)

φj = ehφjx
φj
0 (4.5.3)

where x0 ∈ C\{0} is arbitrary.

We observe that the functions xφj are the eigenfunctions of the dilation opera-
tor Dh with the eigenvalues ehφj . Then the expansion (4.5.2) can be reconstructed
using 2M sampling values f(ehlx0), l = 0, 1, ..., 2M − 1.

Let us now consider the Prony polynomial

Λ(z) =
M∏
j=1

(z − ehφj) =
M∑
l=0

λlz
l (4.5.4)

where λl, l = 1, ...,M are the coefficients of the monomial representation (4.5.4)
with λM = 1.

M∑
l=0

λlf(eh(l+m)x0) =
M∑
l=0

λl

M∑
j=1

cje
h(l+m)φjx

φj
0

=
M∑
j=1

cj(e
hmx0)

φj

M∑
l=0

λle
hφj l
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=
M∑
j=1

cj(e
hmx0)

φj Λ(ehφj)︸ ︷︷ ︸
=0

= 0. (4.5.5)

Therefore , we obtain the following linear system

M−1∑
l=0

λlf(eh(l+m)x0) = −f(eh(M+m)x0). (4.5.6)

By having λl and using the Prony polynomial, the coefficients cj can be calculated
by the following system

f(x0e
hl) =

M∑
j=1

cj(x0e
hl)φj , l = 0, ..., 2M − 1. (4.5.7)

Now, by using substitution, we can recover the parameters of any expansion
of the form (4.5.1).

Let x = G(x), where G(x) is an invertible function in [a, b]. Then the expan-
sion (4.5.1) can be transferred to the model (4.5.2).

We note that

G(x)←→ x0e
hl, =⇒ x←→ G−1(x0e

hl). (4.5.8)

Therefore the expansion (4.5.1) can be reconstructed using also 2M sampling
values f(G−1(x0e

hl)), l = 0, ..., 2M − 1.

M∑
l=0

λlf(G−1(eh(k+m)x0)) =
M∑
l=0

λl

M∑
j=1

cj

(
G(G−1(eh(l+m)x0))

)φj
=

M∑
j=1

cj(e
hmx0)

φj

M∑
l=0

λle
hφj l

=
M∑
j=1

cj(e
hmx0)

φj Λ(ehφj)︸ ︷︷ ︸
=0

= 0.

(4.5.9)

Therefore , we obtain the following linear system

M−1∑
l=0

λlf(G−1(eh(l+m)x0)) = −f(G−1(eh(M+m)x0)). (4.5.10)
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By having λl and using the Prony polynomial, the coefficients cj can be calculated
by the following system

f(G−1(ehlx0)) =
M∑
j=1

cj(G
−1(ehlx0))

φj , l = 0, ..., 2M − 1. (4.5.11)

Due to the flexibility of G(x) in the model discussed above, we can use this
structure to solve several expansion problems by selecting various inverse functions
G(x). We demonstrate this idea by the following two examples.

Example 4.5.1 Assume that f(x) is a real-valued function of the form

f(x) =
M∑
j=1

cj(cosx)φj . (4.5.12)

Here we take G(x) = cos x for x ∈ [0, π], thus G−1(x) = cos−1(x). Then the expan-
sion (4.5.12) can be reconstructed using 2M sampling values f(cos−1(x0e

hl)), l =
0, ..., 2M − 1.

The Prony polynomial has the form (4.5.4), therefore we have the following
linear system

M∑
l=0

λlf(cos−1(eh(l+m)x0)) =
M∑
k=0

λl

M∑
j=1

cj

(
cos(cos−1(eh(l+m)x0))

)φj
=

M∑
j=1

cj(e
hmx0)

φj

M∑
l=0

λle
hφj l

=
M∑
j=1

cj(e
hmx0)

φj Λ(ehφj)︸ ︷︷ ︸
=0

= 0.

(4.5.13)

Therefore , we obtain the following linear system

M−1∑
l=0

λlf(cos−1(eh(l+m)x0)) = −f(cos−1(eh(M+m)x0)). (4.5.14)

By having λl and using the Prony polynomial, the coefficients cj can be calculated
by the following system

f(cos−1(ehlx0)) =
M∑
j=1

cj(cos(cos−1(ehlx0)))
φj , l = 0, ..., 2M − 1. (4.5.15)
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Example 4.5.2 We consider f(x) as a Gaussian expansion of the form

f(x) =
M∑
j=1

cje
φjx

2

. (4.5.16)

Here we take G(x) = ex
2

for x ∈ (1,∞), thus G−1(x) =
√

lnx. Then the expan-
sion (4.5.16) can be reconstructed using 2M sampling values f(

√
ln(x0ehl)), l =

0, ..., 2M − 1.

The Prony polynomial has the form (4.5.4) , therefore we have the following
linear system

M∑
l=0

λlf(
√

ln(eh(l+m)x0)) =
M∑
l=0

λl

M∑
j=1

cje
φj(
√

ln(eh(l+m)x0)2

=
M∑
l=0

λl

M∑
j=1

cje
ln(eh(l+m)x0 )φj

=
M∑
j=1

cj(e
hmx0)

φj

M∑
l=0

λle
hφj l

=
M∑
j=1

cj(e
hmx0)

φj Λ(ehφj)︸ ︷︷ ︸
=0

= 0.

(4.5.17)

Therefore , we obtain the following linear system

M−1∑
l=0

λlf(
√

ln(eh(l+m)x0)) = −f(
√

ln(eh(M+m)x0)). (4.5.18)

By having λl and using the Prony polynomial, the coefficients cj can be calculated
by the following system

f(
√

ln(ehlx0)) =
M∑
k=0

cje
φj(
√

ln(ehlx0))2 , l = 0, ..., 2M − 1. (4.5.19)
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Algorithm 8 Reconstruction of Expansions Using Variable Substitutions (4.5.1).

Input:

• Number of terms M.

• Sampling values f(G−1(x0e
hl)), l = 0, ..., 2M − 1.

• Choose sampling size h such that hφj ∈ (−π, π],∀j ∈ {1, ...,M}.

Calculation:

• Solve the inhomogeneous linear system

Hλ = −F ,

where H = (f(G−1(eh(l+m)x0)))
M−1
l,m=0 is a Hankel matrix, λ = (λl)

M−1
l=0 and

F = (f(G−1(eh(M+m)x0)))
M−1
m=0 .

• Find all the zeros zj := ehφj , j = 1, ...,M of the polynomial

Λ(z) =
M∑
l=1

λlz
l

and calculate φj from zj for j = 1, ...,M .

• Find the unknown coefficients cj, j = 1, ...,M by solving the linear system

f(G−1(ehlx0)) =
M∑
j=1

cj(G
−1(ehlx0))

φj , l = 0, ..., 2M − 1.

Output:

• φj and cj, j = 1, ...,M .

4.6 Reconstruction of Expansions Using Polyno-

mials of Differential Operators

In this section, we use a different method to reconstruct some expansions that we
reconstructed in the previous sections. We use a polynomial of the differential
operator to allow us to apply the generalized Prony method. We first give the
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following definition[2]:

Definition 4.6.1. Let

Pn(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0 (4.6.1)

be a polynomial of real variable x of degree n, where a0, a1, ..., a0 are real constants.
Then we define

Pn(D) = anD
n + an−1D

n−1 + ...+ a1D + a0, (4.6.2)

where D = d
dx

, as a polynomial of differential operator D of degree n.

4.6.1 Prony Method for Exponential Sums Using the Poly-
nomial of Differential Operators

Let us consider the polynomial of differential operator with

L = Pn(D). (4.6.3)

We observe that

Leφx = Pn(D)eφx = P (
d

dx
)eφx

=

(
an

dn

dxn
+ an−1

dn−1

dxn−1
+ ...+ a1D + a0

)
eφx

=

(
anφ

n + an−1φ
n−1 + ...+ a1φ+ a0

)
eφx

= Pn(φ)eφx.

(4.6.4)

Then the operator L defined in (4.6.3) possesses the set {Pn(φ), n ∈ N} of the dif-
ferent eigenvalues with corresponding eigenfunctions exφ. We want to reconstruct
the sparse sum of exponentials using the operator L of the form

f(x) =
M∑
j=1

cje
xφj (4.6.5)

The generalized Prony method can be applied to reconstruct the expansion (4.6.5)
using the operator L with , F (f) := f(x0) and 2M sampling value as follow:

L0f =
M∑
j=1

cj(Pn(φj))
0e(φjx0)

L1f =
M∑
j=1

cj(Pn(φj))
1e(φjx0)
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L2f =
M∑
j=1

cj(Pn(φj))
2e(φjx0)

.................................................

L2M−1f =
M∑
j=1

cj(Pn(φj))
2M−1e(φjx0).

(4.6.6)

Let us now consider the Prony polynomial

Λ(z) =
M∏
j=1

(z − Pn(φj)) =
M∑
k=0

λkz
k (4.6.7)

where λk, k = 1, ...,M are the coefficients of the monomial representation (4.6.7)
with λM = 1.

M∑
k=0

λkF (Lk+mf) =
M∑
k=0

λkF

( M∑
j=1

cj(Pn(φj))
k+meφjx0

)

=
M∑
j=1

cj(Pn(φj))
m

( M∑
k=0

λk(Pn(φj))
k

)
F (eφjx0)

=
M∑
j=1

cj(Pn(φj))
m Λ(Pn(φj))︸ ︷︷ ︸

=0

F (eφjx0) = 0, k = 0, ...,M − 1.

(4.6.8)

Thus, we obtain the following linear system

M−1∑
k=0

λkF (Lk+mf) = −F (LM+mf), m = 0, 1, ...,M − 1. (4.6.9)

By having the coefficients of Prony polynomial λk, k = 0, ...,M , then we can
compute the coefficients cj, j = 1, ...,M of the expansion (4.6.5) by solving the
overdetermined linear system

F (Lkf)(x) =
M∑
j=1

cjF

(
(Pn(φj))

kex0φj
)
, k = 0, ..., 2M − 1. (4.6.10)

4.6.2 Reconstruction of Cosine Expansions Using Polyno-
mials of Differential Operators

Now let us consider the polynomial of the differential operator D2 as

L = Pn(D2). (4.6.11)
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Observe that

L cos(φx) = Pn(D2) cos(φx)

=

(
an(D2)n + an−1(D

2)n−1 + ...+ a1D
2 + a0

)
cos(φx)

=

(
an(−φ2)n + an−1(−φ2)n−1 + ...+ a1(−φ2) + a0

)
cos(φx)

= Pn(−φ2) cos(φx).

(4.6.12)

Then the operator L defined in (4.6.11) possesses the set {Pn(−φ2), n ∈ N}
of the different eigenvalues with corresponding eigenfunctions cos(φx). We want
to reconstruct the cosine expansion using the operator L on the expansion of the
form

f(x) =
M∑
j=1

cj cos(φjx). (4.6.13)

The generalized Prony method can be applied to reconstruct the expansion
(4.6.13) using the operator L with , F (f) := f(x0) and 2M sampling values as
follow

L0f =
M∑
j=1

cj(Pn(−φ2
j))

0 cos(φjx0)

L1f =
M∑
j=1

cj(Pn(−φ2
j))

1 cos(φjx0)

L2f =
M∑
j=1

cj(Pn(−φ2
j))

2 cos(φjx0)

....................................................

L2M−1f =
M∑
j=1

cj(Pn(−φ2
j))

2M−1 cos(φjx0).

(4.6.14)

Let us now consider the Prony polynomial

Λ(z) =
M∏
j=1

(z − Pn(−φ2
j)) =

M∑
k=0

λkz
k (4.6.15)

where λk, k = 1, ...,M are the coefficients of the monomial representation (4.6.15)
with λM = 1.
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M∑
k=0

λkF (Lk+mf) =
M∑
k=0

λkF

( M∑
j=1

cj(Pn(−φ2
j))

k+m cos(φjx0)

)

=
M∑
j=1

cj(Pn(−φ2
j))

m

( M∑
k=0

λk(Pn(−φ2
j))

k

)
F (cos(φjx0))

=
M∑
j=1

cj(Pn(−φ2
j))

m Λ(Pn(−φ2
j))︸ ︷︷ ︸

=0

F (cos(φjx0)) = 0, k = 0, ...,M − 1.

(4.6.16)

Thus, we obtain the following linear system

M−1∑
k=0

λkF (Lk+mf) = −F (LM+mf), m = 0, 1, ..., 2M − 1 (4.6.17)

By having the coefficients of Prony polynomial λk, k = 0, ...,M , then we can
compute the coefficients cj, j = 1, ...,M of the expansion (4.6.13) by solving the
overdetermined linear system

F (Lkf) =
M∑
j=1

cj(Pn(−φ2
j))

k cos(φjx0), k = 0, ..., 2M − 1, (4.6.18)

Remark. Similarly, we can reconstruct the Sine expansion

f(x) =
M∑
j=1

cj sin(φjx) (4.6.19)

by using
L sin(φx) = Pn(D2) sin(φx) = Pn(−φ2) sin(φx). (4.6.20)

Algorithm 9 Reconstruction of Cosine Expansions Using the Polynomial of Dif-
ferential Operator (4.6.13).

Input:

• Number of terms M.

• Polynomial Pn(x).

• 2M sampling values using (4.6.14).
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Calculation:

• Solve the inhomogeneous linear system

Hλ = −F ,

where H = (F (Lk+mf))M−1l,m=0 is a Hankel matrix, λ = (λk)
M−1
k=0 and F =

(F (LM+mf))M−1m=0 .

• Find all the zeros zj := Pn(−φ2
j), j = 1, ...,M of the polynomial

Λ(z) =
M∑
k=1

λkz
k

and calculate φj from zj for j = 1, ...,M .

• Find the unknown coefficients cj, j = 1, ...,M by solving the linear system

F (Lkf) =
M∑
j=1

cj(Pn(−φ2
j))

k cos(φjx0), k = 0, ..., 2M − 1.

Output:

• φj and cj, j = 1, ...,M .

4.7 Reconstruction of Gaussian Expansions Us-

ing Differential Operators

The Gaussian expansion can be also reconstructed by using certain differential
operator. We consider the Gaussian expansion of the form

f(x) =
M∑
j=1

cje
φjx

2

. (4.7.1)

Let us define our differential operator as

D =
1

x
.
d

dx
.
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Then we have

Deφjx2 =
1

x
.
d

dx
eφjx

2

= 2φje
φjx

2

. (4.7.2)

The Gaussian functions eφjx
2

are the eigenfunctions of the differential operator
D with the eigenvalues 2φj. Therefore, the expansion (4.7.1) can be reconstructed
using 2M sampling values F (Dkf), k = 0, ..., 2M − 1.

The Prony polynomial can be defined as

Λ(z) =
M∏
j=1

(z − 2φj) =
M∑
k=0

λkz
k. (4.7.3)

Thus

M∑
k=0

λkF (Dk+mf)(x0) =
M∑
k=0

λkF

( M∑
j=1

cj(2φj)
k+meφjx

2
0

)

=
M∑
j=1

cj(2φj)
m

( M∑
k=0

λk(2φj)
k

)
F (eφjx0)

=
M∑
j=1

cj(2φj)
m Λ(2φj)︸ ︷︷ ︸

=0

F (eφjx0) = 0.

(4.7.4)

By having the coefficients of Prony polynomial λk, k = 0, ...,M , then we can
compute the coefficients cj, j = 1, ...,M of the expansion (4.7.1) by solving the
overdetermined linear system

F (Dkf) =
M∑
j=1

cj(2φj)
keφjx0 , k = 0, ..., 2M − 1. (4.7.5)

4.8 Reconstruction Expansions Using Combina-

tion of Shift and Dilation Operators

There are some expansions that need a special operator for reconstruction. Let us
consider the expansion of the following form

f(x) =
M∑
j=1

cje
φj
x , x 6= 0. (4.8.1)

Now, we define our new operator as

Shf(x) = f

(
xh

x+ h

)
. (4.8.2)
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Then we have

(Sheφ(
1
.
))(x) = e

φ( 1
xh
x+h

)

= eφ(
x+h
xh

) = e
φ
h e

φ
x . (4.8.3)

We observe that the functions e
φj
x are the eigenfunctions of the differential op-

erator Sh with the eigenvalues e
φ
h . Therefore, the expansion (4.8.1) can be recon-

structed from 2M sampling values f( x0h
kx0+h

), k = 0, ..., 2M − 1, where x0 ∈ R\{0}
is an arbitrary real number.

The Prony polynomial can be defined as

Λ(z) =
M∏
j=1

(z − e
φj
h ) =

M∑
k=0

λkz
k. (4.8.4)

Observe that

M∑
k=0

λkf

(
x0h

x0(k +m) + h

)
=

M∑
k=0

λk

M∑
j=1

e
φj(

k+m
h

+ 1
x0

)

=
M∑
j=1

cje
φj(

mx0+h
x0h

)
M∑
k=0

λke
φjk

h

=
M∑
j=1

cje
φj(

mx0+h
x0h

)
Λ(e

φj
h )︸ ︷︷ ︸

=0

= 0, m = 0, ...,M − 1.

(4.8.5)

Thus, we obtain the following linear system

M−1∑
k=0

λkf

(
x0h

x0(k +m) + h

)
= −f

(
x0h

x0(k +M) + h

)
. (4.8.6)

As usual, solving the system (4.8.6) provides us the coefficients λk of the Prony
polynomial Λ(z) and therefore all the zeros can be extracted.

Finally, the coefficients cj of the expansion (4.8.1) can be obtained by solving
the linear system

f

(
x0h

kx0 + h

)
=

M∑
j=1

cje
φj(kx0+h)

x0h , k = 0, ..., 2M − 1. (4.8.7)
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Algorithm 10 Reconstruction Expansions of the form (4.8.1) Using Combination
of Shift and Dilation Operators.
Input:

• Number of terms M.

• Sampling values f( x0h
kx0+h

), k = 0, ..., 2M − 1.

• Choose sampling size h such that
φj
h
∈ (−π, π],∀j ∈ {1, ...,M}. Calcula-

tion:

• Solve the inhomogeneous linear system

Hλ = −F ,

where H =
(
f( x0h

x0(k+m)+h
)
)M−1
l,m=0

is a Hankel matrix, λ = (λk)
M−1
k=0 and F =(

f( x0h
x0(k+M)+h

)
)M−1
k=0

.

• Find all the zeros zj := e
φj
h , j = 1, ...,M of the polynomial

Λ(z) =
M∑
k=1

λlz
k

and calculate φj from zj for j = 1, ...,M .

• Find the unknown coefficients cj, j = 1, ...,M by solving the linear system

f

(
x0h

kx0 + h

)
=

M∑
j=1

cje
φj(kx0+h)

x0h , k = 0, ..., 2M − 1.

Output:

• φj and cj, j = 1, ...,M .

4.9 Numerical Experiments

In this section we proceed to illustrate our methods in the previous sections to
recover the parameters with some simple examples.

Example 4.9.1. Our first test is to recover the parameters of the signal with
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three components

f(x) =
3∑
j=1

cje
ixφj , (4.9.1)

where the parameters of (4.9.1) are given in the following table

j = 1 j = 2 j = 3

cj 3.5000 -2.8000 5.7500
φj 0.8590 2.5590 2.7860

Table 4.1: Parameters of the function f(x) in (4.9.1) .

By computing the STFT in (4.1.5) to the signal in (4.9.1), we have

STFT (ω, 0) = c1e
− 1

2
(φ1−ω)2 + c2e

− 1
2
(φ2−ω)2 + c3e

− 1
2
(φ3−ω)2 . (4.9.2)

The Table (4.2) shows the absolute reconstruction error |cj − c∗j | and |φj − φ∗j |
where c∗j and φ∗j are reconstructed parameters and frequencies respectively.

j cj φj |φj − φ∗j | |φj − φ∗j |
1 3.5000 -2.5590 8.4377.10−15 6.6613.10−16

2 -2.8000 0.8590 1.0627.10−11 4.2011.10−13

3 5.7500 2.7860 1.0617.10−11 2.2249.10−13

Table 4.2: Parameters of the function f(x) in (4.9.1) and approximate errors using
6 short time Fourier sampling values with h = 0.5 .

.
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Figure 4.1: The signal f(x) in (4.9.1) and the three components f1(x), f2(x), and
f3(x).

.

Example 4.9.2. We test our method on signal of the form (4.3.1) with three
components

f(x) =
3∑
j=1

cj cos(φjx), (4.9.3)

where the parameters of (4.9.3) are given in the following table

j = 1 j = 2 j = 3

cj 0.5000 0.2500 1.000
φj 1.0000 3.0000 4.0000

Table 4.3: Parameters of the function f(x) in (4.9.3).

By computing STFT in (4.3.4) to the signal in (4.9.3), we obtain

STFT (ω, 0) = c1
(
e−

1
2
(φ1−ω)2 + e−

1
2
(φ1+ω)2

)
+ c2

(
e−

1
2
(φ2−ω)2 + e−

1
2
(φ2+ω)2

)
+ c3

(
e−

1
2
(φ3−ω)2 + e−

1
2
(φ3+ω)2

)
.

(4.9.4)

Similarly, as example (4.9.2) the error can be shown in the table (4.4)
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Figure 4.2: Components of the signal f(x) in (4.9.1) using short time Fourier
sampling values.

j cj φj |cj − c∗j | |φj − φ∗j |
1 0.5000 1.0000 3.7970.10−12 5.2824.10−13

2 0.2500 3.0000 5.0987.10−14 4.5652.10−13

3 1.0000 4.0000 5.8065.10−14 1.4211.10−14

Table 4.4: Parameters of the function f(x) in (4.9.3) and approximate errors using
12 sampling values with h = 0.5.

Now, we reconstruct the parameters cj and φj, j = 1, 2, 3 in example (4.9.3)
using the polynomial of differential operator shown in (4.6.2) with P2(x) = 3x2 −
2x+ 12, then we have the following result

j cj φj |cj − c∗j | |φj − φ∗j |
1 0.5000 1.0000 1.4539.10−09 4.8850.10−14

2 0.2500 3.0000 8.1046.10−15 5.9064.10−14

3 1.0000 4.0000 4.6629.10−15 8.8818.10−16

Table 4.5: Parameters of the function f(x) in (4.9.3) and approximate errors using
12 sampling values as in (4.6.14).

Example 4.9.3. We consider the recovery of the expansion

f(x) =
M∑
j=1

cj(G(x))φj



CHAPTER 4. GENERALIZATION OF PRONY METHOD 68

0 1 2 3 4 5 6

Time

-5

0

5

F
re

q
u

e
n

c
y

f(x)

0 1 2 3 4 5 6

Time

-5

0

5

F
re

q
u

e
n

c
y

f1(x)

0 1 2 3 4 5 6

Time

-0.5

0

0.5

F
re

q
u

e
n

c
y

f2(x)

0 1 2 3 4 5 6

Time

-2

0

2

F
re

q
u

e
n

c
y

f3(x)

Figure 4.3: The signal f(x) in (4.9.3) and the three components f1(x), f2(x), and
f3(x).

.

0 1 2 3 4 5 6

Time

-5

0

5

F
re

q
u

e
n

c
y

f1(x)

0 1 2 3 4 5 6

Time

-0.5

0

0.5

F
re

q
u

e
n

c
y

f2(x)

0 1 2 3 4 5 6

Time

-2

0

2

F
re

q
u

e
n

c
y

f3(x)

Figure 4.4: Components of the signal f(x) in (4.9.3) using short time Fourier
sampling values.

with M = 5 and G(x) = ex
2

i.e

f(x) =
5∑
j=1

cje
φjx

2

, (4.9.5)

where the parameters cj and φj, j = 1, ..., 5 are given by

j = 1 j = 2 j = 3 j = 4 j = 5

cj 0.5456 -1.7865 2.4542 -0.2139 4.6754
φj 0.2556 0.8654 2.5463 3.5000 4.3643

Table 4.6: Parameters of the function f(x) in (4.9.5) .
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j cj φj |cj − c∗j | |φj − φ∗j |
1 0.5456 0.2556 8.3373.10−08 9.0436.10−08

2 -1.7865 0.8654 1.4495.10−07 3.7487.10−08

3 2.4542 2.5463 5.0929.10−09 1.8464.10−09

4 -0.2139 3.5000 1.5335.10−09 1.9291.10−09

5 4.6754 4.3643 2.8431.10−11 8.3222.10−13

Table 4.7: Parameters of the function f(x) in (4.9.5) and approximate errors using
10 sampling values with h = 0.5.

Example 4.9.4. We consider the recovery of the expansion

f(x) =
6∑
j=1

e
φj
x , (4.9.6)

where the parameters cj and φj, j = 1, ...6 are given in the table (4.8)

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

cj 1.5641 4.2342 -0.2342 3.6300 1.7864 5.2020
φj 0.1213 1.3242 2.2376 3.6811 3.8942 4.4321

Table 4.8: Parameters of the function f(x) in (4.9.6).

Using the method explained in (4.8), we have

j cj φj |cj − c∗j | |φj − φ∗j |
1 1.5641 0.1213 2.8920.10−05 1.0497.10−05

2 4.2342 1.3242 7.7826e.10−06 9.4657.10−06

3 -0.2342 2.2376 3.4489.10−05 6.2593.10−05

4 3.6300 3.6811 4.3056.10−05 1.8754.10−06

5 1.7864 3.8942 4.4888.10−05 2.2554.10−06

6 5.2020 4.4321 2.2087.10−07 3.7128.10−09

Table 4.9: Parameters of the function f(x) in (4.9.6) and approximate errors using
12 sampling values with h = 3.



Chapter 5

Expansions with Two Models

In signal processing it is possible to have signals that contain different models.
In the previous chapter, we discussed the reconstruction expansions of signals
that follow one model. In this chapter, we study the recovery methods for linear
combinations of two different models. In sections (5.1) and (5.2) we consider the
signals in combination of sine and cosine models using two different methods. In
section (5.3), we use even and odd properties of the functions to reconstruct the
signals of two models.

5.1 Reconstruction of Linear Combinations of

Sine and Cosine Expansions Using the Poly-

nomials of Differential Operators

Let us consider the expansion with the following form

f(x) =
M∑
j=1

cj cos(φjx) +
M∑
j=1

cj sin(φjx) =
M∑
j=1

cj
(

cos(φjx) + sin(φjx)
)
. (5.1.1)

Let Pn be a polynomial and L be the polynomial of the differential operator D2

defined in (4.6.2), that is,
L = Pn(D2). (5.1.2)

Observe that

L(cos(φx) + sin(φx)) = Pn(D2)(cos(φx) + sin(φx))

= Pn(−φ2)(cos(φx) + sin(φx)).
(5.1.3)

Then the operator L defined in (5.1.2) possesses the set {Pn(−φ2
j), n ∈ N} of

the different eigenvalues with corresponding eigenfunctions cos(φjx) + sin(φjx).

70
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The generalized Prony method can applied to reconstruct the expansion (5.1.1)using
the operator L with , F (f) := f(x0) and 2M sampling values as follow

L0f =
M∑
j=1

cj(Pn(−φ2
j))

0
(

cos(φjx0) + sin(φjx0)
)

L1f =
M∑
j=1

cj(Pn(−φ2
j))

1
(

cos(φjx0) + sin(φjx0)
)

L2f =
M∑
j=1

cj(Pn(−φ2
j))

2
(

cos(φjx0) + sin(φjx0)
)

....................................................

L2M−1f =
M∑
j=1

cj(Pn(−φ2
j))

2M−1( cos(φjx0) + sin(φjx0)
)
.

(5.1.4)

Let us now consider the Prony polynomial

Λ(z) =
M∏
j=1

(z − Pn(−φ2
j)) =

M∑
k=0

λkz
k, (5.1.5)

where λk, k = 1, ...,M are the coefficients of the monomial representation (5.1.5)
with λM = 1.

We observe that

M∑
k=0

λkF (Lk+mf) =
M∑
k=0

λkF

( M∑
j=1

cj(Pn(−φ2
j))

k+m(cos(φjx0) + sin(φjx0)

)

=
M∑
j=1

cj(Pn(−φ2
j))

m

( M∑
k=0

λk(Pn(−φ2
j))

k

)
F
(

cos(φjx0) + sin(φjx0)
)

=
M∑
j=1

cj(Pn(−φ2
j))

m Λ(Pn(−φ2
j))︸ ︷︷ ︸

=0

F
(

cos(φjx0) + sin(φjx0)
)

= 0

, k = 0, ...,M − 1.

(5.1.6)

Thus, we obtain the following linear system
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M−1∑
k=0

λkF (Lk+mf) = −F (LM+mf), m = 0, 1, ...,M − 1. (5.1.7)

By having the coefficients of Prony polynomial λk, k = 0, ...,M , then we can
compute the coefficients cj, j = 1, ...,M of the expansion (5.1.1) by solving the
overdetermined linear system

F (Lkf) =
M∑
j=1

cj(Pn(−φ2
j))

k(cos(φjx0) + sin(φjx0), k = 0, ..., 2M − 1. (5.1.8)

The coefficient matrix H :=
(
F (Lk+m)

)M−1,M−1
k=0,m=0

is an invertible Hankel matrix,

since it can be written as

H = VM(Pn(−φ2
j))diag(cj)diag

(
F (cos(x0φj) + sin(x0φj)

)
VM(Pn(−φ2

j))
T (5.1.9)

with VM :=
(
Pn(−φ2

j)
k
)M−1
k=0

.

Algorithm 11 Reconstruction of Linear Combinations of Sine and Cosine Ex-
pansions Using the Polynomials of Differential Operators (5.1.1).

Input:

• Number of terms M.

• Polynomial Pn(x).

• 2M sampling values using (5.1.4).

Calculation:

• Solve the inhomogeneous linear system

Hλ = −F ,

where H = (F (Lk+mf))M−1l,m=0 is a Hankel matrix, λ = (λk)
M−1
k=0 and F =

(F (LM+mf))M−1m=0 .

• Find all the zeros zj := Pn(−φ2
j), j = 1, ...,M of the polynomial

Λ(z) =
M∑
k=1

λkz
k,

and calculate φj from zj for j = 1, ...,M .

• Find the unknown coefficients cj, j = 1, ...,M by solving the linear system
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F (Lkf) =
M∑
j=1

cj(Pn(−φ2
j))

k
(

cos(φjx0) + sin(φjx0)
)
, k = 0, ..., 2M − 1.

Output:

• φj and cj, j = 1, ...,M .

5.2 Reconstruction of Linear Combinations of

Sine and Cosine Expansions Using Cheby-

shev Polynomials

Let us consider expansions of the form

f(x) =
M∑
j=1

cj cos(φjx) +
M∑
j=1

dj sin(βjx). (5.2.1)

By using the symmetric shift operator defined in (2.6.1), we have

(Sh,−h) cos(φx) =
1

2

(
cos(φ(x+ h)) + cos(φ(x− h))

)
= cos(φh) cos(φx).

(5.2.2)

Similarly, we apply the symmetric shift operator on sin(βx), and get

(Sh,−h) sin(βx) =
1

2

(
sin(β(x+ h)) + sin(β(x− h))

)
= cos(βh) sin(βx).

(5.2.3)

Let us now define the Prony polynomial as follows:

Λ(z) =
M∏
j=1

(z − cos(hφj))
M∏
j=1

(z − cos(hβj)) . (5.2.4)

Therefore the polynomial (5.2.4) can be written in terms of Chebyshev polynomial
as
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Λ(z) =
2M∑
k=0

λkTk(z), (5.2.5)

where Tk(z) := cos(k cos−1(z)). We note that the leading coefficient of the Cheby-
shev polynomial Tk(z) is 2k−1, then by the definition of the Prony polynomial Λ,
we have λM = 21−M .

Observe that

2M∑
k=0

λk

(
Skh,−kh)Smh,−mhf(x0)

)

=
1

2

2M∑
k=0

λk

(
f(x0 + (m+ k)h) + f(x0 − (m+ k)h) + f(x0 + (m− k)h) + f(x0 − (m− k)h))

)

=
1

2

2M∑
k=0

λk

[ M∑
j=1

2cj

(
cos(φj(x0 +mh)) + cos(φj(x0 −mh))

)
cos(φjkh)

]

+
1

2

2M∑
k=0

λk

[ M∑
j=1

2dj

(
sin(βj(x0 +mh)) + sin((βj(x0 −mh))

)
cos(βjkh)

]

=
M∑
j=1

cj

(
cos(φj(x0 +mh)) + cos(φj(x0 −mh))

) 2M∑
k=0

λk cos(φjkh)

+
M∑
j=1

dj

(
sin(βj(x0 +mh)) + sin((βj(x0 −mh))

) 2M∑
k=0

λk cos βj(kh)

=
M∑
j=1

cj

(
cos(φj(x0 +mh)) + cos(φj(x0 −mh))

) 2M∑
k=0

λkTk(cos(φjh))︸ ︷︷ ︸
=0

+
M∑
j=1

dj

(
sin(βj(x0 +mh)) + sin((βj(x0 −mh))

) 2M∑
k=0

λkTk(cos(βjh))︸ ︷︷ ︸
=0

= 0.

(5.2.6)

Here we choose x0 6= 0, more precisely we have βjx0 6= (2k+1)π
2

and sin(βjx0) 6=
0 for k ∈ Z and j = 1, ...,M . Therefore, we need to take all values of Slh,−lhSmh,−mhf(x0).
Then we have the following linear system
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2M−1∑
k=0

λk

(
f(x0 + (m+ k)h) + f(x0 − (m+ k)h) + f(x0 + (m− k)h) + f(x0 − (m− k)h)

)
= −21−M

(
f(x0 + (2M + k)h) + f(x0 − (2M + k)h)

+ f(x0 + (2M − k)h) + f(x0 − (2M − k)h)

)
.

(5.2.7)

As in the classical Prony method, the coefficient matrix can be factorized as
two Vandermonde Block matrices and diagonal block matrix

H : =

(
f(x0 + (m+ k)h) + f(x0 − (m+ k)h) + f(x0 + (m− k)h) + f(x0 − (m− k)h)

)2M−1

m,k=0

= 4

( M∑
j=1

cj cos(φjx0) cos(φjmh) cos(φjkh) +
M∑
j=1

dj sin(βjx0) cos(βjmh) cos(βjkh)

)2M−1

m,k=0

= 4Vhdiag
(
cj cos(φjx0) + dj sin(βjx0

)M
j=1
V T = 4VhDV

T
h

(5.2.8)

the Vandermonde Block matrix can be written as

Vh =

(
A 0
0 B

)
, (5.2.9)

where

A =


1 1 . . . 1

T1(cosφ1h) T1(cosφ2h) . . . T1(cosφMh)
...

... . . .
...

T2M−1(cosφ1h) T2M−1(cosφ2h) . . . T2M−1(cosφMh)

 (5.2.10)

and

B =


1 1 . . . 1

T1(cos β1h) T1(cos β2h) . . . T1(cos βMh)
...

... . . .
...

T2M−1(cos β1h) T2M−1(cos β2h) . . . T2M−1(cos βMh)

 (5.2.11)
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and diagonal block matrix can be written as

D =


c1 cos(φ1x0)

. . . cM cos(φMx0)
0

0
d1 sin(β1x0)

. . . dM sin(βMx0)

 .
(5.2.12)

By having λk and using the Prony polynomial, the coefficients cj can be cal-
culated by the following system

f(x0 + hl) =
M∑
j=1

cj cos(φj(x0 + hl)) +
M∑
j=1

dj sin(βj(x0 + hl)), l = 0, ..., 4M − 1.

(5.2.13)

Algorithm 12 Reconstruction of Linear Combination of Sine and Cosine Expan-
sions Using Chebyshev Polynomial (5.2.1).

Input:

• Number of terms M.

• 4M sampling values.

Calculation:

• Solve the inhomogeneous linear system

Hλ = −F ,

whereH =

(
(f(x0+(m+k)h)+f(x0−(m+k)h)+f(x0+(m−k)h)+f(x0−

(m−k)h))

)2M−1

l,m=0

is a Hankel matrix, λ = (λk)
2M−1
k=0 and F =

(
21−M

(
f(x0+

(2M + k)h) + f(x0 − (2M + k)h) + f(x0 + (2M − k)h) + f(x0 − (2M −

k)h)

))2M−1

m=0

.

• Find all the zeros zj for j = 1, ..., 2M of the polynomial

Λ(z) =
2M∑
k=0

λkTk(z).
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• Find all frequencies φj and βj for j = 1, ...,M using{
cos−1(z1)

h
,
cos−1(z2)

h
, . . . ,

cos−1(z2M)

h

}
.

• Find the unknown coefficients cj and dj, j = 1, ...,M by solving the linear
system

f(x0+hl) =
M∑
j=1

cj cos(φj(x0+hl))+
M∑
j=1

dj sin(βj(x0+hl)), l = 0, ..., 4M−1.

Output:

• φj and cj, j = 1, ...,M .

5.3 Reconstruction of Expansions of Linear Com-

binations of Two Models Using Odd and Even

Properties

In this section, we study signals that have odd and even models in the form

f(x) =
M∑
j=1

cjG(x) +
M∑
j=1

djQ(x), (5.3.1)

where G(x) is an odd signal and Q(x) is an even signal.

Let us consider expansion of the form

f(x) =
M∑
j=1

cj cos(φjx) +
M∑
j=1

dj sin(βjx). (5.3.2)

We want to recover the parameters cj, dj, φj,and βj.

Note that our expansion is the combination of even and odd models. First we
calculate f(−x)

f(−x) =
M∑
j=1

cj cos(φjx)−
M∑
j=1

dj sin(βjx). (5.3.3)
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By adding (5.3.2) and (5.3.3) we can get

P (x) =
f(x) + f(−x)

2
=

M∑
j=1

cj cos(φjx). (5.3.4)

The coefficients cj and the frequencies φj in (5.3.4) can be recovered by 2M − 1
sampling values P (lh), l = 0, 1, ..., 2M − 1. see section (3.5).

By subtracting (5.3.2) and (5.3.3) we can get

Q(x) =
f(x)− f(−x)

2
=

M∑
j=1

dj sin(βjx). (5.3.5)

Similarly, the coefficients dj and the frequencies βj can be reconstructed by using
Q(lh), l = 0, 1, ..., 2M − 1, see also section (3.5).

Remark. Similarly, the signal models in the form

f(x) =
M∑
j=1

cj cos(φjx) +
M∑
j=1

dj tan(φjx) (5.3.6)

and

f(x) =
M∑
j=1

cj cos(φjx) +
M∑
j=1

djxe
βjx (5.3.7)

can be also reconstructed since they have odd and even models structures.

5.4 Numerical Experiments

Example 5.4.1. We test our method by given the signal with three components

f(x) =
3∑
j=1

cj
(

cos(φjx) + sin(φjx)
)

(5.4.1)

where the parameters of (5.4.1) are given in the following table

j = 1 j = 2 j = 3

cj -2.4321 0.4532 8.3250
φj 2.7876 5.6654 6.3041

Table 5.1: Parameters of the function f(x) in (5.4.1)
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The table (5.1) shows the absolute reconstruction error |cj − c∗j | and |φj − φ∗j |
where c∗j and φ∗j are reconstructed parameters and frequencies respectively.

j cj φj |φj − φ∗j | |φj − φ∗j |
1 -2.4321 2.7876 1.8158.10−09 2.2204.10−15

2 0.4532 5.6654 4.1389.10−13 2.9843.10−13

3 8.3250 6.30041 1.7231.10−13 3.5527.10−15

Table 5.2: Parameters of the function f(x) in (5.4.1) and approximate errors using
6 sampling values with x0 = 1 and Pn(x) = 2x2 + 3x− 1.

Example 5.4.2. Our second example is to test the method in the form (5.2.1)

f(x) =
2∑
j=1

cj cos(φjx) +
2∑
j=1

dj sin(βjx) (5.4.2)

where the parameters of (5.4.2) are given in the following table

j cj dj φj βj

1 -2.6570 -0.5643 0.7865 4.2132
2 3.5643 4.4321 3.5432 5.1232

Table 5.3: Parameters of the function f(x) in (5.4.2)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-10

-8

-6

-4

-2

0

2

4

6

8

10

12

f(x)

8 sampling points

Figure 5.1: The signal f(x) in (5.4.2) with 8 sampling values.

The table (5.4) shows the absolute reconstruction error |cj − c∗j |, |dj − d∗j |,
|φj − φ∗j | and |βj − β∗j | where c∗j , d

∗
j , φ

∗
j and β∗j are reconstructed parameters and

frequencies respectively.
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j |cj − c∗j | |dj − d∗j | |φj − φ∗j | |βj − β∗j |
1 3.1486.10−13 1.5464.10−12 3.1086.10−15 6.4659.10−13

2 1.4211.10−12 7.1765.10−13 4.1744.10−14 1.7764.10−14

Table 5.4: Approximate errors using 8 sampling values with x0 = 1 and h = 0.4
of the function (5.4.2).



Chapter 6

Fixing Corrupted Sampling
Values

In this chapter, we consider a situation that some of the sampling values are in-
correct, which could happen in real-world applications. For the Signal Recovery
Problem in terms of sparse expansions, when the sampling values are selected, it
could happen that some of the values are corrupted due to certain problems in
data acquisition or data transmission. If we use any corrupted sampling value in
the Prony method or generalized Prony methods, the outcome would be unpre-
dictable, because a small error in a sampling value would result in some dramatic
change in computation.

In order to recover the original signals, we can only rely on those correct sam-
pling values. However, we may not know what sampling values are correct. Since
those incorrect sampling values cannot participate in any computation step, we
need some extra sampling values to overcome our loss on those corrupted sam-
pling values. Thus for this problem, we require over-sampled data points that
could provide us sufficient information to find a solution. How to detect and fix
those incorrect sampling values? In this chapter, we will use several methods to
study this problem.

6.1 Reduction Method

Problem A (Ideal Case): To recover a sparse expansion system with M terms as
follows,

f(x) =
M∑
j=1

cje
φjx, (6.1.1)

81
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we are given a sequence of equidistance sampling values S := {f(nh)}2M+k
n=1 for

some fixed step size h. It is also known that there are k sampling values in S that
are incorrect, but we do not know their locations. How to recover this system?

First we consider the simplest case for Problem A, that is when k = 1.

Problem A1 : To recover a sparse expansion system with M terms as follows,

f(x) =
M∑
j=1

cje
φjx,

we have are given a sequence of equidistance sampling values S := {f(nh)}2M+1
n=1

for some fixed step size h. It is also known that there is exact 1 sampling value
in S that is incorrect, but we do not know its location. How to recover this system?

Solution: To simplify the notation slightly, we denote S as {fn}2M+1
n=1 . Based on

the standard Prony Method, we need to solve the following system:

f1 f2 f3 · · · fM fM+1

f2 f3 f4 · · · fM+1 fM+2

f3 f4 f5 · · · fM+2 fM+3
... · · · ...

fM fM+1 fM+2 · · · f2M−1 f2M
fM+1 fM+2 fM+3 · · · f2M f2M+1

f1 f3 f5 · · · f2M−1 f2M+1





p1
p2
p3
...

pM−1
pM
1


= 0, (6.1.2)

where p1, p2, . . . , pM are unknowns (that are the coefficients of the Prony polyno-
mial without the leading coefficient), and one of the coefficients in {f1, f2, . . . , f2M+1}
is incorrect, but we do not know which one. Since the incorrect coefficient could
be any number in {f1, f2, . . . , f2M+1}, there are total 2M + 1 different cases to
be considered. Here let us use τ to denote the subscript that corresponds to the
incorrect coefficient.

Step 1 : Claim that there exists one correct equation for a fixed τ .

Here when we say the correct equation, we mean that all the coefficients of this
equation are correct, that is, there subscripts are different from τ . We consider
the following cases:

• Case S1.1 : When τ is an even integer.
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In this case, we simply select the last equation, that is,

f1p1 + f3p2 + f5p3 + · · ·+ f2M−1pM + f2M+1 = 0. (6.1.3)

• Case S1.2 : When τ is an odd integer.

Since τ is an odd integer, we can write it as: τ = 2σ + 1 with 0 ≤ σ ≤ M .
Now we rewrite the last equation that contains f2σ+1 as follows,

f1p1 + f3p2 + · · ·+ f2σ+1pσ+1 + · · ·+ f2M−1pM + f2M+1 = 0. (6.1.4)

Next we select the (σ + 1)-th equation from (6.1.2), and get

fσ+1p1 + · · ·+ f2σ+1pσ+1 + · · ·+ fM+σpM + fM+σ+1 = 0. (6.1.5)

Now we just subtract (6.1.4) from (6.1.5), and get

(fσ+1 − f1)p1 + · · ·+ (f2σ − f2σ−1)pσ + (f2σ+2 − f2σ+3)pσ+2 + · · ·
+ (fM+σ+1 − f2M+1) = 0.

(6.1.6)

Now we write a combined version for the correct equation as follows,

ξ1p1 + ξ2p2 + · · ·+ ξMpM + ξM+1 = 0, (6.1.7)

where

ξi =

{
fσ+i − f2i−1, for τ even and i = 1, 2, . . . ,M + 1

f2i−1, for τ odd and i = 1, 2, . . . ,M + 1.
(6.1.8)

Step 2 : Express one of the variables in terms of other variables.

From (6.1.7) in Step 1, first we assume that ξM 6= 0 (we will consider the case
that ξM = 0 later using another method). From (6.1.7), we get

pM = −ξM+1

ξM
− ξ1
ξM

p1 − · · · −
ξM−1
ξM

pM−1. (6.1.9)

Step 3 : Express those contaminated terms in terms of good terms.

First we consider the case that τ = M + 1. In this case, every given equa-
tion (except the last one if M is odd) has a term containing fM+1. We move
those terms to the left-hand side of their corresponding equations, and place all
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the good terms (that means their coefficients are all correct) at the right-hand side.

For the first equation, we write it as

fM+1 = −f1p1 − f2p2 − · · · − fMpM . (6.1.10)

For the last such equation, we write it as

fM+1p1 = −f2M+1 − fM+2p2 − · · · − f2MpM . (6.1.11)

For the equations from (2) to (M), we have a general form for them,

fM+1pi = −f2M−i+2 − fM−i+2p1 − · · · − fMpi−1 − fM+2pi+1

− · · · − f2M−i+1pM , for 2 ≤ i ≤M.
(6.1.12)

Since the given value for fM+1 is incorrect, we need to find its correct value. Thus
we treat fM+1 as an unknown in equations (6.1.10) − (6.1.12). Therefore our
goal is to find the values of (M + 1) unknowns p1, . . . , pM , fM+1 from the system
(6.1.10)− (6.1.12) with the help of (6.1.9).

Step 4 : Reduction: Write pM−1 in terms of p1, p2, . . . , pM−2.

We start with a simplified version of (6.1.9), that is,

pM = ηM0 + ηM1 p1 + · · ·+ ηMM−1pM−1, (6.1.13)

where

ηMi = − ξi
ξM

for 1 ≤ i ≤M − 1, and ηM0 = −ξM+1

ξM
. (6.1.14)

With (6.1.13), we can eliminate the pM -term at the right-hand side of (6.1.10),
(6.1.11) and (6.1.12) in this way:

After the substitution, (6.1.10) becomes

fM+1 = α0
0 + α0

1p1 + α0
2p2 + · · ·+ α0

M−1pM−1, (6.1.15)

where

α0
j = −fj − fMηMj , for 1 ≤ j ≤M − 1; and α0

0 = −fMηM0 . (6.1.16)

Similarly, (6.1.11) becomes

fM+1p1 = α1
0 + α1

1p1 + α1
2p2 + · · ·+ α1

M−1pM−1, (6.1.17)
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where
α1
j = −fM+j − f2MηMj , for 2 ≤ j ≤M − 1, (6.1.18)

and
α1
0 = −f2M+1 − f2MηM0 and α1

1 = −f2MηM1 . (6.1.19)

For (6.1.12), we have

fM+1pi = αi0 + αi1p1 + αi2p2 + · · ·+ αiM−1pM−1, (6.1.20)

where

αij = −fM−i+j+1 − f2M−i+1 η
M
j , for 1 ≤ j (j 6= i) ≤M − 1, (6.1.21)

and

αi0 = −f2M−i+2 − f2M−i+1 η
M
0 and αii = −f2M−i+1 η

M
i . (6.1.22)

Thus we can summarize the three cases in (6.1.15), (6.1.17) and (6.1.20) in the
following general form:

fM+1pi = αi0p0 + αi1p1 + αi2p2 + · · ·+ αiM−1pM−1, for 0 ≤ i ≤M. (6.1.23)

where we assume that
p0 = 1. (6.1.24)

Now we can start the reduction process by multiplying (6.1.13) both sides by
fM+1, and get

fM+1pM = ηM0 fM+1p0 + ηM1 fM+1p1 + · · ·+ ηMM−1fM+1pM−1. (6.1.25)

With the help of (6.1.23), the right-hand side of (6.1.25) can be represented as

M−1∑
j=0

ηMj fM+1pj =
M−1∑
j=0

ηMj
[
αj0 αj1 · · · αjM−1

]


p0
p1
...

pM−1



=
[∑M−1

j=0 ηMj α
j
0,
∑M−1

j=0 ηMj α
j
1, · · ·

∑M−1
j=0 ηMj α

j
M−1

]
p0
p1
...

pM−1

 .
(6.1.26)
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From (6.1.23) for i = M , we can get the left-hand side of (6.1.25) as

fM+1pM = αM0 p0 + αM1 p1 + αM2 p2 + · · ·+ αMM−1pM−1. (6.1.27)

Combining (6.1.25)-(6.1.27), we get

βM0 p0 + βM1 p1 + βM2 p2 + · · ·+ βMM−1pM−1 = 0, (6.1.28)

where

βMj = αMj −
M−1∑
k=0

ηMk α
k
j , for 0 ≤ j ≤M − 1. (6.1.29)

If the coefficients βMj ’s are not all zero, our reduction step can get to the next
level. Let us consider the case for which we have βMM−1 6= 0. (For the case that
βMM−1 = 0, we have another method for it.) Then we can write (6.1.28) as follows,

pM−1 = ηM−10 + ηM−11 p1 + · · ·+ ηM−1M−2pM−2, (6.1.30)

where

ηM−1j = −
βMj
βMM−1

for 0 ≤ j ≤M − 2. (6.1.31)

Similarly, we can derive the following equation from (6.1.30)

pM−2 = ηM−20 + ηM−21 p1 + · · ·+ ηM−2M−3pM−3, (6.1.32)

where

ηM−2j = −
γM−1j

γM−1M−2
for 0 ≤ j ≤M − 3, (6.1.33)

with

γM−1j = αM−1j −
M−2∑
k=0

ηM−1k αkj , for 0 ≤ j ≤M − 2 (6.1.34)

and assume that γM−1M−2 6= 0. (For the case that γM−1M−2 = 0, we leave it to another
more general method. )

If we can keep doing the above reduction process again and again, eventually
we will get

p1 = η10, (6.1.35)

and we will get all the values of p2, . . . , pM , and fM+1 from the inverse process
of the reduction. �

Remark. In the reduction method above, there are some steps where we assume
certain coefficients are non-zero. But it is possible that some of those coefficients
could be zero sometimes. If that case happens, we will use the following more
general method.
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6.2 Determinant Method

In the reduction method we discussed above, there are a few cases for which some
intermediate coefficients could be zero that would cause some complexity in our
method. For this situation, we have another more general method that can cover
all the above cases.

This is a determinant-based method that is guaranteed to work all the time for
k = 1. However the above reduction method still has its own value in computation
due to two reasons: First it works most of the time; second, it is a linear method
and the computation is relatively easy.

Observe that the equation (6.1.2) can be viewed as a homogeneous equation
which always has a non-trivial solution, because the solution vector [p1, . . . , pM , 1]T

can never be zero. Thus the (M + 2) × (M + 1) matrix at the left-hand side of
(6.1.2) cannot be of full rank, that is, the determinant of any (M + 1)× (M + 1)
submatrix of this (M + 2)× (M + 1) matrix must be zero. This observation can
help us to find that fτ which is incorrect. Based on the problem description, we
notice that a solution must exist, and we just need to find the correct fτ value
that corresponds to the solution.

More specifically, we consider 2M + 1 cases where τ = 1, 2, . . . , 2M + 1. For
each case, we just remove one of the (M+2) equations and get an (M+1)×(M+1)
submatrix, and make sure that the remaining equations contain the variable fτ .
Thus when we calculate the determinant of this (M + 1) × (M + 1) submatrix,
it is a univariate polynomial of fτ . We find the real roots of this polynomial for
possible true values for fτ . Among those finitely many real values of fτ , there
must be one that corresponds to the solution. We locate it as follows.

Assume that f 0
τ is one of the possible correct values for fτ . We write the

equation (6.1.2) in the following form by skipping the last equation,



f1 f2 f3 · · · fM
f2 f3 f4 · · · fM+1

f3 f4 f5 · · · fM+2
... · · · ...

fM fM+1 fM+2 · · · f2M−1
fM+1 fM+2 fM+3 · · · f2M





p1
p2
p3
...

pM−1
pM


= −


fM+1

fM+2
...

f2M
f2M+1

 , (6.2.1)

where the value of f 0
τ is used to replace the given value of fτ at the left-hand side
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of (6.2.1). We split the equation (6.2.1) into the following two equations,


f1 f2 f3 · · · fM
f2 f3 f4 · · · fM+1

f3 f4 f5 · · · fM+2
... · · · ...

fM fM+1 fM+2 · · · f2M−1





p1
p2
p3
...

pM−1
pM


= −


fM+1

fM+2
...

f2M

 , (6.2.2)

and 
f2 f3 f4 · · · fM+1

f3 f4 f5 · · · fM+2
... · · · ...

fM fM+1 fM+2 · · · f2M−1
fM+1 fM+2 fM+3 · · · f2M





p1
p2
p3
...

pM−1
pM


= −


fM+2

...
f2M
f2M+1

 . (6.2.3)

If f 0
τ is the correct one, then the following two Hankel matrices

A1 :=


f1 f2 f3 · · · fM
f2 f3 f4 · · · fM+1

f3 f4 f5 · · · fM+2
... · · · ...

fM fM+1 fM+2 · · · f2M−1

 (6.2.4)

and

A2 :=


f2 f3 f4 · · · fM+1

f3 f4 f5 · · · fM+2
... · · · ...

fM fM+1 fM+2 · · · f2M−1
fM+1 fM+2 fM+3 · · · f2M

 (6.2.5)

must be invertible. Thus we can get the solution for (6.2.1) in the following two
expressions, 

p1
p2
p3
...

pM−1
pM


= −A−11


fM+1

fM+2
...

f2M

 (6.2.6)
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and 

p1
p2
p3
...

pM−1
pM


= −A−12


fM+2

...
f2M
f2M+1

 . (6.2.7)

Only when

A−11


fM+1

fM+2
...

f2M

 = A−12


fM+2

...
f2M
f2M+1

 , (6.2.8)

we get a potential solution for p1, . . . , pM . But we still need to verify the last
equation in (6.1.2) using the values for p1, . . . , pM from (6.2.6), that is,

f1p1 + f3p2 + f5p3 + · · ·+ f2M−1pM + f2M+1 = 0. (6.2.9)

If it is incorrect, we will go to the next possible correct value for fτ and repeat
the above verification step until we find the right value for fτ . If it is correct,
then we recover f(x) using these p1, p2, . . . , pM . After that, we evaluate f(nh)
for n = 1, 2, . . . , 2M + 1, and see if they are compatible with the given sampling
values. Here the compatibility requirement means that the two sets of sampling
values are the same except for the corrupted value fτ . If yes, we find the solution.
If not, we will go to the next possible correct value for fτ and repeat the above
verification step until we find the right value for fτ .

Remark. If k > 1, then the determinant method would result in a system of
equations with polynomials of k variables, which is very hard to solve in general.
If we can find a method that could reduce the problem of k variables to a problem
of (k − 1) variables, then we may have a chance to solve it.

6.3 Resultant Method

In this section, we will develop a method that can reduce the above k-variate
polynomial system to a (k − 1)-variate polynomial system. We start with the
case of k = 2. That is, we are given 2M + 2 sampling values: {f1, f2, . . . , f2M+2},
in which two of them are incorrect. These sampling values satisfy the following
equation
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

f1 f2 f3 · · · fM fM+1

f2 f3 f4 · · · fM+1 fM+2

f3 f4 f5 · · · fM+2 fM+3
... · · · ...

fM fM+1 fM+2 · · · f2M−1 f2M
fM+1 fM+2 fM+3 · · · f2M f2M+1

fM+2 fM+3 fM+4 · · · f2M+1 f2M+2

f1 f3 f5 · · · f2M−1 f2M+1

f2 f4 f6 · · · f2M f2M+2





p1
p2
p3
...

pM−1
pM
1


= 0, (6.3.1)

where p1, . . . , pM are the coefficients of the Prony polynomial to be determined.

Since 2 of the 2M + 2 sampling values are incorrect, we need to consider
total

(
2M+2

2

)
possible cases that two of the sampling values, say fs and ft for

1 ≤ s < t ≤ 2M + 2, are incorrect. In order to make our discussion a little easier,
we describe our method using a special case that s = M + 1 and t = M + 2 for
visualization purpose. But our method can be applied on any general case for fs
and ft.

Now we rewrite (6.3.1) with f ∗M+1 and f ∗M+2 representing the two corrupted
sampling values, that is,

f1 f2 f3 · · · fM f ∗M+1

f2 f3 f4 · · · f ∗M+1 f ∗M+2

f3 f4 f5 · · · f ∗M+2 fM+3
... · · · ...

fM f ∗M+1 f ∗M+2 · · · f2M−1 f2M
f ∗M+1 f ∗M+2 fM+3 · · · f2M f2M+1

f ∗M+2 fM+3 fM+4 · · · f2M+1 f2M+2

f1 f3 f5 · · · f2M−1 f2M+1

f2 f4 f6 · · · f2M f2M+2





p1
p2
p3
...

pM−1
pM
1


= 0. (6.3.2)
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We use Λ to denote the (M + 4)× (M + 1) matrix in (6.3.2), that is,

Λ :=



f1 f2 f3 · · · fM f ∗M+1

f2 f3 f4 · · · f ∗M+1 f ∗M+2

f3 f4 f5 · · · f ∗M+2 fM+3
... · · · ...

fM f ∗M+1 f ∗M+2 · · · f2M−1 f2M
f ∗M+1 f ∗M+2 fM+3 · · · f2M f2M+1

f ∗M+2 fM+3 fM+4 · · · f2M+1 f2M+2

f1 f3 f5 · · · f2M−1 f2M+1

f2 f4 f6 · · · f2M f2M+2


. (6.3.3)

(6.3.2) implies that Λ is not of full rank. Because if Λ is of full rank, then ΛTΛ
is invertible, and we can get the following equation from (6.3.2)

ΛTΛ



p1
p2
p3
...

pM−1
pM
1


= 0. (6.3.4)

This homogeneous equation (6.3.4) can only have the trivial solution, but the
vector [p1, . . . , pM , 1]T can never be zero, which is a contradiction. Thus, ΛTΛ is
not invertible, and we have

det(ΛTΛ) = 0 (6.3.5)

for the correct values for fs and ft, but it is not the zero polynomial.

On the other hand, ΛTΛ is a positive semi-definite matrix. Thus we always
have

det(ΛTΛ) ≥ 0. (6.3.6)

Notice that ΛTΛ is a bivariate polynomial with respect to two variables: fs and
ft. Let us use F (fs, ft) to denote this polynomial,

F (fs, ft) := det(ΛTΛ). (6.3.7)

Then (6.3.6) becomes

F (fs, ft) ≥ 0 for all fs, ft ∈ R. (6.3.8)
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Assume that f 0
s and f 0

t are the correct values for fs and ft, respectively. Then
F (f 0

s , ft) is a univariate polynomial with respect to the variable ft, and

F (f 0
s , ft) ≥ 0 for all ft ∈ R and F (f 0

s , f
0
t ) = 0. (6.3.9)

Thus F (f 0
s , ft) takes a minimum at ft = f 0

t , which is also a local minimum.
Moreover, F (f 0

s , ft) is a polynomial of even degree (otherwise, it would not have
a minimum), and it can be written as

F (f 0
s , ft) = (ft − f 0

t )2G(ft) (6.3.10)

for some polynomial G(ft). (6.3.10) implies that the polynomials F (f 0
s , ft) and

F ′(f 0
s , ft) have a common zero at ft = f 0

t . That is, the resultant of F (f 0
s , ft) and

F ′(f 0
s , ft) is zero. Hence we have

Res[F (f 0
s , ft), F

′(f 0
s , ft)] = 0. (6.3.11)

Observe that Res[F (f 0
s , ft), F

′(f 0
s , ft)] does not contain the variable ft, and we

can treat it as a polynomial of f 0
s . Next we find all the real roots of Res[F (f 0

s , ft), F
′(f 0

s , ft)]
as the possible correct values for fs. Then for each f 0

s , we can find f 0
t as a local

minimum of F (f 0
s , ft). With this pair (f 0

s , f
0
t ), we can verify if they correspond to

the solution using (6.3.2) in a similar way as in section (6.2).

6.4 Repeated Resultant Method

In this section, we will generalize the method developed in the previous section
to the general case for k > 1. Since the discussion of the general case is very
complicated, here we will use the k = 3 case to explain the main idea of this
method. We are given 2M + 3 sampling values: {f1, f2, . . . , f2M+3}, in which
three of them are incorrect. These sampling values satisfy the following equation

f1 f2 f3 · · · fM fM+1

f2 f3 f4 · · · fM+1 fM+2

f3 f4 f5 · · · fM+2 fM+3
... · · · ...

fM fM+1 fM+2 · · · f2M−1 f2M
fM+1 fM+2 fM+3 · · · f2M f2M+1

fM+2 fM+3 fM+4 · · · f2M+1 f2M+2

fM+3 fM+4 fM+5 · · · f2M+2 f2M+3

f1 f3 f5 · · · f2M−1 f2M+1

f2 f4 f6 · · · f2M f2M+2

f3 f5 f7 · · · f2M+1 f2M+3





p1
p2
p3
...

pM−1
pM
1


= 0, (6.4.1)
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where p1, . . . , pM are the coefficients of the Prony polynomial.

We will use fu, fv, and fw to denote the three incorrect sampling values with
1 ≤ u < v < w ≤ 2M + 3. Thus we have total

(
2M+3

3

)
cases to be considered. For

simplicity, we describe our method using a special case that u = M +1, v = M +2
and w = M + 3 for visualization purpose. But our method can be applied on any
general case for fu, fv and fw.

Now we rewrite (6.4.1) with f ∗M+1, f
∗
M+2 and f ∗M+3 representing the three cor-

rupted sampling values, that is,

f1 f2 f3 · · · fM f ∗M+1

f2 f3 f4 · · · f ∗M+1 f ∗M+2

f3 f4 f5 · · · f ∗M+2 f ∗M+3
... · · · ...

fM f ∗M+1 f ∗M+2 · · · f2M−1 f2M
f ∗M+1 f ∗M+2 f ∗M+3 · · · f2M f2M+1

f ∗M+2 f ∗M+3 fM+4 · · · f2M+1 f2M+2

f ∗M+3 fM+4 fM+5 · · · f2M+2 f2M+3

f1 f3 f5 · · · f2M−1 f2M+1

f2 f4 f6 · · · f2M f2M+2

f3 f5 f7 · · · f2M+1 f2M+3





p1
p2
p3
...

pM−1
pM
1


= 0. (6.4.2)

We define Λ(fu, fv, fw) as the (M + 6)× (M + 1) matrix in (6.4.2), that is,

Λ(fu, fv, fw) :=



f1 f2 f3 · · · fM f ∗M+1

f2 f3 f4 · · · f ∗M+1 f ∗M+2

f3 f4 f5 · · · f ∗M+2 f ∗M+3
... · · · ...

fM f ∗M+1 f ∗M+2 · · · f2M−1 f2M
f ∗M+1 f ∗M+2 f ∗M+3 · · · f2M f2M+1

f ∗M+2 f ∗M+3 fM+4 · · · f2M+1 f2M+2

f ∗M+3 fM+4 fM+5 · · · f2M+2 f2M+3

f1 f3 f5 · · · f2M−1 f2M+1

f2 f4 f6 · · · f2M f2M+2

f3 f5 f7 · · · f2M+1 f2M+3



. (6.4.3)

Similar to the discussion in section (6.3), we have

det
(
(ΛTΛ)(fu, fv, fw)

)
≥ 0 for all fu, fv, fw ∈ R. (6.4.4)

In particular, when we take the correct values for fu, fv, and fw, say fu = f 0
u , fv =

f 0
v , and fw = f 0

w, we get

det
(
(ΛTΛ)(f 0

u , f
0
v , f

0
w)
)

= 0. (6.4.5)
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Define the trivariate polynomial F (fu, fv, fw) as,

F (fu, fv, fw) := det
(
(ΛTΛ)(fu, fv, fw)

)
. (6.4.6)

Then we have
F (fu, fv, fw) ≥ 0 for all fu, fv, fw ∈ R, (6.4.7)

and
F (f 0

u , f
0
v , f

0
w) = 0. (6.4.8)

Now we consider the univariate polynomial F (f 0
u , f

0
v , fw) with respect to the

variable fw. (6.4.7) and (6.4.8) imply that

F (f 0
u , f

0
v , fw) ≥ 0 for all fw ∈ R and F (f 0

u , f
0
v , f

0
w) = 0, (6.4.9)

which means that F (f 0
u , f

0
v , fw) takes a (local) minimum at fw = f 0

w, and we can
write

F (f 0
u , f

0
v , fw) = (fw − f 0

w)2G(fw) (6.4.10)

for some polynomial G(fw) ≥ 0 for all fw ∈ R. (6.4.10) implies that the polynomi-
als F (f 0

u , f
0
v , fw) and its derivative F ′(f 0

u , f
0
v , fw) have a common zero at fw = f 0

w.
That is, the resultant of F (f 0

u , f
0
v , fw) and F ′(f 0

u , f
0
v , fw) is zero. Hence we have

Res[F (f 0
u , f

0
v , fw), F ′(f 0

u , f
0
v , fw)] = 0. (6.4.11)

Observe that Res[F (f 0
u , f

0
v , fw), F ′(f 0

u , f
0
v , fw)] does not contain the variable fw,

thus it is a bivariate polynomial with respect to f 0
u and f 0

v .

Now we consider the Sylvester matrix for F (f 0
u , f

0
v , fw) and F ′(f 0

u , f
0
v , fw), and

use the following notations

Λ1(f
0
u , f

0
v ) := Syl[F (f 0

u , f
0
v , fw), F ′(f 0

u , f
0
v , fw)] (6.4.12)

and
F1(fu, fv) := det

(
(ΛT

1 Λ1)(fu, fv)
)
. (6.4.13)

It is easy to see that

F1(fu, fv) ≥ 0 for all fu, fv ∈ R and F1(f
0
u , f

0
v ) = 0. (6.4.14)

Now we consider the univariate polynomial F1(f
0
u , fv) with respect to the vari-

able fv, and from (6.4.14) we get

F1(f
0
u , fv) ≥ 0 for all fv ∈ R and F1(f

0
u , f

0
v ) = 0, (6.4.15)

which means that F1(f
0
u , fv) takes a (local) minimum at fv = f 0

v , and we can write

F1(f
0
u , fv) = (fv − f 0

v )2G1(fv) (6.4.16)
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for some polynomial G1(fv) ≥ 0 for all fv ∈ R. The structure of (6.4.16) implies
that

Res[F1(f
0
u , fv), F

′
1(f

0
u , fv)] = 0. (6.4.17)

Since Res[F1(f
0
u , fv), F

′
1(f

0
u , fv)] is a univariate polynomial for variable f 0

u , we can
find all the real zeros of Res[F1(f

0
u , fv), F

′
1(f

0
u , fv)], denoted by a set Z0, as the

possible correct values for fu.

Next we select a f 0
u ∈ Z0, and with this f 0

u , we try to find f 0
v that satisfies

(6.4.16). This can be done by looking at all the zeros of F1(f
0
u , fv) with the prop-

erty that all the real zeros have even multiplicities and the leading coefficient is
positive. If we are successful at this step, we will use this pair of f 0

u and f 0
v to find

f 0
w, such that (6.4.10) is true by examining the multiplicities of the real zeros of
F (f 0

u , f
0
v , fw) and its leading coefficient. If we are successful at this step, we find

a triple (f 0
u , f

0
v , f

0
w) that could be the correct values of fu, fv, and fw.

If we find multiple triples of (f 0
u , f

0
v , f

0
w)’s that satisfy (6.4.8), then we need

to go to the verification step to make sure that they are the correct values. The
verification step can be implemented as follows:

• Use the triple (f 0
u , f

0
v , f

0
w) to find p1, p2, . . . , pM that satisfy (6.4.1). If this

step is successful, we move to the next step; otherwise, we move to the next
triple.

• With these p1, p2, . . . , pM , we can recover the expansion (6.1.1), and get the
function f(x).

• With this f(x), we can evaluate the sampling values f(nh), n = 1, 2, . . . , 2M+
3, then compare them with the given sampling values and see if they are com-
patible. If they are compatible, we find a solution; otherwise, we move to
the next triple and restart the verification process.



Chapter 7

Summary and Future Work

In this chapter, we make the conclusion of this dissertation and describe our future
research problems. We have studied several cases in data analysis to recover the
modelling functions in the sparse expansion expressions from equispaced sampling
values using the original Prony method and some of its generalizations.

In some expansions, we are able to use the frequency domain to get the sam-
pling values. In this case, we transform the modelling functions from the time do-
main to the frequency domain through the short time Fourier transform (STFT).
This approach is very successful in image processing, because the coefficient mod-
ification in the frequency domain does not have a sensitive consequence in the
time domain, which is also desirable in data analysis. This method works only for
certain special basis functions, such as the B-splines, the exponential functions,
and the cosine functions.

The generalized Prony method was very helpful in this dissertation. It allows
us to recover the functions that are expansions of the eigenfunctions of some lin-
ear operators. Moreover, we could also reconstruct some expansions that have two
different models using the generalized Prony method.

There are several research problems related to this topic. Other than the
problems we studied in this dissertation, we have the following list of problems for
our future research:

1. (Apply various transforms on the basis functions)

Other than the Fourier transform and the short time Fourier transform, we
will explore several other transforms, such as the Laplace transform, so that
we can expand our processing power to cover more basis functions in the
frequency domain. Working in the frequency domain allows us to avoid the
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sensitivity of the Prony method in the time domain.

2. (Discover more operators with useful eigenfunctions)

Some basis functions that cannot be handled by certain transform can still
be processed by the Prony method if they happen to be the eigenfunctions
of a linear operator. If we can discover more such operators, we can enlarge
the coverage of the Prony method for more useful basis functions.

3. (Apply the Prony method on splines with multiple knots)

Currently we can only apply the Prony method on splines with single knots.
In many real-world applications, we need to use splines with multiple knots,
such as the Hermit interpolations. The original Prony method requires that
all the frequency parameters must be distinct, which is not compatible with
the multiple knots for the splines. A new technique should be developed to
handle the structure caused by the multiple knots.

4. (Recover the signals containing corrupted sampling values)

In Chapter 6, we solved the problem with certain number of incorrect sam-
pling values. Since the whole process requires a lot of computation, the
efficiency of the algorithm is very important. Is there any way to help us
reduce the number of tries?

Problem A2 : To recover a sparse expansion system with M terms as follows,

f(x) =
M∑
j=1

cje
φjx,

we are given a sequence of equidistance sampling values S := {f(nh)}2M+k
n=1

for some fixed step size h. It is also known that there are exact k sample
values in S that are incorrect, but we do not know their locations. How to
recover this system?

In Chapter 6, we develop a method that solves this problem, but each time
we need to assume k sampling values that are incorrect for one experiment.
The total number of experiments we need to do could be as high as

(
2M+k
k

)
,
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which could be a very large number. To reduce the signal recovery cost, we
need some detection method that can help us eliminate a large number of
possibilities. In other words, we need to develop some method that can tell
us that some of the sampling values are incorrect. With that kind of partial
certainty, the number of possibilities that we need to try can be greatly re-
duced.

5. (Recover the signals containing corrupted sampling values without oversam-
pling)

In some real-world applications, we may not have oversampling values to
overcome certain number of incorrect sampling values, but we still need to
recover the signals. Is it possible?

The method we developed in Chapter 6 has the potential to solve this prob-
lem. For example, we are given 2M equispaced sampling values, among
which there are k (a relatively small number) incorrect values. Can we still
recover the original signals? We will investigate if our Repeated Resultant
method can solve this problem.
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