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Abstract

The prevalence of the separation of multicomponent non-stationary sig-
nals across many elds of research makes this concept an important subject
of study. The synchrosqueezing transform (SST) is a particular type of re-
assignment method. It aims to separate and recover the components of a
multicomponent non-stationary signal. The short time Fourier transform
(STFT)-based SST (FSST) and the continuous wavelet transform (CWT)-
based SST (WSST) have been used in engineering and medical data analysis
applications. The current study introduces the dierent versions of FSST and
WSST to estimate instantaneous frequency (IF) and to recover components.
It has a good concentration and reconstruction for a wide variety of ampli-
tude and frequency modulated multicomponent signals. Earlier studies have
improved existing FSSTs by computing more accurate estimates of the IFs of
the modes making up the signal. The higher order approximations for both
the amplitude and phase were used. Therefore, there is a better concentra-
tion and reconstruction for a wider variety of AM-FM modes than what was
possible with current synchrosqueezing techniques. In this study, we propose
to improve the adaptive FSST, the adaptive WSST, and to introduce a new
type of 2nd-order FSST with a new phase transformation. We use higher
order approximations for both the amplitude and phase function. We study
the higher order adaptive FSST and adaptive WSST. The result shows an
even better concentration and reconstruction for a wider variety of AM-FM
modes with the higher order adaptive SSTs. We also study the theoretical
analysis of the 2nd-order FSST with a new phase transformation. The new
phase transformation introduced by us is much simpler than the convectional
one, while the performance in IF estimation and component recovery of the
new 2nd-order FSST is comparable with, and even better in some cases than,
that of the conventional 2nd-order FSST.

1



Acknowledgments

I would like to thank the following people, without whom I would not have
been able to complete this research. All of the members of the Department of
Mathematics and Computer Science at the University of Missouri-St. Louis
provided me with their considerate guidance. Special thanks to my super-
visor, Dr. Q. Jiang, for his continuous instrumentul guidance and wisdom
throughout the dissertation process. The door to his office was always open
whenever I had a question about my research. I appreciate his contributions
of time, effort, support, and ideas. In addition to my advisor, I would like
to thank the rest of my thesis committee; Prof. Cai, Prof. He, and Prof.
Wu, for their insightful comments and their time. I also offer my thanks to
Kimberly Stanger for her help with many administrative matters. I also wish
to thank Majmaah University at Saudi Arabia for its strong support during
my study in the USA. Across oceans and continents, I am extremely grate-
ful to my parents, who supported me wholeheartedly and always gave me a
boost of confident after talking to them on the phone. I would like to thank
them for their sincere prayers, unconditional love, caring, and sacrifices for
educating and preparing me for my future. Many thanks to my my sisters
and my brothers for providing me with unfailing support, continuous encour-
agement, prayers, and love throughout my years of study. Words fall short in
describing my gratitude and thanks toward my husband and my kids. They
have supported me and put up with my stresses and moans for the past five
years of this dissertation. I am very much grateful to them for their love,
patience, understanding, encouragement, and prayers. To my kids: sorry for
being even grumpier than usual when I was writing this thesis.

2



Contents

1 Introduction 5

2 Preliminaries 7
2.1 Continuous wavelet transform-based synchrosqueezed trans-

form (WSST) . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 1st-order WSST . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 2nd-order WSST . . . . . . . . . . . . . . . . . . . . . 17

2.2 WSST with a time varying parameter . . . . . . . . . . . . . . 19
2.2.1 Adaptive 1st-order WSST . . . . . . . . . . . . . . . . 20
2.2.2 Adaptive 2nd-order WSST . . . . . . . . . . . . . . . . 23

2.3 Short-time Fourier transform-based synchrosqueezed transform
(FSST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 1st-order FSST . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 2nd-order FSST . . . . . . . . . . . . . . . . . . . . . . 30

2.4 FSST with a time varying parameter . . . . . . . . . . . . . . 33
2.4.1 Adaptive 1st-order FSST . . . . . . . . . . . . . . . . . 33
2.4.2 Adaptive 2nd-order FSST . . . . . . . . . . . . . . . . 36

2.5 Analysis of FSST . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.1 STFT-based synchrosqueezing transform . . . . . . . . 39

2.6 Analysis of Adaptive FSST . . . . . . . . . . . . . . . . . . . . 44
2.6.1 Adaptive FSST with a time-varying parameter . . . . . 44
2.6.2 Analysis of adaptive FSST . . . . . . . . . . . . . . . . 47
2.6.3 Analysis of 2nd-order adaptive FSST . . . . . . . . . . 53

3 Higher-order SST 60
3.1 High-order Synchrosqueezing transform . . . . . . . . . . . . . 60

3.1.1 The higher-order wavelet synchrosqueezing transform . 60

3



3.1.2 The higher-order short time Fourier synchrosqueezing
transform . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 New FSST transform . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.1 New higher-order FSST . . . . . . . . . . . . . . . . . 73

3.3 Compute the phase transformation without using a matrix . . 77

4 Numerical simulation 80
4.1 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . 80

5 Analysis of Adaptive Shor-time Fourier Transform-based Syn-
chrosqueezing Transform 90
5.1 Analysis for new approach of FSST2 . . . . . . . . . . . . . . 90

6 Conclusion and future work 104

4



List of Figures

4.1 The signal s(t) and its components s1(t), s2(t) and s3(t) . . . 82
4.2 RMSE for FSST2 Old and New with σ ∈ [0.001, 0.04] . . . . . 83
4.3 The original IF of the signal s(t) . . . . . . . . . . . . . . . . . 83
4.4 Difference of reconstructed IFs with original IFs by old 2nd-

order and new 2nd-order FSST. . . . . . . . . . . . . . . . . . 84
4.5 Difference for the reconstructed s1, s2, s3 with original com-

ponent s1(t), s2(t), s3(t) by old 2nd-order and new 2nd-order
FSST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 The signal s(t) . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.7 The components of the signal s(t) one by one s1(t)(left), and

s2(t)(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.8 RMSE for Old and New FSST2 with σ ∈ [0.001, 0.1] . . . . . . 87
4.9 The original IF of the signal s(t) . . . . . . . . . . . . . . . . . 88
4.10 Difference of reconstructed IFs with original IFs by old 2nd-

order and new 2nd-order FSST. . . . . . . . . . . . . . . . . . 88
4.11 The difference for the signal s(t) . . . . . . . . . . . . . . . . . 89
4.12 Difference for the reconstructed s1(t), s2(t) with original com-

ponent s1(t), s2(t) by old 2nd-order and new 2nd-order FSST. 89

5



Chapter 1

Introduction

Non-stationary signals can be modeled as superpositions of band limited,
amplitude and frequency modulated (AM-FM) sub-signals. Non-stationary
signals can be shown as,

x(t) = A0(t) +
K∑
k=1

Ak(t)cos(2πφk(t)) (1.0.1)

with Ak(t) and φ′k(t) > 0, where Ak(t) is the instantaneous ampllitude (IA),
and φ′k(t) is the instantaneous frequenc (IF) of xk(t). The study of separating
multicomponent non-stationary signals is a significant research topic in many
different fields such as engineering and medical data analysis applications.

In non-stationary signal analysis [1, 2, 3], one of the most important
tools is the time-frequency analysis (TFA). The continuous wavelet trans-
form (CWT) and the short time Fourier transform (STFT) are the most
common methods in TFA. CWT and STFT are linear time-frequency rep-
resentations and applicable to component reconstruction. CWT and STFT
have suffered because of the uncertainly principle that imposes an unavoid-
able tradeoff between time and frequency resolutions (see e.g. [3, 4, 5] ).

The synchrosqueezing transform (SST) is a particular type of reassign-
ment method on the CWT and STFT used to sharpen the time-frequency
representation of signals and recover the components of a multicomponent.
In previous research, the SST has introduced and further developed (see
[6, 7]). Using the CWT-based SST(WSST) [7, 8], Thakur and Wu pro-
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posed an extention of the SST given by the STFT-based SST (FSST) [9].
Then, researchers investigated the SST to greater lengths. The FSST and
the WSST were also topics of study for Daubechies, Meignen, Wu, Iatsenko
[7, 10, 11, 12, 13]. The 2nd-order SST is proposed in [10, 11]. Likewise, the
adaptive FSST, the adaptive 2nd-order FSST with a time-varying, the adap-
tive WSST, and the adaptive 2nd-order WSST with time-varying have been
studied [14, 15]. Recently, Sheu, Hsu, Chou, and Wu introduced a method
to select the time-varying window width for sharp SST representation by
minimizing the Renyi entropy [16]. The SST is a useful tool in engineering
and medical data application. This includes radar, sonar, anesthesia evalu-
ation, and heartbeat classification. In 2017, Pham and Meignen improved
existing STFT-based SSTs by computing more accurate estimates of the in-
stantaneous frequencies (IFs) of the modes making up the signal [17]. They
used higher order approximations both for the amplitude and phase. They
concluded that there is a better concentration and reconstruction for a wider
variety of AM-FM modes than what was possible with current synchrosqueez-
ing techniques. In this study, we used the same technique. We propose to
improve the WSST, the adaptive WSST,the adaptive FSST, and the FSST
with a new phase transformation by using higher order approximations both
for the amplitude and phase. The result also shows an ideal concentration
and reconstruction for a wider variety of AM-FM modes.

The theorretical analysis of the 2nd-order FSST was proposed in [18].
Very recently, the theoretical analysis of the FSST obtains the error bounds
for the instantaneous frequency (IF) estimation and component recovery with
the conventional 2nd-order FSST as was introduced in [16, 19]. We study the
theoretical analysis of the 2nd-order FSST with a new phase transformation.

The organization of the remainder of this dissertation is as follows. First,
we start with an overview of CWT-based SST and the adaptive CWT-based
SST with a time-varying parameter as shown in Chapter 2. The STFT-based
SST and the adaptive STFT-based SST with a time-varying parameter are
also derived in Chapter 2. In Chapter 3, we propose the higher-order WSS
and FSST and the new higher order FSST with the new phase transforma-
tion. We address the numerical simulation in Chapter 4. The theoretical
analysis of the new formulation of the FSST is described in Chapter 5. Fi-
nally, we present the conclusion and future work in Chapter 6.
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Chapter 2

Preliminaries

In this chapter, some of the basic concepts are presented. The continuous
wavelet transform-based synchrosqueezed transform (WSST) are discussed
in Section 2.1. WSST with a time varying parameter is studied in Section
2.2. In addition, Section 2.3 is devoted to the short-time Fourier transform-
based synchrosqueezed transform (FSST). FSST with a time varying param-
eter are discussed in Section 2.4. The analysis of FSST and adaptive FSST
are provided in Section 2.5 and 2.6.

2.1 Continuous wavelet transform-based syn-

chrosqueezed transform (WSST)

A funcation ψ(t) ∈ L2(R) is called a continuous wavelet if it satisfies (see e.g.
[20, 21]) the following condition

Cψ :=

∫ ∞
−∞
|ψ̂(ξ)|2 dξ

|ξ|
<∞ and ψa,b(t) =

1

a
ψ(
t− b
a

)

where ψ̂ is the Fourier transform of a signal ψ(t) is defined by

ψ̂(ξ) =

∫ ∞
−∞

ψ(t)e−i2πξtdt.
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Definition 2.1.1. We can define the continuous wavelet transform (CWT)
of a signal x(t) ∈ L2(R) with a continuous wavelet ψ(t) as

Wx(a, b) =

∫ ∞
−∞

x(t)
1

a
ψ(
t− b
a

)dt =

∫ ∞
−∞

x̂(ξ)ψ̂(aξ)e2iπbξdξ. (2.1.1)

In this instance, a is the scale variable, and b is the time variable.

Note that Fourier transform ψ̂a,b(ξ) of ψa,b(t) is ψ̂(aξ)e−i2πbξ. For more
details see [7].

proposition: A function x(t) is an analytic signal if it satisfies x̂(ξ) = 0
for ξ < 0. This is defined by

Wx(a, b) =

∫ ∞
0

x̂(ξ)ψ̂(aξ)e2iπbξdξ. (2.1.2)

Proof. If a and b are two real numbers, then the Fourier transform is

ψ̂a,b(ξ) =

∫ ∞
−∞

ψa,b(t)e
−2iπbξtdt =

∫ ∞
−∞

1

a
ψ(
t− b
a

)e−2iπbξtdt

A change of variable y = t−b
a
, which implies

ψ̂a,b(ξ) =

∫ ∞
−∞

ψ(y)e−2iπ(ay+b)ξdy

= e−2iπbξ

∫ ∞
−∞

ψ(y)e−2iπayξdy = e−2iπbξψ̂(aξ)

Then we have

Wx(a, b) = < x, ψa,b >=< x̂, ψ̂a,b >

=

∫ ∞
−∞

x̂(ξ)ψ̂(aξ)e−2iπbξdξ

=

∫ ∞
−∞

x̂(ξ)ψ̂(aξ)e2iπbξdξ

9



If x(t) is analytic or ψ(t) is analytic, then for a > 0 and ξ < 0, ψ̂(aξ) = 0.

Wx(a, b) =

∫ 0

−∞
x̂(ξ)ψ̂(aξ)e2iπbξdξ +

∫ ∞
0

x̂(ξ)ψ̂(aξ)e2iπbξdξ

=

∫ ∞
0

x̂(ξ)ψ̂(aξ)e2iπbξdξ.

2

properties(Fourier Transform). Let x, y ∈ L2(R) are two signals, then
we have

∫ ∞
−∞

x(ξ)y(ξ)dξ =

∫ ∞
−∞

x̂(ξ)ŷ(ξ)dξ∫ ∞
−∞

x̂(ξ)y(ξ)dξ =

∫ ∞
−∞

x(ξ)ŷ(ξ)dξ

Example: Let a be a positive real. We define the function fa(x) = e−ax
2
,

then we have

f̂a(ξ) =

∫ ∞
−∞

f(t)e−2iπξtdt =

∫ ∞
−∞

e−2iπξte−at
2

dt

Consider the function

g(y) =

∫ ∞
−∞

e−at
2+ytdt, for y ∈ R

Completing squares, we have

g(y) =

∫ ∞
−∞

e−a(t− y
2a

)2+ y2

4a dt =
1√
a
e
y2

4a

∫ ∞
−∞

e−x
2

dx

=
1√
a
e
y2

4a
√
π =

√
π

a
e
y2

4a

Let h(y) =
√

π
a
e
y2

4a be extended to be entire analytic functions, and since
they agree on R as shown, they must agree on the complex plane C. In
particular, by setting y = −2iπξ, we have
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f̂a(ξ) =

∫ ∞
−∞

e−2iπξte−at
2

dt =

√
π

a
e

(−2iπξ)2

4a

=

√
π

a
e
−4π2ξ2

4a .

(2.1.3)

Examples of Continuous Wavelet Transform

Bump Wavelet: The Bump wavelet is defined by

ψ̂(ξ) = e
1− 1

1−σ2(ξ−µ)2χ(µ− 1
σ
,µ+ 1

σ
) (2.1.4)

where σ, µ > 0, such that σµ > 1.

Morlet Wavelet: Morlet wavelet ψσ is defined by the function

ψσ(t) =
1

σ
√

2π
e−

t2

2σ2 (ei2πµt − e−2π2µ2σ2

) (2.1.5)

where σ > 0, µ is a constant.

Lemma 2.1.2. Let σ > 0 and µ two constant, then the Fourier transform
of Mortlet wavelet given by

ψ̂σ(ξ) = e−2π2σ2(ξ−µ)2 − e−2π2σ2(ξ2+µ2).

Proof. Let ψσ Morlet’s complex wavelet, the Fourier transform of ψ̂σ is
defined by

ψ̂σ(ξ) = 1
σ
√

2π

(∫ ∞
−∞

e−2iπξte−
t2

2σ2 e2iπµtdt− e−2π2µ2σ2

∫ ∞
−∞

e−2iπξte−
t2

2σ2 dt
)

= 1
σ
√

2π

(∫ ∞
−∞

e−2iπ(ξ−µ)e−
t2

2σ2 dt− e−2π2µ2σ2

∫ ∞
−∞

e−2iπξte−
t2

2σ2 dt
)

According to the example of Fourier transform (2.1.3)
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ψ̂σ(ξ) =
1

σ
√

2π

(
f̂ 1

2σ2
(ξ − µ)− e−2π2µ2σ2

f̂ 1
2
σ2(ξ)

)
=

1

σ
√

2π

(√
π2σ2e−2π2σ2(ξ−µ) − e−2π2µ2σ2

√
2πσ2e−2π2ξ2

)
=

(
e−2π2σ2(ξ−µ) − e−2π2σ2(ξ2+µ2)

)
.

2

Maxican hat Wavelet:
Let σ > 0, then the Maxican hat wavelet is defined by

ψσ(t) =
(
1− t2

σ2

)
e−

t2

2σ2 (2.1.6)

Lemma 2.1.3. The Fourier Transform of Maxican hat wavelet is given by

ψ̂σ(ξ) =

{
(2πσξ)2

√
2πσ2e−2π2σ2ξ2 for ξ > 0

0 for ξ ≤ 0
(2.1.7)

Proof. The Fourier Transform of Maxican hat wavelet function ψσ

ψ̂σ(ξ) =

∫ ∞
−∞

(1− t2

σ2
)e−

t2

2σ2 e−2iπtξdt

=

∫ ∞
−∞

e−
t2

2σ2 e−2iπtξdt︸ ︷︷ ︸
I1

+

∫ ∞
−∞

t2

σ2
e−

t2

2σ2 e−2iπtξdt︸ ︷︷ ︸
I2

.

Calculation of the integral I1 = F(f 1
2σ2

)(ξ) =
√

2πσ2e−2π2σ2ξ2 .

Calculation of the integral I2 = F(t2e−
t2

2σ2 )(ξ). Using the Fourier transform
derivation formula F((−2iπt)mf(t))(ξ) = (F(f))(m)(ξ)

F((−2iπt)2f 1
2σ2

(t))(ξ) = (F(f 1
2σ

)(ξ))(2) =
d2

d2ξ

(√
2πσ2e−2π2σ2ξ2

)
=

d

dξ

(√
2πσ2(−4π2σ2ξ)e−2π2σ2ξ2

)
= −4π−2σ2

√
2πσ2e−2π2σ2ξ + 42π4σ4ξ2

√
2πσ2e−2π2σ2ξ2 .
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This result in

F( t
2

σ2f 1
2σ

(t))(ξ) =
1

−4π2σ2
(
√

2πσ2e−2π2σ2ξ2)(−4π2σ2 + 42π4σ4ξ2)

=
√

2πσ2e−2π2σ2ξ2(1− π2σ2ξ2)

We group the integrals calculation above

ψ̂(ξ) =
√

2πσ2e−2π2σ2ξ2 −
√

2πσ2e−2π2σ2ξ2(1− 4π2σ2ξ2)

=
√

2πσ2e−2π2σ2ξ2(1− 12 + 4π2σ2ξ2)

= (2πσξ)2
√

2πσ2e−2π2σ2ξ2 .

2

Inverse Continuous Wavelet Transform

Theorem 2.1.4. (Inverse CWT)
Let x(t) ∈ L2(R) and ψ(t) is continuous wavelet, the inverse wavelet

transform can be recover the signal x(t) (see e.g. [20, 22, 23, 24])

x(t) =
1

Cψ

∫ ∞
−∞

∫ ∞
−∞

Wx(a, b)ψa,b(t)db
da

|a|
(2.1.8)

where Cψ =
∫∞
−∞

∣∣∣ψ̂(ξ)
∣∣∣2 dξ
|ξ| <∞

If x(t) is analytic or ψ(t) is real, then:

x(t) =
1

C̃ψ

∫ ∞
0

∫ ∞
−∞

Wx(a, b)ψa,b(t)db
da

a
(2.1.9)

where C̃ψ =
∫∞

0

∣∣∣ψ̂(ξ)
∣∣∣2 dξ
|ξ| <∞.

Proof. If x(t) ∈ L2(R) and ψ(t) a continuous wavelet, then we have

∫ ∞
0

∫ ∞
−∞

Wx(a, b)ψa,b(t)db
da

a
=

∫ ∞
0

∫ ∞
−∞

∫ ∞
0

x̂(ξ)ψ̂(aξ)ei2πbξdξψa,b(t)db
da

a

13



=

∫ ∞
0

∫ ∞
0

x̂(ξ)ψ̂(aξ)

∫ ∞
−∞

ψa,be
i2πbξ(t)db

da

a
dξ

=

∫ ∞
0

∫ ∞
0

x̂(ξ)ψ̂(aξ)ψ̂(aξ)ei2πtξdb
da

a
dξ

=

∫ ∞
0

x̂(ξ)ei2πtξ
∫ ∞

0

∣∣∣ψ̂(aξ)
∣∣∣2 dbda

a
dξ

= C̃ψ

∫ ∞
0

x̂(ξ)ei2πtξdξ = C̃ψx(t)

(2.1.10)

2

note we assume that a continuous wavelet ψ(t) also satisfies

0 6= cψ =

∫ ∞
0

ψ̂(ξ)
dξ

ξ
<∞. (2.1.11)

Theorem 2.1.5. (Inverse CWT involving a for analytic signal )
Suppose x(t) ∈ L2(R) and ψ(t) is a continuous wavelet. If x(t) is analytic,
then

x(b) =
1

cψ

∫ ∞
0

Wx(a, b)
da

a
(2.1.12)

where Cψ is defined 0 6= Cψ =
∫∞

0
ψ̂(ξ)dξ

ξ
<∞.

Proof. From (2.1.2), we have

∫ ∞
0

Wx(a, b)
da

a
=

∫ ∞
0

∫ ∞
0

x̂(ξ)ψ̂(aξ)e2iπbξdξ
da

a

=

∫ ∞
0

x̂(ξ)e2iπbξ

∫ ∞
0

ψ̂(aξ)
da

a
dξ

=

∫ ∞
0

x̂(ξ)e2iπbξdξ

∫ ∞
0

ψ̂(a)
da

a

= cψ

∫ ∞
0

x̂(ξ)e2iπbξdξ = cψx(b)
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2

Furthermore, a real signal x(t) ∈ L2(R) can be recovered from its CWT
with an analytic continuous wavelet by the following formula which does not
involve the time variable b either.

Theorem 2.1.6. (Inverse CWT involving a for a real signal (refer to [7]))
Suppose x(t) ∈ L2(R) and ψ(t) is a continuous wavelet. If x(t) is real and ψ
is analytic, then

x(b) = Re
( 2

cψ

∫ ∞
0

Wx(a, b)
da

a

)
(2.1.13)

where Cψ is defined 0 6= Cψ =
∫∞

0
ψ̂(ξ)dξ

ξ
<∞.

Proof. When x(t) is real, we have x̂(ξ) = x̂(−ξ), thus,

∫ 0

−∞
x̂(ξ)ei2πbξdξ =

∫ ∞
0

x̂(−ξ)e−i2πbξdξ =

∫ ∞
0

x̂(ξ)ei2πbξdξ

and hence

x(b) =

∫ ∞
−∞

x̂(ξ)ei2πbξdξ =

∫ 0

−∞
x̂(ξ)ei2πbξdξ +

∫ ∞
0

x̂(ξ)ei2πbξdξ

= 2Re
( ∫ ∞

0

x̂(ξ)ei2πbξdξ
) (2.1.14)

From (2.1.1) and the proof of theorem 2.1.4, we have

∫ ∞
0

Wx(a, b)
da

a
= cψ

∫ ∞
0

x̂(ξ)ei2πbξdξ

Therefore,

x(b) = 2Re
( ∫ ∞

0

x̂(ξ)ei2πbξdξ
)

= Re
( 2

cψ

∫ ∞
0

Wx(a, b)
da

a

)
. (2.1.15)

2
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2.1.1 1st-order WSST

The 1st-order WSST was introuced in [14]. The WSST is designed to re-
assign the scale variable a to the frequency variable. Let’s start with the
most classic example. The CWT of x(t) = A cos(2πct) where c is a positive
constant. Then the Fourier transform of x is defined by

x̂(ξ) = A

∫ ∞
−∞

cos(2πct)e−2iπξtdt

We use the fact that cos(2πct) = e2iπct+e−2iπct

2

x̂(ξ) =
A

2

(∫ ∞
−∞

e2iπcte−2iπξtdt+

∫ ∞
−∞

e−2iπcte−2iπξtdt
)

=
A

2

(
e−2itπ(ξ−c) + e−2itπ(ξ+c)

)
=
A

2

(
δc(ξ) + δ−c(ξ)

) (2.1.1)

Thus for a > 0

Wx(a, b) =

∫ ∞
−∞

x̂(ξ)ψ̂(aξ)e2iπbξdξ =
1

2
Aψ̂(ac)e2iπbc

The instantaneous frequency (IF) of x(t) is represented as c

∂

∂b
Wx(a, b) =

1

2
Aψ̂(ac)ei2πbc = 2iπcWx(a, b).

This implies that

∂
∂b
Wx(a, b)

2iπWx(a, b)
= c

For a general x(t), at (a, b) for which Wx(a, b) 6= 0, a good approximation for
the phase transformation (also called theinstantaneous frequency (IF)) of x
is ω1st

x

16



ω1st
x (a, b) =

∂
∂b
Wx(a, b)

2iπWx(a, b)
, for Wx(a, b) 6= 0.

The 1st-order WSST of a signal x(t) is defined by

T 1st
x (ξ, b) =

∫
a∈R+:Wx(a,b) 6=0

Wx(a, b)δ(ω
1st
x (a, b)− ξ)da

a
, (2.1.2)

where ξ is the frequency variable.

The input signal x(t) can be recovered from its WSST. For the analytic
x(t) ∈ L2(R), we have

x(b) =
1

cψ

∫ ∞
0

T 1st
x (ξ, b)dξ;

and for a real-valued x(t) ∈ L2(R)

x(b) = Re
( 2

cψ

∫ ∞
0

T 1st
x (ξ, b)dξ

)
,

where Cψ is defined 0 6= Cψ =
∫∞

0
ψ̂(ξ)dξ

ξ
<∞.

For a multicomponent signal x(t) = A0(t)+
∑K

k=1 xk(t), xk(t) = Ak(t)cos(rπφk(t))
with A0(t) = 0, each component xk(b) can be recovered from WSST:

x(b) ≈ Re
( 2

cψ

∫
|ξ−φ′k(b)|<Γ

T 1st
x (ξ, b)dξ

)
,

for certain Γ > 0.
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2.1.2 2nd-order WSST

The 2nd-order WSST was proposed in [14]. This defines a new phase transfor-
mation more precise than that of 1st-order ω2nd

x . This 1st-order is associated
with the 2nd order partial derivatives of the CWT of x(t); when x(t) is a
linear frequency modulation signal (linear chirp), then ω2nd

x is exactly the IF
of x(t). Therefore, x(t) is a linear frequency modulation (LFM) signal if

x(t) = A(t)ei2πφ(t) = A(t)ept+
q
2
t2ei2π(ct+ 1

2
rt2)

with phase function φ(t) = ct+ 1
2
rt2, IF φ′(t) = c+rt and chirp rate φ′′(t) = r,

IA A(t) = Aept+
q
2
t2 . In the following we derive the phase transformation

ω2nd
x . For a given wavelet ψ, Wx(b, a) is the CWT of x(t) with ψ defined by

(2.1.1). For ψ1(t) = tψ(t), Wψ1
x (b, a) denotes the CWT of x(t) with ψ1(t) and

represents the integral on the right-hand side of (2.1.1) with ψ(t) replaced
by ψ1(t). The derivative of the signal x is given by

x′(t) = (p+ qt+ i2π(c+ rt))x(t)

Wx(b, a) =

∫ ∞
−∞

x(b+ at)ψ(t)dt.

The derivative of the CWT with respect to the variable b is

∂bW
(
xb, a) =

∫ ∞
−∞

x′(b+ at)ψ(t)dt

=

∫ ∞
−∞

(p+ q(b+ at) + i2π(c+ rb+ rat))x(b+ at))ψ(t)dt

= (p+ qb+ i2π(c+ rb))Wx(b, a) + (q + i2πr)aWψ1
x (b, a).

(2.1.1)

At (a, b), on which Wx(a, b) 6= 0, we then denote that

∂bWx(b, a)

Wx(b, a)
= p+ qb+ i2π(c+ rb) + (q + i2πr)a

Wψ1(b, a)

Wx(b, a)

18



∂

∂a

(∂bWx(b, a)

Wx(b, a)

)
= (q + i2πr)U(a, b)

where

U(a, b) =
∂

∂a

(aWψ1
x (b, a)

Wx(b, a)

)
=
Wψ1
x (b, a)

Wx(b, a)
+ a

∂

∂a

(Wψ1
x (b, a)

Wx(b, a)

)
.

If U(a, b) 6= 0, then

q + i2πr =
1

U(a, b)

∂

∂a

(∂bWx(b, a)

Wx(b, a)

)
.

Then, we have

∂bWx(b, a)

Wx(b, a)
= p+ qb+ i2π(c+ rb) + a

Wψ1
x (b, a)

Wx(b, a)U(a, b)

∂

∂a

(∂bWx(b, a)

Wx(b, a)

)
.

Thus,

φ′(b) = c+ rb = Re
{ ∂bWx(b, a)

i2πWx(b, a)

}
− aRe

{ Wψ1
x (b, a)

Wx(b, a)U(a, b)

∂

∂a

( ∂bWx(b, a)

i2πWx(b, a)

)}
.

Therefore, we define the second-order phase transformation ω2nd
x by the

formula

ω2nd
x (a, b) =

{
Re{ ∂bWx(b,a)

i2πWx(b,a)
} − aRe{ Wψ1 (b,a)

Wx(b,a)U(a,b)
∂
∂a

(
∂bW (b,a)
i2πWx(b,a)

)
}, if U(a, b) 6= 0,Wx(b, a) 6= 0

Re{ ∂bWx(b,a)
i2πWx(b,a)

}, if U(a, b) = 0,Wx(b, a) 6= 0.

We define the 2nd-order WSST of a signal x(t) as

T 2nd
x (ξ, b) =

∫
a∈R+:Wx 6=0

Wx(a, b)δ(ω
2nd
x (a, b)− ξ)da

a
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where ξ is the frequency variable.

To recover the input signal x(t) from its WSST for analytic x(t) ∈ L2(R),
we say that

x(b) =
1

Cψ(b)

∫ ∞
0

T 2nd
x (ξ, b)dξ

and for a real valued x(t) ∈ L2(R),

x(b) = Re(
2

Cψ(b)

∫ ∞
0

T 2nd
x (ξ, b)dξ)

where cψ(b) is defined by

0 6= Cψ =

∫ ∞
0

ψ̂(ξ)
dξ

ξ
<∞.

For a multicomponent signal x(t), we can recover each component xk(b)
from the WSST:

xk(b) = Re(
2

Cψ(b)

∫
|ξ−φ′(b)|<Γ

T 2nd
x (ξ, b)dξ)

for certain Γ > 0.

2.2 WSST with a time varying parameter

Continuous wavelets ψσ are dependent on the function σ defined by

ψσ(t) =
1

σ
g(
t

σ
)ei2πµt.

The CWT of a signal x(t) with a time-varying parameter is defined by

20



W̃x(a, b) =

∫ ∞
−∞

x(t)
1

a
ψσ(b)(

t− b
a

)dt =

∫ ∞
−∞

x̂(ξ)ψ̂σ(b)(aξ)e
i2πbξdξ.

We call W̃x(a, b) the adaptive CWT of x(t) with ψσ. If ψσ is an analytic
wavelet or x(t) is analytic, then we have a > 0

W̃x(a, b) =

∫ ∞
0

x̂(ξ)ψ̂σ(b)(aξ)e
i2πbξdξ.

An analytic signal x(t) can be recovered back from its CWT

x(b) =
1

cψ(b)

∫ ∞
0

W̃x(a, b)
da

a

where Cψ(b) is defined by

Cψ(b) =

∫ ∞
0

ψ̂σ(b)(ξ)
dξ

ξ
=

∫ ∞
0

ĝ(ξ − σ(b)µ)
dξ

ξ
.

If x(t) is a real signal, then we have

x(b) = Re(
2

Cψ(b)

∫ ∞
0

W̃x(a, b)
da

a
).

2.2.1 Adaptive 1st-order WSST

The adaptive 1st-order WSST was introduced in [14]. In order to define
the adaptive CWT, we must first define the ω1st,adp

x . Let ψσ(t) and ψ2
σ(t) =

t
σ2 g
′( t
σ
)ei2πµt be the continuous wavelet. Denote W̃ψ2

x (a, b) defined by

W̃ψ2

x (a, b) =

∫ ∞
−∞

x(t)
1

a
ψ2
σ(b)(

t− b
a

)dt =

∫ ∞
−∞

x(b+ at)
t

σ2(b)
g′(

t

σ
)e−i2πµtdt.
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One can obtain that

ψ̂2
σ(ξ) = −ĝ(σ(ξ − µ))− σ(ξ − µ)(ĝ)′(σ(ξ − µ)).

To define the phase transformation ωadpx (a, b), we consider x(t) = Aei2πct.
From

W̃x(a, b) =

∫ ∞
−∞

x(b+ at)ψσ(b)(t)dt = A

∫ ∞
−∞

ei2πc(b+at)
1

σ(b)
g

t

σ(b)
e−i2πµtdt

We take the partial derivative ∂
∂b

to both sides, and we have

∂bW̃x(a, b) = A

∫ ∞
−∞

(i2πc)ei2πc(b+at)
1

σ(b)
g(

t

σ(b)
)e−i2πµtdt

+ A

∫ ∞
−∞

ei2πc(b+at)(
−σ′(b)
σ(b)2

)g(
t

σ(b)
)e−i2πµtdt

+ A

∫ ∞
−∞

ei2πc(b+at)(
−σ′(b)
σ(b)3

)g′(
t

σ(b)
)e−i2πµtdt

= i2πcW̃x(a, b)−
σ′(b)

σ(b)
W̃x(a, b)−

σ′(b)

σ(b)
W̃ψ2

x (a, b).

If W̃x(a, b) 6= 0, then

∂
∂b
W̃x(a, b)

i2πW̃x(a, b)
= c− σ′(b)

i2πσ(b)
− σ′(b)

σ(b)

W̃ψ2

x (a, b)

i2πW̃x(a, b)
.

Thus, the instantaneous frequency (IF) c of x(t) can be denoted by

c = Re
{ ∂

∂b
W̃x(a, b)

i2πW̃x(a, b)

}
+
σ′(b)

σ(b)
Re
{ W̃ψ2

x (a, b)

i2πW̃x(a, b)

}
.

For a general signal x(t), at (a, b) for which W̃x(a, b) 6= 0, denote
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ω̃1st,adp
x (a, b) = Re

{ ∂
∂b
W̃x(a, b)

i2πW̃x(a, b)

}
+
σ′(b)

σ(b)
Re
{ W̃ψ2

x (a, b)

i2πW̃x(a, b)

}
.

The quantity ω1st,adp
x (a, b) is called the ”phase transformation.” The WSST

with a time-varying parameter (also called the adaptive WSST) of x(t) is de-
fined by

T 1st,adp
x (ξ, b) =

∫
{a∈R+:W̃x(a,b)6=0}

W̃x(a, b)δ(ω̃
1st,adp
x (a, b)− ξ)da

a
(2.2.1)

where ξ is the frequency variable.

The input signal x(t) can be recovered from its adaptive WSST for the
analytic x(t) ∈ L2(R). We have

x(b) =
1

Cψ(b)

∫ ∞
0

T 1st,adp
x (ξ, b)dξ

and for a real valued x(t) ∈ L2(R)

x(b) = Re(
2

Cψ(b)

∫ ∞
0

T 1st,adp
x (ξ, b)dξ)

where cψ(b) is defined by

Cψ(b) =

∫ ∞
0

ψ̂σ(b)(ξ)
dξ

ξ
=

∫ ∞
0

ĝ(ξ − σ(b)µ)
dξ

ξ
.

The following formula can be used to recover the k-th component xk(b)
of a multicomponent signal from the adaptive WSST

xk(b) = Re(
2

Cψ(b)

∫
|ξ−φ′(b)|<Γ1

T 1st,adp
x (ξ, b)dξ)
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for certain Γ1 > 0.
Remark: Here, we may say that if ψσ is the simplified version of Morlet’s

wavelet given by

ψ̂σ(ξ) = e−2π2σ2(ξ−µ)2 and ψ̂2
σ(ξ) = (4π2σ2(ξ − µ)2 − 1)e−2π2σ2(ξ−µ)2 .

Next, we calculate:

W̃ψ2

x (a, b) =

∫ ∞
−∞

x̂(ξ)ψ̂2
σ(b)(aξ)e

i2πbξdξ = Aψ̂2
σ(b)(ac)e

i2πbc

= A(4π2σ2(b)(ac− µ)2 − 1)ei2π
2σ2(b)(ξ−µ)2

= (4π2σ2(b)(ac− µ)2 − 1)W̃x(a, b).

Thus,

W̃ψ2

x (a, b)

i2πW̃x(a, b)
=

1

i2π
(4π2σ2(b)(ac− µ)2 − 1).

In this case the phase transformation ωx of the Morlet’s wavelet is defined
by

ω̃1st,adp
x (a, b) = Re

{ ∂bW̃x(a, b)

i2πW̃x(a, b)

}
.

2.2.2 Adaptive 2nd-order WSST

The adaptive 2nd-order WSST is proposed in [14]. To find the adaptive
2nd-order WSST, the CWT is a time-varying parameter. Let ψσ(t) of the
continuous wavelet be defined as

ψσ(t) =
1

σ
g(
t

σ
)ei2πµt.

Denote ψ2
σ(t) = t

σ2 g
′( t
σ
)ei2πµt, and let W̃ψ2

x (a, b) denote the CWT. We
define
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ψ1
σ(t) =

t

σ
ψσ(t) =

t

σ2
g(
t

σ
)ei2πµt.

Let Wψ1
x (a, b) denote the CWT of x(t) with ψ1

σ(t)

W̃ψ1

x (a, b) =

∫ ∞
−∞

x(t)
1

a
ψ1
σ(t)(

t− b
a

)dt =

∫ ∞
−∞

x(b+ at)
t

σ2(b)
g(

t

σ(b)
)e−i2πµtdt

(2.2.1)

ψ̂1
σ(ξ) =

i

2π
(ĝ)′(σ(ξ − µ)).

If ψσ is Morlet’s wavelet defined by

ψ̂σ(ξ) = e−2π2σ2(ξ−µ)2

then

ψ̂1
σ(ξ) = −i2πσ(ξ − µ)e−2π2σ2(ξ−µ)2 .

For a similar calculation presented in the case of 2nd-order WSST non
adaptive, the phase transformation ω̃2nd,adp is defined by

ω̃2nd,adp
x =


Re
{

∂bW̃x(b,a)

i2πW̃x(b,a)

}
+ σ′(b)

σ(b)
Re
{

W̃ψ2

x (b,a)

i2πW̃x(b,a)

}
− aRe

{
W̃ψ1

x (b,a)

i2πW̃x(b,a)
R0(a, b)

}
,

if ∂
∂a

(
aW̃

ψ1
(b,a)

W̃x(b,a)

)
6= 0, W̃x(b, a) 6= 0

Re
{

∂bW̃x(b,a)

i2πW̃x(b,a)

}
+ σ′(b)

σ(b)
Re
{

W̃ψ2

x (b,a)

i2πW̃x(b,a)

}
, if ∂

∂a

(
aW̃

ψ1

x (b,a)

W̃x(b,a)

)
= 0, W̃x(b, a) 6= 0.

where

R0(a, b) =
1

∂
∂a

(
aW̃

ψ1 (b,a)

W̃x(b,a)

)( ∂

∂a

( ∂
∂b
W̃x(b, a)

W̃x(b, a)

)
+
σ′(b)

σ(b)

∂

∂a

(W̃ψ2

x (b, a)

W̃x(b, a)

))
.
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The 2nd-order adaptive WSST of a signal x(t) is defined by

T 2nd,adp
s (ξ, b) =

∫
{a∈R+:W̃s 6=0}

W̃x(a, b)δ(ω̃
2nd,adp
x (a, b)− ξ)da

a
(2.2.2)

where ξ is the frequency variable.

The input signal x(t) can be recovered from its adaptive WSST for ana-
lytic x(t) ∈ L2(R), and we have

x(b) =
1

Cψ(b)

∫ ∞
0

T 2nd,adp
x (ξ, b)dξ

and for a real valued x(t) ∈ L2(R)

x(b) = Re(
2

Cψ(b)

∫ ∞
0

T 2nd,adp
x (ξ, b)dξ)

where cψ(b) is defined by

Cψ(b) =

∫ ∞
0

ψ̂σ(b)(ξ)
dξ

ξ
=

∫ ∞
0

ĝ(ξ − σ(b)µ)
dξ

ξ
.

For a multicomponent signal x(t), each component xk(b) can be recovered
from adaptive WSST

xk(b) = Re(
2

Cψ(b)

∫
|ξ−φ′(b)|<Γ1

T 2nd,adp
x (ξ, b)dξ) (2.2.3)

for certain Γ1 > 0.

2.3 Short-time Fourier transform-based syn-

chrosqueezed transform (FSST)

Definition 2.3.1. The short-time Fourier transform (STFT) of x(t) ∈
L2(R) with a window function g(t) ∈ L2(R) is defined by
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Vx(t, η) =

∫ ∞
−∞

x(τ)g(τ − t)e−i2πη(τ−t)dτ (2.3.1)

=

∫ ∞
−∞

(x+ τ)g(τ)e−i2πητdτ, (2.3.2)

where t is the time variable and η is the frequency variable.

The STFT is written as follows

Vx(t, η) =

∫ ∞
−∞

x(τ)g(τ − t)e−i2πη(τ−t)dτ =

∫ ∞
−∞

x̂(ξ)ĝ(η − ξ)ei2πtξdξ(2.3.3)

To prove the result in equation (2.3.3) we start writing the short-time
Fourier transform Vx in the form

Vx(t, η) =< x, yt,η >L2(R) with yt,η(τ) = g(τ − t)e−i2πη(τ−t)

which implies

Vx(t, η) =< x̂, ŷt,η >L2(R)=

∫ ∞
−∞

x̂(ξ)ŷt,η(ξ)dξ (2.3.4)

and the calculation ŷt,η(ξ) denotes

ŷt,η(ξ) =

∫ ∞
−∞

g(τ − t)ei2πη(τ−t)e−i2πξτdτ (2.3.5)

ŷt,η(ξ) =

∫ ∞
−∞

g(y)ei2πηye−i2πξ(y−t)dy =

∫ ∞
−∞

g(y)ei2π(η−ξ)dy︸ ︷︷ ︸
ĝ(η−ξ)

ei2πξt = ĝ(η − ξ)ei2πξt.

Therefore, we have
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Vx(t, η) =< x̂, ŷt,η >L2(R)=

∫ ∞
−∞

x̂(ξ)ĝ(η − ξ)ei2πξtdξ. (2.3.6)

We can recover the original signal x(t) from its STFT:

x(t) =
1

‖ g ‖2
2

∫ ∞
−∞

∫ ∞
−∞

Vx(t, η)g(t− τ)e−i2πη(τ−t)dτdη. (2.3.7)

Theorem 2.3.2. (Inverse STFT ).
Involving ξ suppose g(t) ∈ L2(R) with g(0) 6= 0 Then for x(t) ∈ L2(R), we
have

x(t) =
1

g(0)

∫ ∞
−∞

Vx(t, η)dη (2.3.8)

Proof. From (2.3.3), we have

∫ ∞
−∞

Vx(t, η)dη =

∫ ∞
−∞

∫ ∞
−∞

x̂(ξ)ĝ(η − ξ)ei2πtξdξdη

=

∫ ∞
−∞

x̂(ξ)ei2πtξ
∫ ∞
−∞

ĝ(η)dηdξ

=

∫ ∞
−∞

ĝ(η)ei2π×0×ηdη

∫ ∞
−∞

x̂(ξ)ei2πtξdξ

= g(0)x(t).

2

Theorem 2.3.3. (Inverse STFT).
Involving η for real signal. Suppose the window function g(t) ∈ L2(R) is real
with g(0) 6= 0. Then for a real-valued x(t) ∈ L2(R), we have

x(t) =
2

g(0)
Re(

∫ ∞
0

Vx(t, η)dη). (2.3.9)

Proof. Let g(t) and x(t) be two real functions, we have
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Vx(t,−η) =

∫ ∞
−∞

x(τ)g(τ − t)ei2πη(τ−t)dτ

=

∫ ∞
−∞

x(τ)g(τ − t)e−i2πη(τ−t)dτ = Vx(t, η).

Hence,

x(t) =
1

g(0)

∫ ∞
0

Vx(t, η)dη +
1

g(0)

∫ 0

−∞
Vx(t, η)dη

=
1

g(0)

∫ ∞
0

Vx(t, η)dη +
1

g(0)

∫ ∞
0

Vx(t,−η)dη

=
1

g(0)

∫ ∞
0

Vx(t, η)dη +
1

g(0)

∫ ∞
0

Vx(t, η)dη =
2

g(0)
Re
{∫ ∞

0

Vx(t, η)dη
}
.

2

2.3.1 1st-order FSST

The 1st-order FSST was proposed in [12, 15]. We derive the FSST through
the STFT. We begin with the STFT of x(t) = Aei2πct (for more detail, see
[12]) where A and c are constants and c > 0. We have

Vx(t, η) =

∫ ∞
−∞

Aei2πc(t+τ)g(τ)e−i2πητdτ

= Aei2πtcĝ(η − c).

Thus, we can obtain the instantaneous frequency (IF), defined here as c, of
x(t) by

∂
∂t
Vx(t, η)

2iπVx(t, η)
= c.

For a general signal x(t), at (t, η) for which Vx(t, η) 6= 0 and where c =
ωx(t, η), a good candidate for the instantaneous frequency (IF) of x(t) is
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ω1st
x (t, η) =

∂
∂t
Vx(t, η)

2iπVx(t, η)
.

This is also called the ”reference IF function” or the ”phase transformation.”

The FSST reassigns the frequency variable ξ by transforming the STFT
Vx(t, ξ) of x(t) to a quantity, denoted by R1st

x (t, η), on the time-frequency
plane:

R1st
x (t, ξ) =

∫
{ζ:Vx(t,ζ)6=0}

Vx(t, ζ)δ(ω1st
x (t, ζ)− ξ)dζ,

where ξ is the frequency variable.

We can recover the input signal x(t) from its FSST. If we say g(t) ∈ L2(R)
with a window function where g(0) 6= 0, then for x(t) ∈ L2(R),

x(t) =
1

g(0)

∫ ∞
−∞

R1st
x (t, ξ)dξ. (2.3.1)

If g(t) and x(t) are also real-valued, then

x(t) =
2

g(0)
Re
(∫ ∞

0

R1st
x (t, ξ)dξ

)
. (2.3.2)

We denote a multicomponent signal x(t) as

x(t) =
K∑
k=1

xk(t) =
K∑
k=1

Ak(t)e
i2πφk(t).

when Ak(t) and φk(t) satisfy certain conditions, each component xk(t) can
be recovered from its FSST (see e.g. [12])

xk(t) ≈
1

g(0)

∫
|ξ−φ′k(t)|<Γ

R1st
x (t, ξ)dξ.

for certain Γ > 0.
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2.3.2 2nd-order FSST

Daubechies, Lu, and Wu introduce the 2nd-order SST in [7]. The focus
of this paper to define a new phase transformation ω2nd

x . This new phase
transformation is associated with 2nd order derivatives of the STFT of x(t)
such that when x(t) is a linear frequncy modulation (LFM) signal (linear
chirp), then ω2nd

x is exactly the IF of x(t). We say x(t) is a LFM signal if

x(t) = A(t)ei2πφ(t) = Aept+
q
2
t2ei2π(ct+ 1

2
rt2)

with phase function φ(t) = ct+ 1
2
rt2, IF φ′(t) = c+rt and chirp rate φ′′(t) = r,

and IA A(t) = Aept+
q
2
t2 , where p, q are eral numbers and |p|, |q| are much

smaller than c. For u1(t) = tg(t), V u1
x (t, η) denotes the STFT of x(t) with

u1(t) (see e.g. [15])

x′(t) =
(
p+ qt+ i2π(c+ rt)

)
x(t).

From

Vx(t, η) =

∫ ∞
−∞

x(t+ τ)g(τ)e−i2πητdτ,

we can say

∂
∂t
Vx(t, η) =

∫ ∞
−∞

x′(t+ τ)g(τ)e−i2πητdτ

=

∫ ∞
−∞

(
p+ q(t+ τ) + i2π(c+ rt+ tτ)

)
x(t+ τ)g(τ)e−i2πητdτ

= (p+ qt+ i2π(c+ rt))Vx(t, η) + (q + i2πr)V u1
x (t, η).

Hence at (t, η) on which Vx(t, η) 6= 0, we have

∂
∂t
Vx(t, η)

Vx(t, η)
= p+ qt+ i2π(c+ rt) + (q + i2πr)

V u1
x (t, η)(t, η)

Vx(t, η)
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∂

∂η

( ∂
∂t
Vx(t, η)

Vx(t, η)

)
= (q + i2πr)U(t, η)

where we use U(t, η) to denote

U(t, η) =
∂

∂η

(V u1
x (t, η)(t, η)

Vx(t, η)

)
.

Thus if U(t, η) 6= 0, then

q + i2πr =
1

U(t, η)

∂

∂η

(V u1
x (t, η)

Vx(t, η)

)

∂tVx(t, η)

Vx(t, η)
= (p+ qt) + i2π(c+ rt) +

1

U(t, η)

∂

∂η

(∂tVx(t, η)

Vx(t, η)

)(V u1
x (t, η)

Vx(t, η)

)
.

This implies

c+ rt =
∂tVx(t, η)

i2πVx(t, η)
− p+ qt

i2π
− V u1

x (t, η)

Vx(t, η)U(t, η)
.
∂

∂η

( ∂tVx(t, η)

i2πVx(t, η)

)
,

So we have

φ′(t) = c+ rt = Re
{ ∂tVx(t, η)

i2πVx(t, η)

}
−Re

{ V u1
x (t, η)

Vx(t, η)U(t, η)
.
∂

∂η

( ∂tVx(t, η)

i2πVx(t, η)

)}
.

Hence, the phase transformation ω2nd
x is defined as

ω2nd
x (t, η) =

 Re
{

∂tVx(t,η)
i2πVx(t,η)

}
−Re

{
V
u1
x (t,η)

Vx(t,η)U(t,η)
. ∂
∂η

(
∂tVx(t,η)
i2πVx(t,η)

)}
. if U(t, η) 6= 0, Vx(t, η) 6= 0

Re
{

∂tVx(t,η)
i2πVx(t,η)

}
, if U(t, η) = 0, Vx(t, η) 6= 0

The FSST reassigns the frequency variable ξ by transforming the STFT
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Vx(t, η) of x(t) to a quantity, denoted by by Rx(t, ξ), on the time-frequency
plane:

R2nd
x (t, ξ) =

∫
{ζ:Vx(t,ζ) 6=0}

Vx(t, ζ)δ(ω2nd
x (t, ζ)− ξ)dζ

where ξ is the frequency variable.

We can recover the input signal x(t) from its FSST. If g(t) ∈ L2(R) and
is window function with g(0) 6= 0. Then for x(t) ∈ L2(R),

x(t) =
1

g(0)

∫ ∞
−∞

R2nd
x (t, ξ)dξ. (2.3.1)

If in addition, g(t) and x(t) are real-valued, then

x(t) =
2

g(0)
Re
(∫ ∞

0

R2nd
x (t, ξ)dξ

)
. (2.3.2)

For a multicomponent signal x(t) given by

x(t) =
K∑
k=1

xk(t) =
K∑
k=1

Ak(t)e
i2πφk(t),

each component xk(t) can be recovered from its FSST

xk(t) ≈
1

g(0)

∫
|ξ−φ′k(t)|<Γ

R2nd
x (t, ξ)dξ.

for certain Γ > 0.
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2.4 FSST with a time varying parameter

the window function given by gσ(t)(t) = 1
σ(t)

g
(

τ
σ(t)

)
where σ > 0 is a parame-

ter, and g ∈ L2(R) is a function with g(0) 6= 0. If g(t) = 1√
2π
e−

t2

2 , the gσ(t)(τ)

is the Gaussion window function. (see e.g. [15, 13])

For a signal x(t), we define the STFT of x(t) with a gσ(t) parameter as

Ṽx(t, η) =

∫ ∞
−∞

x(τ)gσ(t)(τ − t)e−i2πη(τ−t)dτ

=

∫ ∞
−∞

x(τ + t)
1

σ(t)
g
( τ

σ(t)

)
e−i2πη(τ)dτ

=

∫ ∞
−∞

x̂(ξ)ĝσ(t)(x− ξ)ei2πtξdξ

=

∫ ∞
−∞

x̂(ξ)ĝ(σ(t)(η − ξ))ei2πtξdξ.

A signal x(t) can be recovered from its adaptive STFT

x(t) =
σ(t)

g(0)

∫ ∞
−∞

Ṽx(t, η)dη.

If in addition g(t) is real-valued, then for real-valued x(t), we have

x(t) =
2σ(t)

g(0)
Re
(∫ ∞
−∞

Ṽx(t, η)dη
)
.

2.4.1 Adaptive 1st-order FSST

In order to define the adaptive 1st-order FSST introduced in [14], we must
define the phase transformation ωadpx associated with the adaptive STFT. Let

gσ(t) and g2
σ(t) = t

σ2 g
′ be the continuous wavelet. Ṽ g2

x (t, η) is defined by

Ṽ g2

x (t, η) =

∫ ∞
−∞

x(τ + t)
τ

σ2(t)
g′
( τ

σ(t)

)
e−i2πητdτ.

To define the phase transformation ωadpx , we consider x(t) = Aei2πct, so that
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Ṽx(t, η) =

∫ ∞
−∞

x(t+ τ)gσ(t)(τ)e−i2πητdτ = A

∫ ∞
−∞

ei2πc(t+τ) 1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ.

therefore, we have

∂Ṽx
∂t

(t, η) = A

∫ ∞
−∞

(i2πc)ei2πc(t+τ) 1

σ(t)
g
( τ

σ(t)

)
e−i2πητdτ

+ A

∫ ∞
−∞

ei2πc(t+τ)
(−σ′(t)
σ2(t)

)
g
( τ

σ(t)

)
e−i2πητdτ

+ A

∫ ∞
−∞

ei2πc(t+τ)
(−σ′(t)

(σ(t))3
τ
)
g′
( τ

σ(t)

)
e−i2πητdτ

= i2πcṼx(t, η)− σ′(t)

σ(t)
Ṽx(t, η)− σ′(t)

σ(t)
Ṽ g2

x (t, η).

If Ṽx(t, η) 6= 0, we then have

∂
∂t
Ṽx(t, η)

i2πṼx(t, η)
= c− σ′(t)

2iπσ(t)
− σ′(t)

σ(t)
.
Ṽ g2

x (t, η)

i2πṼx(t, η)
.

The IF of x(t) can therefore be obtained by

c = Re
{ ∂

∂t
Ṽx(t, η)

i2πṼx(t, η)
+

σ′(t)

2iπσ(t)
+
σ′(t)

σ(t)
.
Ṽ g2

x (t, η)

i2πṼx(t, η)

}
.

Moreover, if σ is real function Re
{

σ′(t)
2iπσ(t)

}
= 0, we have

c = Re
{ ∂

∂t
Ṽx(t, η)

i2πṼx(t, η)

}
+
σ′(t)

σ(t)
Re
{ Ṽ g2

x (t, η)

i2πṼx(t, η)

}
.

This quantity is also called the phase transformation or the reference IF
function, and we denote it by ω̃x(t, η) :

ω̃1st,adp
x (t, η) = Re

{ ∂
∂t
Ṽx(t, η)

i2πṼx(t, η)

}
+
σ′(t)

σ(t)
Re
{ Ṽ g2

x (t, η)

i2πṼx(t, η)

}
, if Ṽx(t, η) 6= 0.
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The adaptive FSST of x(t)with a σ(t) parameter is defined by

R1st,adp
x (t, ξ) =

∫
{η∈R:Ṽx(t,η)6=0}

Ṽx(t, η)δ(ω̃1st,adp
x (t, η)− ξ)dη (2.4.1)

where ξ is the frequency variable.

The input signal x(t) can be recovered from its adaptive FSST:

x(t) =
σ(t)

g(0)

∫ ∞
−∞

R1st,adp
x (t, ξ)dξ.

If x(t) is also real-valued, then for real-valued x(t), we denote that

x(t) =
2σ(t)

g(0)
Re
(∫ ∞
−∞

R1st,adp
x (t, ξ)dξ

)
.

We may use the following formula to recover the k-th component xk(b) of a
multicomponent signal from the adaptive FSST

xk(b) =
2σ(t)

g(0)
Re
(∫
|ξ−φ′(t)|<Γ

R1st,adp
x (ξ, b)dη

)
for certain Γ > 0.

Remark:
If g is the Gaussion function defined by g(t) = 1√

2π
e−

t2

2 for a signal

x(t) = Aei2πct, we have (refer to [15])

Ṽx(t, η) =

∫ ∞
−∞

Aei2πc(t+τ)gσ(t)(τ)e−i2πητdτ

= Aei2πctĝσ(t)(η − c)
= Aei2πcte−2π2σ(t)2(η−c)2 .
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∂tṼx(t, η) = i2πc Aei2πcte−2π2σ(t)2(η−c)2 + Aei2πcte−2π2σ(t)2(η−c)2(−4π2)(η − c)2σ(t)σ′(t)

= i2πcṼx(t, η) + Ṽx(t, η)(−4π2)(η − c)2σ(t)σ′(t).

Thus, we have

∂tṼx(t, η)

i2πṼx(t, η)
= c+ i2π(η − c)2σ(t)σ′(t).

Both c and 2π(η − c)2σ(t)σ′(t) are real, so the phase transformation of x(t)
can be obtained by

c = Re

{
∂tṼx(t, η)

i2πṼx(t, η)

}
.

Thus if g is the Gaussian function for a general signal x(t), we may write the
phase transformation as

ω̃1st,adp
x = Re

{
∂tṼx(t, η)

i2πṼx(t, η)
,

}
, for Ṽx(t, η) 6= 0.

ω̃1st,adp
x (t, η) =

 Re
{

∂tṼx(t,η)

i2πṼx(t,η)

}
if g (Gaussion function)

Re
{

∂tṼx(t,η)

i2πṼx(t,η)

}
+ σ′(t)

σ(t)
Re
{

Ṽ g
2

x (t,η)

i2πṼx(t,η)

}
, otherwise

2.4.2 Adaptive 2nd-order FSST

In order to define the adaptive 2nd-order FSST, we apply a timevarying pa-
rameter to the STFT. Let gσ(t)(t) = 1

σ(t)
g
(

τ
σ(t)

)
be the window function. We

define g1
σ(t)(t) = t

σ2(t)
g( t

σ(t)
) and g2

σ(t)(t) = t
σ2(t)

g′
(

t
σ(t)

)
(see e.g. [10]).
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We use Ṽ g1

x (t, η) to denote the STFT defined by

Ṽ g1

x (t, η) =

∫ ∞
−∞

x(τ)g′σ(t)(τ − t)e−i2πη(τ−t)dτ =

∫ ∞
−∞

x(t+ τ)
τ

σ2(t)
g(

τ

σ(t)
)e−i2πη(τ−t)dτ

and Ṽ g2

x (t, η) to denote the STFT defined by

Ṽ g2

x (t, η) =

∫ ∞
−∞

x(τ + t)
τ

σ2(t)
g′
( τ

σ(t)

)
e−i2πητdτ,

we then can note that

∂tṼx(t, η) =

∫ ∞
−∞

x′(t+ τ)
1

σ(t)
g
( τ

σ(t)

)
e−i2πητdτ +

∫ ∞
−∞

x(t+ τ)(− σ
′(t)

σ(t)2
)g
( τ

σ(t)

)
e−i2πητdτ

+

∫ ∞
−∞

x(t+ τ)
(
− σ′(t)

σ(t)3

)
g′
( τ

σ(t)

)
e−i2πητdτ

=
(
p+ qt+ i2π(c+ rt)

)
Ṽx(t, η) + (q + i2πr)

∫ ∞
−∞

τx(t+ τ)
1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ

− σ′(t)

σ(t)
Ṽx(t, η)− σ′(t)

σ(t)
Ṽ g2

x (t, η)

=
(
p+ qt+ i2π(c+ rt)− σ′(t)

σ(t)

)
Ṽx(t, η) + (q + i2πr)σ(t)Ṽ g2

x (t, η)− σ′(t)

σ(t)
Ṽ g2

x (t, η),

and if Ṽx(t, η) 6= 0, we have

∂tṼx(t, η)

Ṽx(t, η)
= p+ qt+

σ′(t)

σ(t)
+ i2π(c+ rt) + (q + i2πr)σ(t)

Ṽ g1

x (t, η)

Ṽx(t, η)
− σ′(t)

σ(t)

Ṽ g2

x (t, η)

Ṽx(t, η)

∂

∂η

(∂tṼx(t, η)

Ṽx(t, η)

)
= (q + i2πr)σ(t)

∂

∂η

( Ṽ g1

x (t, η)

Ṽx(t, η)

)
− σ′(t)

σ(t)

( Ṽ g2

x (t, η)

Ṽx(t, η)

)
.

Therefore, if in addition, ∂
∂η

(
Ṽ g

1

s (t,η)

Ṽx(t,η)

)
6= 0, then (q + i2πr)σ(t) = R0(t, η)

with
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R0(t, η) =

∂
∂η

(
∂tṼx(t,η)

Ṽx(t,η)

)
+ σ′(t)

σ(t)
∂
∂η

(
Ṽ g

2

x (t,η)

Ṽx(t,η)

)
∂
∂η

(
Ṽ g

1
x (t,η)

Ṽx(t,η)

) (2.4.1)

q + i2πr =
R0(t, η)

σ(t)

∂tṼx(t, η)

Ṽx(t, η)
= p+ qt− σ′(t)

σ(t)
+ i2π(c+ rt) +R0(t, η)

Ṽ g1

x (t, η)

Ṽx(t, η)
− σ′(t)

σ(t)

( Ṽ g2

x (t, η)

Ṽx(t, η)

)
.

Thus

φ′(t) = c+ rt = Re
{ ∂tṼx(t, η)

i2πṼx(t, η)

}
−Re

{ Ṽ g1

x (t, η)

i2πṼx(t, η)
R0(t, η)

}
+
σ′(t)

σ(t)
Re
{ Ṽ g2

x (t, η)

Ṽx(t, η)

}
.

For a signal x(t) in the following, we define the phase transformation
ω̃2nd,adp
x as

ω̃2nd,adp
x =


Re
{
∂tṼx(t,η)

i2πṼx(t,η)

}
−Re

{
Ṽ g

1

x (t,η)

i2πṼx(t,η)
R0(t, η)

}
+ σ′(t)

σ(t) Re
{
Ṽ g

2

x (t,η)

Ṽx(t,η)

}
, if ∂

∂η

(
Ṽ g

1

x (t,η)

Ṽx(t,η)

)
6= 0

Re
{
∂tṼx(t,η)

i2πṼx(t,η)

}
+ σ′(t)

σ(t) Re
{
Ṽ g

2

x (t,η)

Ṽx(t,η)

}
, if ∂

∂η

(
Ṽ g

1

x (t,η)

Ṽx(t,η)

)
= 0.

The adaptive 2nd-orded FSST of a signal x(t) is defined by

R2nd,adp
x (t, ξ) =

∫
{η∈R:Ṽx(t,η)6=0}

Ṽx(t, η)δ(ω̃2nd,adp
x (t, η)− ξ)dη, (2.4.2)

where ξ is the frequency variable.

To recover the input signal x(t) from its adaptive FSST, we have

x(t) =
σ(t)

g(0)

∫ ∞
−∞

R2nd,adp
x (t, ξ)dξ.
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If in addition x(t) is real-valued, then for real-valued x(t), we have

x(t) =
2σ(t)

g(0)
Re
(∫ ∞
−∞

R2nd,adp
x (t, ξ)dξ

)
.

We may use the following formula to recover the k-th component xk(b) of a
multicomponent signal from the adaptive FSST

xk(b) =
2σ(t)

g(0)
Re
(∫
|ξ−φ′(t)|<Γ

R2nd,adp
x (ξ, b)dη

)
for certain Γ > 0.

2.5 Analysis of FSST

In this section, many pre-established concepts are reiterated and then ex-
panded upon. Refrences to these materials can be found in [19].

2.5.1 STFT-based synchrosqueezing transform

The short-time Fourier transform (STFT) of x(t) ∈ L2(R) with a window
function g(t) ∈ L2(R) given by (2.3.3). For a signal x(t), at (t, η) for which
Vx(t, η) 6= 0, note that

ωx(t, η) = Re
( ∂tVx(t, η)

2iπVx(t, η)

)
.

The FSST reassigns the frequency variable τ by transforming STFT Vx(t, η)
of x(t) to a quantity, denoted by

Rx,γ(t, ξ) =

∫
|Vx(t,η)|6=γ

Vx(t, η)
1

λ
h
(ξ − ωx(t, η))

λ

)
dη (2.5.1)

where h(t) is a compactly supported function with certain smoothness and
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∫
R h(t)dt = 1.

∫
|Vx(t,η)|>γ means the integral

∫
{η:|Vx(t,η)|>γ} with η over the

set {η : |Vx(t, η)| > γ}. We consider multicomponent signals x(t), defined as
follows

x(t) =
K∑
k=1

xk(t), with xk(t) = Ak(t)e
i2πφk(t), (2.5.2)

where Ak(t) and φk(t) satisfy

Ak(t) ∈ C1(R) ∩ L∞(R), φk(t) ∈ C2(R), (2.5.3)

Ak(t) > 0, inf
t∈R

φ′k(t) > 0, sup
t∈R

φ′k(t) <∞. (2.5.4)

Let ε > 0 and ∆ > 0, and let βε,∆ denote the set of multicomponent
signals satisfying (2.5.3), (2.5.4), and the following condition:

|Ak(t)| ≤ εφ′k(t), |φk(t)| ≤ εφ′′k(t), t ∈ R,M ′′
k = sup

t∈R
|φk(t)| <∞, (2.5.5)

φ′k(t)− φ′k−1(t) ≥ 2∆, 2 ≤ k ≤ K, t ∈ R. (2.5.6)

The condition (2.5.6) is called the well-separated condition with resolution
∆. For the well-separated condition, [9] uses a stronger condition than that
in (2.5.6):

inf
t∈R

φ′k(t)− sup
t∈R

φ′k−1(t) ≥ 2∆, 2 ≤ k ≤ K. (2.5.7)

The condition (2.5.5) considered in [12] implies that Ak(t) and IF φ′k(t)
change slowly as compared with φ′k(t). The Fourier-based synchrosqueezing
transform, [25], uses another condition for the change of Ak(t) and IF φ′k(t):

|A′k(t)| ≤ ε, and |φ′k(t)| ≤ ε, for t ∈ R. (2.5.8)

Let βε,∆ denote the set of multicomponent signals that satisfy (2.5.3),
(2.5.4), (2.5.8), and well-separated condition (2.5.6). For 1 ≤ k ≤ K let
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Zk =
{
η : |η − φ′k(t)| < ∆

}
. (2.5.9)

Hence, the well-separated condition (2.5.6) implies that Zk are not over-
lapping. We denote

Γ0(t) = MI1 + πI2

K∑
k=1

Ak(t), and Γ̃0(t) = MĨ1 + πĨ2

K∑
k=1

Ak(t), (2.5.10)

where

In =

∫
R
|τng(τ)| dτ, and Ĩn =

∫
R
|τng′(τ)| dτ, for n = 1, 2, . . . (2.5.11)

Theorem 2.5.1. As stated in [19], let x(t) ∈ Bε,∆ and g be a function in

the Schwartz class with supp(ĝ) ⊆ [−∆,∆]. Let Γ0(t), Γ̃0(t) be defined by
(2.5.10). Then we have the following.

(a) Suppose ε̃ satisfies ε̃ ≥ εΓ0(t). Then for any η with |Vx(t, η)| > ε̃, there
exists a unique k ∈ {1, 2, . . . , K} such that (t, η) ∈ Zk.

(b) Suppose (t, η) satisfies |Vx(t, η)| > ε̃ and (t, η) ∈ Zk. Then

|ωx(t, η)− φ′k(t)| <
ε

ε̃
(Γ0(t)∆ +

1

2π
Γ̃0(t)) (2.5.12)

(c) Suppose that ε̃ satisfies (Γ0(t)∆ + 1
2π

Γ̃0(t)) ε
ε̃
≤ ε̃3 ≤ ∆, we have

∣∣∣∣∣limλ→0

1

g(0)

∫
|ε−φ′k|<ε̃3

Rλ
x,ε̃(t, ξ)dξ − xk(t)

∣∣∣∣∣ ≤ 2∆(εΓ0(t) + ε̃)

|g(0)|
. (2.5.13)

(d) If x(t) ∈ Bε,∆, then the above statements (a)-(c) hold with Γ0(t) and

Γ̃0(t) in (2.5.10) replaced by
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Γ0(t) =
K∑
k=1

{
φ′k(t)I1 +

1

2
M ′′

k I2 + πAk(t)(φ
′
k(t)I2 +

1

3
M ′′

k I3)

}
(2.5.14)

Γ̃0(t) =
K∑
k=1

{
φ′k(t)Ĩ1 +

1

2
M ′

kĨ2 + πAk(t)(φ
′
k(t)Ĩ2 +

1

3
M ′

kĨ3)

}
(2.5.15)

we may note that ε̃ and ε̃3 in Theorem (2.5.1) could be a function of t.

If we choose ε̃ = ε
1
3 , and if ε is small enough, such that

ε̃ ≤ min
{

∆,
1

||Γ0(t)∆ + 1
2π

Γ̃0(t)||∞

}
, (2.5.16)

then ε̃(Γ0(t)∆ + 1
2π

Γ̃0(t)) ≤ 1. Hence,

(Γ0(t)∆ +
1

2π
Γ̃0(t))

ε

ε̃
≤ ε̃ ≤ ∆. (2.5.17)

Thus, the conditions in the Theorem (2.5.1) are satisfied, and Theorem
(2.5.1) (with ε̃3 = ε̃) can be defined in theorem (2.5.2).

Theorem 2.5.2. As stated in [12, 19, 25], let x(t) ∈ Bε,∆, and ε̃ = ε
1
3 . Let

g be a function in he Schwartz class with supp(ĝ) ⊆ [−∆,∆]. If ε is small
enough, then the following statements hold.

(a) For (t, η) satisfying |Vx(t, η)| > ε̃, there exists a unique k ∈ {1, 2, . . . , K}
such that (t, η) ∈ Zk

(b) Suppose (t, η) satisfies |Vx(t, η)| > ε̃ and (t, η) ∈ Zk Then

∣∣∣ωx(t, η)− φ′k(t)
∣∣∣ < ε̃. (2.5.18)

(c) For any k ∈ {1, 2, . . . , K},

∣∣∣∣∣limλ→0

1

g(0)

∫
|ε−φ′k|<ε̃

Rλ
x,ε̃(t, ξ)dξ − xk(t)

∣∣∣∣∣ ≤ 4∆

g(0)
ε̃. (2.5.19)
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”ε is small enough” in Theorem (2.5.2) implies that ε̃ defined by ε̃ = ε
1
3

satisfies some inequalities like (2.5.16). Most theorems on the WSST and
FSST analysis are stated in the form of Theorem 2.5.2, see e.g. [7, 9, 12,
18, 25]. Part (b) and part (c) in theorem 2.5.1 denote more direct bounds
of the estimates. The quantity on the left-hand side (LHS) of (2.5.12) the
IF estimate error. Additionally, we call that on LHS of (2.5.13) the error of
component recovery or component separation. The statements in Theorem
2.5.1 can be found in [12, 18, 25] with some different IF estimate errors. For

example,[18, 25] gave IF estimate error ε
ε̃
(Γ0(t)(∆+2φ′k(t))+ 1

2π
Γ̃0(t)) instead

of ε
ε̃
(Γ0(t)∆ + 1

2π
Γ̃0(t)) in (2.5.12). One can also find that Theorem (2.5.1) is

a special case of Theorem (2.6.1).

Observe that the condition (2.5.5) or (2.5.8) requires the slow change of
the IF φ′k(t) of each component xk(t). There is no mathematical guarantee
that the IF estimate and the component separation for a multicomponent
signal x(t) with a component xk(t) will have a fast-changing frequency. For
example, the changing rate of IF of xk(t) is not very small in the second
derivative φ′′k(t). To address this, the 2nd-order FSST was introduced in
[10], and the 2nd-order WSST was proposed in [11]. The theoretical analysis
of the 2nd-order FSST is established in [18].

If Vx(t, η) 6= 0 and ∂t
(∂ηVx(t,η)

Vx(t,η)

)
6= i2π, then

q̃(t, η) =
∂t
(∂tVx(t,η)
Vx(t,η)

)
i2π − ∂t

(∂ηVx(t,η)

Vx(t,η)

) . (2.5.20)

The 2nd-order FSST in [18] is defined as

R2nd,λ
x,γ (t, ξ) =

∫
|Vx(t,η)|>γ

Vx(t, η)
1

λ
h(
ξ − ω2nd

x (t, η)

λ
)dη, (2.5.21)

where ω2nd
x (t, η) is the phase transformation for the 2nd-order FSST. For

(t, η) with Vx(t, η) 6= 0,

ω2nd
x (t, η) =

{
Re{ ∂tVx(t,η)

2πiVx(t,η)
}+Re{q̃(t, η)∂t(

∂ηVx(t,η)

Vx(t,η)
)} if ∂t(

∂ηVx(t,η)

Vx(t,η)
) 6= i2π

Re{ ∂tVx(t,η)
2πiVx(t,η)

} Otherwise.
(2.5.22)
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Let ε > 0 and ∆ > 0. B
(2)
ε,∆ is the set of multicomponent signals satisfying

(2.5.4), the well-separated condition (2.5.6), and the condition:

Ak(t) ∈ C2(R) ∩ L∞(R), φk(t) ∈ C3(R), φ′k(t) ∈ L∞(R), (2.5.23)

|A′k(t)| ≤ ε, |A′′k(t)| ≤ ε,
∣∣∣φ(3)
k (t)

∣∣∣ ≤ ε, t ∈ (R). (2.5.24)

Then, when x(t) ∈ B(2)
ε,∆, statements for the 2nd-order FSST that are simi-

lar to (2.5.2) hold under certain conditions that are more complicated than
(2.5.16) because no hand-limited window functions and the 2nd-order phase

transformation ω2nd
x (t, η) are involved. The deffinition of B

(2)
ε,∆ has no direct

boundedness restriction on φ′′k(t). See [18] for the details.

2.6 Analysis of Adaptive FSST

In this section, many pre-established concepts are reiterated and then ex-
panded upon. Refrences to these materials can be found in [19].

2.6.1 Adaptive FSST with a time-varying parameter

We begin with the window function given by

gσ(t) =
1

σ
g(
t

σ
), (2.6.1)

where σ > 0 is a parameter and g(t) ∈ L2(R) with g(0) 6= 0. In addition,
g(t) has a decaying order as t→∞. If

g(t) =
1√
2π
e
−
t2

2 , (2.6.2)

then gσ(t) is the Gaussian window function. The parameter σ is also the
window width in the time-domain of the window function gσ(t) because the
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time duration 4gσ of gσ(t) is σ (up to a constant ). 4gσ = σ4g, where 4g

is the time duration of g.
For a signal x(t), the STDT of x(t) with a time-varying parameter, as

defined in [15] is

Ṽx(t, η) =

∫
R
x(τ)gσ(t)(τ − t)e−i2πη(τ−t)dτ =

∫
R
x(t+ τ)

1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ,(2.6.3)

where σ = σ(t) is positive function of t. Ṽx(t, η) is the adaptive STFT of
x(t) with gσ.

Before review the SST associated with the adaptive STFT, we must in-
troduce some notations used in this and the next two subsections. Note
that

g1(τ) = τg(τ), g2(τ) = τ 2g(τ), g3(τ) = τg′(τ).

Therefore,

g1,σ(τ) =
τ

σ2
g(
τ

σ
), g2,σ(τ) =

τ 2

σ3
g(
τ

σ
), g3,σ(τ) =

τ

σ2
g′(
τ

σ
).

We use Ṽ gi
x (t, η) and Ṽ g′

x (t, η) to denote the adaptive STFT is defined by

(2.6.3). gj,σ replaces gσ and g′σ(τ) =
1

σ
g′(
τ

σ
) where 1 ≤ j ≤ 3.

For x(t) = Aei2πct, we can prove that, if Ṽx(t, η), then

ωadp,cx (t, η) =

∂

∂t
Ṽx(t, η)

i2πṼx(t, η)
+

σ′(t)

i2πσ(t)
+
σ′(t)

σ(t)

Ṽ g3
x (t, η)

i2πṼx(t, η)
. (2.6.4)

Furthermore, ωadp,cx (t, η) is c, the IF of x(t). For a general x(t) at (t, η), we
must then define the real part of the quantity of ωadp,cx (t, η) in the above equa-
tion. This real part denoted by ωadpx (t, η) and as the phase transformation of
the adaptive FSST (see[15]):
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ωadpx (t, η) = Re{∂t(Ṽx(t, η))

i2πṼx(t, η)
}+

σ′(t)

σ(t)
Re{ Ṽ g3

x (t, η)

i2πṼx(t, η)
}, for Ṽx(t, η) 6= 0.(2.6.5)

Then, the 1st-order adaptive FSST, or Radp,λ
x,γ , is defined by

Radp,λ
x,γ (t, ξ) =

∫
|Ṽx(t,η)|>γ

Ṽx(t, η)
1

λ
h(
ξ − ωadpx (t, η)

λ
)dη. (2.6.6)

We must now consider the 2nd-order adaptive FSST. For a linear chirp signal,

x(t) = Aei2πφ(t) = Ae
i2π(ct+

1

2
rt2)
. (2.6.7)

Adaptive short-time Fourier transform and synchrosqueezing transform for
non-stationary signal separation [15] shows ωadp,2nd,cx , defined below as c+ rt,
as the IF of x(t):

ωadp,2nd,cx =
σ′(t)

i2πσ(t)
+

∂

∂t
Ṽx(t, η)

i2πṼx(t, η)
− Ṽ g1

x (t, η)

i2πṼx(t, η)
P0(t, η) +

σ′(t)

σ(t)

Ṽ g3
x (t, η)

i2πṼx(t, η)
,(2.6.8)

for (t, η) satisfying
∂

∂η
(
Ṽ
g1(t,η)
x

Ṽx(t, η)
) 6= 0 and Ṽx(t, η) 6= 0, where

P0(t, η) =
1

∂

∂η
(
Ṽ g1
x (t, η

Ṽx(t, η)
)

{ ∂
∂η

(

∂

∂t
Ṽx(t, η)

Ṽx(t, η)
) +

σ′(t)

σ(t)

∂

∂η
(
Ṽ g3
x (t, η)

Ṽx(t, η)
)}. (2.6.9)

Li, Cai, Han, Jiang, Ji define the real part of ωadp,2nd,cx as the phase transfor-
mation for the 2nd-order adaptive FSST (see [15]). The phase transformation
ωadp,2nd,cx is defined by
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ωadp,2nd,cx (t, η) =



Re{

∂

∂t
Ṽx(t, η)

i2πṼx(t, η)
} −Re{ Ṽ g1

x (t, η)

i2πṼx(t, η)
P0(t, η)}+

σ′(t)

σ(t)
Re{ Ṽ g3

x (t, η)

i2πṼx(t, η)
},

if
∂

∂η
(
Ṽ g1
x (t, η)

Ṽx(t, η)
) 6= 0 and Ṽx(t, η) 6= 0,

Re{

∂

∂t
Ṽx(t, η)

i2πṼx(t, η)
}+

σ′(t)

σ(t)
Re{ Ṽ g3

x (t, η)

i2πṼx(t, η)
}, if ∂

∂η
(
Ṽ g1
x (t, η)

Ṽx(t, η)
) = 0 and Ṽx(t, η) 6= 0,

(2.6.10)

The adaptive FSST with Ṽx(t, η) 6= 0 and
∂

∂η
(
Ṽ g1
x

Ṽx(t, η)
) 6= 0 described by

thresholds γ1 > 0, γ2 > 0. More precisely:

ωadp,2nd,cxγ1,γ2
(t, η) =


quantity in(2.6.8), if

∣∣∣Ṽx(t, η)
∣∣∣ > γ1 and

∣∣∣∣∣ ∂∂η (
Ṽ g1
x (t, η)

Ṽx(t, η)
)

∣∣∣∣∣ > γ2

quantity in(2.6.4), if
∣∣∣Ṽx(t, η)

∣∣∣ > γ1 and

∣∣∣∣∣ ∂∂η (
Ṽ g1
x (t, η)

Ṽx(t, η)
)

∣∣∣∣∣ ≤ γ2

(2.6.11)

Again, let h(t) be a compactly supported function with certain smooth-
ness and

∫
R h(t)dt = 1.

The 2nd-order adaptive FSST, Radp,2nd,λ
xγ1,γ2

, is defined as

Radp,2nd,λ
xγ1,γ2

(t, ξ) =

∫
{η:|Ṽx(t,η)|>γ1,|∂η(Ṽ

g1
x (t,η)/Ṽx(t,η)|>γ2}

Ṽx(t, η)
1

λ
h(
ξ − ωadp,2ndxγ1,γ2

(t, η)

λ
)dη.(2.6.12)

2.6.2 Analysis of adaptive FSST

The analysis of adaptive FSST was studied in [19]. A sinusoidal signal locally
approximates each component of xk(t) = Ak(t)e

i2πφk(t). We assume A′k(t) and
φ′k(t) are small.

|A′k(t)| ≤ ε1, |φ′′k(t)| ≤ ε2, t ∈ R, 1 ≤ k ≤ K (2.6.1)
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Ṽx(t, η) =

∫
R
x(τ)g(τ − t)e−i2πη(τ−t)dτ (2.6.2)

for some positive number ε1, ε2. Let Dε1,ε2 denote the set of the set of mul-
ticomponent signals.

Let x(t) ∈ Dε1,ε2 . We write xk(t+ τ) as

xk(t+ τ) = xk(t)e
i2πφ′k(t)τ + (Ak(t+ τ)− Ak(t))ei2πφk(t+τ)

+xk(t)e
i2πφ′k(t)τ (ei2π(φk(t+τ)−φk(t)−φ′k(t)τ) − 1).

If we simplify the expansion, we obtain

xk(t+ τ) = (Ak(t+ τ)− Ak(t))ei2πφk(t+τ) + xk(t)e
i2π(φk(t+τ)−φk(t)).

Then, we have

Ṽx(t, η) =
K∑
k=1

∫
R
xk(t+ τ)

1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ

=
K∑
k=1

∫
R
xk(t)e

i2πφ′k(t)τ 1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ + rem0

Ṽx(t, η) =
K∑
k=1

xk(t)

∫
R
ei2πφ

′
k(t)τ 1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ + rem0 (2.6.3)

=
K∑
k=1

xk(t)ĝ(σ(t)(η − φ′k(t))) + rem0 (2.6.4)

where rem0 is the remainder for the expansion of Vx(t, η) in (2.6.4) given
by
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rem0 =
K∑
k=1

∫
R
(Ak(t+ τ)− Ak(t))ei2πφk(t+τ).

1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ

+
K∑
k=1

∫
R
xk(t)e

i2πφ′k(t)τ (ei2π(φk(t+τ)−φk(t)−φ′k(t)τ) − 1)
1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ

with |Ak(t+ τ)− Ak(t)| ≤ ε1 |τ | and∣∣ei2π(φk(t+τ)−φk(t)−φ′k(t)τ) − 1
∣∣ ≤ 2π |(φk(t+ τ)− φk(t)− φ′k(t)τ | ≤ πε2 |τ |2,

we have

|rem0| ≤
K∑
k=1

∫
R
ε1 |τ |

1

σ(t)

∣∣∣∣g(
τ

σ(t)
)

∣∣∣∣ dτ +
K∑
k=1

Ak(t)

∫
R
πε2 |τ |2

1

σ(t)

∣∣∣∣g(
τ

σ(t)
)

∣∣∣∣ dτ
= Kε1I1σ(t) + πε2I2σ

2(t)
K∑
k=1

Ak(t),

where In is defined in (2.5.11). Hence we have

|rem0| ≤ σ(t)Λ0(t) (2.6.5)

where

Λ0(t) = Kε1I1 + πε2I2σ(t)
K∑
k=1

Ak(t). (2.6.6)

We can extend Ṽ g′
x (t, η) as (2.6.4) with remainder rem′0. In (2.6.5), rem′0

is defined as rem0 in (2.6.5) with g(τ) replaced by g′(τ). Then we have the
estimate for the remainder similar to (2.6.5). More precisely, we have

|rem′0| ≤ σ(t)Λ̃0(t), (2.6.7)

where
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Λ̃0(t) = Kε1Ĩ1 + πε2Ĩ2σ(t)
K∑
k=1

Ak(t) (2.6.8)

with Ĩn defined in (2.5.11).

If the remainder rem0 in (2.6.4) is small, then the term xk(t)ĝ(σ(t)(η−φ′k(t))
in (2.6.4) gives the time-frequency zone of the STFT Ṽxk of the kth compo-
nent xk(t) of x(t). Additionally, if g is band-limited, that is ĝ is compactly
supported. Therefore, if (ĝ) ⊂ [−4,4], then xk(t)ĝ(σ(t)(η − φ′k(t)) lies
within the zone:

{(t, η) : |η − φ′k(t)| <
4
σ(t)

, t ∈ R}.

The multicomponent signal x(t) is well-separated (that is Zk∩Zl = ∅, k 6= l),
provided that σ(t) satisfies

σ(t) ≥ 24
φ′k(t)− φ′k−1(t)

, t ∈ R, k = 2, ..., K. (2.6.9)

If ĝ is not compactly supported, we must define the”support” of ĝ outside
of ĝ (ξ) ≈ 0. Specifically, for a given threshold 0 < τ0 < 1, if |ĝ(ξ)| ≤ τ0 for
|X| ≥ α, then we say ĝ(ξ) is ”supported” in [−α, α]. When |ĝ(ξ)| is even
and decreasing for ξ ≥ 0, then α can be obtained by solving

|ĝ(α)| = τ0. (2.6.10)

For instance, when g is the Gaussian function with ĝ(ξ) = e−2π2ξ2 , the cor-
responding α is given by

α =
1

2π

√
2ln(

1

τ0

). (2.6.11)
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Thus, g with ĝ(ξ) is ”supported” in [−α, α], and we define the time-frequency
zone Zk of the kth-component xk(t) of x(t) by

Zk = {(t, η) : |ĝ(σ(t)(η − φ′k(t))| > τ0, t ∈ R} = {(t, η) : |η − φ′k(t)| <
α

σ(t)
, t ∈ R}.(2.6.12)

If σ(t) satisfies

σ(t) ≥ 24
φ′k(t)− φ′k−1(t)

, t ∈ R, k = 2, ..., K, (2.6.13)

the multicomponent signal x(t) is well-separated.
In this case Zk ∩ Zl = ∅, k 6= l. When σ(t) satisfies (2.6.13), since φ′k(t) is
bounded, we can say

∣∣∣∣∣∣∣∣ 1

σ(t)

∣∣∣∣∣∣∣∣
∞
.

In this case, we may also say

σ(t) |φ′k(t)− φ′lt)| ≥ 2σ |k − l| . (2.6.14)

Theorem 2.6.1. [19] Let x(t) ∈ Dε1,ε2 for small ε1, ε2 > 0. Then we have
the following

(a) Suppose ε̃1 satisfies ε̃1 ≥ σ(t)Λ0(t)+τ0

∑K
k=1 Ak(t). Then for (t, η) with∣∣∣Ṽx(t, η)

∣∣∣ > ε̃1, there exists k ∈ {1, 2, 3, ..K} such that (t, η) ∈ Zk

(b) For (t, η) with
∣∣∣Ṽx(t, η)

∣∣∣ 6= 0, we have

ωapd,cx (t, η)− φ′k(t) =
Rem1

i2πṼx(t, η)
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where

Rem1 = i2π(η − φ′k(t))rem0 −
rem′0
σ(t)

+ i2π
∑
k 6=l

xl(t)(φ
′
l(t)− φ′k(t))ĝ(σ(t)(η − φ′k(t)))

Hence, for (t, η) satisfying
∣∣∣Ṽx(t, η)

∣∣∣ > ε̃1 and (t, η) ∈ Zk, we have

∣∣∣ωapd,cx (t, η)− φ′k(t)
∣∣∣ < bd1

bd1 =
1

ε̃1

(αΛ0(t) +
1

2π
Λ̃0(t))

+
1

ε̃1

maxk∈{1,...,K}

{∑
k 6=l

Al(t)
∣∣∣φ′l(t)− φ′k(t)∣∣∣supu:|u|<α

∣∣∣ĝ(u+ σ(t)(φ′k(t)− φ′l(t)))
∣∣∣}

(c) Suppose that ε̃1 satisfies the condition in part (a) and that bd1 in part

(b) satisfies bd1 ≤
α

σ(t)
. Then for ε̃3 satisfying bd1 ≤ ε̃3 ≤

α

σ(t)
we

have

∣∣∣ lim
λ→0

σ(t)

g(0)

∫
|ξ−φ′k(t)|<ε̃3

Radp,λ
x,ε̃1

(t, ξ)dξ − xk(t)
∣∣∣ ≤ bd2, (2.6.15)

where

bd2 =
1

|g(0)|

{
2α(σ(t))Λ0(t) + ε̃1) + Ak(t)

∣∣∣ ∫
|u|≥α

ĝ(u)du
∣∣∣+
∑
l 6=k

Al(t)ml,k(t)
}

(2.6.16)

with

ml,k(t) =
∣∣∣ ∫
|u|≥α

ĝ(u+ σ(t)(φ′k(t)− φ′l(t)))du
∣∣∣
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2.6.3 Analysis of 2nd-order adaptive FSST

For a given t, Gk(ξ) denotes the Fourier transform of eiπσ(t)φ′′k(t)τ2g(τ), namely
(see [19]),

Gk(ξ) = F
(
eiπσ(t)φ′′k(t)τ2g(τ)

)(
ξ
)

=

∫
R
eiπσ(t)φ′′k(t)τ2g(τ)e−i2πξτdτ

xk(t+ τ) = xk(t)e
i2π(φ′k(t)τ+ 1

2
φ′′k(t)τ2) +

(
Ak(t+ τ)− Ak(t)

)
ei2πφk(t+τ)

+ xk(t)e
i2π(φ′k(t)τ+ 1

2
φ′′k(t)τ2)

(
ei2π
(
φk(t+τ)−φk(t)−φ′k(t)τ− 1

2
φ′′k(t)τ2

)
− 1
)
.

Then, we have

Ṽx(t, η) =
K∑
k=1

∫
R
xk(t+ τ)

1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ

=
K∑
k=1

∫
R
xk(t)e

i2π(φ′k(t)τ+ 1
2
φ′′k(t)τ2) 1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ + res0.

where

res0 =
K∑
k=1

∫
R
{
(
Ak(t+ τ)− Ak(t)

)
ei2πφk(t+τ) (2.6.1)

+ xk(t)e
i2π(φ′k(t)τ+ 1

2
φ′′k(t)τ2)

(
ei2π
(
φk(t+τ)−φk(t)−φ′k(t)τ− 1

2
φ′′k(t)τ2

)
− 1
)
} 1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ.(2.6.2)

Ṽx(t, η) =
K∑
k=1

xk(t)Gk

(
σ(t)(η − φ′k(t))

)
+ res0 (2.6.3)

with
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∣∣∣Ak(t+ τ)− Ak(t)
∣∣∣ ≤ ε1|τ |

and

∣∣∣ei2π(φk(t+τ)−φk(t)−φ′k(t)τ− 1
2
φ′′k(t)τ2

)
− 1
∣∣∣ ≤ 2π

1

6
supη∈R|φ(3)

k (η)τ 3| ≤ π

3
ε2|τ |3.

we have

|res0| ≤
K∑
k=1

∫
R
ε1|τ |

1

σ(t)
|g(

τ

σ(t)
)|dτ +

K∑
k=1

Ak(t)

∫
R

π

3
ε3|τ |3

1

σ(t)
|g(

τ

σ(t)
)|dτ

= Kε1I1σ
3(t)

K∑
k=1

Ak(t)

where In is defined in (2.5.11). Hence,

|res0| ≤ σ(t)
∏

0

(t), (2.6.4)

where

∏
0

(t) = Kε1I1 +
π

3
ε3I3σ

2(t)
K∑
k=1

Ak(t). (2.6.5)

Therefore, if ε1, ε2 are small enough, then |res0| is small as well. Gk

(
σ(t)(η−

φ′k(t))
)

also provides the time-frequency zone for Ṽxk(t, η). To describe those

time-frequency zones mathematically, let 0 < τ0 < 1 be a given small number
and the threshold:

Ok = {(t, η) : |Gk

(
σ(t)(η − φ′k(t)

)
| > τ0, t ∈ R}. (2.6.6)
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Assuming |Gk(ξ)| is even and decreasing for ξ ≥ 0, then we may write Ok

as

Ok = {(t, η) : |η − φ′k(t)| <
αk
σ(t)

, t ∈ R} (2.6.7)

where αk = αk(t) is obtained by solving |Gk(ξ)| = τ0.In this instance, we will
say that multicomponent signal x(t) is well-separated and there is σ(t) such
that

Ok ∩Ol = ∅, k 6= l.

We can use a Gaussian function defined in (2.5.24) as an example. For
this g, we can obtain (see [15]),

Gk(u) =
1√

1− i2πφ′′k(t)σ2(t)
e
−

2π2u2

1 + (2πφ′′k(t)σ
2(t))2

(1+i2πφ′′k(t)σ2(t)))

.

Thus,

|Gk(u)| = 1

(1 + (2πφ′′k(t)σ
2(t))2)

1

4

e
−

2π2

1 + (2πφ′′k(t)σ
2(t))2)u2.

The solution of |Gk(u) = τ0| ⇔ e
−

2π2u2

1 + (2πφ′′k(t)σ
2(t))2

= τ0((1+(2πφ′′k(t)σ
2(t))2)

1

4

Therefore, in this case, assume τ0((1 + (2πφ′′k(t)σ
2(t))2)

1

4 ≤ 1,

αk =
√

1 + (2πφ′′k(t)σ
2(t))2)

1

2π

√
2ln(

1

τ0

)− 1

2
ln(1 + (2πφ′′k(t)σ

2(t))2)).

The main theorem on the 2nd-order adptive FSST can be written in more
notations observe:
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Gj,k(t, η) =

∫
R
ei2π(φ′k(t)τ+ 1

2
φ′′k(t)τ2) τ j

σ(t)j+1
g(

τ

σ(t)
)e−i2πητdτ. (2.6.8)

= F
(
eiπ(φ′′k(t)τ2)τ jg(τ)

)(
σ(t)(η − φ′k(t))

)
. (2.6.9)

Clearly,

G0,k(t, η) = Gk

(
σ(η − φ′k(t))

)
,

and, when j ≥ 1, we can see that

Gj,k =
1

(−i2π)j
G

(j)
k

(
σ(t)(η − φ′k(t))

)
. (2.6.10)

Let res1, res2, res
′
0, and res′1 be the residuals defined as res0 in (2.6.2)

with g(τ) replaced respectively by g1(τ), g2(τ), g′(τ), and g3(τ) = τg′(τ). We
therefore have the estimates for these residuals that are similar to (2.6.4).

|res1| ≤ σ(t)
∏

1

(t), |res2| ≤ σ(t)
∏

2

(t), |res′0| ≤ σ(t)
∏̃

0
(t), |res′1| ≤ σ(t)

∏̃
1
(t),

where

∏
1

(t) = Kε1I2 +
π

3
ε3I4σ

2(t)
K∑
k=1

Ak(t),
∏

2

(t) = Kε1I3 +
π

3
ε3I5σ

2(t)
K∑
k=1

Ak(t),

∏̃
0
(t) = Kε1Ĩ1 +

π

3
ε3Ĩ3σ

2(t)
K∑
k=1

Ak(t),
∏̃

1
(t) = Kε1Ĩ2 +

π

3
ε3Ĩ4σ

2(t)
K∑
k=1

Ak(t),

with In, Ĩn defined in (2.5.11).

Denote:
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Bk(t, η) =
∑
l 6=k

xl(t)(φ
′
l(t)− φ′k(t))G0,l(t, η), Dk(t, η) =

∑
l 6=k

xl(t)(φ
′′
l (t)− φ′′k(t))G1,l(t, η),

Ek(t, η) =
∑
l 6=k

xl(t)(φ
′
l(t)− φ′k(t))G1,l(t, η), Fk(t, η) =

∑
l 6=k

xl(t)(φ
′′
l (t)− φ′′k(t))G2,l(t, η)

and

Res1 = i2πBk(t, η) + i2πσDk(t, η) + i2π(η − φ′k(t))res0 −
res′0

σ(t)
− i2πφ′′k(t)σ(t)res1,(2.6.11)

Res2 = 4π2σ(t)Ek(t, η) + 4π2σ2(t)Fk(t) (2.6.12)

+ i2πres0 + 4π2(η − φ′k(t))σ(t)res1 + i2πres′1 − 4π2φ′′k(t)σ
2(t)res2.(2.6.13)

Lemma 2.6.2. [19] Let Res1 be the quantity defined by (2.6.11). Then,

∂tṼx(t, η) =
(
i2πφ′k(t)−

σ′(t)

σ(t)

)
Ṽx(t, η) + i2πφ′′k(t)σ(t)Ṽ g1

x (t, η)− σ′(t)

σ(t)
)Ṽ g3

x (t, η) +Res1(2.6.14)

Lemma 2.6.3. [19] For (t, η) satisfying Ṽx(t, η) 6= 0 and
∂

∂η
(
Ṽ g1
x (t, η

Ṽx(t, η)
) 6= 0,

we have

P0(t, η) = i2πσφ′′k(t) +Res3 (2.6.15)

where

Res3 =
Ṽx(t, η)Res2 − ∂ηṼx(t, η)Res1

Ṽx(t, η)∂ηṼ
g1
x (t, η)− Ṽ g1

x (t, η)∂ηṼx(t, η)
, (2.6.16)

with Res1 and Res2 defined by (2.6.11)and (2.6.13) respectively.
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Theorem 2.6.4. [19] Suppose x(t) ∈ D(2)
ε1,ε2 with a window function g(t) for

some small ε1, ε2 > 0. Then, we have the following:

(a) Suppose ε̃1 satisfies ε̃1 ≥ ε0

∑K
k=1Ak(t)+σ(t)Π0(t). Then for (t, η) with∣∣∣Ṽx(t, η)

∣∣∣ > ε̃1, there exists k ∈ {1, 2, ..., K} such that (t, η) ∈ Ok.

(b) Suppose (t, η) satisfies |Vx(t, η)| > ε̃1,
∣∣∣∂η(Ṽ g1

x (t, η)/Ṽx(t, η))
∣∣∣ > ε̃2, and

(t, η) ∈ Ok. Then

ωapd,2nd,c(t, η)− φx′k(t) = Res4, (2.6.17)

where

Res4 =
Res1

i2πṼx(t, η)
− Ṽ g1

x (t, η)Res3

i2πṼx(t, η)
. (2.6.18)

Furthermore,

∣∣ωapd,2nd(t, η)− φ′k(t)
∣∣ < Bd1 (2.6.19)

where

Bd1 = max
1≤k≤K

sup
η∈Ok

{ |Res1|
2πε̃1

+
1

2πε̃3
1ε̃2

∣∣∣Ṽ g1
x (t, η)

∣∣∣ ( ∣∣∣∂ηṼx(t, η)
∣∣∣ |Res1|+ ε̃1 |Res2|

)}

(c) Suppose that ε1 satisfies the condition in part (a) and Bd1 ≤
1

2
Lk(t),

where

Lk(t) =
1

σ(t)
min{αk + αk−1, αk + αk+1}. (2.6.20)

Then for any ε̃3 = ε̃3(t) > 0 satisfying Bd1 ≤ ε̃3 ≤
1

2
Lk(t),
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∣∣∣ lim
λ→0

σ(t)

g(0)

∫
|ξ−φ′k(t)|<ε̃3

Radp,2nd,λ
x,ε̃1,ε̃2

(t, ξ)dξ − xk(t)
∣∣∣ ≤ Bd2, (2.6.21)

where Bd2 = Bd′2 +Bd′′2 with

Bd′2 =
1

|g(0)|

{
2αk(ε̃1 + σ(t)Π0(t)) + Ak(t)

∣∣∣ ∫
|u|≥αk

Gk(u)du
∣∣∣+
∑
l 6=k

Al(t)Ml,k(t)
}
,

Bd′′2 =
1

|g(0)|
{2Π0(t)) + Ak(t) ‖ g ‖1 |Zt|+

∑
l 6=k

Al(t)Ml,k(t)}

and |Zt| represents the Lebesgue measure of the set Zt :

Zt =
{
η : (t, η) ∈ Ok,

∣∣∣Ṽx(t, η)
∣∣∣ > ε̃1, ,

∣∣∣∂(V g1
x (t, η)/Ṽx(t, η))

∣∣∣ ≤ ε̃2

}
.
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Chapter 3

Higher-order SST

3.1 High-order Synchrosqueezing transform

3.1.1 The higher-order wavelet synchrosqueezing trans-
form

Higher-order WSST

Consider the Nth-order polynomial-phase signal

x(t) = Aei2πφ(t) (3.1.1)

with φ(t) = r1t+ 1
2
r2t

2 + · · ·+ 1
N
rN t

N , and φ′(t) = r1 + · · ·+ rN t
N−1.

We have x′(t) = i2πφ′(t)x(t) and

φ′(b+ at) = φ′(b) +
φ′′(b)at

1!
+ · · ·+ φ(N)(b)aN−1tN−1

(N − 1)!
. (3.1.2)

We recall the CWT definition of the signal x(t)

Wx(a, b) =

∫ ∞
−∞

x(b+ at)ψ(t)dt. (3.1.3)
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Thus, we have

∂bWx(a, b) =

∫ ∞
−∞

x′(b+ at)ψ(t)dt =

∫ ∞
−∞

i2πφ′(b+ a)x(b+ at)ψ(t)dt

=

∫ ∞
−∞

i2π(r1 + r2(b+ at) + · · ·+ rN(b+ at)N−1)x(b+ at)ψ(t)dt

= i2π

∫ ∞
−∞

(
φ′(b) +

φ′′(b)at

1!
+ · · ·+ φ(N)(b)aN−1tN−1

(N − 1)!

)
.x(b+ at)ψ(t)dt

= i2π
(
φ′(b)Wx(b, a) +

φ(2)(b)a

1!
Wψ1
x (b, a) + · · ·+ aN−1φ(N)(b)

(N−1)!
W

ψN−1
x (b, a)

)
(3.1.4)

where

Wψk
x (b, a) =

∫ ∞
−∞

x(b+ at)tkψ(t)dt. (3.1.5)

We can then write ∂
∂b
Wx(b, a) =

N∑
k=1

i2πak−1

(k − 1)!
φ(k)(b)Wψk−1

x (b, a).

The goal is to determine φ(1)(b) according toWx(b, a),Wψ1
x (b, a), . . . ,W

ψN−1
x (b, a)

∂bWx(b, a)

i2πWx(b, a)
= φ(1)(b) +

N∑
k=2

ak−1

(k − 1)!

W
ψk−1
x (b, a)

Wx(b, a)
φ(k)(b). (3.1.6)

We can write the equation in the form of a scalar product:

wx(a, b) = [x1(b), . . . , xN(b)][1, V2,1(b, a), . . . , VN,1(b, a)]T ,

where wx(a, b) =
∂bWx(b, a)

i2πWx(b, a)
and xk(b) = φ(k)(b), for k = 1, . . . , N.

To solve the problem, we pass through successive derivatives of equation
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(3.1.6) according to the variable a.
To get sequence

(
xk(b)

)
1≤k≤N , we create up a system of N equations with

variables xk(b). Let us denote

y1 = VN .X
T
N (3.1.7)

with VN = [1, V2,1(b, a), . . . , VN,1(b, a)] and XN = [x1(b), . . . , xN(b)].

Computing the partial derivatives:

y2(b, a) =
∂ay1(b, a)

∂aV2,1(b, a)
and Vk,2(b, a) =

∂aVk,1(b, a)

∂aV2,1(b, a)
, (3.1.8)

which implies the following expression:

y2(b, a) = [0, 1, V3,2(b, a), . . . , VN,2(b, a)]XT
N (3.1.9)

Vk,2(b, a) =
∂aVk,1(b, a)

∂aV2,1(b, a)
, for k = 3, . . . , N.

To get the jth equation. We repeat the same process iteratively. We define
the new parameter for the AN matrix for j = 2, . . . , N and k = j, . . . , N by:

yj(b, a) =
∂ayj−1(b, a)

∂aVj,j−1(b, a)
, and Vk,j(b, a) =

∂aVk,j−1(b, a)

∂aVj,j−1(b, a)
. (3.1.10)

Then,

yj(b, a) = [0, 0, . . . , 1, Vj+1,j, . . . , VN,j]X
T
N .
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We group the N equations and get a good linear system

y1
...
yN

 = AN

x1
...
xN

 (3.1.11)

where

AN =


1 V2,1 . . . . . . VN,1
0 1 V3,2 . . . VN,2
...
0 0 . . . 1 VN,N−1

0 0 . . . 0 1

 . (3.1.12)

Since the AN is an upper triangular matrix with a nonzero diagonal, the
solution of the linear system is given by

xN(b) = yN(b, a)

xj(b) = yj(b, a)−
N∑

k=j+1

Vk,j(b, a)xk(b), for j = N − 1, . . . , 1.
(3.1.13)

We can write this idea in the form of an algorithm.

Determination of the Nth-order local phase transformation

Step 1. We define the matrix AN by (3.1.12) with Vk,j obtained by the following
formula:

• Vk,1(b, a) = ak−1

(k−1)!
W
ψk−1
x (b,a)
Wx(b,a)

, for k = 2, . . . , N

• and Vk,j(b, a) =
∂aVk,j−1(b,a)

∂aVj,j−1(b,a)
, for j = 2, . . . , N, k = j, . . . , N

• The matrix AN is defined by :
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AN =


1 V2,1 . . . . . . VN,1
0 1 V3,2 . . . VN,2
...
0 0 . . . 1 VN,N−1

0 0 . . . 0 1


Step 2. We compute y1, y2, ..., yN by

y1(b, a) = wx(a, b) = ∂bWx(b,a)
i2πWx(b,a)

yj(b, a) =
∂ayj−1(b,a)

∂aVj,j−1(b,a)
, for j = 2, . . . , N

Step 3. We solve (3.1.11) and obtain

xN(b) = yN(b, a)

xj(b) = yj(b, a)−
N∑

k=j+1

Vk,j(b, a)xk(b), for j = N − 1, . . . , 1

Step 4. The Nth-order phase transformation ωNx is defined by

ωNx (a, b) =

 wx(b, a)−
N∑
k=2

Vk,1(b, a)xk(b), if Wx(b, a) 6= 0 and ∂aVj,j−1(b, a) 6= 0

wx(b, a), if Wx(b, a) 6= 0

Adaptive higher-order WSST

For a signal with Nth-order polynomial-phase, we define adaptive higher
order synchrosqueezing transform ω̃x

N . We start with the CWT with a
time-varying parameter σ(t).

W̃x(a, b) =

∫ ∞
−∞

x(b+ at)ψσ(b)(t)dt =

∫ ∞
−∞

x(b+ at)
1

σ(b)
g
( t

σ(b)

)
e−i2πµtdt(3.1.14)
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The partial derivative of W (a, b) is given by

∂

∂b
W̃x(a, b) =

∫ ∞
−∞

x′(b+ at)
1

σ(b)
g
( t

σ(b)

)
e−i2πµtdt

+

∫ ∞
−∞

x(b+ at)
−σ′(b)
σ(b)2

g
( t

σ(b)

)
e−i2πµtdt

+

∫ ∞
−∞

x(b+ at)
−σ′(b)t
σ(b)3

g′
( t

σ(b)

)
e−i2πµtdt.

We can simplify the expression

∂bW̃x(a, b) =

∫ ∞
−∞

x′(b+ at)
1

σ(b)
g
( t

σ(b)

)
e−i2πµtdt− σ′(b)

σ(b)
W̃x(a, b)−

σ′(b)

σ(b)
W̃ψ2

x (a, b)

where

W̃x(a, b) =

∫ ∞
−∞

x(b+ at)
1

σ(b)
g(

t

σ(b)
)e−i2πµtdt

W̃ψ2

x (a, b) =

∫ ∞
−∞

x(b+ at)
t

σ(b)2
g′(

t

σ(b)
)e−i2πµtdt.

Observe that

∂bW̃x(a, b) +
σ′(b)

σ(b)
(W̃x(a, b) + W̃ψ2

x (a, b)) =

∫ ∞
−∞

x′(b+ at)
1

σ(b)
g
( t

σ(b)

)
e−i2πµtdt.

we denote: β̃(a, b) = ∂bW̃x(a, b) + σ′(b)
σ(b)

(W̃x(a, b) + W̃ψ2

x (a, b)).

Therefore,

β̃(a, b) =

∫ ∞
−∞

x′(b+ at)
1

σ(b)
g(

t

σ(b)
)e−i2πηtdt. (3.1.15)
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In addition for a signal x defined in (3.1.1), β̃(a, b) satisfies

β̃(a, b) =

∫ ∞
−∞

i2π
(
φ
′
(b) + · · ·+ (at)N−1

(N − 1)!
φ(N)

)
x(b+ at)

1

σ(b)
g(

t

σ(b)
)e−i2πµtdt

= i2π
(
W̃x(a, b)φ

′(b) + · · ·+ aN−1

(N − 1)!
W̃ψN−1
x (a, b)φ(N)(b)

)
where for k = 1, . . . , N − 1

W̃ψk
x (a, b) =

∫ ∞
−∞

x(b+ at)
tk

σ(b)
g(

t

σ(b)
)e−i2πµtdt.

Thus, we have

β̃(a, b)

i2πW̃x(a, b)
= φ′(b) + a

W̃ψ1
x (a, b)

W̃x(a, b)
φ(2)(b) + · · ·+ aN−1

(N − 1)!

W̃
ψN−1
x (a, b)

W̃x(a, b)
φ(N)(b)

φ′(b) = Re
{ β̃(a, b)

i2πW̃x(a, b)
−

N∑
k=2

φ(k)(b)Tk,1(a, b)
}
,

with Tk,1(a, b) = W̃
ψk−1
x (a,b)

W̃x(a,b)

ak−1

(k−1)!
. It remains only to determine φ(k)(b) for

k = 1, . . . , N

β̃(a, b)

i2πW̃x(a, b)
= φ′(b) +

N∑
k=2

Tk,1(a, b)φ(k)(b).

We denote

y1(a, b) =
β̃(a, b)

i2πW̃x(a, b)
=
σ(b)∂bW̃x(a, b) + σ′(b)

(
W̃x(a, b) + W̃ψ2

x (a, b)
)

i2πσ(b)W̃x(a, b)

y1(a, b) = χ1(b) +
N∑
k=2

Tk,1(a, b)χk(b), with χk(b) = φ(k)(b), k = 1, . . . , N.
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We can also put y1 in the form of a scalar product defined as follows

y1(a, b) = [1, T2,1(a, b), . . . , TN,1(a, b)]


χ1(b)
χ2(b)

...
χN(b)

 =<


1
T2,1

...
TN,1

 ,


χ1(b)
χ2(b)

...
χN(b)

 > .

Similarly, applying the algorithm (3.1.1) in the case of σ is constant. The
Nth-order phase transformation or the reference IF function estimate ω̃x

N is
defined by

ω̃x
N(a, b) =


β̃(a, b)

i2πW̃x(a, b)
−

N∑
k=2

Tk,1(b, a)χk(b), if W̃x(b, a) 6= 0 and ∂aTj,j−1(b, a) 6= 0

β̃(a,b)

i2πW̃x(a,b)
, if W̃x(a, b) 6= 0

3.1.2 The higher-order short time Fourier synchrosqueez-
ing transform

Higher-order FSST

Definition 3.1.1. Given a signal x(τ) = A(τ)ei2πφ(τ) in L2(R) with A(τ)
and φ(τ) are equal to their Lth-order and N -order respectively, the Taylor
expansion for τ close to t (see[17]):

A(τ) = elog(A(τ)) = exp
( L∑
k=0

(log(A))(k)(t)

k!
(τ − t)k

)
φ(τ) =

N∑
k=0

φ(k)(t)

k!
(τ − t)k.

(3.1.1)

The signal x is defined as above, with L ≤ N , can be written as:

x(τ) = exp
( L∑
k=0

(log(A))(k)(t)

k!
(τ − t)k

)
exp

(
i2π

N∑
k=0

φ(k)(t)

k!
(τ − t)k

)
= exp

( N∑
k=0

1

k!
([log(A)](k)(t) + i2πφ(k)(t))(τ − t)k

)
.
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Since (log(t))(k)(t) = 0 if L+1 ≤ K ≤ N , we define the STFT for a signal
x by:

V g
x (t, η) =

∫
R
x(τ + t)g(τ)e−i2πητdτ. (3.1.2)

Applying the derivative of STFT, we have:

∂tV g
x (t, η) =

∫
R
∂t

[
exp

( N∑
k=0

1

k!
([log(A)](k)(t) + i2πφ(k)(t))(τ)k

)
g(τ)e−i2πητ

]
dτ

=
N∑
k=0

1

k!

(
[log(A)](k+1)(t) + i2πφ(k+1)(t)

)
V tk−1g
x (t, η)

=
N∑
k=1

1

(k − 1)!

( 1

i2π
[log(A)](k)(t) + φ(k)(t)

)
.i2πV tk−1g

x (t, η)

(3.1.3)

wx(t, η) =
∂tV

g
x (t, η)

2iπV g
x (t, η)

=
N∑
k=1

V tk−1g
x (t, η)

V g
x (t, η)

rk(t) (3.1.4)

=
(log(A))′(t)

i2π
+ φ′(t) +

N∑
k=2

V tk−1g
x (t, η)

V g
x (t, η)

rk(t) (3.1.5)

where rk(t) = 1
(k−1)!

(
1
i2π

[log(A)](k)(t) + φ(k)(t)
)
, for k = 1, . . . , N

wx(t, η)−
N∑
k=2

V tk−1g
x (t, η)

V g
x (t, η)

rk(t) =
(log(A))′(t)

i2π
+ φ′(t).

The Nth-order IF estimate follows:

Re
{
wx(t, η) +

N∑
k=2

rk(t)
(
− Pk,1(t, η)

)}
= φ′(t) (3.1.6)
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where Pk,1(t, η) = V t
k−1g
x (t,τ)
V gx (t,τ)

, for k = 2, . . . , N.

Moreover, we can put equation (3.1.5) in the form

wx(t, η) = [1, P2,1(t, η), . . . , PN,1(t, η)]


r1(t)
r2(t)

...
rN(t)

 = PN .R
T
N .

In the same way, we can present the previous cases to the algorithm 3.1.1
to provide the parameters r1, . . . , rN .

Definition 3.1.2. If s ∈ L2(R), the Nth-order local complex IF estimate
or phase transformation wNx is defined by (see [17]):

wNx (t, η) =

 wx(t, η) +
N∑
k=2

rk(t)
(
− Pk,1(t, η)

)
if V g

x (t, η) 6= 0 and ∂ηPj,j−1(t, η) 6= 0

wx(t, η) if V g
x (t, η) 6= 0 and ∂ηPj,j−1(t, η) 6= 0.

(3.1.7)

Adaptive higher-order FSST

We recall the STFT of the signal x(t) denoted by

Ṽ g
x (t, η) =

∫
R
x(t+ τ)

1

σ(t)
g
( τ

σ(t)

)
e−i2πητdτ.

Taking the derivative by t

∂
∂t
Ṽ g
x (t, η) =

∫
R
x′(t+ τ)

1

σ(t)
g
( τ

σ(t)

)
e−i2πητdτ

+

∫
R
x(t+ τ)

(−σ′(t)
σ2(t)

)
g
( τ

σ(t)

)
e−i2πητdτ

+

∫
R
x(t+ τ)

(−σ′(t)
σ3(t)

τ
)
g′
( τ

σ(t)

)
e−i2πητdτ.
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To simplify the calculation, we note the following expression

σ′(t)

σ(t)
Ṽ g
x (t, η) =

∫
R
x(t+ τ)

(−σ′(t)
σ2(t)

)
g(

τ

σ(t)
)e−i2πητdτ

−σ′(t)
σ(t)

Ṽx
g2

(t, η) =

∫
R
x(t+ τ)

(−σ′(t)
σ3(t)

τ
)
g′
( τ

σ(t)

)
e−i2πητdτ

∂tṼ
g
x (t, η)

Ṽ g
x (t, η)

= I − σ′(t)

σ(t)
− σ′(t)

σ(t)

Ṽ g
x

g2

(t, η)

Ṽ g
x (t, η)

(3.1.8)

where

I =
1

Ṽ g
x (t, η)

(∫
R
x′(t+ τ)

1

σ(t)
g(

τ

σ(t)
)e−i2πητdτ

)

=
i2π

Ṽ g
x (t, η)

.
N∑
k=1

1

(k − 1)!

( 1

i2π
[log(A)](k)(t) + φ(k)(t)

)∫
R
x(t+ τ)τ kg(

τ

σ(t)
)e−i2πητdτ

=
i2π

Ṽ g
x (t, η)

N∑
k=1

rk(t)Ṽx
tkg

(η, t)

with rk(t) =
1

(k − 1)!

( 1

i2π
[log(A)](k)(t) + φ(k)(t)

)
, for k = 1, . . . , N.

Thus, we have

1

i2π

(∂tṼ g
x (t, η)

Ṽ g
x (t, η)

+
σ′(t)

σ(t)
+
σ′(t)

σ(t)

Ṽx
g2

(t, η)

Ṽ g
x (t, η)

)
=

log(1)(A)(t)

i2π
+ φ(1)(t) +

N∑
k=2

rk(t)
Ṽx

tkg
(η, t)

Ṽ g
x (η, t)

.

we denote:

w̃x(t, η) =
1

i2π

(∂tṼ g
x (t, η)

Ṽ g
x (t, η)

+
σ′(t)

σ(t)
+
σ′(t)

σ(t)

Ṽx
g2

(t, η)

Ṽ g
x (t, η)

)
.
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Then,

log(A)(1)(t)

i2π
+ φ(1)(t) = w̃x(t, η)−

N∑
k=2

rk(t)
Ṽx

tkg
(η, t)

Ṽ g
x (η, t)

. (3.1.9)

The IF function is obtained by

φ(1)(t) = Re

{
w̃x(t, η)−

N∑
k=2

rk(t)
Ṽx

tkg
(t, η)

Ṽ g
x (t, η)

}
.

We can use the equation (3.3.2) to apply the unknowns r1(t), . . . , rN(t)
in the form of a scalar product previously solved by the algorithm (3.1.1):

w̃x(t, η) = [1, S2,1(t, η), . . . , SN,1(t, η)]


r1(t)
r2(t)

...
rN(t)

 = SN .R
T
N

where Sk,1(t, η) =
Ṽx

tkg
(t, η)

Ṽ g
x (t, η)

, for k = 2, . . . , N.

Let us denote y1(t, η) = w̃x(t, η), yj(t, η) =
∂ηyj−1(t, η)

∂ηSj,j−1(t, η)
, and Sk,j(t, η) =

∂ηSk,j−1(t, η)

∂ηSj,j−1(t, η)
. In the same way, algorithm (3.1.1) solves the problem.

3.2 New FSST transform

A new phase transformation for the 2nd-order adaptive FSST was proposed
in [26]. We consider the new second order FSST associated with STFT. For
a signal x(t) defined by

x(t) = Aept+
q
2
t2ei2π(ct+ 1

2
rt2),
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The STFT of x(t) ∈  L2(R) with a window function g(t) ∈ L2(R) is defined
as

Vx(t, η) =

∫
R
x(τ)g(τ − t)e−i2πη(τ−t)dτ (3.2.1)

where t is the time variable and η are is the frequency variable.
As in previous cases, we have

∂tVx(t, η) = (p+ qt+ i2π(c+ rt))Vx(t, η) + (q + i2πr)V g1
x (t, η).

Thus at (t, η) on which Vx(t, η) 6= 0

∂tVx(t, η)

V g1
x (t, η)

=
(
p+ qt+ i2π(c+ rt)

) Vx(t, η)

V g1
x (t, η)

+ (q + i2πr).

Taking partial derivative ∂η, then we have

∂

∂η

(∂tVx(t, η)

V g1
x (t, η)

)
=
(
p+ qt+ i2π(c+ rt)

)
P0(t, η) (3.2.2)

where we use P0(t, η) to denote

P0(t, η) =
∂

∂η

( Vx(t, η)

V g1
x (t, η)

)
⇒

(
p+ qt+ i2π(c+ rt)

)
=

1

P0(t, η)

∂

∂η

( Vx(t, η)

V g1
x (t, η)

)
.

Thus,

c+ rt = −p+ qt

i2π
+

1

i2πP0(t, η)

∂

∂η

( Vx(t, η)

V g1
x (t, η)

)
.

Thus for a general x(t), we define a new phase transformation for the 2nd-
order FSST, denoted by ωNew,2ndx , as
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ωNew,2ndx (t, η) =


Re
{

1

i2π ∂
∂η

(
Vx(t,η)

V
g1
x (t,η)

) ∂
∂η

(
Vx(t,η)

V
g1
x (t,η)

)}
. if ∂

∂η

(
Vx(t,η)

V
g1
x (t,η)

)
6= 0, Vx(t, η) 6= 0

Re
{

∂tVx(t,η)
i2πVx(t,η)

}
, if ∂

∂η

(
Vx(t,η)

V
g1
x (t,η)

)
= 0, Vx(t, η) 6= 0

3.2.1 New higher-order FSST

Definition 3.2.1. Given a signal x(τ) = A(τ)ei2πφ(τ) in L2(R) with A(τ)
and φ(τ) are equal to their Lth-order and N -order respectively, the Taylor
expansion for τ close to t:

A(τ) = elog(A(τ)) = exp
( L∑
k=0

(log(A))(k)(t)

k!
(τ − t)k

)
φ(τ) =

N∑
k=0

φ(k)(t)

k!
(τ − t)k,

(3.2.1)

the signal x is defined as above, with L ≤ N , can be written as:

x(τ) = exp
( L∑
k=0

(log(A))(k)(t)

k!
(τ − t)k

)
exp

(
i2π

N∑
k=0

φ(k)(t)

k!
(τ − t)k

)
= exp

( N∑
k=0

1

k!
([log(A)](k)(t) + i2πφ(k)(t))(τ − t)k

)
.

Since (log(t))(k)(t) = 0 if L + 1 ≤ K ≤ N. Next we define the STFT for
a signal x by:

V g
x (t, η) =

∫
R
x(τ + t)g(τ)e−i2πητdτ. (3.2.2)

Applying the derivative of STFT, we have:
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∂tV
g
x (t, η) =

∫
R
∂t

[
exp

(
N∑
k=0

((log(A))(k)(t)

k!
+ i2πφ(k)(t)

)
τ k

)
g(τ)e−i2πητ

]
dτ

=
N∑
k=0

((log(A))(k+1)(t)

k!
+ i2πφ(k+1)(t)

)
V tk−1g
x (t, η)

=
N∑
k=1

((log(A))(k)(t)

i2π(k − 1)!
+ φ(k)(t)

)
i2πV tk−1g

x (t, η)

(3.2.3)

wx(t, η) = ∂tV
g
x (t,η)

2iπV tgx (t,η)
=

N∑
k=1

V tk−1g
x (t, η)

V g
x (t, η)

rk(t)

=
((log(A))′(t)

i2π
+ φ′(t)

) V g
x (t, η)

V tg
x (t, η)

+
(log(A))

′′
(t)

i2π
+ φ

′′
(t) +

N∑
k=3

V tk−1g
x (t, η)

V tg
x (t, η)

rk(t)

where rk(t) = (log(A))(k)(t)
i2π(k−1)!

+ φ(k)(t), for k = 1, . . . , N.

Taking the derivative by η for the equation (3.2.4), we have:

∂ηwx(t, η) =
((log(A))′(t)

i2π
+ φ′(t)

)
∂η

( V g
x (t, η)

V tg
x (t, η)

)
+

N∑
k=3

∂η

(V tk−1g
x (t, η)

V tg
x (t, η)

)
rk(t).

Therefore, if in addition, ∂η

(
V gx (t,η)

V tgx (t,η)

)
6= 0, then

wNewx (t, η) =
((log(A))′(t)

i2π
+ φ′(t)

)
+

N∑
k=3

1

∂η

(
V gx (t,η)

V tgx (t,η)

)∂η(V tk−1g
x (t, η)

V tg
x (t, η)

)
rk(t)(3.2.4)

where the function wNewx is defined by

wNewx (t, η) =
1

∂η

(
V gx (t,η)

V tgx (t,η)

)∂η( ∂tV
g
x (t, η)

2iπV tg
x (t, η)

)
. (3.2.5)
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In addition, we can write equation (3.2.4) in the form

wNewx (t, η)−
N∑
k=3

Wk,1(t, η)rk(t) =
(log(A))′(t)

i2π
+ φ′(t)

where Wk,1(t, η) = 1

∂η

(
V
g
x (t,η)

V
tg
x (t,η)

)∂η(V tk−1g
x (t, η)

V tg
x (t, η)

)
for k = 3, . . . , N.

The new version for the Nth-order IF estimate is defined by the STFT:

<
{
wNewx (t, η) +

N∑
k=3

rk(t)
(
−Wk,1(t, η)

)}
= φ′(t). (3.2.6)

Moreover, we can put the equation (3.2.4) in the form:

wNewx (t, η) = [1,W3,1(t, η),W4,1(t, η), . . . ,WN,1(t, η)]


r1(t)
r3(t)
r4(t)

...
rN(t)

 = WN−1.R
T
N−1.

In the same way the previous cases used the algorithm (3.1.1) to provide the
parameters r1, r3, r4, . . . , rN , we can denote k = 3, . . . , N by computing the
partial derivatives:

y2(t, η) =
∂ηω

New
x (t, η)

∂ηW3,1(t, η)
and Wk,2(t, η) =

∂ηWk,1(t, η)

∂ηW3,1(t, η)
(3.2.7)

which implies the following expression

y2(t, η) = [0, 1,W4,2(t, η), . . . ,WN,2(t, η)]RT
N−1. (3.2.8)
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To find the jth equation, we do the same process iteratively. We define the
new parameter for the AN−1 matrix for j = 2, . . . , N−1 and k = j+1, ...N−1
by:

yj(t, η) =
∂ηyj−1(t, η)

∂ηWj+1,j−1(t, η)
, and Wk,j(t, η) =

∂ηWk,j−1(t, η)

∂ηWj+1,j−1(t, η)
. (3.2.9)

Then,

yj(t, η) = [0, 0, . . . , 1,Wj+2,j, . . . ,WN,j]R
T
N−1.

We group the N − 1 equations and get a good linear system:
y1

y2

y3
...

yN−1

 =


1 W3,1 . . . . . . WN,1

0 1 W4,2 . . . WN,2
...
0 0 . . . 1 WN,N−2

0 0 . . . 0 1




r1

r3

r4
...
rN

 (3.2.10)

YN−1 = AN−1.[RN−1]T (3.2.11)

Since the AN−1 is an upper triangular matrix with a nonzero diagonal, the
solution of the linear system is given by

rN(t) = yN−1(t, η)

rj(t) = yj−1(t, η)−
N∑

k=j+1

Wk,j−2(t, η)rk(t), for j = N − 1, . . . , 3.
(3.2.12)

Definition 3.2.2. Let x ∈ L2(R). The New version for Nth-order local
complex IF estimate or phase transformation ωN,Newx is defined by

ωN,Newx (t, η) =

 wNewx (t, η) +
N∑
k=3

rk(t)
(
−Wk,1(t, η)

)
if ∂ηWj,j−1(t, η) 6= 0

wNewx (t, η) if ∂ηWj,j−1(t, η) = 0.
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Chapter 4

Numerical simulation

4.1 Numerical Simulation

In this section, we present some experimental results for the new second order
of the phase transformation ω2nd

x . Let x(t) be a signal with two linear chirps:

x(t) = x1(t) + x2(t) = cos
(
2π(c1 +

1

2
b1t)t

)
+ cos

(
2π(c2 +

1

2
b2t)t

)
, t ∈ [0, 1]

(4.1.1)
where the reference frequencies are c1 = 12, c2 = 34, and the chip rates

are b1 = 50, b2 = 64. Here, x(t) is sampled uniformly with N = 256 sample
points.
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We proceed with two representative signal types.
Example 1: Our first signal is a signal with three components, given by
s(t) = s1(t) + s2(t) + s3(t),
where

s1(t) = cos(118π(t− 1
2
) + 100π(t− 1

2
)2)1[ 1

2
,1].

s2(t) = cos(94πt+ 110πt2 + 13 cos(4πt− pi
2

)).
s3(t) = cos(194πt+ 112πt.2)1[0, 3

4
].

(4.1.2)
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Figure 4.1: The signal s(t) and its components s1(t), s2(t) and s3(t)

We use the relative “root mean square error” (RMSE) to evaluate the
separation performance, which is defined by

RMSE =
1

K

K∑
k=1

||zk − ẑk||2
||zk||

,

where ẑk is the reconstruction result of zk, K is the number of components.
Here, we test some parameters of σ from 0.001 to 0.1. The best value for

the reconstrucation signal and its components from FSST2 can be obtained
by minimizing the RMSE for both approaches of FSST2. Then, σOld =
σNew = 0.023. We colculated the following results.
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σ 0.015 0.020 0.023 0.025 0.030

RMSE for Old 0.1375 0.0860 0.0798 0.0843 0.0922
RMSE for New 0.1091 0.0720 0.0717 0.0782 0.0888

Table 4.1: Some differents values of σ and their RMSE.

Figure 4.2: RMSE for FSST2 Old and New with σ ∈ [0.001, 0.04]

As we can see, the best value for minimizing the value of RMSE is σ ≈
0.023. This value shows the difference between the original IFs and the
reconstrucation using the FSST2 old and FSST2 new.

Figure 4.3: The original IF of the signal s(t)
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Figure 4.4: Difference of reconstructed IFs with original IFs by old 2nd-order
and new 2nd-order FSST.
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Figure 4.5: Difference for the reconstructed s1, s2, s3 with original component
s1(t), s2(t), s3(t) by old 2nd-order and new 2nd-order FSST.
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Example 2: The second signal is a signal with two components, given
by the signal s(t) = s1(t) + s2(t), defined by

s1(t) = cos(2π(12t+ 25t2)) and s2(t) = cos(2π(34t+ 32t2)). (4.1.3)

Figure 4.6: The signal s(t)

Figure 4.7: The components of the signal s(t) one by one s1(t)(left), and
s2(t)(right)
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Here, we test some parameters of σ from 0.001 to 0.1. The best value for
the reconstrucation signal and its components from FSST2 can be obtained
by minimizing the RMSE for both approaches of FSST2. Then, σOld =
σNew ≈ 0.05. We colculated the following results.

σ 0.04 0.042 0.045 0.047 0.050

RMSE for Old 0.0893 0.0897 0.0802 0.0827 0.0824
RMSE for New 0.0893 0.0893 0.0800 0.0823 0.0822

Table 4.2: Some Examples for differents parameter of σ.

Figure 4.8: RMSE for Old and New FSST2 with σ ∈ [0.001, 0.1]

As we can see, the best value for minimizing the value of RMSE is σ ≈
0.045. This value demonstrates the difference between the original IFs and
the reconstrucations using the FSST2 old and FSST2 new.
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Figure 4.9: The original IF of the signal s(t)

Figure 4.10: Difference of reconstructed IFs with original IFs by old 2nd-
order and new 2nd-order FSST.
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Figure 4.11: The difference for the signal s(t)

Figure 4.12: Difference for the reconstructed s1(t), s2(t) with original com-
ponent s1(t), s2(t) by old 2nd-order and new 2nd-order FSST.
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Chapter 5

Analysis of Adaptive Shor-time
Fourier Transform-based
Synchrosqueezing Transform

5.1 Analysis for new approach of FSST2

The Fourier transform of eiπφ
′′
k(t)τ2g(τ), which we denote by Gk(ξ), is defined

by (refer to [19]):

Gk(ξ) = F
(
eiπ)φ′′k(t)τ2g(τ)

)(
ξ
)

=

∫
R
eiπφ

′′
k(t)τ2g(τ)e−i2πξτdτ

xk(t+ τ) = xk(t)e
i2π(φ′k(t)τ+ 1

2
φ′′k(t)τ2) +

(
Ak(t+ τ)− Ak(t)

)
ei2πφk(t+τ)

+ xk(t)e
i2π(φ′k(t)τ+ 1

2
φ′′k(t)τ2)

(
ei2π
(
φk(t+τ)−φk(t)−φ′k(t)τ− 1

2
φ′′k(t)τ2

)
− 1
)
.

Then, we have

Vx(t, η) =
K∑
k=1

∫
R
xk(t+ τ)g(τ)e−i2πητdτ

=
K∑
k=1

∫
R
xk(t)e

i2π(φ′k(t)τ+ 1
2
φ′′k(t)τ2)g(τ)e−i2πητdτ + res0.
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where

res0 =
∑K

k=1

∫
R{
(
Ak(t+ τ)− Ak(t)

)
ei2πφk(t+τ)

+ xk(t)e
i2π(φ′k(t)τ+ 1

2
φ′′k(t)τ2)

(
ei2π
(
φk(t+τ)−φk(t)−φ′k(t)τ− 1

2
φ′′k(t)τ2

)
− 1
)
}g(τ)e−i2πητdτ.

lll(5.1.1)

|res0| ≤
∏

0

(t), (5.1.2)

where

∏
0

(t) = Kε1I1 +
π

3
ε3I3

K∑
k=1

Ak(t).

We introduce more notations defined as follows

Gj,k(t, η) =

∫
R
ei2π(φ′k(t)τ+ 1

2
φ′′k(t)τ2)τ jg(τ)ei2πητdτ.

= F
(
eiπ(φ′′k(t)τ2)τ jg(τ)

)(
η − φ′k(t)

)
.

We also note

Gk

(
η − φ′k(t)

)
= G0,k(t, η)

Gj,k =
1

(−i2π)j
G

(j)
k

(
η − φ′k(t)

)
.

Lemma 5.1.1. [19] Let x(t) = A(t)ei2πφ(t) ∈ L2(R), we have

∂tVx(t, η) = i2πφ′k(t)Vx(t, η) + i2πφ′′k(t)V
g1
x (t, η) +Res1 (5.1.3)

where

Res1 = i2πBk(t, η) + i2πDk(t, η) + i2π(η − φ′k(t))res0 − res′0 − i2πφ′k(t)res1.
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Proof. V g′
x is defined by (see [19]):

V g′

x = i2π
K∑
`=1

x`(t)
(
η − φ′`(t)

)
G0,`(t, η)− i2π

K∑
`=1

x`(t)φ
′′
` (t)G1,`(t, η) + res′0.

Taking the derivatve by the time variable t, we obtain

∂tVx(t, η) = i2πηVx(t, η)− V g′

x (t, η). (5.1.4)

Using the derivative of the time variable (5.1.4), we have

∂tVx(t, η)− i2πφ′k(t)Vx(t, η)− i2πφ′′k(t)V g1
x (t, η)

= i2π
(
η − φ′k(t)

)
Vx(t, η)− V g′

x (t, η)− i2πφ′′k(t)V g1
x (t, η)

= i2π
(
η − φ′k(t)

)
Vx(t, η)− i2π

K∑
`=1

x`(t)
(
η − φ′`(t)

)
G0,`(t, η)− res′0

+ i2π
K∑
`=1

x`(t)φ
′′
` (t)G1,`(t, η)− i2πφ′′k(t)V g1

x (t, η).

In addition, we define the expression of Vx(t, η) and V g1
x (t, η) in the form

Vx(t, η) =
K∑
`=1

x`(t)G0,`(t, η) + res0

V g1
x (t, η) =

K∑
`=1

x`(t)G1,`(t, η) + res1.

Then, we have
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∂tVx(t, η)− i2πφ′k(t)Vx(t, η)− i2πφ′′k(t)V g1
x (t, η)

= i2π
(
η − φ′k(t)

)( K∑
`=1

x`(t)G0,`(t, η) + res0

)
− i2π

K∑
`=1

x`(t)
(
η − φ′`(t)

)
G0,`(t, η)− res′0

+ i2π
K∑
`=1

x`(t)φ
′′
` (t)G1,`(t, η)− i2πφ′′k(t)

( K∑
`=1

x`(t)G1,`(t, η) + res1

)
= i2π

∑
` 6=k

x`(t)
(
φ′`(t)− φ′k(t)

)
G0,`(t, η) + i2π

∑
`6=k

x`(t)
(
φ′′` (t)− φ′′k(t)

)
G1,`(t, η)

+ i2π
(
η − φ′k(t)

)
res0 − res′0 − i2πφ′′k(t)res1

= i2πBk(t, η) + i2πDk(t, η) + i2π
(
η − φ′k(t)

)
res0 − res′0 − i2πφ′′k(t)res1

= Res1

where

Bk(t, η) =
∑
6̀=k

x`(t)
(
φ′`(t)− φ′k(t)

)
G0,`(t, η)

Dk(t, η) =
∑
` 6=k

x`(t)
(
φ′′` (t)− φ′′k(t)

)
G1,`(t, η).

We recall the definition of the new phase transformation for the 2nd-order
STFT, which Vx(t, η) 6= 0.:

ωnew,2ndx (t, η) =


Re

{
1

i2π ∂
∂η

(
Vx(t,η)

V
g1
x (t,η)

) ∂
∂η

(
∂tVx(t,η)

V
g1
x (t,η)

)}
if ∂

∂η

(
∂tVx(t,η)

V
g1
x (t,η)

)
6= 0, V g1

x (t, η) 6= 0

Re

{
∂tVx(t,η)
i2πVx(t,η)

}
, if ∂

∂η

(
∂tVx(t,η)

V
g1
x (t,η)

)
= 0, V g1

x (t, η) 6= 0.

Then, the new second order complex IF is defined as follows

ωNew,2nd,cx (t, η) =
P1(t, η)

i2πQ1(t, η)
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where P1 and Q1 are defined by

P1(t, η) =
∂

∂η

(∂tVx(t, η)

V g1
x (t, η)

)
and Q1(t, η) =

∂

∂η

( Vx(t, η)

V g1
x (t, η)

)
. (5.1.5)

Lemma 5.1.2. For (t, η) such that V g1
x (t, η) 6= 0 and P1(t, η) 6= 0, as defined

in the equation (5.1.5), we have

P1(t, η) = i2πφ′k(t)Q1(t, η) +Res3 (5.1.6)

and we note that Res2 = ∂ηRes1(see[19]), where

Res3 =
Res2V

g1
x (t, η)− ∂ηV g1

x (t, η)Res1(
V g1
x (t, η)

)2 .

Proof. Using the result of lemma (5.1.1), we have

∂tVx(t, η) = i2πφ′k(t)Vx(t, η) + i2πφ′′k(t)V
g1
x (t, η) +Res1. (5.1.7)

Therefore, in the equation (5.1.7), therefore, thus

∂tVx(t, η)

V g1
x (t, η)

= i2πφ′k(t)
Vx(t, η)

V g1
x (t, η)

+ i2πφ′′k(t) +
Res1

V g1
x (t, η)

. (5.1.8)

Taking the derivative by η, then yields

∂η

(∂tVx(t, η)

V g1
x (t, η)

)
= i2πφ′k(t)∂η

( Vx(t, η)

V g1
x (t, η)

)
+ ∂η

( Res1

V g1
x (t, η)

)
. (5.1.9)

We replace in the equation (5.1.9) with the expression of the P1 and Q1:

92



P1(t, η) = i2πφ′k(t)Q1(t, η) +Res3. (5.1.10)

This completes the proof of lemma (5.1.2).

Theorem 5.1.3. Let x(t) ∈ Dε1,ε2 for small ε1, ε2 > 0. We have the follow-
ing results:

(a) Suppose ε1 satisfies ε1 ≥ Π0(t) + τ0

K∑
k=1

ckAk(t), and for (t, η) with

|V g1
x (t, η)| > ε1. Then, there exists k ∈ {1, . . . , K} such that (t, η) ∈ Ok

(b) If (t, η) such that |Vx(t, η)| > ε1,
∣∣∣∂η( Vx(t,η)

V
g1
x (t,η)

)∣∣∣ > ε2 and (t, η) ∈ Ok,

then, we have

ωNew,2nd,cx (t, η)− φ′k(t) = Res4

where

Res4 =
Res2V

g1
x (t, η)− ∂ηV g1

x (t, η)Res1

i2π
(
∂ηVx(t, η)V g1

x (t, η)− ∂ηV g1
x (t, η)Vx(t, η)

) .
In addition, we have

|ωNew,2nd(t, η)− φ′k(t)| < Bd1

where

Bd1 = max
1≤k≤K

sup
η∈Ok

{ 1

2πε2
1ε2

(
|Res2||V g1

x (t, η)|+ |Res1||∂ηV g1
x (t, η)|

)}
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(c) If ε1 satisfies the condition in part (a) and Bd1 ≤ 1
2
Lk(t), then

Lk(t) = min
{
αk + αk−1, αk + αk+1

}
.

Then for any ε3 = ε3(t) > 0 satisfying Bd1 ≤ ε3 ≤
1

2
Lk(t),

∣∣∣ lim
λ→0

1

g(0)

∫
|ξ−φ′k(t)|<ε3

R2nd,λ
x,ε1,ε2

(t, ξ)dξ − xk(t)
∣∣∣ ≤ Bd2,

where Bd2 = Bd′2 +Bd′′2 with

Bd
′
2 =

1

|g(0)|

{
2αk(

∏
0

(t) + ε1) + Ak(t)|
∫
|u|≥αk

Gk(u)du|+
∑
l 6=k

Al(t)Ml,k(t)
}
,

Bd
′′
2 =

1

|g(0)|

{
2
∏

0

(t) + Ak(t) ‖ g ‖1 |Zt|+
∑
l 6=k

Al(t)Ml,k(t)
}

and with |Zt| represents the Lebesgue measure of the set Zt :

Zt :=
{
η : (t, η) ∈ Ok, |V g1

x (t, η)| > ε1,

∣∣∣∣∂η( Vx(t, η)

V g1
x (t, η)

)∣∣∣∣ ≤ ε2

}
.

Proof Part (a). Assume (t, η) /∈ ∪Kk=1Ok. Then for any k, by the
definition of Ok in (2.6.6) with σ = 1, we have |Gk(η − φ′k(t))| ≤ τ0. Hence,
by (5.1.1) and (5.1.2), we have

|G1,k(η − φ′k(t))| ≤ ck|Gk(η − φ′k(t))| (5.1.11)

where ck is a polynomial of (|φk−1(t)− φk(t)|+ αk), therefore, thus

|V g1
x (t, η)| ≤

K∑
k=1

∣∣xk(t)G1,k(η − φ′k(t))
∣∣+ |res0|

≤ τ0

K∑
k=1

Ak(t)ck + Π0(t) ≤ ε1,
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which contradiction the assumption |V g1
x (t, η)| > ε1. Therefore, (a) holds.

Proof Part (b). Using the result of Lemma (5.1.2),

P1(t, η) = i2πφ′k(t)Q1(t, η) +Res3. (5.1.12)

Then we have

ωNew,2nd,cx (t, η)− φ′k(t) = Res4

where

Res4 =
Res3

i2πQ1(t, η)
.

=

(
V g1
x (t, η)

)2
Res3

i2π
(
∂ηVx(t, η)V g1

x (t, η)− ∂ηV g1
x (t, η)Vx(t, η)

) .
However, the formula of Res3 is defined in the lemma (5.1.2), and we obtain

(
V g1
x (t, η)

)2
Res3 = Res2V

g1
x (t, η)− ∂ηV g1

x (t, η)Res1.

Then,

Res4 =
Res2V

g1
x (t, η)− ∂ηV g1

x (t, η)Res1

i2π
(
∂ηVx(t, η)V g1

x (t, η)− ∂ηV g1
x (t, η)Vx(t, η)

) .
Next, we have
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|Res4| =
∣∣∣Res2V

g1
x (t, η)− ∂ηV g1

x (t, η)Res1

V g1
x (t, η)2

∣∣∣∣∣∣ V g1
x (t, η)2

i2π
(
∂ηVx(t, η)V g1

x (t, η)− ∂ηV g1
x (t, η)Vx(t, η)

)∣∣∣
≤ 1

2πε2

∣∣∣Res2V
g1
x (t, η)− ∂ηV g1

x (t, η)Res1

V g1
x (t, η)2

∣∣∣
≤ 1

2πε2

( |Res2|
|V g1
x (t, η)|

+
∣∣∣∂ηV g1

x (t, η)

V g1
x (t, η)2

∣∣∣|Res1|
)

≤ 1

2πε2
1ε2

(
|Res2||V g1

x (t, η)|+ |Res1||∂ηV g1
x (t, η)|

)

where

Bd1 = max
1≤k≤K

sup
η∈Ok

{ 1

2πε2
1ε2

(
|Res2||V g1

x (t, η)|+ |Res1||∂ηV g1
x (t, η)|

)}
.

Proof Part (c). First, we have the following result from [7] on p.254

lim
λ→0

∫
|ξ−φ′k(t)|<ε3

R2nd,λ
x,ε1,ε2

(t, ξ)dξ =

∫
Xt

Vx(t, η)dη (5.1.13)

where

Xt :=
{
η :
∣∣∣V g1
x (t, η)

∣∣∣ > ε1,
∣∣∣∂η( Vx(t, η)

V g1
x (t, η)

)∣∣∣ > ε2 and |ω2nd(t, η)− φ′k(t)| < ε3

}
.

Denote

Yt :=
{
η : |V g1

x (t, η)| > ε1,
∣∣∣∂η( Vx(t, η)

V g1
x (t, η)

)∣∣∣ > ε2 and (t, η) ∈ Ok

}
.

According to theorem (2.6.4) part(b), if η ∈ Yt, then

|ω2nd(t, η)− φ′k(t)| < Bd1 ≤ ε3.

96



Thus, η ∈ Xt. This which implies the first inclusion Yt ⊂ Xt.

Using theorem (2.6.4) part(a), if η ∈ Xt,

then |V g1
x (t, η)| > ε1 and there exists l ∈

{
1, 2, . . . , K

}
such that (t, η) ∈ Ol.

If l 6= k, then

|ωNew,2ndx,ε1,ε2
(t, η)− φ′k(t)| ≥ |φ′k(t)− φ′l(t)| − |φ′l(t)− ωNew,2ndx,ε1,ε2

(t, η)|.

We use the following inequalities

|φ′k(t)− φ′l(t)| > Lk and |φ′l(t)− ωNew,2ndx,ε1,ε2
(t, η)| < Bd1 ≤ ε3.

Therefore,

∣∣∣ωNew,2ndx,ε1,ε2
(t, η)− φ′k(t)

∣∣∣ > Lk(t)− ε3 ≥ ε3,

and contradicts the assumption η ∈ Xt.

Therefore, l = k and η ∈ Yt, implying the second inclusion Xt = Yt. We
recall

Zt :=
{
η : (t, η) ∈ Ok,

∣∣V g1
x (t, η)

∣∣ > ε1,
∣∣∣∂η( Vx(t, η)

V g1
x (t, η)

)∣∣∣ ≤ ε2

}
,

The fact that Xt = Yt and Yt ∩Zt = φ, with the equation (5.1.13), imply
that
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∫
Yt

Vx(t, η)dη = lim
λ→0

∫
|ξ−φ′k(t)|<ε3

R2nd
x,ε1,ε2

(t, η)dξ.

=

∫
Yt∪Zt

Vx(t, η)dη −
∫
Zt

Vx(t, η)dη

=

∫
{|V g1x (t,η)|>ε1}∩{η:(t,η)∈Ok}

Vx(t, η)dη −
∫
Zt

Vx(t, η)dη

(5.1.14)

Using this equalition

∫
{|V g1x (t,η)|>ε1}∩{η:(t,η)∈Ok}

Vx(t, η)dη =

∫
{η:(t,η)∈Ok}

Vx(t, η)dη

−
∫
{|V g1x (t,η)|≤ε1}∩{η:(t,η)∈Ok}

Vx(t, η)dη

we have

∣∣∣ ∫
{|V g1x (t,η)|>ε1}∩{η:(t,η)∈Ok}

Vx(t, η) dη − g(0)xk(t)
∣∣∣

=
∣∣∣ ∫
{η:(t,η)∈Ok}

Vx(t, η)dη − g(0)xk(t)

−
∫
{|V g1x (t,η)|≤ε1}∩{η:(t,η)∈Ok}

Vx(t, η)dη
∣∣∣

≤ |
∫
{η:(t,η)∈Ok}

Vx(t, η)dη − g(0)xk(t) |︸ ︷︷ ︸
Term1

+ |
∫
{|V g1x (t,η)|≤ε1}∩{η:(t,η)∈Ok}

Vx(t, η)dη |︸ ︷︷ ︸
Term2

We recall that Ok =
{

(t, η) :
∣∣∣η − φ′k(t)∣∣∣ < αk, t ∈ R

}
For the first term, we get the following results:
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Term1 =
∣∣∣ ∫
{η:(t,η)∈Ok}

Vx(t, η)dη − g(0)xk(t)
∣∣∣

≤
∣∣∣ ∫
{η:(t,η)∈Ok}

( k∑
l=1

xl(t)G0,l(t, η) + res0

)
dη − g(0)xk(t)

∣∣∣
≤

∫
{η:(t,η)∈Ok}

∣∣∣res0

∣∣∣dη︸ ︷︷ ︸
T1

+
∣∣∣xk(t)∫

{η:(t,η)∈Ok}
G0,k(t, η)− g(0)

∣∣∣︸ ︷︷ ︸
T2

+
∑
l 6=k

xl(t)
∣∣∣ ∫
{η:(t,η)∈Ok}

G0,l(t, η)dη
∣∣∣︸ ︷︷ ︸

T3

T1 =

∫
{η:(t,η)∈Ok}

∣∣∣res0

∣∣∣dη = |res0|
∫
{η:(t,η)∈Ok}

1dη = 2αk|res0|

T2 =
∣∣∣xk(t)∫

{η:(t,η)∈Ok}
G0,k(t, η)− g(0)

∣∣∣
=

∣∣∣xk(t)∫
{η:(t,η)∈Ok}

Gk(η − φ′k(t))− g(0)
∣∣∣

Using change of variable u = η − φ′k(t),

T2 = |xk(t)
∫
|u|<αk

Gk(u))− g(0)xk(t)|

= |xk(t)g(0)− g(0)xk(t)− xk(t)
∫
|u|≥αk

Gk(u)du) |

= |xk(t)|
∣∣∣ ∫
|u|≥αk

Gk(u)du
∣∣∣ = Ak(t)

∣∣∣ ∫
|u|≥αk

Gk(u)du
∣∣∣

T3 =
∑
l 6=k

| xl(t)
∫
{η:(t,η)∈Ok}

G0,l(t, η)dη |

=
∑
l 6=k

| xl(t) |
∣∣∣ ∫
{η:(t,η)∈Ok}

G0,l(t, η)dη
∣∣∣ =

∑
l 6=k

Al(t)Ml,k(t)
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substituting the parameters estimated above we get

Term1 ≤ 2|res0|αk + Ak(t)
∣∣∣ ∫
|u|≥αk

Gk(u)du
∣∣∣+
∑
l 6=k

Al(t)Ml,k(t).

T erm2 ≤ ε0

∫
(t,η)∈Ok

1dη = ε0

∫ φ′k(t)+αk

φ′k(t)−αk
1dt ≤ 2ε0αk.

We group all parameter estimates, we find the following results

|
∫
{|V g1x (t,η)|>ε1}∩{η:(t,η)∈Ok}

Vx (t, η)dη − g(0)xk(t) |

≤ 2(|res0|+ ε0)αk + Ak(t)
∣∣∣ ∫
|u|≥αk

Gk(u)du
∣∣∣+
∑
l 6=k

Al(t)Ml,k(t)

| 1

g(0)

∫
{|V g1x (t,η)|>ε1}∩{η:(t,η)∈Ok}

Vx(t, η)dη − xk(t) |≤ Bd′2

∫
R
Gk(u)du =

∫
R
F(ei2πφ

′′
k(t)τ2g(τ))(u)du = g(0).

Hence, we have

∣∣ ∫
Zt

Vx(t, η)dη
∣∣ =

∣∣∣∣ ∫
Zt

( K∑
`=1

x`(t)G0,`(t, η) + res0

)
dη

∣∣∣∣
≤ |res0|2αk + Ak(t) sup

η∈Zt

∣∣Gk(η − φ′k(t))
∣∣|Zt|

+
∑
6̀=k

A`(t)
∣∣∣ ∫
{η:(t,η)∈Ok}

G0,`(t, η)dη
∣∣∣

≤ 2|res0|αk + Ak(t)||g||1|Zt|+
∑
`6=k

A`(t)M`,k(t) ≤ Bd2
′′
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Then we have the result

∣∣∣ lim
λ→0

1

g(0)

∫
|ξ−φ′k(t)|<ε3

Radp,2nd,λ
x,ε1,ε2

(t, ξ)dξ − xk(t)
∣∣∣ ≤ Bd2,

This completes proof of Theorem. 2
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Chapter 6

Conclusion and future work

In this study, we introduced a generalization of the STFT-based SST (FSST)
with time-varying, CWT-based SST (WSST), the WSST with time-varying,
and the FSST with a new phase transformation by using higher order ampli-
tude and phase approximations. This generalization allows us to better assess
a wide variety of multicomponent signals containing very strongly modulated
AM-FM modes.

We also studyed the theoretical analysis of the 2nd-order FSST with a
new phase transformation. The new phase transformation is much simpler
than the convectional one. The new FSST performance in IF estimation and
component recovery is comparable with that of the conventional 2nd-order
FSST. In some cses, the new FSST perfermed even better than its conven-
tional counterpart.

Since the result showed a better concentration and reconstruction for a
wider variety of AM-FM modes, we will continue working on the adaptive
FSST with a new phase transformation by using higher order approximations
both for the amplitude and phase.
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