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ABSTRACT 

In 2012, the President’s Council on the Advancement of Science and Technology 

(PCAST) predicted one million jobs in the fields of science, technology, engineering, and 

math (STEM) would go unfilled in the United States due to the lack of interested and 

qualified graduates matriculating in American universities, colleges, and technical 

schools (PCAST, 2012).  In order to bolster interest and proficiency in STEM, research 

suggests instructional pedagogy incorporate experiential learning focused on solving real 

societal problems that are relevant to learners.  Few studies have investigated the effects 

of such pedagogy within the context of a secondary-level, geometry course.  A 

quantitative, quasi-experimental design was employed to determine the effect of an 

experiential learning course, Geometry In Construction, on secondary student 

achievement and motivation in geometry.  Data were collected from 181 secondary 

students in ninth and tenth grade attending a large, suburban, Midwestern, public high 

school.  Participants experienced a full academic year of instruction in either Geometry In 

Construction or a traditional geometry course.  Achievement in geometry was measured 

using scores from a Missouri Geometry End of Course Practice Exam.  Motivation to 

learn geometry was measured using John Keller’s Course Interest Survey (Keller, 2010) 

based on Keller’s ARCS model of motivation (Keller, 1987a).  Analysis of the data 

indicates significantly higher achievement in geometry and motivation to learn geometry 

for students experiencing the Geometry in Construction curriculum.  The effect is more 

pronounced among females.  On this basis, it is recommended that geometry curricula 

incorporate experiential learning focused on solving real problems that are relevant to 
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learners.  Further research is needed to determine how this instructional model could be 

applied to other courses in order to improve interest and preparation for STEM careers. 
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CHAPTER 1 

INTRODUCTION 

 

The national call to address the need for high school and college students to enter 

postsecondary careers in science, technology, engineering, and mathematics (STEM) 

continues.  The failure to increase the number of STEM professionals is perceived as a 

threat to the ability of the United States to compete in a global economy (National 

Academies of Sciences, Engineering, and Medicine, 2007).  In a report published by The 

Center on Education and the Workforce at Georgetown University, Carnevale, Smith, and 

Strohl (2010) indicated that between 2008 and 2018, there would be an increase of one 

million STEM jobs, with a large percentage of those jobs requiring some form of 

postsecondary training.  Additionally, shortages are predicted in professions that are 

related to STEM but traditionally viewed as non-STEM, requiring some related STEM 

training. Such professions include physicians, nurses, advanced manufacturing 

professionals, and K-12 mathematics and science teachers (President’s Council on the 

Advancement of Science and Technology [PCAST], 2012).  “To meet the goal of an 

additional one million STEM college graduates in the next decade, the U.S. would need 

to graduate an additional 100,000 per year, representing an approximately 33% increase 

over current production rates” (PCAST, 2012, p. 2).  

   Over the past decade, researchers have been addressing this perplexing shortage 

from a range of perspectives.  Miller and Hurlock (2017) explored the issue in terms of 

the underrepresentation of minorities, particularly females, entering the field.  Bahar and 

Adiguzel (2016) made comparisons between countries as they looked to discover factors 
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influencing interest in STEM from high school students in America and Turkey.  

Derivative studies are emerging from the continued sense of urgency and many are 

aligned to findings and recommendations from PCAST.  The recommendation from 

PCAST to transform STEM teaching and learning for K-12 students was explored within 

the context of an experiential geometry course called Geometry In Construction (GIC).  

Students taking the GIC course learn principles of geometry, career technical education, 

and construction through an experiential learning project in which they build a small 

house and donate it to a charitable organization serving the needs of homeless community 

members (Contextual Learning Concepts, n.d.a; Taketa, 2017). 

Background 

  A large number of American schools still follow the factory school teaching 

model where students in a classroom are taught the same standards, at the same time, 

using the same materials and textbooks. (Darling-Hammond, 2010; Schrenko, 1994).  Itin 

(1999) described traditional K-12 education as the teacher “being in a power position in 

relation to the students in terms of possessing the knowledge and the evaluation of 

learning” (p. 4).  Concerns with this model were previously expressed by Freire (1973) 

who found it disturbing and unethical to have the teacher as the individual dominating the 

learning experience.  Freire (1973) compared the traditional education process to the 

banking approach where the teacher deposits the information into the student so they can 

withdraw the information as needed.  This is illustrated by students who are able to 

regurgitate information, but struggle to use the learned information in an application that 

involves higher levels of thinking.  This is worth noting because recall and reproduction 

serve as the lowest level in terms of cognitive function and do not foster the ability to 
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comprehend (Bloom, 1956; Piaget, 1936).  Dewey (1938) viewed the educational process 

as a partnership involving the educator and student working together in a purposive 

learning experience.  He linked experience with reflection, which in turn linked 

understanding with doing.  Kolb (1984) described humans as innate learners and named a 

theory to formalize this process.  Kolb’s experiential learning theory recognized 

experience as the catalyst for engaging in the process of dialectic inquiry and learning, 

“the process whereby knowledge is created through the transformation of experience” 

(Kolb, 1984, p. 41).  Similar to Friere, Wigginton (1986) highlighted the importance of 

the student role during the learning experience.  He believed that the pinnacle of learning 

is only reached when the student is the one processing the information. 

Building on the work of early philosophers, The Association for Experiential 

Education (AEE, n.d.) described experiential education as “a philosophy informing many 

methodologies in which educators purposefully engage with learners in direct experience 

and focused reflection” (para. 1).  In such instances, the learner is “actively engaged in 

posing questions, investigating, experimenting, being curious, solving problems, 

assuming responsibility, being creative, and constructing meaning” (AEE, n.d., para. 4).  

The philosophies of Dewey and Friere, who expressed a concern for understanding the 

subject matter within an experience (experiential learning), ground this description of 

experiential education (AEE, n.d.).  This philosophy emphasizes the importance of 

carefully choosing learning experiences that are relevant and meaningful to the 

participants.  Such authentic experiences allow the learners to connect emotionally, 

spiritually, intellectually, and physically.  The experience should be investigative by 

nature, permitting the learners to ask questions, experiment, take risks, and pose solutions 
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that may or may not lead to success.  Through reflection, critical analysis, and synthesis 

the learner is able to use the results of the experience as a basis for future learning (AEE, 

n.d.).  

Eyler (2009) noted the significance of experiential education, as she described the 

impact that it has on learners often leading to the following outcomes: 

 a deeper understanding of the subject matter than is possible in a classroom 

alone; 

 the capacity for critical thinking and application of knowledge in complex to 

ambiguous situations; 

 the ability to engage in lifelong learning, including learning in the workplace. 

(p. 26) 

 

“The process by which students develop the capacity to use advanced formal reasoning 

processes involves confronting dissonant information and making sense of it.  It requires 

them to monitor their own understanding and to recognize and grapple with alternative 

perspectives” (Eyler, 2009, p. 27).  This is the essence of experiential education, since it 

fosters this type of intellectual thinking.  

Purpose  

The effects of an experiential learning curriculum on secondary student 

achievement in geometry and motivation to learn geometry were measured using a quasi-

experimental paradigm.  Achievement in geometry is defined as the degree to which 

students master the Missouri Learning Standards (content standards) as measured by the 
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Missouri Geometry End of Course Examination (Missouri Department of Elementary and 

Secondary Education [MO DESE], 2019a).  Motivation to learn geometry is defined as 

the situational motivation a student has for learning the content and skills of geometry in 

their geometry class at a particular time as described in Keller’s Attention, Relevance, 

Confidence, and Satisfaction (ARCS) model (Keller, 1987a).  Keller’s Course Interest 

Survey (CIS) was used to measure motivation to learn geometry and consists of four 

subscales:  attention, relevance, confidence, and satisfaction (Keller, 2010). 

Research Questions 

There are many studies regarding Keller’s (1987a) ARCS motivational model, 

however, there is a gap in the literature linking this model with experiential education in a 

geometry classroom.  The following questions are therefore raised. 

1. What effect does experiencing the Geometry In Construction curriculum have 

on the achievement in geometry of secondary students compared to 

experiencing a traditional geometry curriculum as measured by the Missouri 

Geometry End of Course Exam? 

2. Does experiencing the Geometry In Construction curriculum affect the 

achievement in geometry of secondary males and females differently as 

measured by the Missouri Geometry End of Course Exam? 

3. What effect does experiencing the Geometry In Construction curriculum have 

on the motivation of secondary students to learn geometry compared to 

experiencing a traditional geometry curriculum as measured by Keller’s 

(2010) Course Interest Survey? 
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4. Does experiencing the Geometry In Construction curriculum affect the 

motivation of secondary males and females to learn geometry differently as 

measured by Keller’s (2010) Course Interest Survey? 

Hypotheses 

H0 1: There is no significant difference between the achievement in geometry of 

secondary students experiencing the Geometry In Construction curriculum 

and those experiencing a traditional geometry curriculum as measured by 

Missouri Geometry End of Course Exam scores. 

H0 2: Experiencing the Geometry In Construction curriculum does not affect the 

achievement in geometry of secondary males and females differently as 

measured by Missouri Geometry End of Course Exam scores. 

H0 3: There is no significant difference between the motivation to learn geometry 

of secondary students experiencing the Geometry In Construction 

curriculum and those experiencing a traditional geometry curriculum as 

measured by scores on Keller’s (2010) Course Interest Survey. 

H0 4: Experiencing the Geometry In Construction curriculum does not affect the 

motivation of secondary males and females to learn geometry differently as 

measured by scores on Keller’s (2010) Course Interest Survey. 

Significance 

In response to the disconnection between workforce expectations and what is 

happening in classrooms, high schools across the United States are implementing 

programs such as GIC (Contextual Learning Concepts, n.d.a).  The GIC program design 
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puts the philosophy of experiential education into action as students learn geometry 

within the context of building a small house that will be donated to a local charitable 

organization serving the needs of homeless community members (Taketa, 2017).  The 

GIC curriculum combines experiential learning with a focus on applying STEM 

knowledge and skills to address a societal problem.  In addition to concept attainment, 

students engage in civic citizenship, as the construction project design meets a 

community need.  Several studies concluded that students are more motivated to learn 

when they are invested and care about the subject matter, which is more likely to occur in 

a workplace or community project setting than in a classroom (Deslauriers, Rudd, 

Westfall-Rudd, & Splan, 2016; Eyler, 2009; Kelley & Knowles, 2016).  Adding the 

element of service learning, where students provide a service to their community, to 

experiential learning increases the relevancy of STEM coursework and leads to further 

increases in engagement, motivation and questioning from students as well as an 

improved ability to apply concepts to solve a problem (Donaghy & Saxton, 2012; Lake, 

Winterbottom, Ethridge, & Kelly, 2015; Tawfik, Trueman, & Lorz, 2014).  However, 

more research is needed to measure the impact of programs like GIC on student 

achievement in STEM subjects and interest in STEM careers.  Research in this area will: 

(a) support educational leaders and teachers complying with the recommendation from 

PCAST (2012) to transform STEM teaching practices and learning experiences by 

exploring innovative models for teaching and learning mathematics; (b) explore ways in 

which agencies can work collaboratively to design innovative learning experiences for 

school based programs; and (c) determine what males and females perceive to be the 
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factors motivating them to learn geometry.  Research is needed to determine to what 

degree the ARCS model of motivation impacts learning high school geometry.  

 There are a number of limitations and delimitations that should caution against 

overgeneralizations made from the results. 

Limitations 

 The nonprobability sampling method used to select the treatment and control 

group does not support generalizations to the larger, national population of 

students taking GIC courses.  In order to improve statistical power, a large sample 

size was desirable; therefore, the sampling method had elements of a total 

population, purposive method in that the treatment group included all students 

enrolled in GIC and traditional geometry at the study site (Laerd, 2012).  The 

sampling method also had elements of convenience sampling because the research 

site was chosen on the basis of its proximity and accessibility to the researchers. 

 Only post-treatment measures of motivation were collected due to the timing and 

duration of the study; therefore, changes in motivation were not quantified for the 

treatment or the control group.  Only comparative differences in motivation 

between the treatment and control group were examined. 

 

Delimitations 

 Gender was the only demographic examined as an independent variable although 

other factors such as socioeconomic status, race, and ethnicity may also impact 

the dependent variables of achievement in geometry and motivation to learn 

geometry.  Examining the effect of gender provides an additional layer of depth to 
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the data analysis and subsequent findings.  It also contributes a unique perspective 

related to experiential education in a geometry course to the long debated 

knowledge base concerning mathematical achievement differences between males 

and females (Benbow & Stanley, 1980; Cimpian, Lubienski, Timmer, Makowski, 

& Miller, 2016; Ganley & Lubienski, 2016; Wang, Eccles, & Kenny, 2013). 

 Achievement in geometry is defined narrowly by the degree of mastery of 

geometry content standards as measured by the Missouri Geometry End of Course 

Exam.  Changes in specific skills such as craftsmanship, ability to design 

solutions, and cooperation with others, which could be seen as signs of 

achievement resulting from exposure to an experiential curriculum, were not 

assessed.  When looking for differences between the treatment and control 

groups, it is necessary to focus on criteria, such as mastery of geometry content, 

that students could acquire in both GIC and traditional geometry courses. 

 Motivation to learn geometry is viewed through the lens of Keller’s (1987a) 

ARCS model, and the measure of motivation focuses only on the effect of a 

geometry curriculum on the self-reported scores of attention, relevance, 

confidence, and satisfaction.  Acting on the suggestions put forth in PCAST 

(2012), identification of innovative pedagogy capable of enhancing interest in 

STEM careers was sought.  Keller’s (1987a) ARCS model provides a framework 

that specifically focuses on “increasing the motivational appeal of instruction” (p. 

2) rather than a behavioral model that focuses on “changing the personalities of 

students” (p. 9). 
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Definitions of Terms 

Experiential Education.  Experiential education is a holistic philosophy, where 

carefully chosen experiences supported by reflection, critical analysis, and synthesis, 

require the learner to take initiative, make decisions, and be accountable for the results, 

through actively posing questions, investigating, experimenting, pursuing curiosity, 

solving problems, assuming responsibility, expressing creativity, constructing meaning, 

and integrating previously developed knowledge (AEE, n.d.).  “Learners engage 

intellectually, emotionally, socially, politically, spiritually, and physically, in an uncertain 

environment where the learner may experience success, failure, adventure, and risk 

taking” (Itin, 1999, p. 6).  The philosophy of experiential education allows for various 

expressions including service learning, cooperative learning, adventure learning, 

problem-based learning, and action learning (Itin, 1999). 

Service Learning.  Service learning is a method of teaching where academic 

learning experiences provide a service to the community, often fostering a sense of civic 

responsibility and personal growth for the student.  (National Youth Leadership Council, 

2018). 

Achievement in Geometry.  Achievement in geometry is a dependent variable 

representing the degree to which students master the Missouri Learning Standards 

(content standards) as measured by the Missouri Geometry End of Course Exam. 

Motivation to Learn Geometry.  Motivation to learn geometry refers to the 

situational interest a student has toward learning geometry.  Situational motivation 

indicates how much a student desires to participate in classroom activities and actively 
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pursue learning the content and skills associated with a particular class at a particular 

time as a result of the specific instructional practices and materials used by the teacher 

(Keller, 1987a).  Situational motivation does not indicate the overall desire a student has 

for academic success in all courses or learning situations.  Motivation to learn geometry 

is a dependent variable measured using the Course Interest Survey based on Keller’s 

(1987a) ARCS model of motivation and consisting of four subscales representing the 

conditions that must be addressed to promote and sustain motivation during learning: 

attention, relevance, confidence, and satisfaction (Keller, 2010). 

Attention.  Attention is one of the four conditions that must be met to promote 

and sustain motivation according to Keller’s (1987a) ARCS model.  Attention is a 

subscale measure on the Course Interest Survey and is therefore a dependent variable.  

Keller (1987a) described attention as “a prerequisite for learning” that involves the need 

for students to constantly respond to stimuli that interests them in learning (p. 2). 

Relevance.  Relevance is one of the four conditions that must be met to promote 

and sustain motivation according to Keller’s (1987a) ARCS model.  Relevance is a 

subscale measure on the Course Interest Survey and is therefore a dependent variable.  

Keller (1987a) described relevance as a personal appreciation and connection to the 

learning experience rather than the end value of the learned content itself. 

Confidence.  Confidence is one of the four conditions that must be met to 

promote and sustain motivation according to Keller’s (1987a) ARCS model.  Confidence 

is a subscale measure on the Course Interest Survey and is a dependent variable.  Keller 

(1987a) described confidence as “an expectancy for success” (p. 2). 
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Satisfaction.  Satisfaction is one of the four conditions that must be met to 

promote and sustain motivation according to Keller’s (1987a) ARCS model.  Satisfaction 

is a subscale measure on the Course Interest Survey and is a dependent variable.  Keller 

(1987a) described satisfaction as a positive feeling one might have about their personal 

accomplishments as a result of learning. 

Geometry In Construction.  Geometry In Construction is an experiential 

geometry curriculum originally developed in 2005 by Scott Burke, Tom Moore, and 

Dave Dillman to merge the curricular content of traditional geometry, construction, and 

career technical education in order to create a “contextualized model for teaching” 

(Contextual Learning Concepts, n.d.a).  The GIC course studied involves students 

learning geometry within the context of building a small house to be donated to a local 

charity serving the needs of homeless community members. 

Traditional Geometry.  Traditional geometry is a geometry curriculum delivered 

by teachers employing a direct instruction approach.  Students learning by this approach 

typically receive a daily lecture followed by in-class guided practice, sometimes in small 

groups, and additional homework to be completed by practicing algorithms that were 

taught in class.   

Organization 

Organization follows the traditional dissertation format.  The first chapter 

describes the problem of one million STEM jobs going unfilled in the U.S. due to a lack 

of interest and qualified candidates and the threat that poses to the continuation of the 

U.S. as a world economic and technological leader (PCAST, 2012).  In addition, chapter 
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one situates the study within the context of the need to develop innovative, experiential 

instructional models that seek to enhance student motivation and achievement in STEM 

subjects.  Geometry In Construction, an experiential education geometry curriculum, was 

chosen for study because there is a gap in the literature regarding the impact of 

experiential education in a geometry classroom on motivation as described by Keller’s 

(1987a) ARCS model of motivational design.  Chapter one also describes the purpose, 

research questions, significance, limitations, delimitations, and defines relevant terms.  

Chapter two provides a review of the literature focused on experiential education, 

motivation, and mathematics pedagogy as it relates to STEM while further describing 

Keller’s ARCS model of motivational design which, along with experiential education, 

serves as the theoretical framework.  Chapter three describes the specific methodology 

including the research design, instruments used to gather data, sampling methods, and 

procedures used for data collection and analysis.  Chapter four presents the data and 

overall findings.  Chapter five discusses the findings, conclusions, and implications for 

practice and further research. 
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CHAPTER 2 

REVIEW OF LITERATURE 

A quasi-experimental design was used to determine the effect of experiential 

learning instruction on achievement in geometry and motivation to learn geometry among 

secondary students.  The sample consisted of high school students enrolled in geometry 

courses at a large, suburban, Midwestern, public high school.  The treatment group 

received geometry instruction through an experiential learning course called Geometry in 

Construction.  The experiential learning approach was compared to the traditional, direct-

instruction method of teaching geometry.  This in-depth review of literature provides key 

information pertaining to the variables of the study.  Key descriptors used to identify 

preliminary sources include John Keller’s ARCS Model of Motivational Design, 

experiential learning + STEM, socio-scientific issues, lack of interest in STEM, 

Geometry In Construction, self-efficacy in STEM; learning STEM + interventions, career 

interest in STEM, student interest in STEM, and minorities and women in STEM.  Using 

these key descriptors, EBSCO produced 5,651 results and ERIC produced 2,557 results. 

The review is organized according to the guiding theoretical framework, independent 

variables of interest, and outcome variables of interest.  

Theoretical Framework 

Attention, Relevance, Confidence, and Satisfaction (ARCS) Model of Motivation 

Lack of motivation is a contributing factor leading to the inability of many K-12 

students to attain sufficient skills in STEM related courses.  Holdren, Lander, and 

Varmus (2010) reported that students from multiple ethnicities, who are failing in STEM 
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subjects, complain that the courses are too difficult and boring.   Hossain and Robinson 

(2012) suggested that overcoming the STEM barriers will require targeted attention to 

education components for students from elementary through college.  Onwu and Kyle 

(2011) described the importance of relevancy in STEM courses.  They argued for ways in 

which educators can link classroom learning experiences to real life socio-scientific 

issues, which would in turn make learning more relevant and prepare students for active 

participation in society.  Psychologist John Keller addressed this notion of relevancy and 

included it as a component in his creation of the ARCS model of motivation.  

Origin of ARCS 

Visser and Keller (1990) noted lesson design as a crucial area of focus over the 

past decade.  Their analysis of lesson design depicts an emphasis on cognitive skills 

rather than the motivational requirement of the learner.  Visser and Keller (1990) stated, 

“instruction even when prepared according to sound instructional design principles often 

does not stimulate students' motivation to learn” (p. 468).  The formation of ARCS model 

of motivation integrates Keller’s recognition of the correlation between instructional 

design and the desire of students to learn.  Keller (1987b) noted the absence of a 

comprehensive motivational framework and explained how much of the initial work 

related to motivation described psychological approaches to changing motivation 

characteristics (McClelland, 1965) or job satisfaction and work performance (Steers & 

Porter, 1987).  Furthermore, educators studied motivation in terms of classroom 

management (Doyle, 1985), reinforcement (Skinner, 1961) or affective instructional 

outcomes (Krathwohl, Bloom, & Masia, 1964).  According to Keller (1987a), the 

outcomes from this work were “somewhat restricted in their approach and theoretical 
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foundation” (p.2).  The ARCS model was originally developed by John Keller in 1979 

and 1983.  “These models were based on the expectancy-value theory, which derives 

from Tolman (1932) and Lewin (1938), according that motivation is the result of 

satisfaction of personal needs (values) and also the amount of their expectancy to succeed 

(the expectancy)” (Keller, 1987a, p.2).  As Keller sought to move his work from theory to 

practice, he posed two questions: (a) “Is there a possibility of synthesizing multiple 

theories of motivation into one simple model that can be used by practitioners?; and (b) Is 

there a systematic approach to designing motivating instruction?” (Keller, 1987a, p.2).  

These questions led to the systematic design of the ARCS model.  Keller’s work on the 

motivational design transitioned through several phases before he generated the useful 

acronym, ARCS, which highlights the central features of the design: attention, relevance, 

confidence, and satisfaction.  The ARCS model is grounded in social learning theory and 

humanist psychology and takes on a system approach that integrates multiple theories 

(Jacobson & Xu, 2004).  Because Keller’s motivational work comes from a plethora of 

theories, some of which include the social learning theory, field theory, and self-efficacy 

theory, Keller considers the design to be both a theory and a macro model (Keller, 1983). 

ARCS Model 

“The ARCS model is a method for improving the motivational appeal of the 

instructional materials” (Keller, 1987b, p.2).  The ARCS model is represented by the 

following distinctive features:  

 four conceptual categories that incorporate concepts and variables that 

characterize human behavior;  
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 strategies used to enhance motivation; and 

 a systematic design process (motivational design) that can be used with 

other traditional instructional design models (Keller, 1987b, p.2).     

 “Motivational design refers to the process of arranging resources and procedures 

to bring about changes in motivation” (Keller, n.d.b, para. 1).  According to Keller 

(n.d.a), “one of the goals of motivational design is to prepare a set of motivational tactics 

that are in alignment with learners’ motivational needs and are complimentary with the 

overall instructional plan” (para. 1).  Additionally, Keller (n.d.b) highlighted the 

importance of such motivational tactics directly supporting instructional goals.  He stated, 

“Sometimes the motivational features can be fun or even entertaining, but unless they 

engage the learner in the instructional purpose and content, they will not promote 

learning” (Keller, n.d.b, para. 5).  “While there are many elements in a course that could 

affect motivation, such as the behaviors of the teacher, structure of the lessons, materials 

used, and course structure, ARCS model offers assistance in specific areas” (Keller, n.d.a, 

para. 2).  The model is comprised of four components that must be present for individuals 

to initiate and sustain motivation:  attention, relevance, confidence, and 

satisfaction.  Malik (2014) described that Keller’s model “raises the attention of students 

during instruction, develops a relevance to the students’ requirements, creates a positive 

expectation for success and supports student satisfaction by reinforcing success” (p.194).  

Figure 1 illustrates the three essential elements of each category of the ARCS model 

(Keller, 1987a; Shellnut 1996).   

Attention comprises perceptual arousal, inquiry arousal, and variability (Keller, 

1987a).  Perceptual arousal includes strategies for gaining and sustaining the interest of 
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students over time.  Inquiry arousal describes techniques used to provoke thinking, such 

as the use of problem-solving.  Last, variability references the use of varied instructional 

approaches.  Examples of this might include, lecture, group activities, games, visuals, and 

technology (Shellnut, 1996). 

ARCS Category and 

Essential Elements 
Guiding Questions to Help Address Essential Element 

Attention 

     Perceptual arousal 

     Inquiry arousal 

     Variability 

 

 

What can I do to capture their interest? 

How can I stimulate an attitude of inquiry? 

How can I maintain their attention? 

 

Relevance 

     Goal orientation 

      

     Motive matching 

     

     Familiarity 

 

How can I best meet my learner’s needs? 

(Do I know their needs?) 

How and when can I provide my learners with appropriate 

choices, responsibilities, and influences? 

How can I tie the instruction to the learner’s experiences? 

 

Confidence 

     Learning requirements 

     Success opportunities 

 

     Personal control 

      

 

How can I assist in building a positive expectation for success? 

How will the learning experience support or enhance the 

student’s belief in their competence? 

How will the learners clearly know their success is based on their 

efforts and abilities? 

 

Satisfaction 

     Natural consequences 

 

     Positive consequences 

     Equity 

 

How can I provide meaningful opportunities for learners to use 

their newly acquired knowledge/skill? 

What will provide reinforcement to the learner’s successes? 

How can I assist the student in anchoring a positive feeling about 

their accomplishments? 

 

Figure 1.  The three essential elements of each motivational category of the ARCS Model.  

Adapted from Keller, J. M. (1987b). The Systematic Process of Motivational Design. Performance 

and Instruction, 26(9-10), 2. 
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Relevance can be described as the ability of learners to connect the content with 

their personal needs and desires (Keller, 1987a).  Keller (1987a) delineates three elements 

used to address personal needs and wants of learners:  goal orientation, learner choice, 

and familiarity.  Goal orientation describes outcomes that are derivative of the learning 

such as obtaining a job. Learner choice or what Keller (1987a) called motive matching 

involves the decision of the learner to select specific learning strategies.  One example of 

this is choosing to work independently or in a group.  Finally, familiarity is the ability of 

learners to connect preexisting knowledge or personal experiences to the content being 

learned (Keller, 1987a). 

Confidence provides a sense of belief that one can accomplish given tasks (Keller, 

1987a).  In building confidence, Keller (1987a) and Shellnut (1996) noted that learning 

should be tied to clear objectives, success opportunities should be provided early and 

often, and personal control of learning should be made available through options. 

Satisfaction suggests that learning must lead to gratification (Keller, 2000).  The 

following elements increase learner satisfaction: connecting learning to real-world 

experiences, simulations, or projects; providing both intrinsic and extrinsic rewards; and 

assuring that reward matches achievement (Keller, 1987a). 

Two motivational instruments for assessing the motivational quality of 

instructional situations accompany the ARCS model (Small, 1997).  The Instructional 

Materials Motivation Survey (IMMS) asks students to rate ARCS-related statements in 

relation to the instructional materials that were used, whether within a classroom, stand-

alone print material, or online (Keller, 2010).  The Course Interest Survey (CIS) measures 
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the reaction of students to instructional materials and methods, whether face-to-face or 

online (Keller, 2010). 

Related Research 

ARCS model is one of the most popular motivational designs that has been 

grouped with various instructional pedagogy, particularly those consisting of problem-

based learning as an instructional approach (Carliner, Ribiero, & Boyd, 2008).  In an 

extensive literature review of empirical studies, Li and Keller (2018) summarized 

research on applying ARCS model in a variety of educational settings around the world.  

Li and Keller (2018) studied 27 peer-reviewed journals in which they shared various 

ways in which ARCS model had been applied.  “Most studies included strategies for all 

four factors in the ARCS model” (Li & Keller, 2018, p. 60).  Overall results from this 

review of studies showed:  (a) ARCS is a flexible model that can be used in a variety of 

environments; (b) quantitative methods are most often used in research involving ARCS 

due to the clear guide-lines the model has, thus making it easy for researchers to examine 

the effects of the model on motivation; (c) students showed positive attitudes toward 

ARCS strategies even as they were implemented in varied educational settings; (d) 

variables in the cognitive domain were inconsistent, some indicating cognitive gains 

while others reporting no differences; (e) learner behaviors varied in that some students 

improved time on task while others showed no difference; (f) retention/completion rates 

were reported as improved; and (g) there was no clear indication of ARCS model 

affecting psychological traits of students, but  researchers considered a connection 

between intrinsic feelings of some subscales affecting the motivation and cognition of 

learners (Li & Keller, 2018).      
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Motivation 

Motivational Constructs Influencing STEM 

Motivation has been studied over the years by psychologists in an attempt to 

define and explain what intrinsically makes us take action toward achieving the simplest 

to the most complex tasks.  Several studies link motivation with desire to learn.  Desire to 

learn was noted by Lazowski and Hullemann (2016) as an important catalyst for 

increasing student achievement in science.  Miller and Hurlock (2017) honed in on the 

noticeable differences between males and females who are motivated to pursue STEM, 

and supporting studies describe this gap to be both “a progressive and persisting 

problem” (Cronin & Roger, 1999, p.637). According to Wang, et al. (2013), it is not the 

lack of skill but the lack of interest and motivation that serve as the primary factor behind 

the absence of professionals, including low rates of females, in certain STEM fields.  

Various motivational constructs are seen as essential components and catalysts for 

creating the desire to seek STEM learning K-12 and beyond (National Academies of 

Sciences, Engineering, and Medicine, 2019).  The implementation of motivational 

constructs affects a number of crucial decisions made by students.  One important 

decision includes the selection of courses leading toward specific career paths (Musu-

Gillette, Wigfield, Harring, & Eccles, 2015). 

In an effort to include the appropriate motivational constructs, researchers have 

investigated student perceptions regarding STEM, as they are often barriers to 

motivation.   There are specific interventions or targeted motivational constructs 

developed to assist students in overcoming some of the common misconceptions they 
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have about STEM, including stereotypes that exclude groups from believing they are 

capable of participating (National Academies of Sciences, Engineering, and Medicine, 

2019).  As illustrated in Figure 2, educators have relied on the following existing  

Motivational 

Theories 
Description Researchers 

Expectancy-Value 

Theory 

Two factors motivate individuals to 

achieve: 

 expectancies for success 

 value for the task 

John Atkinson 

Jacquelynne Eccles 

Attribution Theory 

Individuals are motivated by 

explanations or causes that can be 

contributed to their success. 

Bernard Weiner 

Social Cognitive 

Career Theory 

Career interest and development are 

driven by an individual’s self-efficacy, 

outcome expectations, and goals. 

Robert Lent 

Steven Brown 

Bail Hackett 

Social Cognitive  

Theory 

Individual are influenced by the 

behaviors of others.  Often those 

actions are replicated and guide 

subsequent behaviors. 

Albert Bandura 

Goal Orientation 

Theory 

Learners approach situations with the 

goal of mastering new skills or 

outperforming their peers. 

Carol Dweck 

Self-determination 

Theory 

Individuals are intrinsically motivated 

by three distinctive psychological 

needs which allow them to grow and 

change (competence, relatedness, and 

autonomy). 

Edward Deci 

Richard Ryan 

 
Figure 2. Contemporary theories of motivation.  
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contemporary theories of motivation to support targeted interventions: expectancy-value, 

attribution, social cognitive, goal orientation, and self-determination (Cook & Artino, 

2016; Schunk, Pintrich, & Meece, 2008).  The following section of the literature review 

provides an explanation of several motivational constructs and connects them to research 

targeting STEM motivation. 

Expectancy-value theory.  The expectancy-value theory (Eccles et al., 1983) explains 

that “students’ beliefs concerning the degree to which they are confident in 

accomplishing an academic task (self-efficacy) and the degree to which they believe that 

the academic task is worth pursuing (task value) are two key components for 

understanding students’ achievement behaviors and academic outcomes” (Liem, Lau, & 

Nie, 2008, p.488).  In context to STEM learning, there is empirical data linking 

performance of students in various STEM subjects to their positive expectancy toward 

success (Schunk, Pintrich, & Meece, 2008).  Additionally, such students are predicted to 

pursue STEM learning if it is aligned with their personal needs (value) (Eccles et al., 

1983).  Evidence for this relationship exists in studies where student motivation and 

performance increase as a result of interventions targeting “value”.  For example, Acee 

and Weinstein (2010) and Hulleman and Harackiewicz (2009) conducted studies 

grounded in the expectancy value theory.  While each study focused on interventions 

targeted at increasing the utility value of math and science for students, very different 

approaches were taken.  Acee and Weinstein (2010) targeted parents who they speculated 

would transfer their perceived value for math and science to their children.  Over a two-

year span, resources and materials were mailed to parents to support conversations with 

their children regarding the significance of math and science coursework.  By the 
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conclusion of high school, the students whose parents were in the treatment group 

showed higher utility value for math and science than the students in the control group.  

Similar results were reported by Hulleman and Harackiewicz (2009) whose study 

targeted an instructional intervention also aimed at increasing utility value for math and 

science.  In their study, high school science students were randomly chosen to write 

essays explaining the relevancy of the content learned to their personal lives.  Not only 

did this intervention improve the utility value of math and science for participants, but it 

also increased their interest and resulted in higher grades compared to the control group.   

Attribution theory.  The attribution theory is one way in which educators seek to 

develop intrinsic motivation of students who participate in STEM curricula.  The 

attribution theory (Weiner, 1985) is described as “the explanations that students generate 

to understand what causes a particular success or failure experience and how experiences 

drive students’ motivation and behavior on future tasks” (Rosenzweig & Wigfield, 2016, 

p. 152).  Ziegler and Heller (2000) conducted a study with physics teachers who received 

attribution training.  Over a period of one year, students in the treatment group were 

given feedback connected to their work.  The students were consistently told that their 

success on physics assignments was directly related to their effort.  It was found that the 

students who underwent the attribution intervention demonstrated increases in their 

internal belief that success is attributed to effort.  A similar study by Ziegler and Stoeger 

(2004) found an increase in intrinsic motivation among high school female chemistry 

students who received attribution training through informational videos.  Although these 

studies yield promising results, Rosenzweig and Wigfield (2016) addressed major 

limitations noting that there were a limited number of attribution-based interventions and 
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differing retraining paradigms affecting the interpretations of results.  It was suggested 

that future studies assess the effectiveness of attribution retraining in STEM areas. 

Social cognitive theories.  The social cognitive career theory (SCCT) (Lent, 

Brown, & Hackett, 1994) is a motivation construct also used to determine factors 

motivating interest in STEM.  “The SCCT was developed to examine the manner in 

which people develop and elaborate on career and academic interests, select and pursue 

choices based on interests, and perform and persist in their occupational and educational 

pursuits” (Soldner, Rowan-Kenyon, Inkelas, Garvey, & Robbins, 2012, p. 314).  The 

SCCT identifies self-efficacy, outcome expectations, and goal orientation as the leading 

motivational constructs for shaping career choice decisions (Bahar & Adiguzel, 2016).  

Prior studies have identified other important factors linked to what the social cognitive 

theory (Bandura, 2013) names as personal and proxy agency.  Personal agency references 

the events in life that are influenced by personal actions, such as self-motivation or self-

efficacy.  Proxy agency takes on the notion that people rely on others in their 

surroundings to help them achieve their desired outcomes.  In several studies, proxy 

agents were identified as parents, teachers, and school-related factors which were all 

considered constructs for motivating learning in science (Breakwell & Robertson, 2001; 

Olitsky, Loman, Gardner, & Billup, 2010; Sjaastad, 2012).   

Goal orientation theory.  The theory of goal orientation (Dweck, 1986) also 

provides a framework to study how learners are motivated.  “Goal orientations refer to 

the reasons why students pursue achievement outcomes” (Rosenzweig & Wigfield, 2016, 

p. 153).  The theory addresses two major goal orientations, performance and mastery, in 

which students focus on outperforming their peers (performance) or deepening their 
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learning of skills (mastery) (Rosenzweig & Wigfield, 2016).  Mastery goals are thought 

to have a long term effect on the retention of knowledge and achievement outcomes 

(Maehr & Zusho, 2009).  The research of Blackwell, Trzesniewski, and Dweck (2007) 

connected learner success in science to confidence in their ability to engage in science, 

longevity of understanding science content, and positive attitudes toward science.  In a 

subsequent study, Fortus and Vedder-Weiss (2014) found that successful students were 

more likely to engage in STEM learning outside of school.   

Self-determination theory.  Deci and Ryan developed the self-determination 

theory which explores the effects of extrinsic and intrinsic motivation on human behavior 

(Deci, Koestner, & Ryan, 1999).  Intrinsic motivation, when a learner performs an 

activity for personal gratification, has been a major approach to intervention in the area of 

STEM.  In some aspects, the theory connects to components of the expectancy value 

theory as interventions “attempt to increase students’ sense of value or connection to 

science and engineering” (National Academies of Sciences, Engineering, and Medicine, 

2019, p. 3-9).  Successful intervention strategies include those that improve student 

perceptions of STEM professions which subsequently improves student perceptions of 

the value of science content taught in schools.  Role models inspire learners and enable 

them to see themselves in STEM professions, and this increases student engagement and 

achievement in STEM courses (Stout, Dasgupta, Hunsinger, & McManus, 2011).   

The theories described have a harmonic relationship in that they are 

complimentary to one another.  This is supported by the research of Rosenzweig and 

Wigfield (2016) who assessed the effects of these motivational constructs and grouped 

them under common themes.  In this study, fifty-three intervention studies were reviewed 
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and categorized according to: (a) “competence-related beliefs (e.g., self-efficacy, self-

concept, confidence, and outcome expectations); (b) beliefs about values, interests, or 

intrinsic motivation; (c) attributions about academic success and failure; (d) beliefs about 

intelligence; and (e) achievement goal orientations” (Rosenzweig & Wigfield, 2016, 

p.149).  In summary, forty-one of the studies reported significant improvements in at 

least one of the motivational constructs where academic outcomes were measured.  

Grades, quizzes, and test scores were among the areas of improvement.  The studies 

concluded “motivation interventions do, in some circumstances, improve STEM 

students’ competence-related beliefs, values, interests, attributions, and beliefs about 

intelligence, as well as their academic outcomes such as exam performance, course 

taking, and more proximal outcomes such as accessing supplemental materials for their 

class” (Rosenzweig & Wigfield, 2016, p.155). 

Motivating STEM Learners through Experience Constructivism  

John Dewey held a strong belief in democracy that helped establish the 

framework for his learning theories which are evident in current, 21st century learning 

experiences (Lake et al., 2015).  Dewey (2008) posited that learners contribute to and 

change society by means of tangible learning experiences and activities that foster 

societal awareness.  He asserted that learning does not just entail the simple acquisition of 

content knowledge but should also contribute to the larger society.  Experiential 

education is one way in which educators have applied Dewey’s theories.  This 

methodology encompasses a wide range of applications; however, this section of the 

literature review will focus on experiential education in the context of STEM.    
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The main types of STEM experiences found in the literature focus on service 

learning and problem-based learning.  These experiences were applied either throughout 

a semester, a year-long course, or during a summer camp.  In all instances, the learning 

experiences sought to enhance the relevancy of the material.  Service learning 

experiences often include a component of civic responsibility and allow students to apply 

their learning toward addressing socio-scientific issues affecting their community 

(National Service Learning Clearinghouse, 2013).  When applying experiential learning 

and socio-scientific issues in a summer camp format, several studies found students are 

motivated to learn by hands-on activities, understand the importance of STEM subjects, 

and display more interest in STEM careers (Bhattacharyya, Mead, & Nathaniel, 2011; 

Campbell, Lee, Kwon, & Park, 2012; Hayden, Ouyang, Scinski, Olszewski, & Bielefeldt, 

2011; Mohr-Schroeder et al., 2014).  However, in terms of STEM achievement, Nugent, 

Barker, Grandgenett, and Adamchuck (2010) suggested that longer interventions such as 

full-year courses are more successful for learning content than shorter interventions such 

as summer camps.  Nugent et al. (2010) noted that students engaging in short-term 

interventions had a larger improvement in their attitude toward STEM compared to 

students participating in long-term interventions.  Bhattacharyya et al. (2011) found 

additional measures enhance the effectiveness of summer camp interventions.  For 

example, initiating interventions before age 11 had the largest impact on developing 

interest in STEM careers (Bhattacharyya et al., 2011). 

  STEM learning experiences focused on solving relevant, real world problems, 

often referred to as problem-based-learning (PBL) increase student motivation to learn 

and interest in STEM (Christensen, Knezek, & Tyler-Wood, 2015; Nugent et al., 2010; 
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Scogin, Kruger, Jekkals, & Steinfeldt, 2017; Tawfik et al., 2014).  Christensen et al. 

(2015) found that dispositions toward STEM content and careers by middle school 

students participating in hands-on STEM engagement activities such as PBL, were more 

similar to students attending specialized STEM academy schools and professionals 

working in STEM fields than to their typical age-equivalent peers.  This effect does 

lessen, though, as students get older and when the activity is required by the whole class 

rather than chosen by the learner (Christensen et al., 2015).  Studies suggesting that PBL 

increases standardized test scores were not found, but Scogin et al. (2017) reported that 

standardized test scores did not decrease either in classrooms engaging in PBL.  There 

were other significant improvements associated with PBL in non-cognitive skills such as 

enjoyment of school, confidence, and collaboration (Donaghy & Saxton, 2012; Lake et 

al., 2015; Scogin et al., 2017; Tawfik et al., 2014).  Several studies suggested adding the 

element of service learning, where students engage in meaningful community 

improvement, to problem-based learning (Donaghy & Saxton, 2012; Lake et al., 2015; 

Tawfik et al., 2014).  They argued that this increases the relevancy of STEM coursework 

which leads to higher levels of student engagement, motivation, questioning, and problem 

solving.  

Many STEM education programs focus on experiential or service learning but not 

always merged together.  Perhaps doing so could help strengthen programs and make 

them more interesting to students.  Deslauriers et al. (2016) encouraged education 

researchers to seek “knowledge of how educational theory is applied in a program as it 

provides insight as to how those applications can be modified to further strengthen 

experiential programs” (p. 311).  The effects of experiential education and Keller’s 
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(1987a) ARCS model of motivational design were measured when applied in an 

experiential geometry course, Geometry In Construction.  More research is needed to 

measure the effect of curricula like Geometry In Construction, which combines 

experiential learning (building a house) with a socio-scientific issue (homelessness), on 

student achievement and motivation in STEM. 

Mathematics Pedagogy and Achievement 

 Success in modern, technology-based societies often requires that citizens develop 

solid mathematical understanding and reasoning ability.  Many careers demand critical 

analyses of data and application of sophisticated computations to solve problems.  

According to the National Research Council (NRC) (2001), “Failure to reason 

mathematically deprives individuals of opportunity and competence in everyday tasks, 

therefore, all young Americans must learn to think mathematically, and they must think 

mathematically to learn” (p. 16).  Similarly, Sherman, Richardson, and Yard (2013) noted 

“A lack of sufficient mathematical skill and understanding affects one’s ability to make 

critically important educational, life, and career decisions” (p. 5).  These studies suggest 

that learning mathematics is integral to personal, career, and educational success.  In 

addition, the PCAST (2012) report, which predicted a shortage of one million STEM 

professionals in the U.S. over the next decade, listed difficulty with math as one of the 

main reasons why STEM students switch to different majors.  Since mathematics is one 

of the four STEM disciplines and also a critical component of each of the other three, it 

seems logical that insufficient mathematical skill and understanding could be a factor 

preventing entry into STEM careers.  Several studies suggest the root cause of 

insufficient mathematical skill and understanding is often a lack of interest and 



EFFECTS OF AN EXPERIENTIAL GEOMETRY COURSE                                                                            44 
 

motivation for learning mathematics rather than a lack of ability (Lazowski & Hulleman, 

2016; National Council of Teachers of Mathematics [NCTM], 2000; NRC, 2001; Wang 

et al., 2013).  For the U.S. to continue as an economic and technological world leader, 

educators must develop innovative instructional practices that will increase student 

interest and motivation to learn mathematics in order that there are greater numbers of 

graduates prepared to succeed in STEM careers (NRC, 2001).  To better understand the 

impact that innovative mathematics instruction may have on the achievement and 

motivation of diverse learners in schools today, it is helpful to review the literature on 

mathematics instructional practices in the U.S.  

Instructional Practices in U.S. Mathematics Classrooms 

There is a gap in mathematics education literature regarding specific interactions 

between teachers, students, and instructional materials within the classroom that will 

sustain the engagement needed to learn and apply mathematics principles (NRC, 2001).  

Several studies describe the persistence of a recitation model of instruction stemming 

from the early 1900’s as the dominant instructional practice in U.S. mathematics 

classrooms today.   

 Fey (1979) noted the most common form of mathematics instruction in U.S. K-12 

classrooms involves a cycle of teacher-directed instruction that includes rule explanations 

and example solutions, followed by guided paper-and-pencil practice of textbook 

problems under the direct supervision of the teacher, and even more problems assigned as 

homework.  Surveys of U.S. teachers continue to reveal most instructional time is spent 

presenting and practicing material from textbooks (Grouws & Smith, 2000).  Additional 
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studies report that elementary and middle school students receive most of their 

mathematics instruction on facts and skills while only about half receive instruction on 

reasoning (NRC, 2001). 

 The Trends in International Mathematics and Sciences Study (TIMSS) Video 

Study, conducted in 1995, provided hard evidence of teaching practices throughout the 

world as it documented with video the activities and interactions of students and teachers 

inside classrooms.  The evidence shows little variation among mathematics instruction 

within the U.S. but significant differences between the U.S. and countries like Japan and 

Germany (Stigler, Gonzales, Kawanaka, Knoll, & Serrano, 1999).  The videos from 

classrooms in the U.S. show a repetitive daily pattern of instruction that starts with a 

short warm up problem or homework review followed by the teacher explaining and 

solving an example problem while asking low level questions of students (Stigler et al., 

1999).  Next, students solve practice problems like the one demonstrated, check answers, 

and receive more problems for homework (Stigler et al., 1999).  The 1995 TIMSS video 

study showed that mathematics teachers in the U.S. are still teaching in a basic recitation 

format like they had been taught, with almost identical approaches as those reported in 

studies and surveys by the National Science Foundation and the National Advisory 

Committee on Mathematical Education in the 1970’s (NRC, 2001).  In contrast to U.S. 

instructional practices, videos from Germany show teachers emphasizing advanced and 

alternative solutions to more complex problems (Stigler et al., 1999).  Mathematics 

teachers in Japan are seen in the video devoting extended periods of time to individual 

and group work for problem solving that is presented to the class (Stigler et al., 1999). 
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 More recent studies of geometry instruction describe the integration of technology 

into the standard recitation pedagogical model, but the literature is sparse with regard to 

innovative or experiential curricula that dramatically alter the traditional recitation 

approach to teaching geometry.  Multiple studies found Dynamic Geometry 

Environments, a specific type of gaming experience in which students discover geometry 

theorems using three-dimensional representations, improves understanding of geometry 

principles and enhances reasoning skills (Crompton, Grant, & Shraim, 2018; Luz & 

Soldano, 2018).  In a study of ninth and tenth grade geometry students engaging with 

Dynamic Geometry Environments, Luz and Soldano (2018) identified the dialogue 

between students and the practice of defending arguments while answering questions and 

solving problems as contributing factors that improve understanding of geometry.  This 

finding supports the inclusion of experiential and service learning in geometry curricula 

because discussion and argumentation are frequent practices students use in these 

instructional approaches while working in teams to solve authentic problems.  Flipped 

classrooms, in which online videos and digital manipulatives enable teachers to 

interchange the typical sequence and location of homework and lecture, are another 

practice emerging in geometry classrooms (de Araujo, Otten, & Birisci, 2017).  De 

Araujo et al. (2017) studied four secondary mathematics classrooms to categorize and 

evaluate the quality of flipped lessons.  They classified flipped lessons as higher quality 

lessons with more potential for learning if the lesson required students to interact with 

videos and utilize digital manipulatives to make predictions and justify solutions (de 

Araujo et al., 2017).  Regardless of the mathematics curricula, instructional practices, and 

reform efforts employed, results from standardized mathematics exams (National Center 
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for Educational Statistics [NCES], 2019b; U.S. Department of Education, Institute of 

Education Sciences, 2019) suggest current teaching practices in the U.S. remain largely 

ineffective for helping students develop the deep understanding and problem solving 

skills necessary for success in STEM.  Further research is needed on geometry instruction 

that incorporates active learning environments, like those created by experiential and 

service learning curricula, in order to measure the impact on student engagement, 

achievement, and motivation to learn.   

Current State of Achievement in Mathematics in the U.S. 

 Recent mathematics standardized test data suggest a few areas of improvement, 

but overall the data indicate current pedagogical practices and standards-based reform 

initiatives have had little impact on achievement in mathematics.  One indicator of the 

achievement levels of U.S. students is the National Assessment of Educational Progress 

(NAEP).  The NAEP is a “congressionally mandated project administered by the 

National Center for Education Statistics within the U.S. Department of Education and the 

Institute of Education Sciences” that provides testing and data services for several subject 

areas including mathematics (NCES, 2019a, para. 2).  The NAEP Mathematics Test 

measures student ability in “numeracy, measurement, geometry, algebra, data analysis, 

statistics, and probability” (NCES, 2019c, para. 4).  The 2017 NAEP Mathematics Test 

data indicate 40% of fourth grade students and 34% of eighth grade students scored at or 

above the proficient category compared to 13% and 15%, respectively in 1990 (U.S. 

Department of Education, Institute of Education Sciences, 2019).  These results indicate 

statistically significant improvements from 1990 to 2007 followed by a flat trend from 

2007 to 2013 and lower scores after 2013 as shown in Figure 3 (U.S. Department of 
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Education, Institute of Education Sciences, 2019).  Figure 4 shows a similar trend in the 

overall average scores on the NAEP Mathematics Test. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Percentage of fourth grade students (left) and eighth grade students (right) scoring at or 

above proficient on the NAEP Mathematics Test. 
1Testing accommodations were not permitted until 1996.  * indicates significantly different (p<.05) 

from 2017 (U.S. Department of Education, Institute of Education Sciences, 2019) 

 

Figure 4. Average scores of fourth grade students (bottom) and eighth grade students (top) on 

the NAEP Mathematics Test. 
1Testing accommodations were not permitted until 1996.  * indicates significantly different (p<.05) 

from 2017 (adapted from U.S. Department of Education, Institute of Education Sciences, 2019) 
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The 2015 NAEP Mathematics Test data indicate 25% of twelfth grade students 

scored at or above proficient, but this number, as well as the 2015 overall average score, 

does not differ significantly from results recorded in 2005 (U.S. Department of 

Education, Institute of Education Sciences, 2019).  More research is needed to determine 

the precise cause of these flat trends for secondary students, but they could indicate a lack 

of relevancy of curricula and a loss of interest and motivation for learning mathematics 

through traditional, teacher-directed pedagogies. 

The results of international mathematics assessments such as the Program for 

International Student Assessment (PISA) and the Trends in International Mathematics 

and Science Study (TIMSS) also offer valuable data to evaluate and compare the current 

state of achievement in mathematics for U.S. students to other educational systems in 

other countries.  Results from the 2015 PISA, measuring the mathematics literacy of 15-

year-old students, reveal the average U.S. student score of 470 was below the overall 

average score of 490, thus ranking the U.S. educational system 37th out of 69 educational 

systems participating in the assessment (NCES, 2019b).  The percentage of 15-year-old 

students in the U.S. scoring below level 2, which is considered baseline proficiency on a 

seven-level scale, was 29% (NCES, 2019b).  In addition, the PISA mathematics literacy 

average scores for the U.S. in 2015 were significantly lower (p<.05) than the average 

scores from 2009 and 2012 as shown in Figure 5 (NCES, 2019b).  The TIMSS is 

administered every four years to fourth and eighth grade students, and the TIMSS 

advanced is administered every four years to students in their final year of secondary 

school (NCES, 2019b).  The TIMSS mathematics average scores of fourth and eighth 
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grade students in the U.S. have improved since 1995 with the notable exception of fourth 

grade students in 2015 as shown in Figure 6 (NCES, 2019b).  However, students scoring 

 

Figure 5. Average scores of U.S. 15-year-old students on the PISA mathematics literacy scale. 

* indicates significantly different (p<.05) from 2015. Adapted from National Center for Educational 

Statistics. (2019b). Surveys and Programs [website].  

 

 

Figure 6. Average scores of U.S. fourth (top line) and eighth (bottom line) grade students on the 

TIMSS Mathematics Test. 

* indicates significantly different (p<.05) from 2015. Adapted from National Center for Educational 

Statistics. (2019b). Surveys and Programs [website]. 
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in the lowest 10th percentile did not improve significantly between 1995 and 2015 

(NCES, 2019b).  In 2015, the TIMSS mathematics average score of U.S. fourth grade 

students was higher than 34 other educational systems and lower than 10 other systems 

while the average score of eighth grade students was higher than 24 other educational 

systems and lower than 8 other systems (NCES, 2019b).  Scores from TIMSS are 

categorized into four benchmarks:  low, intermediate, high, and advanced.  In 2015, 79% 

of U.S. fourth grade students and 70% of U.S. eighth grade students reached the 

intermediate or higher benchmark on the TIMSS Mathematics Test (NCES, 2019b).  In 

2015, the U.S. average score on the TIMSS Advanced Mathematics Test was higher than 

five other education systems and lower than two others, however this average score was 

not significantly different from the average score obtained in 1995 (NCES, 2019b).     

 Data from these standardized mathematics achievement tests show mixed results, 

but they all indicate the need to keep innovating, reforming, and improving mathematics 

teaching and learning in the U.S.  Meta-analyses of recent research related to 

mathematics teaching and learning by the NRC and the National Mathematics Advisory 

Panel (NMAP), confirm what the NAEP and TIMSS results indicate which is that U.S. 

students have made some progress with basic computations, but still lag behind in their 

ability to think critically and apply mathematics to solve problems (NCES, 2019b; 

NMAP, 2008; NRC, 2001; U.S. Department of Education, Institute of Education 

Sciences, 2019).  Low PISA scores and poor rankings on international comparisons today 

suggest the NRC (2001) description of U.S. mathematics curricula as “shallow and not 

challenging” (p. 4) is still accurate in many regions of the country.  Even where 

mathematics curricula were dramatically improved to align with the recommendations of 
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the NRC, NMAP, NCTM, and Common Core State Standards Initiative, what has not 

changed enough are the activities and interactions students engage in within mathematics 

classrooms. 

Research-Based Mathematics Pedagogy 

 Several research studies agree that an effective instructional approach combines 

both teacher-directed and student-centered instruction with a balance among rote 

memorization of rules, practice of computational skills, deeper understanding of 

mathematics principles, and development of problem solving skills (Bruner, 1977; Larson 

& Kanold, 2016; NCTM, 2000; NMAP, 2008; NRC, 2001, Sherman et al., 2013;).  

Jerome Bruner, a cognitive psychologist at Harvard, believed “long term understanding 

and skill achievement are established together when students successively build upon 

concepts in a guided discovery process” (as cited in Sherman et al., 2013, p. 7).  The 

recommendations from the meta-analysis of mathematics teaching and learning research 

conducted by the NRC in 2001, incorporate Bruner’s (1977) concept of the 

interdependence of skills and understanding into five interdependent strands involved in 

developing “mathematical proficiency” which they proposed as the essence of successful 

mathematics learning (NRC, 2001, p. 5).  The five strands of mathematical proficiency as 

explained in the NRC report include: 

 conceptual understanding - comprehension of mathematical concepts, 

operations, and relations; 

 procedural fluency - skill in carrying out procedures flexibly, 

accurately, efficiently, and appropriately; 



EFFECTS OF AN EXPERIENTIAL GEOMETRY COURSE                                                                            53 
 

 strategic competence - ability to formulate, represent, and solve 

mathematical problems; 

 adaptive reasoning - capacity for logical thought, reflection, 

explanation, and justification; and 

 productive disposition - habitual inclination to see mathematics as 

sensible, useful, and worthwhile, coupled with a belief in diligence and 

one’s own efficacy (p. 5). 

The development of mathematical proficiency means students can understand basic 

concepts and procedures, carry out computations, solve problems, reflect on and justify 

solutions, appreciate the usefulness of mathematics, and believe in their ability to learn 

mathematics (NMAP, 2008; NRC, 2001).  The NRC established mathematical 

proficiency as a benchmark goal for mathematics teaching and learning with support 

from their meta-analysis of thousands of studies related to mathematics instruction (NRC, 

2001).  The NRC (2001) acknowledged that students attain mathematics proficiency 

through various instructional approaches, but the more effective approaches address 

multiple strands of proficiency simultaneously. 

Several studies indicated problem solving as an effective way to engage students 

and help them develop multiple strands of proficiency, provided the problems are 

engaging to students so they value learning and see how it applies to their daily lives 

(National Academies of Sciences, Engineering, and Medicine, 2019; NMAP, 2008; NRC, 

2001; Sherman et al., 2013).  In Principles and Standards for School Mathematics, the 

NCTM (2000) described problem solving as, “engaging in a task for which the solution 

method is not known in advance” and noted “students must draw on their knowledge and 



EFFECTS OF AN EXPERIENTIAL GEOMETRY COURSE                                                                            54 
 

often develop new mathematical understanding” (p. 52).  Sherman et al. (2013) 

suggested, “solving problems should be seen not only as the purpose of mathematics but 

also the means by which it is learned” (p. 199).  The NRC (2001) agreed, “Problem 

solving should be the site in which all of the strands of mathematics proficiency 

converge.  It should provide opportunities for students to weave together the strands of 

proficiency and for teachers to assess students’ performance on all of the strands” (pp. 

420-421).  Problem solving impacts the development of mathematical proficiency more 

when students have “frequent, extended blocks of time to work in small, cooperative 

groups that struggle with challenging problems and reflect on their thinking” (NCTM, 

2000, p. 52).  Therefore, a significant amount of instructional time should be provided for 

students to develop concepts and procedures they can use to solve problems (NCTM, 

2000; NRC, 2001; Sherman et al., 2013).  Several studies agree that students will value 

challenging problem-solving activities they are interested in and perceive as relevant to 

their personal lives or connected to their prior experiences (Keller, 1987a; NCTM, 2010; 

NRC, 2001; Sherman et al., 2013).  Good problems and learning activities that emphasize 

the relevance of mathematics to everyday life can motivate students to participate in class 

more, express their reasoning better, and lead to higher levels of mathematical 

achievement (NCTM, 2000; Sherman et al., 2013).  Collectively, these studies illustrate 

how problem solving tasks should be leveraged in mathematics curricula to enhance 

relevancy, student engagement, and the development of mathematical proficiency. 

The use of manipulatives such as base ten blocks and fraction tiles is also 

highlighted in the literature as a way to strengthen concept development when teachers 

are intentional in connecting them to mathematical concepts and symbols (NRC, 2001; 
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Sherman et al., 2013).  In a videotaped, ethnographic study of third-grade students using 

manipulatives to improve numeral proficiency, Ball (1992) demonstrated the in-depth 

interactions required between teachers and students in order to make manipulatives 

effective as instructional tools.  Teachers must intentionally incorporate discussion into 

lessons to highlight student reasoning and provide ample time for students to explore the 

manipulatives and allow for multiple ways of using them to represent concepts, ideas, 

and thinking (Ball, 1992). 

The context of building a small house, as in the GIC course, exemplifies a 

curriculum that incorporates many of these research-based suggestions for how 

mathematics should be taught through a single, year-long experience for students 

(Contextual Learning Concepts, n.d.a).  In the process of building a house, students 

taking GIC work on developing multiple strands of mathematical proficiency 

simultaneously which, according to the NRC (2001) report, “enhances student learning 

about space and measure and shows promise for helping students learn about data and 

chance” (p. 8).  This is valuable because many current and future STEM jobs require 

adept skills in managing data and using statistics to inform decision making.  As students 

design, build, test, and modify structures in GIC, they also use manipulatives to solidify 

geometry concepts and principles (Contextual Learning Concepts, n.d.a).  Constructing a 

house provides a concrete setting in which students must apply principles of geometry to 

solve the problems they encounter daily.  The NRC (2001) reported, “students develop 

higher levels of mathematical proficiency when they have opportunities to use 

mathematics to solve significant problems” (p. 426).  Because GIC embodies so much of 

the research regarding how mathematics should be taught to improve achievement in 
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mathematics and so many of the instructional design features of Keller’s ARCS model, it 

merits further study as a pedagogical model for STEM instruction and learning.  Research 

on mathematics teaching and learning indicates important topics to address, grade-level 

sequences to follow, and broad instructional strategies to employ.  However, more 

empirical studies are needed to determine the effect of innovative instructional 

approaches inside schools that show promise toward developing mathematical 

proficiency by altering the traditional interactions between teachers, students, and 

content. 

Experiential Mathematics Instruction 

 There is a gap between the research on mathematics education and secondary 

classroom instructional practices.  As described previously, the NRC (2001) and the 

NMAP (2008) compiled rich descriptions of effective approaches and broad strategies for 

improving mathematical achievement based on analyses of thousands of studies related to 

mathematics teaching and learning.  However, mathematics instruction in U.S. 

classrooms today still largely follows a recitation model that rejects the learning 

progression theory of Bruner and the motivational design theory of Keller (Bruner, 1977; 

Grouws & Smith, 2000; Keller 1987a; Stigler et al., 1999).  The 2008 NCTM Research 

Agenda Conference was an attempt to bridge the gap between research on mathematics 

education and classroom practice by building a community among mathematics 

researchers and practitioners (Arbaugh et al., 2009).  Conference participants identified 

the needs of practitioners and developed twenty-five questions to guide research in 

mathematics teaching and learning (Arbaugh et al., 2009).  One of the research-guiding 

questions was, “In what ways do different curricular approaches support or impede 
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students’ development of mathematical proficiency?” (Arbaugh et al., 2009, p. 13).  

Following are examples of innovative, non-traditional, experiential curricular approaches 

to mathematics teaching and learning that may impact the development of mathematical 

proficiency.  The authors acknowledge the sparse number of scholarly, peer-reviewed, 

empirical studies to support these programs and present this literature gap as evidence 

that these programs merit further study.  These programs were chosen because few 

examples exist in the literature of non-traditional, experiential learning-based 

mathematics curricula designed for the secondary level.  In addition, these examples 

address many of the key recommendations for improving achievement in mathematics 

and motivation to learn mathematics that were uncovered during the literature review 

such as:  (a) integrating various instructional approaches that simultaneously involve 

multiple strands of mathematical proficiency (NRC, 2001); (b) utilizing problem solving 

as a means for learning mathematics and not just a skill to be learned (Sherman et al., 

2013); (c) incorporating specific instructional design components to enhance motivation 

(Keller, 1987a); and (d) providing authentic, relevant contexts for learning that 

emphasize human interactions and opportunities to build confidence and reduce anxiety 

surrounding learning mathematics (Beilock, Gunderson, Ramirez, & Levine, 2010; 

Eccles & Wang, 2016; Ganley & Lubienski, 2016). 

 Geometry In Construction (GIC).  Geometry In Construction is an experiential 

learning geometry course in which students learn and apply principles of geometry, 

industrial technologies, and career technical education through the design and 

construction of a small-scale house that is donated to a local charity serving the needs of 

homeless people in the community (Contextual Learning Concepts, n.d.a).  Contextual 



EFFECTS OF AN EXPERIENTIAL GEOMETRY COURSE                                                                            58 
 

Learning Concepts, LLC. developed the curriculum and aligned it to Common Core State 

Standards (Contextual Learning Concepts, n.d.a).  Students enrolled in GIC learn all the 

standards addressed in traditional geometry courses within the context of construction 

projects and engage in both classroom and construction-related work on a daily basis 

(Rentsch, 2018).  Geometry In Construction addresses all four components of Keller’s 

(1987a) ARCS theory of motivational design.  The instructional approaches and activities 

strive to capture student attention through group work and hands-on activities while 

providing relevance through the design and construction of real houses for community 

members (Taketa, 2017).  Geometry In Construction also offers daily opportunities for 

students to build confidence and reduce the anxiety associated with learning mathematics 

as they work in small teams to solve problems associated with designing and building the 

house (Taketa, 2017).  The final project, a small house that is donated to a charity serving 

the needs of homeless members of the community, may provide students with a sense of 

satisfaction that their efforts to learn geometry were worthwhile and connected to a 

humanitarian effort (Taketa, 2017).  The instructional design of GIC addresses attention, 

relevance, confidence, and satisfaction; all four components Keller’s ARCS theory 

describes as necessary to initiate and sustain motivation to learn within a specific context 

(Keller, 1987a).   

Algebra I in Manufacturing Processes, Entrepreneurship, and Design 

(AMPED). 

AMPED is an experiential learning, career technical education-based course in which 

students apply mathematical, engineering, and business management concepts to explore 

and solve authentic problems (Contextual Learning Concepts, n.d.b).  Contextual 
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Learning Concepts, LLC. developed the curriculum to address the same standards as 

traditional algebra I courses and aligned it to the Common Core State Standards 

(Contextual Learning Concepts, n.d.b).  The AMPED curriculum requires students to 

“develop a viable, self-funded business running an advanced fabrication lab customizing 

textile products and manufacturing other items comprised of wood, metal, and/or 

plastic… proceeds generated from the business aspect of the program self-fund the 

venture and provide philanthropic opportunities for students through community service 

or monetary gifts to local charities” (Contextual Learning Concepts, n.d.b, para. 2).  

AMPED also addresses all four components of Keller’s (1987a) ARCS theory of 

motivational design.  The program attempts to gain student attention with group work and 

hands-on activities while providing relevance through the operation of a real business and 

applications of mathematics and engineering to create real merchandise (Contextual 

Learning Concepts, n.d.b).  AMPED provides opportunities for students to build 

confidence and satisfaction as they develop authentic workplace skills bringing products 

to market, generating revenue to keep the company going, and engaging in community 

outreach and philanthropy (Contextual Learning Concepts, n.d.b).  Similar to GIC, 

AMPED has the potential to impact motivation differently than traditional instruction and 

merits further investigation. 

Drama-Based Geometry.  Drama-Based Geometry is an experiential learning 

course based upon constructivist principles whereby students apply drama education 

techniques to construct their knowledge and understanding of geometry principles 

through individual and small group performances in front of classroom audiences (Ubuz 

& Duatepe-Paksu, 2016).  Students in Drama-Based Geometry classes draw upon their 
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own real or imagined experiences to integrate mental and physical activities that publicly 

demonstrate conceptual understanding of geometric principles (Ubuz & Duatepe-Paksu, 

2016).  Instruction in Drama-Based Geometry differs greatly from traditional geometry 

instruction especially in the emphasis on high levels of interpersonal relationships and 

experiences.  In a meta-analysis of 47 quasi-experimental studies, Lee, Patall, Cawthon, 

and Steingut (2015) concluded drama-based pedagogy has a significant impact on 

achievement in educational settings with the most impact noted in language arts and 

science curricula.  However, differences in experimental designs, composition of 

samples, and the criteria used to determine improvements in achievement among the 47 

empirical studies do not offer strong support to their conclusion and indicates the need for 

further investigation of this non-traditional curricular approach.  The application of 

Keller’s (1987a) ARCS theory of motivational design could provide a uniform measure 

of the impact Drama-Based Geometry has on attention, relevance, confidence, and 

satisfaction as they relate to motivation to learn within this specific context. 

 Several studies agree the main goal of mathematics instruction is to develop 

mathematical proficiency and use it to solve problems (NMAP, 2008; NRC, 2001; 

Sherman et al., 2013).  However, there are gaps in the literature regarding specific 

activities and interactions between teachers, students, and instructional materials within 

classrooms that might lead to mathematics proficiency.  Furthermore, there is also a gap 

between what is known from research and what is practiced in mathematics classrooms 

(Arbaugh et al., 2009).  GIC, AMPED, and Drama-Based Geometry are innovative 

curricular approaches that potentially bridge the gap between research and practice 

because they incorporate many of the recommendations current researchers say are 
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important for developing mathematical proficiency.  These mathematics programs 

warrant further study to determine the effect they have on achievement, motivation, and 

the development of mathematical proficiency in addition to their potential to serve as 

pedagogical models that successfully prepare students to pursue STEM careers. 

Mathematics Achievement and the Underrepresentation of Women in STEM 

 Women represent approximately 50% of the college-educated U.S. workforce, but 

less than 30% of STEM workers are women (National Science Board, 2016).  Because 

mathematics is a core component of STEM disciplines and careers, achievement in 

mathematics may impact the decision of women to pursue STEM.  Researchers have 

investigated differences in the achievement of males and females in mathematics 

throughout the past 70 years (Benbow & Stanley, 1980; Wang et al., 2013).  Overall, 

achievement differences between males and females are small, but males tend to 

outperform females more significantly within subgroups of higher performing students 

and on more advanced mathematical concepts such as problem solving and spatial 

reasoning (Ganley & Lubienski, 2016).  Hutchison, Lyons, and Ansari (2018) studied the 

basic numeric skills of 1,391 boys and girls age 6-13 and found, “a male advantage in 

foundational numerical skills is the exception rather than the rule” (p. 66).  Additionally, 

the mathematics average scores in the U.S. for fourth and eighth grade students on the 

2017 NAEP and the 2015 TIMSS are nearly identical for males and females (U.S. 

Department of Education, Institute of Education Sciences, 2019).  However, standardized 

test data continue to confirm a persistent achievement gap, with boys outperforming girls, 

that develops in middle school and widens in secondary school (NRC, 2013; U.S. 

Department of Education, Institute of Education Sciences, 2019).  Data from the 2015 
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PISA mathematics literacy test, which tests students at age 15, and the 2015 TIMSS 

advanced mathematics test, which tests students in their final year of secondary school, 

confirm a widening gender gap in older students with males performing significantly 

better than females (p<.05) (NCES, 2019b).  The literature on gender-based achievement 

in mathematics suggests several interrelated factors may contribute to the differences in 

scores.  

Current research increasingly points to a variety of environmental and contextual 

concerns that may indirectly affect achievement in mathematics by directly affecting the 

interest and motivation of females to learn mathematics in middle and secondary school 

(Andreescu, Gallian, Kane, & Mertz, 2008; Ganley & Lubienski, 2016; National 

Academies of Sciences, Engineering, and Medicine, 2019; NRC, 2013; Wang et al., 

2013).  In a longitudinal study of 7,040 students from third through eighth grade, Ganley 

and Lubienski (2016) discovered that females lag behind males in confidence, interest, 

and achievement associated with mathematics, but the gender-based gap in confidence 

toward mathematics was larger than the gender-based gap in mathematical interest and 

achievement.  Because Keller’s (1987a) ARCS theory of motivation links confidence to a 

situational motivation to learn, the work of Ganley and Lubienski (2016) suggests the 

need for earlier interventions focused on building confidence in females to learn 

mathematics and more research to determine the effect it has on achievement in 

mathematics.  Eccles and Wang (2016) compared occupational and lifestyle values to 

aptitude in twelfth grade students and found that occupational and lifestyle values were 

better predictors of STEM career decisions than aptitude.  Further, women pursuing 

STEM careers are more likely to enter fields involving human interaction such as health, 



EFFECTS OF AN EXPERIENTIAL GEOMETRY COURSE                                                                            63 
 

biological, and medical sciences than they are to enter fields focused on objects such as 

mathematics, physics, engineering, and computer sciences (Eccles & Wang, 2016).  

These results have important implications for mathematics pedagogy.  If mathematics 

instruction emphasized human interactions and better illustrated the positive impact 

mathematics has on humans and society, perhaps females would perceive mathematics as 

more aligned with their values and be more interested in pursuing mathematics learning 

and STEM careers.  This line of reasoning is supported with the theoretical framework 

provided by Keller’s ARCS theory of motivation (Keller, 1987a).  Keller’s ARCS theory 

describes instructional design features that motivate learners through activities they 

perceive as personally relevant and satisfying (Keller, 1987b).  In a study of participants 

in the International Mathematical Olympiad, Andreescu et al. (2008) discovered “some 

East European and Asian countries produce girls with profound ability in mathematical 

problem solving; most other countries, including the United States, do not” (p. 1258).  

This finding supports the argument that males and females have similar capacities for 

learning mathematics.  The fact that females from certain cultures and geographical 

regions exhibit advanced mathematical ability suggests achievement in mathematics may 

be related more to environmental factors than intrinsic, biological, gender-based 

differences.  The study of GIC also offers promise that the U.S. could tap into a wealth of 

talent by finding and addressing the environmental factors that have kept females and 

minorities severely underrepresented in mathematics and STEM fields.  Another 

significant environmental impact on the achievement of females in mathematics is 

gender-based stereotypes.  In a study of 117 first and second grade students, Beilock et al. 

(2010) found that females, but not males, are more likely to accept the stereotype, “boys 
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are good at math, girls are good at reading” (p. 1860) and consequently demonstrate 

lower achievement in mathematics toward the end of one year of instruction from a 

female teacher exhibiting math anxiety.  Again, this shows how an environmental and 

contextual factor, being taught by a female with math anxiety, can influence beliefs and 

attitudes about oneself and impede the achievement of females in mathematics.  This 

finding also highlights the need for innovative mathematics instruction that builds 

confidence, reduces anxiety, and aligns with the personal values of females.  While most 

gender-based achievement differences in mathematics appear to develop as the result of 

social, cultural, environmental, and contextual pressures on females, there is one 

contextual area in which males do seem to have an innate advantage. 

There is some evidence that males outperform females in the specific 

mathematical context of spatial reasoning (Tzuriel & Egozi, 2010).  Spatial reasoning, the 

ability to envision, orient, and manipulate objects in three-dimensional space, has been 

used as a predictor of achievement in mathematics and future success in STEM for a long 

time (Lowrie & Jorgensen, 2018; Wai, Lubinski, & Benbow, 2009).  In a study of 116 

children in first grade, Tzuriel and Egozi (2010) showed gender differences in spatial 

reasoning ability can be reduced through specific instructional strategies.  Other studies 

confirm improvements in spatial reasoning as a result of instructional interventions 

(Lowrie, Logan, & Ramful, 2017; Uttal et al., 2013).  These studies are pivotal in the 

discussion about gender-based achievement differences in mathematics because spatial 

reasoning ability is such a strong predictor of achievement in mathematics and success in 

STEM.  If spatial reasoning can be improved through instructional interventions, these 

interventions can be leveraged to improve the achievement of females in mathematics 
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and thus increase the number of females prepared to succeed in learning and pursuing 

careers in STEM.  Geometry seems a logical course for interventions that improve spatial 

reasoning because learning geometry requires students to manipulate shapes, objects, and 

angles in three dimensional space. 

The current literature does not agree on whether gender-based achievement 

differences in mathematics exist.  Some studies suggest the gender differences are small, 

and males and females exhibit similar performance in mathematics (Ganley & Lubienski, 

2016; Lindberg, Hyde, Petersen, & Linn, 2010).  In contrast, Cimpian et al. (2016) 

indicated a gender gap persists but is somewhat masked early on in school by the stronger 

learning efforts of females to do well and get good grades.  The literature does suggest 

that males tend to outperform females in secondary school and college, in subgroups of 

high performing students, and in advanced concepts such as problem solving and spatial 

reasoning (Ganley & Lubienski, 2016; NRC, 2013; U.S. Department of Education, 

Institute of Education Sciences, 2019).  The causes of gender-based achievement gaps in 

mathematics seem to lie more within the intersection of social, cultural, contextual, and 

environmental influences on females rather than innate cognitive differences among 

genders.  These environmental influences result in many females having low confidence 

and high anxiety associated with learning mathematics (Beilock et al., 2010; Eccles & 

Wang, 2016; Ganley & Lubienski, 2016).  Consequently, many females are not motivated 

to learn mathematics or pursue careers in mathematics and STEM (Eccles & Wang, 2016; 

PCAST, 2012).  In order to improve achievement in mathematics among women in 

secondary school and college, and thus increase the number of women prepared to 

succeed in STEM careers, it is necessary to begin interventions at the elementary and 
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middle school level (Arbaugh et al., 2009; Eccles & Wang, 2016; Lowrie & Jorgensen, 

2018).  One form of intervention could be innovative mathematics curricula implemented 

by highly qualified teachers, that aligns with the values of females, builds confidence, 

and reduces the anxiety associated with learning mathematics for some females.  In 

addition, all mathematics curricula and instructional approaches need to directly address 

the environmental and contextual influences that impede the achievement of females in 

mathematics.  Mathematics instruction emphasizing interactions with people and the 

benefits mathematics provides to humans and society may align better with the personal 

and occupational values of females and motivate more females to pursue careers in 

STEM (Eccles & Wang, 2016). 

Summary 

 Historically, mathematics instruction oscillates between teacher-directed and 

student-centered approaches every decade or two (Fey & Graeber, 2003; Klein, 2003).  

However, large meta-analyses of research on mathematics teaching and learning 

highlight the merits of both and support integrated approaches that balance the time spent 

developing conceptual understanding, problem solving, and procedural skills (NMAP, 

2008; NRC, 2001).  Unfortunately, standardized test data show flat growth in the 

achievement of U.S. students in mathematics over the last 30 years and indicates a gap 

between the knowledge obtained from research on mathematics teaching and learning 

and the practices implemented in classrooms (Arbaugh et al., 2009; NCES, 2019b; U.S. 

Department of Education, Institute of Education Sciences, 2019).  Several studies agree 

the development of mathematics proficiency and problem solving ability are the ultimate 

goals of mathematics teaching and learning and outline broad strategies for achieving 
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these goals (NMAP, 2008; NRC, 2001; Sherman et al., 2013).  However, the literature is 

sparse regarding specific strategies and interactions between teachers, students, and 

instructional materials inside the classroom that lead to mathematical proficiency 

(Arbaugh et al., 2013; NRC, 2001;).  The NRC (2001) concluded, “mathematical 

proficiency for all demands that fundamental changes be made concurrently in 

curriculum, instructional materials, assessments, classroom practice, teacher preparation, 

and professional development” (p. 10).  Geometry in Construction, an experiential 

geometry course, embodies those changes through the implementation of innovative 

teaching and learning strategies grounded by Keller’s (1987a) ARCS theory of 

motivation. The GIC curriculum merits further investigation to measure the effect it has 

on achievement in geometry and motivation to learn geometry.  Finding pedagogical 

models that increase achievement in all branches of mathematics is important for 

enhancing interest in STEM and successfully preparing students to pursue STEM careers 

(PCAST, 2012). 
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CHAPTER 3 

METHODOLOGY 

 

Chapter three outlines and explains the methods used to test the hypotheses and 

answer the research questions.  The methodology focused on investigating the effects of 

an experiential learning course called Geometry In Construction (GIC) on secondary 

student achievement in geometry and motivation to learn geometry.  The overall 

objective is to explore instructional strategies that might increase the number of 

secondary and college students pursuing STEM careers and better prepare them for 

success in STEM.  Discussion of the research design, research questions, sample, 

instrumentation, and methods of data collection and analysis follows. 

Research Design 

A quantitative research approach was used to analyze data collected near the 

completion of the second semester of an experiential geometry course called Geometry In 

Construction and a traditionally taught geometry course in order to measure the effects of 

Geometry In Construction on secondary student achievement and motivation to learn 

geometry.  Quantitative research involves following a post-positivist worldview by which 

phenomena are observed and measured by collecting numerical data (Creswell, 2014; 

Grix, 2010).  Creswell (2014) goes on to explain that quantitative research often focuses 

on identifying variables and examining the relationships among them.  Quantitative 

researchers identify an independent variable, which may be a treatment or intervention 

that can be administered to a sample, and then quantify the association or effect it has 

with or on other variables known as dependent variables.  The influence of additional 
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variables must be strictly addressed by a research design that controls these additional 

influences and specifically explains the impact of other factors that may moderate results 

(Creswell, 2014). 

A quasi-experimental design was used to compare data from an experimental and 

a control group.  A quasi-experimental design was chosen because the participants in 

each group could not be randomly assigned.  When participants are not randomly 

assigned to the treatment and control groups, it is possible that the two groups could be 

dissimilar.  Therefore, a non-equivalent, pretest and posttest control-group design was 

used “in which both groups take a pretest and posttest, but only the experimental group 

receives the treatment” (Creswell, 2014, p. 172).  This research design is similar to a true 

experimental pretest and posttest control group design except that the participants were 

not randomly assigned to the treatment and control groups.  The experimental group 

consisted of students enrolled in a GIC course. The control group consisted of students 

enrolled in a traditional geometry course. The goal of the quantitative data was: (a) to 

determine if experiencing the GIC curriculum (independent variable) has an effect on 

achievement in geometry (dependent variable) and motivation to learn geometry 

(dependent variable); (b) to determine if experiencing the GIC curriculum (independent 

variable) affects the achievement (dependent variable) and motivation (dependent 

variable) in geometry of males and females differently (gender is an independent 

variable).  Two measures of quantitative data were collected upon the conclusion of the 

experimental treatment.  Scores on a Missouri Geometry End of Course (EOC) Practice 

Exam were used to compare the achievement of students experiencing a GIC curriculum 

to students experiencing a traditional geometry curriculum.  John Keller’s (2010) Course 
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Interest Survey (CIS) was used to compare motivation to learn geometry of students 

experiencing a GIC curriculum to students experiencing a traditional geometry 

curriculum.  All participants previously completed an algebra I course and took the 

Missouri Algebra I EOC Exam; therefore, scores on the algebra I EOC exam served as 

the pretest (covariate) to compare the experimental and control groups prior to 

implementing the treatment. 

A visual model of the quasi-experimental, nonequivalent pretest and posttest 

control-group experimental design is shown in Figure 7 (Creswell, 2014).  The model 

employs the notation system of Campbell and Stanley (1963) where “X” represents a 

treatment for which effects were measured and “O” represents a measured event.  The 

vertical alignment of both measured events, “O”, indicates the pretest and posttest were 

administered to the experimental group and the control group at the same time.  The 

horizontal line between the experimental and control group signifies the groups were not 

randomly assigned (Campbell & Stanley, 1963).  

 
Group A OXO 
 

Group B OO 
 
time 
 
Figure 7. Visual model of nonequivalent pretest and posttest control-group design. O represents 
measured event, X represents treatment. Adapted from Handbook of research on teaching, by 
D.T. Campbell and J.C. Stanley, Copyright 1963 by Rand McNally. 

 

Internal Threats to Validity 

Sound research design minimizes internal threats to validity that challenge 

whether the outcomes of experiments were related to the intervention or other factors 

(Creswell, 2014).  Internal threats of maturation, selection, and mortality involve the 



EFFECTS OF AN EXPERIENTIAL GEOMETRY COURSE                                                                            71 
 

participants (Creswell, 2014).  All participants were in ninth or tenth grade which 

minimized the effect of maturation as all participants were of similar age and were 

assumed to mature similarly throughout the academic year as they experienced a 

geometry curriculum.  A large, heterogeneous sample size (N=181) consisting of ninth 

and tenth grade males and females and the use of pretest algebra I EOC exam scores as a 

covariate minimized the threat of selection because students with characteristics that 

could skew outcomes were distributed throughout the treatment and control groups and 

controlled for with statistical treatment.  Mortality was also addressed with a large sample 

size that would minimize the effect of students who withdrew during the study.  

Diffusion of treatment, resentful demoralization, and compensatory rivalry are additional 

threats to the internal validity of experimental designs that have treatment and control 

groups (Creswell, 2014).  These threats occur when participants of one group 

communicate with another group and influence the outcomes of experiments (Creswell, 

2014).  Internal threats related to the experimental treatment were minimized by selecting 

participants near the completion of the academic school year, thereby restricting the 

amount of time participants had to communicate with members of the other group.  In 

addition, participants were not informed that geometry curricula were being compared, 

nor that GIC was considered the treatment and traditional geometry was considered the 

control.  Furthermore, until data were collected and analyzed, there was no indication that 

either curriculum was beneficial or harmful, therefore the control group did not have 

reason to resent or consider the treatment group to be a rival.  Instrumentation can also be 

an internal threat to validity if the instrument changes between the pretest and posttest 

(Creswell, 2014).  The Missouri Algebra I EOC Exam served as the baseline measure of 
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achievement in mathematics, and a Missouri Geometry EOC Practice Exam served as the 

posttest measure of achievement in geometry.  The instrumentation threat to internal 

validity was addressed by showing (in the instrumentation sub-section) that these tests 

demonstrate convergent validity, high correlation, and scores on the algebra I EOC exam 

accurately predict scores on the geometry EOC exam (Egan, 2012; Questar, 2017). 

External Threats to Validity 

Creswell (2014) explained “external validity threats arise when experimenters 

draw incorrect inferences from the sample data to other persons, settings, and situations” 

(p. 176).  The main threats to external validity involve the selection of participants and 

setting.  It is important to note the participants were predominantly White students, age 

14-16, who passed an algebra I course.  The setting is a large public high school in a large 

suburban district in Missouri.  The GIC courses and the traditional geometry courses at 

the research site are taught by veteran teachers each having more than 10 years of 

experience teaching geometry.  In order to minimize threats to external validity, 

generalizations about the results will not be made beyond the specific population studied. 

Research Questions 

1. What effect does experiencing the Geometry In Construction curriculum have 

on the achievement in geometry of secondary students compared to 

experiencing a traditional geometry curriculum as measured by the Missouri 

Geometry End of Course Exam? 
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2. Does experiencing the Geometry In Construction curriculum affect the 

achievement in geometry of secondary males and females differently as 

measured by the Missouri Geometry End of Course Exam? 

3. What effect does experiencing the Geometry In Construction curriculum have 

on the motivation of secondary students to learn geometry compared to 

experiencing a traditional geometry curriculum as measured by Keller’s 

(2010) Course Interest Survey? 

4. Does experiencing the Geometry In Construction curriculum affect the 

motivation of secondary males and females to learn geometry differently as 

measured by Keller’s (2010) Course Interest Survey? 

Hypotheses 

H0 1: There is no significant difference between the achievement in geometry of 

secondary students experiencing the Geometry In Construction curriculum 

and those experiencing a traditional geometry curriculum as measured by 

Missouri Geometry End of Course Exam scores. 

H0 2: Experiencing the Geometry In Construction curriculum does not affect the 

achievement in geometry of secondary males and females differently as 

measured by Missouri Geometry End of Course Exam scores. 

H0 3: There is no significant difference between the motivation to learn geometry 

of secondary students experiencing the Geometry In Construction 

curriculum and those experiencing a traditional geometry curriculum as 

measured by scores on Keller’s (2010) Course Interest Survey. 
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H0 4: Experiencing the Geometry In Construction curriculum does not affect the 

motivation of secondary males and females to learn geometry differently as 

measured by scores on Keller’s (2010) Course Interest Survey. 

Population and Sample 

The population of interest was all ninth and tenth grade students enrolled in GIC 

and traditional geometry courses at a large, suburban, Midwestern, public high school 

during the 2018-19 academic school year.  The overall demographics of the high school 

in 2018 included an enrollment of approximately 1300 students consisting of 80% White, 

10% African American, 3% Asian, 3% Hispanic, and 4% other or multiple race (MO 

DESE, 2019b).  In 2018, 17.4% of the school population received free or reduced lunch, 

and the school had an overall graduation rate of 96% (MO DESE, 2019b). 

The high school offers two sections of GIC, each taught by teachers having more 

than 20 years of experience teaching mathematics.  A convenience sample of all 58 

students enrolled in both sections of GIC was selected for the treatment group to attain a 

sample large enough to minimize the effects of mortality and sampling error.  A random 

sample could not be obtained because secondary students self-select their courses.  The 

treatment sample consisted of 35 males, 23 females, 24 ninth grade students, and 34 tenth 

grade students.  The high school offers five sections of traditional geometry, taught by 

two different teachers each having more than 10 years of experience teaching 

mathematics.  A convenience sample of all 123 students enrolled in traditional geometry 

was selected for the control group.  The control group consisted of 45 males, 78 females, 

20 ninth grade students, and 103 tenth grade students. The total sample (N=181) 
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consisted exclusively of ninth and tenth grade students who successfully completed an 

algebra I course prior to enrollment in geometry. 

Participants were recruited in person by the researchers during site visits to the 

GIC and traditional geometry classrooms.  During the site visits, it was explained that the 

study is an evaluation of how their geometry course impacts their achievement and 

motivation to learn geometry.  Student assent and parental consent forms were distributed 

during the site visit and students were given two weeks to return the signed forms if they 

chose to participate. 

Students in the treatment group experienced a GIC curriculum that integrates geometry 

with principles of industrial and career technical education (Contextual Learning 

Concepts, n.d.a).  The curriculum was originally developed by Contextual Learning 

Concepts, LLC. and aligned to the Common Core State Standards for Mathematics 

(Contextual Learning Concepts, n.d.a; National Governors Association Center for Best 

Practices and Council of Chief State School Officers, 2010).  The curriculum 

implemented at the research site aligns to the Missouri Learning Standards which are 

similar to the Common Core State Standards for Mathematics as illustrated in the 

comparison shown in Appendix A.  Students experiencing the GIC curriculum learn 

geometry in the context of building a small house that they donate to a local charity 

serving the needs of homeless community members.  Students also learn and develop 

workplace skills for the 21st century by working in small teams of three to four students.  

The GIC course meets for two 54-minute class periods each day, or 540 minutes per 

week for 36 weeks, for an overall total of 324 hours.  Generally, students spend one of 

the class periods in a classroom planning and designing components of the construction 
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project.  Students spend the other daily class period outside at the construction site 

building the house.  During both periods, students work in small groups learning and 

applying the same principles of geometry their peers learn in a traditional classroom 

setting.  The experienced mathematics teachers who facilitate the GIC classes assign 

homework problems almost daily, and students must complete each assignment before 

they can work on the house that day.  Students in the control group experienced a 

traditional geometry curriculum aligned to the Missouri Learning Standards.  The 

traditional geometry courses meet for one 54-minute class each day, or 270 minutes per 

week for 36 weeks, for an overall total of 162 hours.  Students enrolled in traditional 

geometry experience recitation-type daily instruction generally consisting of a brief 

homework check or quiz, lecture presentation of information, guided in-class practice 

problems often completed in small groups, and additional practice problems assigned for 

homework and due the following day.  Instruction in both GIC and the traditional 

geometry course incorporates the same curricular standards for geometry, and students in 

both classes take identical unit assessments and semester final exams.  Figure 8 compares 

the teaching methodologies of both classes. Students experiencing the GIC curriculum do 

not receive more instructional time, tutoring, or homework than students experiencing the 

traditional geometry curriculum.  The additional time embedded into the GIC curriculum 

is spent incorporating the experiential aspect of the class (designing, building, and 

constructing).  Therefore, it is not believed that time spent teaching and learning 

geometry is influencing the outcome as much as the fact that the GIC curriculum includes 

an experiential component and the traditional geometry curriculum does not. 
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Curriculum Component Geometry In Construction Traditional geometry 

Curriculum type Experiential Traditional (teacher-directed) 

Curriculum alignment Common Core Standards, 

Missouri Learning Standards 

Common Core Standards, 

Missouri Learning Standards 

Course length Two semesters, 36 weeks total Two semesters, 36 weeks total 

Time in class  108 min. per day 

324 hrs. total per year 

54 min. per day 

162 hrs. total per year 

Teaching methodologies Small-group 

classroom, shop, and 

construction site 

lecture as needed, practice, 

daily homework 

plan, design, construct 

 

weekly quizzes, unit tests every 

3-4 weeks, final exam each 

semester 

Individual 

classroom 

 

daily lecture, practice, 

daily homework 

notes, guided practice, 

individual practice 

weekly quizzes, unit tests every 

3-4 weeks, final exam each 

semester 

Figure 8. Comparison of key curricular components of Geometry In Construction and traditional 

geometry. 

Instrumentation 

 The following section describes the instruments that were used to measure the 

effects of geometry curriculum and gender on the two dependent variables of 

achievement in geometry and motivation to learn geometry. 

Achievement in Geometry 

 A pretest/posttest design was used to measure achievement in geometry after 

experiencing a full academic year of either GIC or traditional geometry curriculum.  

Scores from the 2018 Missouri Algebra I EOC Exam were used to establish and compare 

the baseline achievement in mathematics between the treatment and control groups.  A 

Missouri Geometry EOC Practice Exam (see Appendix B) was used as the posttest 

instrument to compare achievement in geometry after experiencing a geometry 
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curriculum.  The algebra I EOC exam is a Missouri state requirement for high school 

graduation (MO DESE, 2019a).  At the research site, the algebra I EOC exam was 

administered three weeks prior to the end of algebra I courses, which for all participants, 

was during eighth or ninth grade.  The algebra I EOC exam was administered online and 

scored by Questar Assessment, Inc. through a contract with the Missouri Department of 

Elementary and Secondary Education (MO DESE, 2019a).  The geometry EOC exam 

was administered during the final week of geometry courses, but since it is not a Missouri 

state requirement for high school graduation, it was administered as a paper and pencil 

exam and scored by the classroom geometry teachers.  Questar Assessment, Inc. develops 

EOC exam scale scores using a proprietary formula based on correct responses and their 

point values to indicate four levels of achievement: below basic, basic, proficient, and 

advanced (Questar, 2018).  The scale scores established for the 2018 Missouri Algebra I 

EOC Exam are shown in Table 1 (Questar, 2018).  A raw-to-scale-score converter, 

Table 1 

Scale Scores for the 2018 Missouri End of Course Exam in Algebra I 

Achievement Level Scale Score 

Advanced 409 and above 

Proficient 400 - 408 

Basic 389 - 399 

Below Basic 325 - 388 

Note. Adapted from End of Course Assessments: Technical Report. Copyright 2018 by 

Questar Assessment, Inc. 

 

published by Questar Assessment, Inc. (2018) was used to convert the algebra I scale 

scores to raw scores (points correct).  Raw scores were then converted to percentages of 
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the total points possible for both the algebra I and geometry EOC exam scores to provide 

equivalent comparisons of the baseline and posttest data. 

 In a study examining the relationships between Missouri EOC exam scores from 

2009, 2010, and 2011, Egan (2012) established the reliability of algebra I and geometry 

EOC exam scores using Cronbach’s (1951) coefficient alpha.  Cronbach’s alpha provides 

a measure of internal consistency by indicating the extent to which a group of questions 

measure the same construct (Laerd, 2018a).  Values for Cronbach’s alpha can range from 

zero to one with values closer to one indicating higher consistency and values greater 

than 0.8 generally considered acceptable (Egan, 2012).  The Cronbach’s alpha values 

were .86, .86, and .87 for the 2009, 2010, and 2011 algebra I EOC exam administrations, 

respectively (Egan, 2012).  The geometry EOC exam was not administered in 2009, but 

Cronbach’s alpha values were .87 and .82 for the 2010 and 2011 geometry EOC exam 

administrations, respectively (Egan, 2012).  A different analysis of 2017 EOC exam data 

indicate Cronbach’s alpha values of .88 and .85 for the algebra I and geometry EOC 

exams, respectively (Questar, 2017).  Creswell (2014) describes reliability as “whether or 

not response scores to items on the instrument are stable over time and whether there was 

consistency in test administration and scoring of the instrument” (p. 160).  Consistently 

high year-to-year Cronbach alpha values for the algebra I and geometry EOC exams 

demonstrate sustained internal consistency and thus provide a measure of reliability for 

both assessments.   

 Egan (2012) also found the algebra I and geometry EOC exams to be “strongly 

related to each other, thus demonstrating convergent validity, and moderately related to 

other subject area EOC exam scores suggesting divergent validity” (p. 20).  Convergent 
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validity relates to “the extent to which theoretically related constructs are empirically 

related while divergent validity relates to the extent to which theoretically unrelated 

constructs are not empirically related” (Egan, 2012, p. 2).  Egan (2012) used a Pearson 

product moment correlation coefficient to measure divergent validity.  The Pearson 

correlation coefficient, r, represents the extent to which two variables are related to each 

other and ranges from -1 to +1 with negative values indicating an inverse relationship 

between the variable, positive values indicating a direct relationship between the 

variables, and zero indicating no relationship between the variables (Laerd, 2018d).  The 

strength of relationship between two variables is generally classified as strong, moderate, 

or weak.  Pearson correlation coefficient, r, values greater than .70 are considered strong, 

between .30 and .69 are considered moderate, and below .29 are considered weak (Egan, 

2012).  In an analysis of paired data, comparing the algebra I EOC exam scores of 

students to their geometry EOC exam scores in a later year, Egan (2012) found a strong 

correlation (r>.70).  The Pearson correlation coefficient associated with the comparison 

of 2009 algebra I EOC exam scores to 2010 geometry EOC exam scores was .72 (Egan, 

2012).  The same Pearson correlation of .72 was found when comparing 2010 algebra I 

EOC exam scores to 2011 geometry EOC exam scores (Egan, 2012).  In separate 

analyses performed by Questar Assessment, Inc., Pearson correlation coefficients of .82 

and .74 were found when comparing algebra I and geometry EOC scores in 2017 and 

2018, respectively (Questar, 2017, 2018).  Pearson coefficients of .72, .72, .82, and .74 

suggest a strong correlation between algebra I and geometry EOC exam scores and 

demonstrate convergent validity.  Comparisons of 2017 EOC exam scores between 

algebra I and American history (r = .47) and between geometry and English I (r = .52) 
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reveal Pearson correlation coefficients in the moderate range and demonstrate divergent 

validity (Questar, 2017).  The convergent and divergent validity described by Egan 

(2012) also establishes construct validity since they are both subtypes of construct 

validity.  

 Additional evidence of construct validity for the algebra I and geometry EOC 

exams is provided by examining the test and item development.  Creswell (2014) 

describes construct validity as the extent to which an instrument measures what it 

purports to measure.  According to the Missouri Department of Elementary and 

Secondary Education (MO DESE), “End of course assessments measure how well 

students acquire the skills and knowledge described in Missouri’s Learning Standards.  

The assessments yield information on academic achievement at the student, class, school, 

district and state levels to gauge the overall quality of education throughout Missouri” 

(MO DESE, 2019a, para. 3).  In a technical report presented to the Missouri DESE, 

Questar Assessment (2017) analyzed the development of Missouri EOC tests and test 

items.  Questar (2017) verified “adequate representation of the Missouri Learning 

Standards is ensured in every EOC exam through the use of a test blueprint and a 

documented test construction process” (p. 135).  Questar (2017) examined the Missouri 

EOC test construction process to ensure “test items covered an array of contexts and 

cultures, there were sufficient test items distributed across content and varying difficulty 

levels, test writers were trained, test items were reviewed by content experts and properly 

aligned to standards and grade levels, and teachers from diverse ethnic and geographical 

backgrounds reviewed item accessibility” (p. 135).  In addition, the Missouri DESE 

commissioned two external alignment studies to ensure the assessments represented the 
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Missouri Learning Standards and measured student knowledge at the depth of knowledge 

described in the standards.  The first study concluded that the 2009 EOC test forms were 

“fully aligned for most criteria”, and the second study concluded that all test forms were 

“partially or fully aligned for all criteria” (Questar, 2017, p. 136).  The GIC and 

traditional geometry curricula implemented at the study site are aligned to the Missouri 

Learning Standards for geometry; therefore, the Missouri Geometry EOC Exam is a valid 

measure of achievement in those courses. 

Motivation to Learn Geometry 

 A survey instrument was used to measure motivation to learn geometry after 

experiencing a full academic year of either the GIC or traditional geometry curriculum.  

The survey instrument used to measure motivation to learn geometry is John Keller’s 

Course Interest Survey (CIS), shown in Appendix C (Keller, 2010).  The CIS is based on 

Keller’s (1987a) ARCS theory of motivation which relates the four components of 

attention, relevance, confidence, and satisfaction to a situational motivation to learn.  

Keller (2010) designed the CIS to measure motivation of students in response to a 

specific course or learning condition; therefore, it is not intended to characterize overall 

motivation for learning, but rather motivation within a specific, situational context.  The 

survey was designed for use with secondary students, college students, and adults (Keller, 

2010).  The CIS consists of 34 questions divided into four subsections allowing separate, 

subscale scores and means to be calculated for attention, relevance, confidence, and 

satisfaction.  Participant responses to each question are recorded on a five-point Likert 

scale indicating the degree to which participants agree or disagree with the statement (1 = 

not true, 2 = slightly true, 3 = moderately true, 4 = mostly true, 5 = very true).  Nine 
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questions have a reverse-loaded scale.  The CIS was administered to participants online, 

under the direct supervision of their geometry teacher, during the last week of their 

geometry course.  Keller grants permission to use the survey and adapt it to specific 

situations by changing phrasing such as “this course” to “this geometry course” (Keller, 

2010).  Other than phrasing to customize the CIS to specific courses, the items were not 

modified as each one is linked to specific components of motivation (Keller, 2010).   

Keller (2010) described the efforts to establish reliability and validity for the CIS 

instrument.  The initial development of the survey included assembling a large pool of 

questions that were reviewed by ten graduate students knowledgeable about Keller’s 

ARCS model and the current literature on motivation (Keller, 2010).  Many questions 

were revised, edited, and deleted due to ambiguity or misalignment before being tested 

by a different set of graduate students (Keller, 2010).  The questions were analyzed for 

reliable phrasing and construct alignment by having the graduate students pretend to 

answer the questions as if they were motivated by a course and then again as if they were 

unmotivated by a course (Keller, 2010).  Based on the results of the second analysis, 

questions were revised, edited, or deleted once again before a final round of testing on the 

remaining 34 items to ensure they could accurately and reliably discriminate the four 

components of Keller’s ARCS theory of motivation (Keller, 2010). 

Additional studies were conducted to establish the reliability of the CIS by using 

Cronbach’s alpha as a measure of internal consistency.  The survey was initially 

administered to a test group of 45 undergraduate students and then to a test group of 65 

undergraduate students (Keller, 2010).  Data from these tests indicated a need to further 

revise the instrument (Keller, 2010).  In a large scale pilot test, Keller (2010) 
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“administered the revised CIS to 200 undergraduate and graduate students in the School 

of Education at the University of Georgia at Valdosta and also collected student course 

grades and grade point averages” (p. 5).  Analysis of the pilot test data resulted in 

Cronbach’s alpha values of .84, .84, .81, and .88, for the motivation subscales of 

attention, relevance, confidence, and satisfaction, respectively, and .95 for the overall 

scale as shown in Table 2 (Keller, 2010).  The values for Cronbach’s alpha can range 

from zero to one with values closer to one indicating higher consistency and values 

greater than 0.8 generally considered acceptable (Egan, 2012). 

Table 2 

Cronbach’s Alpha Values Measuring Internal Consistency of CIS Pilot Test 

Scale 
Reliability Estimate 

(Cronbach’s alpha) 

Attention .84 

Relevance .84 

Confidence .81 

Satisfaction .88 

Total Scale .95 

Note. Adapted from Motivational design for learning and performance: The ARCS model 

approach, by J. M. Keller. Copyright 2010 by Springer Publishing. 

 

 Data from the pilot test also enabled Keller to establish construct validity by 

comparing CIS scale and subscale scores to student course grade and grade point average 

(GPA) as shown in Table 3.  Keller (2010) calculated Spearman’s rank-order correlation 

coefficients and found statistically significant correlations between CIS scores and 

student course grades (p<.05).  In addition, Keller (2010) found there was not a 

statistically significant correlation between CIS scores and student GPA (p>.05).   
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Table 3 

Correlation Coefficients Between CIS Scores, Course Grade, and GPA 

ARCS Categories Course Grade GPA 

Attention .19 .01 

Relevance .43 .08 

Confidence .49 .03 

Satisfaction .49 .03 

Total Scale .47 .04 

Note. Adapted from Motivational design for learning and performance: The ARCS model 

approach, by J. M. Keller. Copyright 2010 by Springer Publishing. 

 

In general, correlation coefficients indicate the extent of relationship between two 

variables:  Spearman correlation coefficient, rs, values greater than .60 are considered 

strong, between .40 and .59 are considered moderate, and below .39 are considered weak 

(Statstutor, n.d.).  Because the CIS scores were correlated with student course grade but 

not student GPA, the results “support the validity of the CIS as a situation-specific 

measure of motivation, and not as a generalized motivation measure, or construct 

measure for school learning” (Keller, 2010, p. 281). 

Data Collection 

 Contextual Learning Concepts, LLC. developed an experiential geometry course 

called Geometry In Construction (GIC) in which students learn principles of geometry, 

industrial education, and career technical education in the context of building a small 

house that is donated to a local charity serving the needs of homeless community 

members (Contextual Learning Concepts, n.d.a).  Interest in the impact GIC has on 
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achievement and motivation in geometry arises from knowledge that lack of proficiency 

and interest in learning mathematics are often barriers to entry, persistence, and success 

in STEM (Lazowski & Hulleman, 2016; NCTM, 2000; NRC, 2001; PCAST, 2012; Wang 

et al., 2013). 

 Student scores on a Missouri Geometry Practice EOC Exam served as the 

measure of achievement in geometry.  Participants completed the exam in their geometry 

classroom under the direct supervision of their geometry teacher during the final week of 

a two-semester geometry course.  The geometry teachers were trained by their school 

district to meet all the Missouri state policies and guidelines for fairly and securely 

proctoring standardized state tests.  The Missouri Geometry EOC Exam is not a timed 

test.  The Missouri Algebra I EOC Exam provided a measure of baseline achievement in 

mathematics.  Participant scores on the algebra I EOC exam were pre-existing data that 

were used as a covariate when analyzing geometry EOC exam scores as explained in the 

subsequent data analysis section.  All participants took the algebra I EOC exam in their 

algebra I course during the academic year immediately preceding enrollment in a 

geometry course. 

 Student scores on Keller’s (2010) Course Interest Survey served as the measure of 

motivation to learn geometry.  The CIS was administered to participants in their 

geometry classroom under the direct supervision of their geometry teacher during week 

35 of a 36 week, two-semester geometry course.  The survey required approximately 30 

minutes to complete and was administered online using Qualtrics.  Geometry teachers 

were trained to administer the CIS online. 
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Ethics and Human Relations 

 The participants of the study were minors, therefore, specific guidelines involving 

human subject research involving children were strictly followed.  A comprehensive 

review by the Institutional Review Board occurred prior to interacting with participants 

and collecting data.  Participation was voluntary and void of coercion and deception.  Site 

visits to participant classrooms were conducted to explain the research study as an 

analysis of the impact of geometry curricula on achievement and motivation to learn 

geometry.  Participants were not informed about the comparison of GIC to traditional 

geometry curricula nor whether they would be in a treatment or control group.   Student 

assent and parental consent forms were distributed during the site visits and collected by 

the geometry classroom teachers during the two weeks prior to data collection.  Upon 

approval to conduct the study, researchers met with each geometry classroom teacher to 

share the general purpose of the study and train them for administering the online CIS.  

The geometry teachers were informed of the importance of participant confidentiality and 

discouraged from further discussing the study with participants or revealing the nature of 

the treatment and control groups as that could be a threat to the internal validity of the 

experimental design as discussed previously. 

 Neither the statistical analyses of anonymous achievement scores nor the 

completion of an online survey measuring student motivation to learn geometry by 

participants posed a significant risk to the physical, psychological, social, economic, or 

legal well-being of the participants.  Since all of the data were collected and analyzed 

electronically, there was a small risk that the data could be compromised or viewed by 

unauthorized persons.  Multiple precautionary measures were taken to protect the privacy 
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of participants.  As part of this effort, the identity of participants will not be revealed in 

any publication or presentation.  All identifying information was removed from the 

achievement score data, and at no time was the identity of a particular student, their 

scores, or their participation revealed.  The anonymous EOC exam and CIS score data 

will be stored securely for a period of up to three years on password protected computers 

that operate behind a firewall and are only accessible by the researchers and their system 

administrators.  After three years, all EOC exam and CIS score data will be permanently 

deleted.  The online CIS survey was taken anonymously on a secure network with no 

collection of identifying information; therefore, individual responses to specific survey 

questions were not identifiable. 

Data Analysis 

 The data analysis involved examining the relationship between the two 

independent variables, geometry curriculum and gender, and the two dependent variables, 

achievement in geometry and motivation to learn geometry.  Algebra I EOC exam scores 

served as the baseline measure of achievement in mathematics and geometry EOC exam 

scores served as the posttest measure of achievement in geometry.  Participant scores on 

Keller’s (2010) CIS served as the measure of motivation to learn geometry.  An overall 

scale score and four subscale scores measuring participant perceptions of their attention, 

relevance, confidence, and satisfaction were calculated and analyzed from the CIS 

results.  The validity and reliability of both instruments was discussed in the 

instrumentation section of this chapter. 
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 The baseline achievement in mathematics of the treatment group and the control 

group were compared.  An independent t-test comparing the mean algebra I EOC exam 

scores of the treatment and control groups was conducted to determine if their baseline 

scores were significantly different.  The results of the t-test are shown in chapter 4.  One-

way analysis of covariance (ANCOVA) was used to analyze statistical differences in 

geometry EOC exam scores representing the dependent variable “achievement in 

geometry” in response to the independent variables of group (treatment or control) and 

gender (male or female) and controlling for the covariate of algebra I EOC exam scores 

representing baseline achievement in mathematics.  One-way ANCOVA was chosen 

because it assesses the extent to which an independent, categorical variable (group or 

gender) is associated with statistically significant differences in a continuous, dependent 

variable (achievement in geometry as measured by geometry EOC exam scores) while 

controlling for a third variable called the covariate (baseline achievement in mathematics 

as measured by algebra I EOC exam scores) in order to remove the effect of the covariate 

on the relationship between the independent and dependent variables (Laerd, 2018c). 

 Four research models were created for ANCOVA corresponding to research 

questions one and two.  Table 4 displays the variables, covariates, and comparison group 

used in each model.  The data for each model were analyzed to ensure it met the 

underlying assumptions and criteria for ANCOVA to produce valid results.  Those results 

are provided in Appendix D.  The variables meet the criteria for proper use of ANCOVA 

because the dependent variable and covariate are measured on a continuous scale and the 

independent variables are categorical.  No participants were in both the treatment and 

control groups.  As recommended by Laerd (2018c), analyses were conducted to identify:  



EFFECTS OF AN EXPERIENTIAL GEOMETRY COURSE                                                                            90 
 

Table 4 

ANCOVA Research Models for Analyzing Achievement in Geometry 

Model Research Question Independent 

Variable 

Dependent 

Variable 

Covariate Comparison 

Group 

1 What effect does experiencing 

the Geometry In Construction 

curriculum have on the 

achievement in geometry of 

secondary students compared to 

experiencing a traditional 

geometry curriculum as 

measured by the Missouri 

Geometry End of Course 

Exam? 

curriculum achievement 

in geometry 

Algebra I 

EOC Scores 

control 

2A Does experiencing the 

Geometry In Construction 

curriculum affect the 

achievement in geometry of 

secondary males and females 

differently as measured by the 

Missouri Geometry End of 

Course Exam? 

gender achievement 

in geometry 

Algebra I 

EOC Scores 

GIC males 

compared to 

GIC females 

2B Does experiencing the 

Geometry In Construction 

curriculum affect the 

achievement in geometry of 

secondary males and females 

differently as measured by the 

Missouri Geometry End of 

Course Exam? 

curriculum achievement 

in geometry 

Algebra I 

EOC Scores 

GIC males 

compared to 

control males 

2C Does experiencing the 

Geometry In Construction 

curriculum affect the 

achievement in geometry of 

secondary males and females 

differently as measured by the 

Missouri Geometry End of 

Course Exam? 

curriculum achievement 

in geometry 

Algebra I 

EOC Scores 

GIC females 

compared to 

control females 

 

“outliers, normal distribution of residuals, homogeneity of variances, linear relationship 

of covariate to dependent variable, homoscedasticity, and homogeneity of regression 

slopes” (paras. 6-16) before proceeding with ANCOVA. 
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Independent, two-tailed t-tests were used to analyze statistical differences in CIS 

overall mean scores and subscale mean scores for attention, relevance, confidence, and 

satisfaction representing the dependent variable “motivation to learn geometry” for the 

independent variables of group (treatment or control) and gender (male or female).  

Multiple t-tests were chosen because they can reveal which independent, categorical 

variables (group and gender) are associated with statistically significant differences in the 

means of multiple, continuous, dependent variables (motivation to learn geometry as 

measured by overall and subscale scores on the CIS) (Laerd, 2018b). 

Four additional research models were created for t-tests corresponding to research 

questions three and four.  Table 5 displays the variables and comparison group used in 

each model.  The data for each model were analyzed to ensure it met the underlying 

assumptions and criteria for t-tests to produce valid results.  Those results are provided in 

Appendix E.  As recommended by Laerd (2018b), testing was performed to identify: 

“significant outliers, normality, and homogeneity of variances” (paras. 5-10) associated 

with dependent variable data before proceeding with t-tests.  Failure of data to meet the 

criteria for valid use with ANCOVA and t-tests was addressed through additional 

statistical treatments or, where appropriate, reliance on large sample size to validate 

certain violations of the assumptions.  Type I errors, incorrectly rejecting a null 

hypothesis, and type II errors, incorrectly accepting a null hypothesis, were minimized by 

establishing an alpha value of .05 to indicate statistically significant differences. 
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Table 5 

t-test Research Models for Analyzing Motivation to Learn Geometry 

Model Research Question Independent 

Variable 

Dependent 

Variable(s) 

Comparison 

Group 

3 What effect does experiencing the Geometry 

In Construction curriculum have on the 

motivation of secondary students to learn 

geometry compared to experiencing a 

traditional geometry curriculum as measured 

by Keller’s (2010) Course Interest Survey? 

curriculum motivation 

attention 

relevance 

confidence 

satisfaction 

control 

4A Does experiencing the Geometry In 

Construction curriculum affect the 

motivation of secondary males and females 

to learn geometry differently as measured by 

Keller’s (2010) Course Interest Survey? 

gender motivation 

attention 

relevance 

confidence 

satisfaction 

GIC males 

compared to 

GIC females 

4B Does experiencing the Geometry In 

Construction curriculum affect the 

motivation of secondary males and females 

to learn geometry differently as measured by 

Keller’s (2010) Course Interest Survey? 

curriculum motivation 

attention 

relevance 

confidence 

satisfaction 

GIC males 

compared to 

control males 

4C Does experiencing the Geometry In 

Construction curriculum affect the 

motivation of secondary males and females 

to learn geometry differently as measured by 

Keller’s (2010) Course Interest Survey? 

curriculum motivation 

attention 

relevance 

confidence 

satisfaction 

GIC females 

compared to 

control females 

 

Limitations 

 A quantitative, quasi-experimental research approach was used to investigate the 

effects of an experiential geometry course on achievement and motivation in geometry.  

A moderate size sample (N=181) was analyzed, but generalization of the results is limited 

to similar populations of suburban, predominantly White, Midwestern, public secondary 

schools.  An additional factor impacting generalization of the results may be geometry 

teacher experience.  Geometry teachers of both the treatment and control groups were 

experienced teachers each having more than ten years of experience teaching geometry.  

In addition, the two GIC teachers were in their second year of GIC curriculum 
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implementation.  Future studies are needed to replicate the study in other suburban, 

urban, and more culturally-diverse settings. 

 A convenience sample of all 123 students enrolled in traditional geometry was 

selected for the control group, and a convenience sample of all 58 students enrolled in 

GIC was selected for the treatment group.  It was not possible to obtain a random sample 

of students because secondary students choose their own academic schedules and self-

select the courses they want to take.  Non-random selection of participants can limit the 

interpretation of findings because certain student characteristics may introduce bias.  For 

example, it is possible that students choose to enroll in GIC because they like 

mathematics, are highly motivated to learn mathematical applications, want to help their 

community, have higher self-efficacy, or perhaps, they dislike mathematics and are trying 

to avoid traditional geometry which often involves more lecture and prolonged seat time 

for practice and problem solving (Grouws & Smith, 2000).  A non-random distribution of 

these student characteristics can introduce bias and limit the interpretation of findings. 

 Additional limitations are inherent due to methodological constraints.  The length 

of study precluded researchers from obtaining pretest measures of motivation to learn 

geometry.  Because the geometry curricula investigated are implemented within 36-week 

courses, pretest measures of motivation need to be collected in August, at the beginning 

of the academic year, and posttest measures of motivation and achievement need to be 

collected in May, at the end of the academic year.  The date upon which IRB approval 

was secured and other time constraints did not allow for such an extended period of data 

collection.  Therefore, without a baseline measure of motivation to learn geometry, 

analysis of motivation scores was limited to comparisons between the treatment and 
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control group rather than measures of change.  Future studies should include an extended 

period of data collection to obtain pretest and posttest measures of motivation to learn 

geometry.  Also, it is possible the treatment group possessed an awareness of being 

observed or an awareness that they were in a class that other educators, community 

members, and members of the media find interesting, thus leading to a Hawthorne effect 

on the CIS.  The experiential GIC course is spotlighted in national, regional, and district 

level media and public relations outlets, therefore it is possible students enrolled in GIC 

may have been aware of the interest others have in it as a STEM pedagogical model.  

Students enrolled in GIC may have exhibited demand characteristics, in which they 

provided artificially positive responses because they thought that is what is expected of 

them, when surveyed about the impact GIC had on their motivation to learn geometry 

(Orne, 1962).  Limited interaction between researchers and participants and the 

administration of the CIS near the completion of the course were attempts to minimize 

demand characteristics and the Hawthorne effect by limiting the number of times students 

felt they were being observed by researchers and others. 

Conclusion 

 A quantitative, quasi-experimental research design was used to investigate the 

effects of an experiential learning course.  Analysis of data collected from 181 students 

experiencing a GIC or traditional geometry curriculum was used to determine the effects 

of GIC on achievement in geometry and motivation to learn geometry.  A convenience 

sample of all 58 students enrolled in GIC was selected for the treatment group and all 123 

students enrolled in traditional geometry was selected for the control group.  All 

participants were secondary students in ninth or tenth grade attending a large, 
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predominantly White, suburban, Midwestern, public high school.  The Missouri 

Geometry EOC Exam was used to measure achievement in geometry.  Analysis of 

covariance (ANCOVA) was used to analyze the effect of group (treatment or control) and 

gender (male or female) on achievement in geometry while controlling for the covariate 

of baseline achievement in mathematics as measured by the Missouri Algebra I EOC 

Exam.  Keller’s (2010) Course Interest Survey was used to measure motivation to learn 

geometry within the four subscales of attention, relevance, confidence, and satisfaction as 

described in Keller’s (1987a) ARCS Theory of Motivation.  Independent, two-tailed t-

tests were used to analyze the effects of group (treatment or control) and gender (male or 

female) on the motivational sub-components of attention, relevance, confidence, and 

satisfaction. 
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CHAPTER 4 

FINDINGS 

 A shortage of interested and qualified workers needed to fill the job openings in 

STEM and related fields in the U.S. has been reported (Carnevale, Smith, and Strohl, 

2010).  Attempts to increase the number of students interested and technically prepared to 

succeed in STEM careers have largely been unsuccessful at meeting the demand 

(PCAST, 2012).  Geometry In Construction (GIC) is an experiential geometry course that 

provides a transformative model for STEM teaching and learning by utilizing a relevant, 

service-oriented context for learning.  While experiencing the GIC curriculum, students 

learn and apply principles of geometry, industrial technologies, and career technical 

education by designing and constructing a small-scale house.  The completed house is 

donated to a local charity serving the needs of homeless people in the community 

(Contextual Learning Concepts, n.d.a).  Chapter four provides the results of research 

measuring the effects of the GIC curriculum on secondary student achievement in 

geometry and motivation to learn geometry.  Four research questions frame the results. 

1. What effect does experiencing the Geometry In Construction curriculum have 

on the achievement in geometry of secondary students compared to 

experiencing a traditional geometry curriculum as measured by the Missouri 

Geometry End of Course Exam? 

2. Does experiencing the Geometry In Construction curriculum affect the 

achievement in geometry of secondary males and females differently as 

measured by the Missouri Geometry End of Course Exam? 
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3. What effect does experiencing the Geometry In Construction curriculum have 

on the motivation of secondary students to learn geometry compared to 

experiencing a traditional geometry curriculum as measured by Keller’s 

(2010) Course Interest Survey? 

4. Does experiencing the Geometry In Construction curriculum affect the 

motivation of secondary males and females to learn geometry differently as 

measured Keller’s (2010) Course Interest Survey? 

Statistical analysis of the quantitative results addresses the null hypotheses developed for 

each research question by comparing the dependent variable values of the treatment and 

control groups. 

H0 1: There is no significant difference between the achievement in geometry of 

secondary students experiencing the Geometry In Construction curriculum 

and those experiencing a traditional geometry curriculum as measured by 

Missouri Geometry End of Course Exam scores. 

H0 2: Experiencing the Geometry In Construction curriculum does not affect the 

achievement in geometry of secondary males and females differently as 

measured by Missouri Geometry End of Course Exam scores. 

H0 3: There is no significant difference between the motivation to learn geometry 

of secondary students experiencing the Geometry In Construction 

curriculum and those experiencing a traditional geometry curriculum as 

measured by scores on Keller’s (2010) Course Interest Survey. 
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H0 4: Experiencing the Geometry In Construction curriculum does not affect the 

motivation of secondary males and females to learn geometry differently as 

measured by scores on Keller’s (2010) Course Interest Survey. 

Data Description 

 Data were obtained from a sample of 181 ninth and tenth grade students (80 

males, 101 females) enrolled in geometry at a large, suburban, Midwestern, public high 

school.  The treatment group consisted of 58 students (35 males, 23 females) enrolled in 

Geometry In Construction, an experiential geometry course.  The control group consisted 

of 123 students (45 males, 78 females) enrolled in a traditional, lecture-based geometry 

course.  Scores on a Missouri Geometry End of Course Practice Exam were used to 

measure achievement in geometry.  Scores on Keller’s (2010) Course Interest Survey 

(CIS) were used to measure motivation to learn geometry.  All data collected were 

entered into an Excel spreadsheet and checked for errors.  Afterward, the data were 

imported into Statistical Analysis Software (SAS) for descriptive and inferential 

statistical analysis. 

Data Analysis 

In the first phase, geometry end of course (EOC) exam scores were collected to 

determine if there were any differences in achievement in geometry associated with the 

type of geometry instructional method experienced by students.  Geometry EOC exam 

scores were obtained for 168 participants (33 males and 22 females in the treatment 

group; 40 males and 73 females in the control group).  In order to establish whether the 

treatment and control groups had similar achievement in mathematics prior to taking 



EFFECTS OF AN EXPERIENTIAL GEOMETRY COURSE                                                                            99 
 

geometry, algebra I EOC exam scores were used to determine baseline achievement 

levels in mathematics.  Nearly all of the participants had taken the Missouri Algebra I 

EOC Exam during the year prior to experiencing a geometry course.  Algebra I EOC 

exam scores were obtained for 177 participants (34 males and 23 females in the treatment 

group; 44 males and 76 females in the control group).   

An independent-samples t-test was conducted to compare the algebra I EOC 

scores of students enrolled in GIC and students enrolled in traditional geometry.  The 

results of the t-test are shown in Table 6 and indicate that students enrolled in GIC had a 

significantly higher algebra I EOC score (M = 57.82, SD = 12.77) than students enrolled 

in traditional geometry (M = 52.78, SD = 13.43), t(175) = 2.37, p = .019.   

Table 6 

t-test Results: Comparison of Algebra I EOC Exam Scores of Treatment and Control 

Groups 

 

Exam 

Levene’s Test for 

Equality of 

Variance 

t-test for Equality of Means 

t df 

Sig. 

(2-tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence 

Interval of the 

Difference 

F Sig. Lower Upper 

Algebra 

I EOC 
1.11 .68 2.37 175 .019 5.04 2.13 0.84 9.24 

 

In addition, simple linear regression of algebra I EOC exam scores against geometry 

EOC exam scores taken from the whole sample indicated that algebra I EOC exam scores 

significantly predicted geometry EOC exam scores, b = 0.70, t(163) = 7.39, p < .001.  

Algebra I EOC exam scores also explained a significant portion of variance in geometry 

EOC scores, R2 = .25, F(1,163) = 54.63, p < .001 (see Appendix D).  Therefore, algebra I 
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EOC exam scores were considered to be a covariate, and ANCOVA was chosen as the 

method to statistically analyze differences in geometry EOC exam scores.  A confidence 

interval of 95% and a type I error rate of .05 were used to interpret all statistical results. 

In the second phase, quantitative survey data were collected using John Keller’s 

(2010) Course Interest Survey (CIS) to determine if there were any differences in 

motivation to learn geometry associated with the type of geometry instructional method 

experienced by students.  Survey data were collected from 95 participants (17 males and 

18 females in the treatment group; 31 males and 29 females in the control group) during 

the last week of their geometry course to measure situational motivation to learn 

geometry as a result of their geometry course experience.  Independent samples, two-

tailed t-tests were used to analyze differences in the means of overall motivation scores 

and motivation subscale scores of attention, relevance, confidence, and satisfaction 

between the treatment and control groups.  These subscales are components of situational 

motivation as described by Keller’s (1987a) ARCS Model which served as the theoretical 

framework.  A confidence interval of 95% and a type I error rate of 0.05 were used to 

interpret all statistical results. 

Results 

The following section presents the results for each null hypothesis. 

Achievement in Geometry  

H0 1:  There is no significant difference between the achievement in geometry of 

secondary students experiencing the Geometry In Construction curriculum and 

those experiencing a traditional geometry curriculum as measured by Missouri 

Geometry End of Course Exam scores. 
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A one-way ANCOVA was conducted to determine if there was a statistically 

significant difference between the geometry EOC exam scores of students experiencing 

the GIC curriculum and students experiencing a traditional geometry curriculum when 

controlling for algebra I EOC exam scores.  As depicted in Table 7, the data indicate the 

geometry EOC exam mean was 12.93 points higher for the treatment group (M = 60.51, 

SD = 15.79) compared to the control group (M = 47.58, SD = 18.14). 

Table 7 

Geometry EOC Exam Mean Scores of Treatment and Control Groups 

 Geometry EOC Exam Mean Scores 

Group M SD 

Treatment (n = 55) 60.51 15.79 

Control (n = 113) 47.58 18.14 

Note. EOC = end of course. M = mean. SD = standard deviation. Mean scores indicate the percentage 

correct. 

Table 8 illustrates the results of the ANCOVA which show that experiencing the GIC 

curriculum had a significant, positive effect on geometry EOC exam scores when 

controlling for algebra I EOC exam scores, F(1, 163) = 11.80, p < .001. 

Table 8 

ANCOVA Results: Comparison of Geometry EOC Exam Scores Between Treatment and 

Control Groups 

 

Source 
Type III 

Sum of Squares 
df 

Mean 

Square 
F 

Course   2818.37 1   2818.37 11.80*** 

Alg I EOC 10967.74 1 10967.74 45.92*** 

Error 38454.15 161     238.85  

Note. Algebra I EOC Exam scores are the covariate. 

***p < .001 
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The GIC curriculum had an intermediate effect size on geometry EOC exam 

scores as determined by calculating Hedges’ “g” (gHedges’ = 0.60).  “Hedges’ “g” is an 

appropriate measure of effect size for mean differences of groups with unequal sample 

sizes within a pre- post- control design” (Morris, 2008).  Interpretations of effect sizes 

vary in the literature, but Lenhard and Lenhard (2016) suggested the range 0.2 to 0.4 is a 

small effect, 0.5 to 0.7 is an intermediate effect, and above 0.8 is a large effect. 

H0 2:  Experiencing the Geometry In Construction curriculum does not affect the 

achievement in geometry of secondary males and females differently as measured by 

Missouri Geometry End of Course Exam scores. 

In order to determine if the GIC curriculum had a significantly different effect on the 

achievement in geometry of males and females, three research models corresponding to 

research question two were created, as illustrated in Table 9.  The first model, 2A, 

compared the geometry EOC exam scores of males in GIC to females in GIC.  The 

second model, 2B, compared the geometry EOC exam scores of males in GIC to males in 

traditional geometry.  The third model, 2C, compared the geometry EOC exam scores of 

females in GIC to females in traditional geometry. 
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Table 9 

ANCOVA Research Models for Analyzing Achievement in Geometry Based on Gender 

Model Research Question Independent 

Variable 

Dependent 

Variable 

Covariate Comparison 

Group 

2A Does experiencing the Geometry 

In Construction curriculum affect 

the achievement in geometry of 

secondary males and females 

differently as measured by the 

Missouri Geometry End of 

Course Exam? 

gender achievement 

in geometry 

Algebra I 

EOC Exam 

Scores 

GIC males 

compared to 

GIC females 

2B Does experiencing the Geometry 

In Construction curriculum affect 

the achievement in geometry of 

secondary males and females 

differently as measured by the 

Missouri Geometry End of 

Course Exam? 

curriculum achievement 

in geometry 

Algebra I 

EOC Exam 

Scores 

GIC males 

compared to 

control males 

2C Does experiencing the Geometry 

In Construction curriculum affect 

the achievement in geometry of 

secondary males and females 

differently as measured by the 

Missouri Geometry End of 

Course Exam? 

curriculum achievement 

in geometry 

Algebra I 

EOC Exam 

Scores 

GIC females 

compared to 

control females 

 

Achievement in Geometry: Treatment Group Gender Comparison 

For research model 2A (see Table 9), a one-way ANCOVA was conducted to 

determine if there was a statistically significant difference between the geometry EOC 

exam scores of males experiencing the GIC curriculum and females experiencing the GIC 

curriculum when controlling for algebra I EOC exam scores.  As depicted in Table 10, 

the data indicate the geometry EOC exam mean score was 2.06 points higher for males in 

the treatment group (M = 61.33, SD = 16.61) compared to females in the treatment group 

(M = 59.27, SD = 14.75).   
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Table 10 

Geometry EOC Exam Mean Scores of Treatment Males Compared to Treatment Females 

 

 Geometry EOC Exam Mean Scores 

Group M SD 

Treatment Males (n = 35) 61.33 16.61 

Treatment Females (n = 23) 59.27 14.75 

Note. EOC = end of course. M = mean. SD = standard deviation. Mean scores indicate the percentage 

correct. 

Table 11 illustrates the results of the ANCOVA for research model 2A which show that 

gender did not have a significant effect on geometry EOC exam scores of students in the 

GIC course when controlling for algebra I EOC exam scores, F(1, 53) = .49, p = .486.  

Gender had an insignificant, small effect size on achievement in geometry within the 

treatment group as determined by calculating Hedges’ “g” (gHedges’ = 0.22). 

Table 11 

ANCOVA Results: Achievement in Geometry of Treatment Males Compared to Treatment 

Females 

 

Source 
Type III 

Sum of Squares 
df 

Mean 

Square 
F 

Gender    113.81 1   113.81 0.49 

Alg I EOC  1586.21 1 1586.21   6.85* 

Error 11802.03 51   231.41  

Note. Algebra I EOC Exam scores are the covariate. 

*p < .05 

Achievement in Geometry: Treatment Males Compared to Control Males 

For research model 2B (see Table 9), a one-way ANCOVA was conducted to 

determine if there was a statistically significant difference between the geometry EOC 
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exam scores of males experiencing the GIC curriculum and males experiencing a 

traditional geometry curriculum when controlling for algebra I EOC exam scores.  As 

depicted in Table 12, the data indicate the geometry EOC exam mean score was 8.90 

points higher for males in the treatment group (M = 61.33, SD = 16.61) compared to 

males in the control group (M = 52.43, SD = 18.92).   

Table 12 

Geometry EOC Exam Mean Scores of Treatment Males Compared to Control Males 

 
Geometry EOC Exam Mean Scores 

Group M SD 

Treatment Males (n = 35) 61.33 16.61 

Control Males (n = 45) 52.43 18.92 

Note. EOC = end of course. M = mean. SD = standard deviation. Mean scores indicate the percentage 

correct. 

Table 13 illustrates the results of the ANCOVA for research model 2B which show that 

the GIC curriculum did not have a significant effect on geometry EOC exam scores of 

males in the treatment group compared to males in the control group when controlling for 

algebra I EOC exam scores, F(1, 70) = 2.84, p = .097.  In the comparison of treatment 

males to control males, the GIC curriculum had an insignificant, intermediate effect size 

on achievement in geometry as determined by calculating Hedges’ “g” (gHedges’ = 0.57). 
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Table 13 

ANCOVA Results: Achievement in Geometry of Treatment Males Compared to Control 

Males 

 

Source 
Type III 

Sum of Squares 
df 

Mean 

Square 
F 

Course     774.78 1   774.78 2.84 

Alg I EOC   3894.11 1 3894.11     14.25*** 

Error 18578.13 68   273.21  

Note. Algebra I EOC Exam scores are the covariate. 

***p < .001 

Achievement in Geometry: Treatment Females Compared to Control Females 

For research model 2C (see Table 9), a one-way ANCOVA was conducted to 

determine if there was a statistically significant difference between the geometry EOC 

exam scores of females experiencing the GIC curriculum and females experiencing a 

traditional geometry curriculum when controlling for algebra I EOC exam scores.  As 

depicted in Table 14, the data indicate the geometry EOC exam mean score was 14.34 

points higher for females in the treatment group (M = 59.27, SD = 14.75) compared to 

females in the control group (M = 44.93, SD = 17.25).   

Table 14 

Geometry EOC Exam Mean Scores of Treatment Females Compared to Control Females 

 

 
Geometry EOC Exam Mean Scores 

Group M SD 

Treatment Females (n = 23) 59.27 14.75 

Control Females (n = 78) 44.93 17.25 

Note. EOC = end of course. M = mean. SD = standard deviation. Mean scores indicate the percentage 

correct. 
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Table 15 illustrates the results of the ANCOVA for research model 2C which show that 

the GIC curriculum had a significant, positive effect on geometry EOC exam scores of 

females in the treatment group compared to females in the control group when 

controlling for algebra I EOC exam scores, F(1, 92) = 6.32, p = .014.  In the comparison 

of treatment females to control females, the GIC curriculum had an intermediate effect 

size on achievement in geometry as determined by calculating Hedges’ “g” (gHedges’ = 

0.52).   

Table 15 

ANCOVA Results: Achievement in Geometry of Treatment Females Compared to Control 

Females  

 

Source 
Type III 

Sum of Squares 
df 

Mean 

Square 
F 

Course   1326.42 1 1326.42 6.32* 

Alg I EOC   6533.23 1 6533.23   31.14*** 

Error 18883.53 90   209.82  

Note. Algebra I EOC Exam scores are the covariate. 

*p < .05.  ***p < .001 

A summary of ANCOVA results indicating significant differences in geometry 

EOC exam mean scores and corresponding to research questions one and two is shown in 

Table 16. 
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Table 16 

Summary of ANCOVA Results: Significant Differences in Achievement in Geometry 

Result 

RQ1 
GIC students (n=55) 

compared to 

TG students (n=113) 

RQ2A 
GIC males (n=33) 

compared to 

GIC females (n=22) 

RQ2B 
GIC males (n=33) 

compared to 

TG males (n=40) 

RQ2C 
GIC females (n=22) 

compared to 

TG females (n=73) 

Significance 
*** 

p = .0008 

 

p = .4863 

 

p = .0968 

* 

p = .0137 

Effect Size 
intermediate 

gHedges’ = 0.60 

small 

gHedges’ = 0.22 

intermediate 

gHedges’ = 0.57 

intermediate 

gHedges’ = 0.52 

Note. RQ2A, RQ2B, and RQ2C are research models corresponding to research question two (See Table 9).  

EOC = end of course. GIC = Geometry In Construction treatment group. TG = traditional geometry control 

group. 

*p < .05.  ***p < .001. 

Motivation to Learn Geometry 

H0 3:  There is no significant difference between the motivation to learn geometry of 

secondary students experiencing the Geometry In Construction curriculum and 

those experiencing a traditional geometry curriculum as measured by scores on 

Keller’s (2010) Course Interest Survey. 

Table 17 shows a comparison of the motivation to learn geometry mean scores for 

students in the treatment and control group.  The scores include an overall motivation 

score and subscale scores for attention, relevance, confidence, and satisfaction as 

described previously by Keller’s (1987a) ARCS motivation model. 
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Table 17 

Motivation to Learn Geometry Mean Scores of Treatment and Control Groups 

 
Overall 

Motivation Attention Relevance Confidence Satisfaction 

Group M SD M SD M SD M SD M SD 

Treatment Group 

(n = 35) 
3.62 0.75 3.12 0.88 3.56 0.86 4.16 0.59 3.64 0.96 

Control Group 

(n = 60) 
2.97 0.69 2.38 0.79 3.02 0.69 3.54 0.85 2.94 0.87 

Note. M = mean. SD = standard deviation. Treatment = Geometry in Construction students.  

Control = traditional geometry students. Mean scores are based on a five-point scale. 

T-tests were conducted to determine if there were statistically significant 

differences between the motivation mean scores of students experiencing the GIC 

curriculum and students experiencing a traditional geometry curriculum.  Table 18 shows 

the t-test results.   

Table 18.  

t-test Results: Comparison of Motivation to Learn Geometry Mean Scores of Treatment 

to Control Groups 

 

 GIC students 

(treatment) 

traditional geometry 

students (control) 

  

Scale M SD M SD t-test df 

Overall 

Motivation 

3.62 0.75 2.97 0.69 4.24*** 93 

Attention 3.12 0.88 2.38 0.79 4.24*** 93 

Relevance 3.56 0.86 3.02 0.69   3.37** 93 

Confidence 4.16 0.59 3.54 0.85   3.77*** 93 

Satisfaction 3.64 0.96 2.94 0.87   3.67*** 93 

Note. M = mean. SD = standard deviation. Mean scores are based on a five-point scale. 

**p < .01.  ***p < .001. 
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The results indicate the following: 

Overall Motivation: Treatment Compared to Control 

 Geometry In Construction students had a 0.65-point higher overall motivation 

mean score (M = 3.62, SD = 0.75) compared to traditional geometry students (M = 

2.97, SD = 0.69), and that difference was significant, t(93) = 4.24, p < .001.   

 The overall motivation scores of the treatment group were skewed right and 

nonparametric (see Appendix F), therefore, a Wilcoxon Rank-Sum Test was also 

used to confirm a significant difference between the means (p < .001).   

 The GIC curriculum had a large effect size on overall motivation scores as 

determined by calculating Hedges’ “g” (gHedges’ = 0.90).   

Attention Subscale: Treatment Compared to Control 

 Geometry In Construction students had a 0.74-point higher attention mean score 

(M = 3.12, SD = 0.88) compared to traditional geometry students (M = 2.38, SD = 

0.79), and that difference was significant, t(93) = 4.24, p < .001.   

 The GIC curriculum had a large effect size on attention scores as determined by 

calculating Hedges’ “g” (gHedges’ = 0.90).   

Relevance Subscale: Treatment Compared to Control 

 Geometry In Construction students had a 0.54-point higher relevance mean score 

(M = 3.56, SD = 0.86) compared to traditional geometry students (M = 3.02, SD = 

0.69), and that difference was significant t(93) = 3.37, p = .001. 

 The GIC curriculum had an intermediate effect size on relevance scores as 

determined by calculating Hedges’ “g” (gHedges’ = 0.72).   
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Confidence Subscale: Treatment Compared to Control 

 Geometry In Construction students had a 0.62-point higher confidence mean 

score (M = 4.16, SD = 0.59) compared to traditional geometry students (M = 3.54, 

SD = 0.85), and that difference was significant, t(93) = 3.77, p < .001.   

 The confidence scores of both the treatment and control groups were 

nonparametric (see Appendix F), therefore, a Wilcoxon Rank-Sum Test was also 

used to confirm a significant difference between the means (p < .001).   

 The GIC curriculum had a large effect size on confidence scores as determined by 

calculating Hedges’ “g” (gHedges’ = 0.80).   

Satisfaction Subscale: Treatment Compared to Control 

 Geometry In Construction students had a 0.70-point higher satisfaction mean 

score (M = 3.64, SD = 0.96) compared to traditional geometry students (M = 2.94, 

SD = 0.87), and that difference was significant, t(93) = 3.67, p < .001.   

 The GIC curriculum had an intermediate effect size on satisfaction scores as 

determined by calculating Hedges’ “g” (gHedges’ = 0.78).   

A summary of these results is presented in Table 24. 

H0 4:  Experiencing the Geometry In Construction curriculum does not affect the 

motivation of secondary males and females to learn geometry differently as 

measured by scores on Keller’s (2010) Course Interest Survey. 

In order to determine if the GIC curriculum affected the motivation of males and 

females to learn geometry differently, three research models corresponding to research 

question four were created, as illustrated in Table 19.  The first model, 4A, compared the  
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Table 19 

t-test Research Models for Analyzing Motivation to Learn Geometry Based on Gender 

Model Research Question Independent 

Variable 

Dependent 

Variable(s) 

Comparison 

Group 

4A Does experiencing the Geometry In 

Construction curriculum affect the 

motivation of secondary males and females 

to learn geometry differently as measured by 

Keller’s (2010) Course Interest Survey? 

gender motivation 

attention 

relevance 

confidence 

satisfaction 

GIC males 

compared to 

GIC females 

4B Does experiencing the Geometry In 

Construction curriculum affect the 

motivation of secondary males and females 

to learn geometry differently as measured by 

Keller’s (2010) Course Interest Survey? 

curriculum motivation 

attention 

relevance 

confidence 

satisfaction 

GIC males 

compared to 

control males 

4C Does experiencing the Geometry In 

Construction curriculum affect the 

motivation of secondary males and females 

to learn geometry differently as measured by 

Keller’s (2010) Course Interest Survey? 

curriculum motivation 

attention 

relevance 

confidence 

satisfaction 

GIC females 

compared to 

control females 

 

 

Table 20 

Motivation to Learn Geometry Mean Scores of Treatment and Control Groups by Gender 

 Overall 

Motivation Attention Relevance Confidence Satisfaction 

Group M SD M SD M SD M SD M SD 

Treatment Males 

(n = 17) 

3.55 0.73 2.84 0.83 3.50 0.91 4.29 0.48 3.58 1.02 

Treatment Females 

(n = 18) 
3.68 0.79 3.39 0.86 3.62 0.84 4.03 0.67 3.70 0.92 

Control Males 

(n = 31) 

3.14 0.65 2.55 0.77 3.16 0.74 3.79 0.66 3.05 0.78 

Control Females 

(n = 29) 

2.79 0.71 2.20 0.78 2.87 0.61 3.27 0.95 2.82 0.96 

Note. M = mean. SD = standard deviation. Treatment = Geometry in Construction students. 

Control = traditional geometry students. Mean scores are based on a five-point scale. 

 



EFFECTS OF AN EXPERIENTIAL GEOMETRY COURSE                                                                            113 
 

motivation scores of males in GIC to females in GIC.  The second model, 4B, compared 

the motivation scores of males in GIC to males in traditional geometry.  The third model, 

4C, compared the motivation scores of females in GIC to females in traditional geometry.  

Table 20 shows a comparison of the motivation mean scores of the treatment and control 

groups separated by gender. 

For research model 4A (see Table 19), t-tests were conducted to determine if there 

were statistically significant differences between the motivation mean scores of males 

experiencing the GIC curriculum and females experiencing the GIC curriculum.  Table 

21 illustrates the t-test results for research model 4A which show that gender did not have 

a significant effect on any of the motivation mean scores of students in the GIC course.   

Table 21 

t-test Results: Comparison of Motivation to Learn Geometry Mean Scores of Treatment 

Males to Treatment Females 

 

 GIC males GIC females   

Scale M SD M SD t-test df 

Overall Motivation 3.55 0.73 3.68 0.79 -0.48 33 

Attention 2.84 0.83 3.39 0.86 -1.94 33 

Relevance 3.50 0.91 3.62 0.84 -0.38 33 

Confidence 4.29 0.48 4.03 0.67  1.35 33 

Satisfaction 3.58 1.02 3.70 0.92     -0.37 33 

Note. M = mean. SD = standard deviation. GIC = Geometry In Construction. 

Means are based on a five-point scale. 
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The following is a further depiction of the results: 

Overall Motivation: Treatment Group Gender Comparisons  

 Males in the treatment group had a 0.13-point lower overall motivation mean 

score (M = 3.55, SD = 0.73) compared to females in the treatment group (M = 

3.68, SD = 0.79), but the difference was not significant, t(33) = -0.48, p = .632.   

 The overall motivation scores of females in the treatment group were skewed 

right and nonparametric (see Appendix F), therefore, a Wilcoxon Rank-Sum Test 

was also used to confirm that the difference between the means was not 

significant (p = .680).   

 Gender had an insignificant, small effect size on overall motivation scores within 

the treatment group as determined by calculating Hedges’ “g” (g = 0.16). 

Attention Subscale: Treatment Group Gender Comparisons 

 Males in the treatment group had a 0.55-point lower attention mean score (M = 

2.84, SD = 0.83) compared to females in the treatment group (M = 3.39, SD = 

0.86), but the difference was not significant, t(33) = -1.94, p = .061.   

 Gender had an insignificant, intermediate effect size on attention scores within the 

treatment group as determined by calculating Hedges’ “g” (g = 0.66). 

Relevance Subscale: Treatment Group Gender Comparisons 

 Males in the treatment group had a 0.12-point lower relevance mean score (M = 

3.50, SD = 0.91) compared to females in the treatment group (M = 3.62, SD = 

0.84), but the difference was not significant, t(33) = -0.38, p = .703.   
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 Gender had an insignificant, small effect size on relevance scores within the 

treatment group as determined by calculating Hedges’ “g” (g = 0.13). 

Confidence Subscale: Treatment Group Gender Comparisons  

 For the confidence subcomponent of motivation, males in the treatment group had 

a 0.26-point higher mean score (M = 4.29, SD = 0.48) compared to females in the 

treatment group (M = 4.03, SD = 0.67), but the difference was not significant, t(33) 

= 1.35, p =.186. 

 The confidence scores of females in the treatment group were skewed right and 

nonparametric (see Appendix F), therefore, a Wilcoxon Rank-Sum Test was also 

used to confirm that the difference between the means was not significant (p = 

.379).   

 Gender had an insignificant, intermediate effect size on confidence scores within 

the treatment group as determined by calculating Hedges’ “g” (g = 0.46). 

Satisfaction Subscale: Treatment Group Gender Comparisons 

 Males in the treatment group had a 0.12-point lower satisfaction mean score (M = 

3.58, SD = 1.02) compared to females in the treatment group (M = 3.70, SD = 

0.92), but the difference was not significant, t(33) = -0.37, p =.714.   

 Gender had an insignificant, small effect size on satisfaction scores as determined 

by calculating Hedges’ “g” (g = 0.13). 

A summary of these results is presented in Table 24. 

For research model 4B (see Table 19), t-tests were conducted to determine if there 

were statistically significant differences between the motivation mean scores of males 
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experiencing the GIC curriculum and males experiencing the traditional geometry 

curriculum.  As shown in Table 22, the results of the t-tests were mixed. 

Table 22 

t-test Results: Comparison of Motivation to Learn Geometry Mean Scores of Treatment 

Males to Control Males 
 

 GIC males 

(treatment) 

traditional geometry 

males (control) 
  

Scale M SD M SD t-test df 

Overall Motivation 3.55 0.73 3.14 0.65   2.02* 46 

Attention 2.84 0.83 2.55 0.77 1.21 46 

Relevance 3.50 0.91 3.16 0.74 1.41 46 

Confidence 4.29 0.48 3.79 0.66     2.75** 46 

Satisfaction 3.58 1.02 3.05 0.78   2.04* 46 

Note. M = mean. SD = standard deviation. GIC = Geometry In Construction. 

Mean scores based on five-point scale. 

*p < .05.  **p < .01. 

The following is a further depiction of the results: 

 Overall Motivation: Treatment Males Compared to Control Males 

 Males in the treatment group had a 0.41-point higher overall motivation mean 

score (M = 3.55, SD = 0.73) compared to males in the control group (M = 3.14, 

SD =0.65), and the difference was significant, t(46) = 2.02, p = .049.   

 In the comparison of treatment males to control males, the GIC curriculum had a 

significant, intermediate effect size on overall motivation scores as determined by 

calculating Hedges’ “g” (g = 0.61). 
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Attention Subscale: Treatment Males Compared to Control Males 

 Males in the treatment group had a 0.29-point higher attention mean score (M = 

2.84, SD = 0.83) compared to males in the control group (M = 2.55, SD = 0.77), 

but the difference was not significant, t(46) = 1.21, p = .232.   

 In the comparison of treatment males to control males, the GIC curriculum had an 

insignificant, small effect size on attention scores as determined by calculating 

Hedges’ “g” (g = 0.37). 

Relevance Subscale: Treatment Males Compared to Control Males 

 Males in the treatment group had a 0.34-point higher relevance mean score (M = 

3.50, SD = 0.91) compared to males in the control group (M = 3.16, SD = 0.74), 

but the difference was not significant, t(46) = 1.41, p = .166. 

 In the comparison of treatment males to control males, the GIC curriculum had an 

insignificant, intermediate effect size on relevance scores as determined by 

calculating Hedges’ “g” (g = 0.43). 

Confidence Subscale: Treatment Males Compared to Control Males 

 Males in the treatment group had a 0.50-point higher confidence mean score (M = 

4.29, SD = 0.48) compared to males in the control group (M = 3.79, SD = 0.66), 

and the difference was significant, t(46) = 2.75, p =.009.   

 In the comparison of treatment males to control males, the GIC curriculum had a 

significant, large effect size on confidence scores as determined by calculating 

Hedges’ “g” (g = 0.83). 
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Satisfaction Subscale: Treatment Males Compared to Control Males 

 Males in the treatment group had a 0.53-point higher satisfaction mean score (M = 

3.58, SD = 1.02) compared to males in the control group (M = 3.05, SD = 0.78), 

and the difference was significant, t(46) = 2.04, p =.048.   

 In the comparison of treatment males to control males, the GIC curriculum had a 

significant, intermediate effect size on satisfaction scores as determined by 

calculating Hedges’ “g” (g = 0.62). 

A summary of these results is presented in Table 24. 

For research model 4C (see Table 19), t-tests were conducted to determine if there 

were statistically significant differences between the motivation mean scores of females 

experiencing the GIC curriculum and females experiencing the traditional geometry 

curriculum.  As shown in Table 23, the GIC curriculum had a significant, large, positive 

effect on every measure of motivation for females.   

Table 23 

t-test Results: Comparison of Motivation to Learn Geometry Mean Scores of Treatment 

Females to Control Females 
 

 GIC females 

(treatment) 

traditional geometry 

females (control) 
  

Scale M SD M SD t-test df 

Overall Motivation 3.68 0.79 2.79 0.71 3.99*** 45 

Attention 3.39 0.86 2.20 0.78 4.90*** 45 

Relevance 3.62 0.84 2.87 0.61 3.55*** 45 

Confidence 4.03 0.67 3.27 0.95   2.93** 45 

Satisfaction 3.70 0.92 2.82 0.96   3.10** 45 
Note. M = mean. SD = standard deviation. GIC = Geometry In Construction 

Mean scores based on five-point scale. 

**p < .01.  ***p < .001. 
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The following is a further depiction of the results: 

 Overall Motivation: Treatment Females Compared to Control Females 

 Females in the treatment group had a 0.89-point higher overall motivation mean 

score (M = 3.68, SD = 0.79) compared to females in the control group (M = 2.79, 

SD = 0.71), and the difference was significant, t(45) = 3.99, p < .001.   

 The overall motivation scores of females in the treatment group were skewed 

right and nonparametric (see Appendix F), therefore, a Wilcoxon Rank-Sum Test 

was also used to confirm a significant difference between the means (p < .001).   

 In the comparison of treatment females to control females, the GIC curriculum 

had a significant, large effect size on overall motivation scores as determined by 

calculating Hedges’ “g” (g = 1.20). 

Attention Subscale: Treatment Females Compared to Control Females 

 Females in the treatment group had a 1.19-point higher attention mean score (M = 

3.39, SD = 0.86) compared to females in the control group (M = 2.20, SD = 0.78), 

and the difference was significant, t(45) = 4.90, p < .001.   

 In the comparison of treatment females to control females, the GIC curriculum 

had a significant, large effect size on attention scores as determined by calculating 

Hedges’ “g” (g = 1.47). 

Relevance Subscale: Treatment Females Compared to Control Females 

 Females in the treatment group had a 0.75-point higher relevance mean score (M 

= 3.62, SD = 0.84) compared to control females (M = 2.87, SD = 0.61), and the 

difference was significant, t(45) = 3.55, p < .001.   
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 In the comparison of treatment females to control females, the GIC curriculum 

had a significant, large effect size on relevance scores as determined by 

calculating Hedges’ “g” (g = 1.07). 

Confidence Subscale: Treatment Females Compared to Control Females 

 Females in the treatment group had a 0.76-point higher confidence mean score (M 

= 4.03, SD = 0.67) compared to females in the control group (M = 3.27, SD = 

0.95), and the difference was significant, t(45) = 2.93, p =.005.   

 The confidence scores of females in both the treatment and control groups were 

nonparametric (see Appendix F), therefore, a Wilcoxon Rank-Sum Test was also 

used to confirm a significant difference between the means (p < .004).   

 In the comparison of treatment females to control females, the GIC curriculum 

had a significant, large effect size on confidence scores as determined by 

calculating Hedges’ “g” (g = 0.88). 

Satisfaction Subscale: Treatment Females Compared to Control Females 

 Females in the treatment group had a 0.88-point higher satisfaction mean score 

(M = 3.70, SD = 0.92) compared to females in the control group (M = 2.82, SD = 

0.96), and the difference was significant, t(45) = 3.10, p =.003.   

 In the comparison of treatment females to control females, the GIC curriculum 

had a significant, large effect size on satisfaction scores as determined by 

calculating Hedges’ “g” (g = 0.93). 
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Summary 

A summary of all t-test results indicating significant differences in motivation and 

corresponding to research questions three and four is presented in Table 24. 

Table 24 

Summary of t-test Results: Significant Differences in Motivation to Learn Geometry 

 RQ3 
GIC students (n=35) 

compared to 

TG students (n=60) 

RQ4A 
GIC males (n=17) 

compared to 

GIC females (n=18) 

RQ4B 
GIC males (n=17) 

compared to 

TG males (n=31) 

RQ4C 
GIC females 

(n=18) compared to 

TG females (n=29) 

 

Overall 

Motivation 

*** 

p = .0001 

gHedges’ = 0.90 

large ES 

 

 

p = .6797 

gHedges’ = 0.16 

small ES on females 

* 

p = .0494 

gHedges’ = 0.61 

intermediate ES 

*** 

p = .0005 

gHedges’ = 1.20 

large ES 

Attention 

*** 

p = .0001 

gHedges’ = 0.90 

large ES 

 

 

p = .0608 

gHedges’ = 0.66 

intermediate ES on 

females 

 

p = .2316 

gHedges’ = 0.37 

small ES 

*** 

p = .0001 

gHedges’ = 1.47 

large ES 

Relevance 

** 

p = .0011 

gHedges’ = 0.72 

intermediate ES 

 

 

p = .7028 

gHedges’ = 0.13 

small ES on females 

 

p = .1658 

gHedges’ = 0.43 

intermediate ES 

*** 

p = .0009 

gHedges’ = 1.07 

large ES 

Confidence 

*** 

p = .0004 

gHedges’ = 0.80 

large ES 

 

 

p = .3790 

gHedges’ = 0.46 

intermediate ES on 

males 

** 

p = .0085 

gHedges’ =0 .83 

large ES 

** 

p = .0074 

gHedges’ = 0.88 

large ES 

Satisfaction 

*** 

p = .0004 

gHedges’ = 0.78 

intermediate ES 

 

 

p = .7143 

gHedges’ = 0.13 

small ES on females 

* 

p = .0475 

gHedges’ = 0.62 

intermediate ES 

** 

p = .0033 

gHedges’ = 0.93 

large ES 

Note. RQ4A, RQ4B, and RQ4C are research models corresponding to research question four (see Table 19 

for details). GIC = Geometry In Construction treatment group. TG = Traditional geometry control group. 

ES = Hedges’ “g” effect size.    

 *p < .05.  **p < .01.   ***p < .001. 
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CHAPTER 5 

CONCLUSION 

Some schools are following the suggestion of the President’s Council on the 

Advancement of Science and Technology to transform STEM teaching and learning by 

exploring innovative teaching models and curricula.  Some models include theme based 

experiential courses that provide career-oriented experiences where students engage in 

curriculum related to the professional industry and develop 21st century skills, such as 

collaboration, problem solving, and communication (Center for Advanced Professional 

Studies, n.d.). These models attempt to address the lack of interest and motivation 

students have for pursuing STEM careers as noted by Wang, Eccles, and Kenny (2013). 

In the investigation of an innovative, experiential geometry course called 

Geometry In Construction (GIC), in a suburban high school, four hypotheses were 

explored.  While experiencing the GIC curriculum, students learned and applied 

principles of geometry, industrial technologies, and career technical education by 

designing and constructing a small-scale house.  The completed house was donated to a 

local charity serving the needs of homeless people in the community (Contextual 

Learning Concepts, n.d.a).  The empirical evidence discussed in this chapter justifies the 

decision to explore or implement future experiential models.    

Summary of Findings 

An investigation was conducted in order to compare the achievement and motivation 

in geometry of secondary students completing an experiential learning course to those 

completing a traditional geometry course.  Table 25 summarizes the findings for each 

research question. 
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Table 25 

Summary of Findings 

Question Findings 

In response to research question 1:  

What effect does experiencing the Geometry In 

Construction curriculum have on the 

achievement in geometry of secondary students 

compared to experiencing a traditional 

geometry curriculum as measured by the 

Missouri Geometry End of Course Exam? 

 Students who were taught using the experiential GIC 

curriculum demonstrated significantly higher achievement 

in geometry than students who were taught using the 

traditional geometry curriculum. 

 

In response to research question 2:  

 Does experiencing the Geometry In 

Construction curriculum affect the 

achievement in geometry of secondary males 

and females differently as measured by the 

Missouri Geometry End of Course Exam? 

 Females who were taught using the experiential GIC 

curriculum demonstrated significantly higher achievement 

in geometry than females who were taught using the 

traditional geometry curriculum.   

 There was no significant difference between the 

achievement in geometry of males who experienced the 

GIC curriculum and males who experienced the traditional 

geometry curriculum.   

 There was no significant difference between the 

achievement in geometry of males and females who both 

experienced the GIC curriculum. 

In response to research question 3:  

What effect does experiencing the Geometry In 

Construction curriculum have on the 

motivation of secondary students to learn 

geometry compared to experiencing a 

traditional geometry curriculum as measured 

by Keller’s (2010) Course Interest Survey? 

 Students who were taught using the experiential GIC 

curriculum reported significantly higher overall motivation 

to learn geometry than students who were taught using the 

traditional geometry curriculum. 

o GIC had a large effect on motivation subscales 

measuring attention and confidence. 

o GIC had an intermediate effect on motivation 

subscales measuring relevance and satisfaction.   

In response to research question 4:   

Does experiencing the Geometry In 

Construction curriculum affect the motivation 

of secondary males and females to learn 

geometry differently as measured by Keller’s 

(2010) Course Interest Survey? 

 The experiential GIC curriculum affected the overall 

motivation of males and females to learn geometry 

differently when compared to same gender peers taught 

using the traditional geometry curriculum.  

o Female students who were taught using the 

experiential GIC curriculum reported significantly 

higher motivation to learn geometry on subscales 

measuring attention, relevance, confidence and 

satisfaction than females who were taught using the 

traditional geometry curriculum.  

o Male students who were taught using the experiential 

GIC curriculum reported significantly higher 

motivation to learn geometry on subscales measuring 

confidence and satisfaction than males who were 

taught using the traditional geometry curriculum. 

 There was no significant difference in motivation to learn 

geometry between males and females who both 

experienced the GIC curriculum. 
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Generalizations based on the findings should be limited to:   

 similar populations of Midwestern, suburban, predominantly White, public 

secondary schools,  

 settings with experienced geometry teachers,  

 post-treatment comparisons of achievement and motivation in geometry between 

treatment and control groups rather than growth in achievement and motivation. 

Conclusions 

The most prominent findings to emerge from the study were those describing the 

surprisingly larger effect the experiential curriculum had on female achievement and 

motivation to learn geometry.   The findings led to three notable conclusions discussed in 

this section. 

1.  Females completing the year-long experiential geometry curriculum reported 

much higher overall motivation, attention, relevance, confidence and satisfaction 

associated with learning geometry than females completing the traditional 

geometry curriculum.  

2.  Females completing the year-long experiential geometry curriculum 

demonstrated higher achievement in geometry than females completing the 

traditional curriculum. 

3.  There were no significant differences in achievement in geometry amongst 

males and females who both completed the year-long experiential geometry 

curriculum.   
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Discussion and Implications 

Before discussing the conclusions and implications, it is important to highlight the 

literature that identifies several factors impacting the motivation of females to pursue 

STEM learning and careers.  The discussion elaborates on how the findings connect to 

the existing knowledge base in the literature. 

Women in STEM  

While lack of motivation and interest deters both male and female high school 

students from pursuing STEM, Wang et al. (2013) described it as the primary factor 

impeding female representation in certain STEM professions.  Low interest in high 

school mathematics coursework decreases the likelihood that females will choose a post-

secondary STEM major (Blickenstaff, 2005).  Several studies found lack of confidence, 

influenced by environmental factors, to be the root cause of low interest in mathematics 

among females (Beilock etal., 2010; Eccles & Wang, 2016; Ganley & Lubienski, 

2016).  In addition, motivation to learn mathematics appeared in the literature to be a 

strong indicator for matriculation into STEM, especially among females (Eccles & Wang, 

2016; PCAST, 2012).  Therefore, an innovative, experiential learning course was 

investigated in order to determine the effects it had on achievement in geometry and 

motivation to learn geometry.  The results of the investigation led to the following 

conclusions.   
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Conclusion 1: Females who completed the year-long experiential geometry 

curriculum reported significantly higher motivation to learn geometry than females 

who completed the traditional geometry curriculum. 

 There are various theories that explain factors leading to the motivation of K-12 

students.  John Keller’s (2010) ARCS theory of motivation was used to identify specific 

motivational factors influencing secondary students situated in experiential and 

traditional geometry classrooms.  According to Keller (1987a), four personal attributes 

must be addressed to initiate and sustain learner motivation:  attention, relevance, 

confidence and satisfaction.  At the end of the school year, males and females in both the 

experiential and traditional geometry classrooms completed Keller’s (2010) Course 

Interest Survey (see Appendix C) which measured the effect of the instructional methods, 

materials and conditions on their motivation to learn geometry.  All participants were 

asked to respond to 34 statements in order to measure their attention, relevance, 

confidence and satisfaction.  Students indicated how “true” the statements were in 

relation to their geometry course: not true, slightly true, moderately true, mostly true, and 

very true.  For example, one statement read, “I feel confident that I will do well in my 

math class”.  Both males and females in the experiential geometry course reported higher 

levels of motivation compared to males and females in the traditional course (see Figure 

9).  However, the most interesting findings were associated with how much larger the 

motivation scores were for females in the experiential geometry course compared to 

females in the traditional geometry course (see Figure 10). 
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Figure 9.  Motivation scores of treatment and control groups. 

 

 

Figure 10.  Motivation scores of females. 

Females in the GIC course reported significantly higher motivation on all four of Keller’s 

motivational subscales (attention, relevance, confidence, and satisfaction).  Because 

several studies suggested that environmental and contextual factors indirectly affect 
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female performance and interest in mathematics, the results can be used to identify 

specific classroom conditions that contributed to the significant differences in motivation 

to learn geometry (Ganley & Lubienski, 2106; Lindberg, Hyde, Peterson, & Linn, 2010; 

Andreescu et al. 2008).  Such conditions might be replicated in other mathematics strands 

to increase female interest in mathematics and STEM.  With the absence of qualitative 

data, only knowledge of the GIC instructional model and supporting research can be used 

to predict which aspects of the experiential curriculum may have contributed to this 

conclusion.    

Attention and Relevance 

The design of the GIC course includes various instructional approaches 

supporting the findings related to attention and relevance.  Students experiencing the GIC 

curriculum were engaged in a service-learning project where they applied learned 

principles to design and construct a real house for homeless community members.  The 

active experimentation and complexity of building the house attributes to what Keller 

(1987a) called inquiry arousal which often captures the attention of the learner.  In 

addition, service-learning experiences often foster a sense of civic responsibility 

(National Service-Learning Clearinghouse, 2013), thus prolonging attention over a period 

of time, which Keller (1987a) references as another key factor attributing to learner 

motivation.   

From the perspective of Dewey (2008), the tangible service-learning experience 

also contributed to the reported sense of relevancy as the acquired knowledge and skills 

were directly applied to effect a societal change.  The findings regarding the significantly 
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increased motivation of females in the treatment group provide strong evidence 

supporting the inclusion of a humanistic approach in mathematics curricula.  Eccles 

&Wang (2016) proposed that females value STEM occupations involving human 

interactions and are less attracted to fields focused on mathematics.  Perhaps the 

heightened sense of relevancy reported by females taking the GIC course may be 

attributed to the positive effect their learning and work had on other humans.  This would 

be supported by the work of Keller (1987a) who related relevance to the ability of 

students to connect their learning experience (building a house) to a personal need or 

value (interactions and care for humans).  The realization by students that mathematics is 

relevant and aligns with their personal values could have a positive impact on their desire 

to pursue careers in STEM.  

The results provide evidence that an experiential learning geometry curriculum, 

emphasizing a humanistic approach, significantly improved attention and made learning 

geometry more relevant for males and females.  The large effect size which the GIC 

curriculum had on female attention and relevance was surprising.  These findings make a 

strong case for considering a similar approach in other mathematics strands as a 

motivational construct to improve interest and preparation for further STEM coursework 

and careers.     

Confidence 

Females in the GIC course reported significantly higher confidence associated 

with learning geometry compared to females in a traditional geometry course.  Females in 

the experiential learning course were presented daily opportunities to build confidence 
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and reduce the anxiety associated with learning geometry as they worked in small teams 

to solve problems associated with designing and building a house.  They interacted in an 

environment where their ideas were equally valued and contributed to the success of a 

larger goal.  Keller’s (1987a) motivational model delineates the acquired confidence of 

the females as stemming from their ability to link their success to their effort exerted 

while building a house.  This finding is especially important for females, as Ganley and 

Lubienski (2016) reported confidence towards mathematics to be the largest contextual 

concern indirectly affecting performance in this discipline.  

By middle-school, we begin to see the unintended consequence from the 

persistent use of a recitation model to teach mathematics.  Standardized data designate 

this as the period when females begin to underperform their male peers (NRC, 2013; U.S. 

Department of Education, Institute of Education Sciences, 2019).  The findings support 

the development and early implementation of pedagogical models used to increase 

mathematical confidence in females.       

Satisfaction 

It was no surprise that females in the experiential learning course reported a 

significantly higher level of satisfaction associated with learning geometry.  The final 

project, a small house that was donated to a charity serving the needs of homeless 

members of the community, may have provided a sense of satisfaction that their efforts to 

learn geometry were worthwhile and connected to a humanitarian effort (Taketa, 2017).  

This is consistent with the natural gratification that occurs when students are provided 
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meaningful opportunities to utilize the knowledge and skills acquired during instruction 

(Keller, 1987a).   

 The empirical evidence collected suggests that conditions in the experiential GIC 

course positively affected male and female motivation to learn geometry.  Therefore, 

educators should consider developing similar experiential, service learning models 

appropriate for other mathematics strands and STEM disciplines.  Innovative STEM 

curricula and transformative instructional models could be used to motivate more 

secondary students to pursue STEM careers.  This could be especially pertinent for 

motivating females as they are one of several minority groups severely underrepresented 

in STEM.   

Conclusion 2:  Females who completed the year-long experiential geometry 

curriculum demonstrated higher achievement in geometry than females who 

completed the traditional curriculum.  

Conclusion 3:  There were no significant differences in achievement in geometry 

amongst males and females who experienced the year-long experiential geometry 

curriculum.   

Conclusions two and three, when viewed together, address the literature claiming 

that a widening achievement gap in mathematics exists between males and females at the 

secondary level.  The empirical evidence collected on the achievement in geometry of 

males and females completing an experiential curriculum refutes the claim made by 

Ganley & Lubienski (2016) that secondary males outperform their female peers in 
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advanced concepts such as problem solving and spatial reasoning.  Females in the GIC 

course demonstrated achievement in geometry equivalent to their male peers who 

simultaneously experienced the course.  In addition, females in the experiential GIC 

course showed higher achievement in geometry than males and females who experienced 

the traditional geometry course (see Figure 11).  This finding is supported by several  

 

Figure 11.  Achievement scores in geometry:  Comparison by gender and group. 
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identified environmental and contextual factors such as confidence, interest and 
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reason, make accurate computations, and solve problems.  The National Research 

Council (2001) 

 

Figure 12.  Achievement scores in geometry:  Comparison by group. 

described mathematical proficiency as successful development in five strands: concept 

attainment, accurate computation, problem solving, reasoning, confidence and value for 

use.  The NRC (2001) further acknowledged that the most effective learning 

environments incorporate varied instructional approaches in which multiple strands are 

addressed simultaneously.  The GIC instructional model provided a context that supports 

the development of mathematical proficiency as described by the NRC (2001).  Contrary 

to the traditional geometry course, where students were taught using a recitation model, 

the GIC instructional model incorporated a blend of teacher directed and student-centered 

instruction. The GIC course was co-taught by a career technical education and a general 

geometry education instructor.  The students moved beyond learning concepts in isolation 

with the geometry instructor as they were provided first-hand experience practicing 

acquired learning with the career technical education instructor who facilitated the 

construction project.  The process of designing and constructing the house created daily 

opportunities for the students to simultaneously engage in all five proficiency strands.  
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This approach aligns with the literature citing the effectiveness of balancing rote 

memorization and problem solving for developing deeper understanding and proficiency 

with mathematical concepts (Bruner, 1977; Larson & Kanold, 2016; NCTM, 2000; 

NMAP, 2008; NRC, 2001, Sherman et al., 2013).  

The need to improve instructional practices in mathematics remains, but the 

results help bridge the gap between mathematics education research and classroom 

practices.  In addition, the results illustrate an effective response to the call by PCAST 

(2012) to develop transformative instructional models that enhance interest and improve 

preparation for careers in STEM.       

Recommendations for Practitioners 

Based on the findings, the following recommendations are suggested for 

practitioners in secondary mathematics and STEM education: 

1. In order to enhance motivation of STEM learners, instructors should utilize 

John Keller’s (2010) ARCS motivational model as a framework for arranging 

resources procedures, and experiences. 

2. Curriculum designers and mathematics instructors should enhance 

mathematics experiential learning models by including a service-learning 

component.  Mathematics instruction emphasizing interactions with people 

and the benefits mathematics provides to humans and society may align better 

with the personal and occupational values of females and motivate more 

females to pursue careers in STEM (Eccles & Wang, 2016).  
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3. Curriculum designers and mathematics instructors should use the GIC model 

to develop learning environments that help students reduce anxiety and build 

confidence for learning mathematics.  Ganley and Lubienski (2016) found 

female lack of confidence to be the largest gender-based gap associated with 

learning mathematics.   

4.  Curriculum designers and mathematics instructors should replicate 

components of the experiential, non-traditional GIC model in other 

mathematics strands.  Additionally, school systems should provide 

professional development to assist mathematics teachers with strengthening 

their learning experiences so that they move beyond the recitation model that 

is commonly implemented.  Recitation as a lone instructional approach rejects 

the learning progression theory of Bruner and the motivational design theory 

of Keller (Bruner, 1977; Grouws & Smith, 2000; Keller 1987a; Stigler et al., 

1999). 

5. Practitioners should intervene early and offer similar models for learning 

STEM subjects at the elementary and middle school level to ensure equivalent 

development of spatial reasoning among genders.  Spatial reasoning, the 

ability to envision, orient, and manipulate objects in three-dimensional space, 

has been used as a predictor of mathematical achievement and future success 

in STEM for a long time (Lowrie & Jorgensen, 2018; Wai, Lubinski, & 

Benbow, 2009). 

6. Universities should model the use of non-traditional, experiential mathematics 

curricula, like GIC, with pre-service mathematics teachers to expose them to 
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methodologies that converge classroom learning with real work application 

and 21st century workforce expectancies.  Nadelson et al. (2013) noted that 

student achievement in STEM is often hampered by teachers’ lack of 

confidence, constrained background, and efficacy for teaching STEM. 

Recommendations for Future Research 

Continued research toward improving mathematical instruction through the 

development and exploration of innovative pedagogical models is encouraged.  Several 

questions arose that were beyond the focus of the four research questions framing this 

investigation.   

1. What effects would a similar treatment produce in other STEM disciplines? 

2. What effects would a similar treatment produce in other mathematics strands? 

3. What effects does GIC have on males and females who are situated in an 

urban setting? 

4. Does experiencing GIC affect the decision of females to participate in other 

mathematics coursework?  

5. Does experiencing GIC affect the desire of students to pursue further STEM 

coursework and careers?   

6. What effects would similar treatments produce at the elementary and middle 

school levels? 

7. Are there differences in long term geometry concept attainment after 

experiencing the GIC course? 
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Concluding Remarks 

Over the past decade, schools have begun to employ non-traditional, innovative 

curricula in mathematics and other STEM related courses.  Some of the most salient 

experiences are those that allow for authentic classroom projects through partnerships 

with community professionals.  When planned and purposefully implemented, such 

programs, including Geometry In Construction, augment motivation and achievement.   

The overall results suggest an effective model that can be used to motivate 

secondary males and females to learn geometry.  Geometry In Construction is one 

example of a non-traditional mathematics curricular model.  It is aligned with 

mathematics education research that proposes how mathematics should be taught in the 

classroom in order for students to develop proficiency.  The design and instructional 

practices used in this model were shown to not only impact achievement and motivation 

of male and female participants, but critically noted is the significant impact it had on 

female confidence toward learning geometry.   

It is our hope that knowledge gained from the findings will help educators design 

and implement other STEM curricula that increases interest and better prepares students 

for success in STEM careers.  Educational researchers and practitioners who respond to 

the PCAST (2012) call to develop transformative instructional models for STEM 

education will help ensure the U.S. remains a technological leader.  It is our job as 

practitioners to inspire students to pursue fulfilling careers such as those offered in STEM 

fields.  We must be intentional in our efforts to diversify STEM by enhancing the number 
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of females and minorities pursuing and succeeding in STEM careers so that the world 

benefits from the talents of all individuals.     
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APPENDIX A 

Comparison of Missouri Learning Standards to Common Core Standards for Geometry 

 

Missouri Learning Standards Common Core Standards 

 

Experiment with transformations in the plane.  

G.CO.A 

 

G.CO.A.1 

Define angle, circle, perpendicular line, parallel 

line, line segment and ray based on the 

undefined notions of point, line, distance along 

a line and distance around a circular arc. 

 

G.CO.A.2 
Represent transformations in the plane, and 

describe them as functions that take points in the 

plane as inputs and give other points as outputs. 

 

 

 

 

 

G.CO.A.3 

Describe the rotational symmetry and lines of 

symmetry of two dimensional figures. 

 

 

G.CO.A.4 
Develop definitions of rotations, reflections and 

translations in terms of angles, circles, 

perpendicular lines, parallel lines and line 

segments. 

 

G.CO.A.5 

Demonstrate the ability to rotate, reflect or 

translate a figure, and determine a possible 

sequence of transformations between two 

congruent figures. 

 

Congruence 

CCSS.MATH.CONTENT.HSG.CO.A 

 

CCSS.MATH.CONTENT.HSG.CO.A.1 
Know precise definitions of angle, circle, 

perpendicular line, parallel line, and line segment, 

based on the undefined notions of point, line, distance 

along a line, and distance around a circular arc. 

 

CCSS.MATH.CONTENT.HSG.CO.A.2 
Represent transformations in the plane using, e.g., 

transparencies and geometry software; describe 

transformations as functions that take points in the 

plane as inputs and give other points as outputs. 

Compare transformations that preserve distance and 

angle to those that do not (e.g., translation versus 

horizontal stretch). 

 

CCSS.MATH.CONTENT.HSG.CO.A.3 
Given a rectangle, parallelogram, trapezoid, or regular 

polygon, describe the rotations and reflections that 

carry it onto itself. 

 

CCSS.MATH.CONTENT.HSG.CO.A.4 
Develop definitions of rotations, reflections, and 

translations in terms of angles, circles, perpendicular 

lines, parallel lines, and line segments. 

 

 
CCSS.MATH.CONTENT.HSG.CO.A.5 
Given a geometric figure and a rotation, reflection, or 

translation, draw the transformed figure using, e.g., 

graph paper, tracing paper, or geometry software. 

Specify a sequence of transformations that will carry a 

given figure onto another. 

 

 

G.CO.B  

Understand congruence in terms of rigid 

motions.  

 

G.CO.B.6 

Develop the definition of congruence in terms 

of rigid motions. 

 

 

 

CCSS.MATH.CONTENT.HSG.CO.B 

 

 

 
CCSS.MATH.CONTENT.HSG.CO.B.6 
Use geometric descriptions of rigid motions to 

transform figures and to predict the effect of a given 

rigid motion on a given figure; given two figures, use 

http://www.corestandards.org/Math/Content/HSG/CO/A/
http://www.corestandards.org/Math/Content/HSG/CO/A/1/
http://www.corestandards.org/Math/Content/HSG/CO/A/2/
http://www.corestandards.org/Math/Content/HSG/CO/A/3/
http://www.corestandards.org/Math/Content/HSG/CO/A/4/
http://www.corestandards.org/Math/Content/HSG/CO/A/5/
http://www.corestandards.org/Math/Content/HSG/CO/B/
http://www.corestandards.org/Math/Content/HSG/CO/B/6/
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G.CO.B.7 

Develop the criteria for triangle congruence 

from the definition of congruence in terms of 

rigid motions. 

the definition of congruence in terms of rigid motions 

to decide if they are congruent. 

 

CCSS.MATH.CONTENT.HSG.CO.B.7 
Use the definition of congruence in terms of rigid 

motions to show that two triangles are congruent if 

and only if corresponding pairs of sides and 

corresponding pairs of angles are congruent. 

 

CCSS.MATH.CONTENT.HSG.CO.B.8 
Explain how the criteria for triangle congruence 

(ASA, SAS, and SSS) follow from the definition of 

congruence in terms of rigid motions. 

 

 

G.CO.C 

Prove geometric theorems. 

 

G.CO.C.8 

Prove theorems about lines and angles. 

 

 

 

 

 

 

 

G.CO.C.9 

Prove theorems about triangles. 

 

 

 

 

 

 

G.CO.C.10 

Prove theorems about polygons. 

 

CCSS.MATH.CONTENT.HSG.CO.C 

 

 

CCSS.MATH.CONTENT.HSG.CO.C.9 
Prove theorems about lines and angles. Theorems 

include: vertical angles are congruent; when a 

transversal crosses parallel lines, alternate interior 

angles are congruent and corresponding angles are 

congruent; points on a perpendicular bisector of a line 

segment are exactly those equidistant from the 

segment's endpoints. 

 

CCSS.MATH.CONTENT.HSG.CO.C.10 
Prove theorems about triangles. Theorems include: 

measures of interior angles of a triangle sum to 180°; 

base angles of isosceles triangles are congruent; the 

segment joining midpoints of two sides of a triangle is 

parallel to the third side and half the length; the 

medians of a triangle meet at a point. 

 

CCSS.MATH.CONTENT.HSG.CO.C.11 
Prove theorems about parallelograms. Theorems 

include: opposite sides are congruent, opposite angles 

are congruent, the diagonals of a parallelogram bisect 

each other, and conversely, rectangles are 

parallelograms with congruent diagonals. 

 

 

G.CO.D 

Make geometric constructions. 

 

G.CO.D.11 
Construct geometric figures using various tools 

and methods. 

 

CCSS.MATH.CONTENT.HSG.CO.D 

 

 

CCSS.MATH.CONTENT.HSG.CO.D.12 
Make formal geometric constructions with a variety of 

tools and methods (compass and straightedge, string, 

reflective devices, paper folding, dynamic geometric 

software, etc.). Copying a segment; copying an angle; 

bisecting a segment; bisecting an angle; constructing 

perpendicular lines, including the perpendicular 

bisector of a line segment; and constructing a line 

parallel to a given line through a point not on the line. 

 

http://www.corestandards.org/Math/Content/HSG/CO/B/7/
http://www.corestandards.org/Math/Content/HSG/CO/B/8/
http://www.corestandards.org/Math/Content/HSG/CO/C/
http://www.corestandards.org/Math/Content/HSG/CO/C/9/
http://www.corestandards.org/Math/Content/HSG/CO/C/10/
http://www.corestandards.org/Math/Content/HSG/CO/C/11/
http://www.corestandards.org/Math/Content/HSG/CO/D/
http://www.corestandards.org/Math/Content/HSG/CO/D/12/
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CCSS.MATH.CONTENT.HSG.CO.D.13 
Construct an equilateral triangle, a square, and a 

regular hexagon inscribed in a circle. 

 

G.SRT.A 

Understand similarity in terms of similarity 

transformations. 

 

G.SRT.A.1 

Construct and analyze scale changes of 

geometric figures. 

 

G.SRT.A.2 

Use the definition of similarity to decide if 

figures are similar and to solve problems 

involving similar figures. 

 

 

 

 

 

G.SRT.A.3 

Use the properties of similarity transformations 

to establish the AA criterion for two triangles to 

be similar 

 

 

Similarity, Right Triangles, & Trigonometry 

CCSS.MATH.CONTENT.HSG.SRT.A 

 

 

CCSS.MATH.CONTENT.HSG.SRT.A.1 
Verify experimentally the properties of dilations given 

by a center and a scale factor: 

 

CCSS.MATH.CONTENT.HSG.SRT.A.2 
Given two figures, use the definition of similarity in 

terms of similarity transformations to decide if they 

are similar; explain using similarity transformations 

the meaning of similarity for triangles as the equality 

of all corresponding pairs of angles and the 

proportionality of all corresponding pairs of sides. 

 

 
CCSS.MATH.CONTENT.HSG.SRT.A.3 
Use the properties of similarity transformations to 

establish the AA criterion for two triangles to be 

similar. 

 

 

G.SRT.B 

Prove theorems involving similarity.  

 

 

 

 

 

G.SRT.B.4 

Use congruence and similarity criteria for 

triangles to solve problems and to prove 

relationships in geometric figures. 

 

CCSS.MATH.CONTENT.HSG.SRT.B 

CCSS.MATH.CONTENT.HSG.SRT.B.4 
Prove theorems about triangles. Theorems include: a 

line parallel to one side of a triangle divides the other 

two proportionally, and conversely; the Pythagorean 

Theorem proved using triangle similarity. 

 

CCSS.MATH.CONTENT.HSG.SRT.B.5 
Use congruence and similarity criteria for triangles to 

solve problems and to prove relationships in 

geometric figures. 

 

 

G.SRT.C 

Define trigonometric ratios, and solve problems 

involving right triangles. 

 

G.SRT.C.5 

Understand that side ratios in right triangles 

define the trigonometric ratios for acute angles. 

 

 

 

 

G.SRT.C.6 

Explain and use the relationship between the 

sine and cosine of complementary angles. 

 

 

CCSS.MATH.CONTENT.HSG.SRT.C 

CCSS.MATH.CONTENT.HSG.SRT.D 

 

 

CCSS.MATH.CONTENT.HSG.SRT.C.6 
Understand that by similarity, side ratios in right 

triangles are properties of the angles in the triangle, 

leading to definitions of trigonometric ratios for acute 

angles. 

 

 

CCSS.MATH.CONTENT.HSG.SRT.C.7 
Explain and use the relationship between the sine and 

cosine of complementary angles. 

 

http://www.corestandards.org/Math/Content/HSG/CO/D/13/
http://www.corestandards.org/Math/Content/HSG/SRT/A/
http://www.corestandards.org/Math/Content/HSG/SRT/A/1/
http://www.corestandards.org/Math/Content/HSG/SRT/A/2/
http://www.corestandards.org/Math/Content/HSG/SRT/A/3/
http://www.corestandards.org/Math/Content/HSG/SRT/B/
http://www.corestandards.org/Math/Content/HSG/SRT/B/4/
http://www.corestandards.org/Math/Content/HSG/SRT/B/5/
http://www.corestandards.org/Math/Content/HSG/SRT/C/
http://www.corestandards.org/Math/Content/HSG/SRT/D/
http://www.corestandards.org/Math/Content/HSG/SRT/C/6/
http://www.corestandards.org/Math/Content/HSG/SRT/C/7/
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G.SRT.C.7 

Use trigonometric ratios and the Pythagorean 

Theorem to solve right triangles. 

 

 

G.SRT.C.8 

Derive the formula A = 1/2 ab sin(C) for the 

area of a triangle. 

CCSS.MATH.CONTENT.HSG.SRT.C.8 
Use trigonometric ratios and the Pythagorean 

Theorem to solve right triangles in applied problems. 

 

 
CCSS.MATH.CONTENT.HSG.SRT.D.9 

Derive the formula A = 1/2 ab sin(C) for the area of a 

triangle by drawing an auxiliary line from a vertex 

perpendicular to the opposite side. 

 

CCSS.MATH.CONTENT.HSG.SRT.D.10 
Prove the Laws of Sines and Cosines and use them to 

solve problems. 

 

CCSS.MATH.CONTENT.HSG.SRT.D.11 
Understand and apply the Law of Sines and the Law 

of Cosines to find unknown measurements in right and 

non-right triangles (e.g., surveying problems, resultant 

forces). 

 

 

G.C.A  

Understand and apply theorems about circles.  

 

G.C.A.1  

Prove that all circles are similar using similarity 

transformations. 

 

G.C.A.2  

Identify and describe relationships among 

inscribed angles, radii and chords of circles. 

 

 

 

 

 

G.C.A.3  

Construct the inscribed and circumscribed 

circles of a triangle, and prove properties of 

angles for a quadrilateral inscribed in a circle. 

 

Circles 

CCSS.MATH.CONTENT.HSG.C.A 

 

CCSS.MATH.CONTENT.HSG.C.A.1 
Prove that all circles are similar. 

 

 

CCSS.MATH.CONTENT.HSG.C.A.2 
Identify and describe relationships among inscribed 

angles, radii, and chords. Include the relationship 

between central, inscribed, and circumscribed angles; 

inscribed angles on a diameter are right angles; the 

radius of a circle is perpendicular to the tangent 

where the radius intersects the circle. 

 

CCSS.MATH.CONTENT.HSG.C.A.3 
Construct the inscribed and circumscribed circles of a 

triangle, and prove properties of angles for a 

quadrilateral inscribed in a circle. 

 

CCSS.MATH.CONTENT.HSG.C.A.4 
Construct a tangent line from a point outside a given 

circle to the circle. 

 

 

G.C.B  

Find arc lengths and areas of sectors of 

circles. 

 

G.C.B.4  

Derive the formula for the length of an arc of a 

circle. 

 

G.C.B.5  

 

CCSS.MATH.CONTENT.HSG.C.B 

 

 

 
CCSS.MATH.CONTENT.HSG.C.B.5 
Derive using similarity the fact that the length of the 

arc intercepted by an angle is proportional to the 

radius, and define the radian measure of the angle as 

http://www.corestandards.org/Math/Content/HSG/SRT/C/8/
http://www.corestandards.org/Math/Content/HSG/SRT/D/9/
http://www.corestandards.org/Math/Content/HSG/SRT/D/10/
http://www.corestandards.org/Math/Content/HSG/SRT/D/11/
http://www.corestandards.org/Math/Content/HSG/C/A/
http://www.corestandards.org/Math/Content/HSG/C/A/1/
http://www.corestandards.org/Math/Content/HSG/C/A/2/
http://www.corestandards.org/Math/Content/HSG/C/A/3/
http://www.corestandards.org/Math/Content/HSG/C/A/4/
http://www.corestandards.org/Math/Content/HSG/C/B/
http://www.corestandards.org/Math/Content/HSG/C/B/5/
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Derive the formula for the area of a sector of a 

circle. 

the constant of proportionality; derive the formula for 

the area of a sector. 

 

 

G.GPE.A 

Translate between the geometric description 

and the equation for a conic section. 

 

G.GPE.A.1 

Derive the equation of a circle. 

 

 

 

 

G.GPE.A.2 

Derive the equation of a parabola given a focus 

and directrix. 

 

Expressing Geometric Properties with Equations 

CCSS.MATH.CONTENT.HSG.GPE.A 

 

 

CCSS.MATH.CONTENT.HSG.GPE.A.1 
Derive the equation of a circle of given center and 

radius using the Pythagorean Theorem; complete the 

square to find the center and radius of a circle given 

by an equation. 

 

CCSS.MATH.CONTENT.HSG.GPE.A.2 
Derive the equation of a parabola given a focus and 

directrix. 

 

CCSS.MATH.CONTENT.HSG.GPE.A.3 
Derive the equations of ellipses and hyperbolas given 

the foci, using the fact that the sum or difference of 

distances from the foci is constant. 

 

 

G.GPE.B 

Use coordinates to prove geometric theorems 

algebraically. 

 

 

G.GPE.B.3 

Use coordinates to prove geometric theorems 

algebraically. 

 

 

 

 

 

G.GPE.B.4 

Prove the slope criteria for parallel and 

perpendicular lines and use them to solve 

problems. 

 

 

 

G.GPE.B.5 

Find the point on a directed line segment 

between two given points that partitions the 

segment in a given ratio. 

 

G.GPE.B.6 

Use coordinates to compute perimeters of 

polygons and areas of triangles and rectangles. 

 

CCSS.MATH.CONTENT.HSG.GPE.B 

 

 

 

 

CCSS.MATH.CONTENT.HSG.GPE.B.4 
Use coordinates to prove simple geometric theorems 

algebraically. For example, prove or disprove that a 

figure defined by four given points in the coordinate 

plane is a rectangle; prove or disprove that the point 

(1, √3) lies on the circle centered at the origin and 

containing the point (0, 2). 

 

CCSS.MATH.CONTENT.HSG.GPE.B.5 
Prove the slope criteria for parallel and perpendicular 

lines and use them to solve geometric problems (e.g., 

find the equation of a line parallel or perpendicular to 

a given line that passes through a given point). 

 

 
CCSS.MATH.CONTENT.HSG.GPE.B.6 
Find the point on a directed line segment between two 

given points that partitions the segment in a given 

ratio. 

 

CCSS.MATH.CONTENT.HSG.GPE.B.7 
Use coordinates to compute perimeters of polygons 

and areas of triangles and rectangles, e.g., using the 

distance formula. 

 

  

http://www.corestandards.org/Math/Content/HSG/GPE/A/
http://www.corestandards.org/Math/Content/HSG/GPE/A/1/
http://www.corestandards.org/Math/Content/HSG/GPE/A/2/
http://www.corestandards.org/Math/Content/HSG/GPE/A/3/
http://www.corestandards.org/Math/Content/HSG/GPE/B/
http://www.corestandards.org/Math/Content/HSG/GPE/B/4/
http://www.corestandards.org/Math/Content/HSG/GPE/B/5/
http://www.corestandards.org/Math/Content/HSG/GPE/B/6/
http://www.corestandards.org/Math/Content/HSG/GPE/B/7/
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G.GMD.A 

Explain volume formulas and use them to 

solve problems. 

 

G.GMD.A.1 

Give an informal argument for the formulas for 

the circumference of a circle, area of a circle, 

volume of a cylinder, pyramid and cone. 

 

 

 

 

 

 

 

 

G.GMD.A.2 

Use volume formulas for cylinders, pyramids, 

cones, spheres and composite figures to solve 

problems. 

Geometric Measurement & Dimension 

CCSS.MATH.CONTENT.HSG.GMD.A 

 

 

CCSS.MATH.CONTENT.HSG.GMD.A.1 
Give an informal argument for the formulas for the 

circumference of a circle, area of a circle, volume of a 

cylinder, pyramid, and cone. Use dissection 

arguments, Cavalieri's principle, and informal limit 

arguments. 

 

CCSS.MATH.CONTENT.HSG.GMD.A.2 
Give an informal argument using Cavalieri's principle 

for the formulas for the volume of a sphere and other 

solid figures. 

 

CCSS.MATH.CONTENT.HSG.GMD.A.3 

Use volume formulas for cylinders, pyramids, cones, 

and spheres to solve problems. 

 

 

G.GMD.B 

Visualize relationships between two-

dimensional and threedimensional objects. 

 

G.GMD.B.3 

Identify the shapes of two-dimensional cross-

sections of three dimensional objects. 

 

G.GMD.B.4 

Identify three-dimensional objects generated by 

transformations of two-dimensional objects. 

 

 

CCSS.MATH.CONTENT.HSG.GMD.B 

 

 

 

CCSS.MATH.CONTENT.HSG.GMD.B.4 
Identify the shapes of two-dimensional cross-sections 

of three-dimensional objects, and identify three-

dimensional objects generated by rotations of two-

dimensional objects. 

 

 

G.MG.A 

Apply geometric concepts in modeling 

situations.  

 

G.MG.A.1  

Use geometric shapes, their measures and their 

properties to describe objects. 

 

 

G.MG.A.2  

Apply concepts of density based on area and 

volume in modeling situations. 

 

 

G.MG.A.3  

Apply geometric methods to solve design 

mathematical modeling problems. 

 

Modeling with Geometry 

CCSS.MATH.CONTENT.HSG.MG.A 

 

 
CCSS.MATH.CONTENT.HSG.MG.A.1 
Use geometric shapes, their measures, and their 

properties to describe objects (e.g., modeling a tree 

trunk or a human torso as a cylinder).* 

 

CCSS.MATH.CONTENT.HSG.MG.A.2 
Apply concepts of density based on area and volume 

in modeling situations (e.g., persons per square mile, 

BTUs per cubic foot).* 

 

CCSS.MATH.CONTENT.HSG.MG.A.3 
Apply geometric methods to solve design problems 

(e.g., designing an object or structure to satisfy 

physical constraints or minimize cost; working with 

typographic grid systems based on ratios).* 

 

  

http://www.corestandards.org/Math/Content/HSG/GMD/A/
http://www.corestandards.org/Math/Content/HSG/GMD/A/1/
http://www.corestandards.org/Math/Content/HSG/GMD/A/2/
http://www.corestandards.org/Math/Content/HSG/GMD/A/3/
http://www.corestandards.org/Math/Content/HSG/GMD/B/
http://www.corestandards.org/Math/Content/HSG/GMD/B/4/
http://www.corestandards.org/Math/Content/HSG/MG/A/
http://www.corestandards.org/Math/Content/HSG/MG/A/1/
http://www.corestandards.org/Math/Content/HSG/MG/A/2/
http://www.corestandards.org/Math/Content/HSG/MG/A/3/
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G.CP.A  

Understand independence and conditional 

probability and use them to interpret data. 

 

G.CP.A.1  

Describe events as subsets of a sample space 

using characteristics of the outcomes, or as 

unions, intersections or complements of other 

events. 

 

G.CP.A.2  

Understand the definition of independent events 

and use it to solve problems. 

 

G.CP.A.3  

Calculate conditional probabilities of events. 

 

G.CP.A.4  

Construct and interpret two-way frequency 

tables of data when two categories are 

associated with each object being classified. Use 

the two-way table as a sample space to decide if 

events are independent and to approximate 

conditional probabilities. 

 

G.CP.A.5  

Recognize and explain the concepts of 

conditional probability and independence in a 

context. 

 

G.CP.A.6  

Apply and interpret the Addition Rule for 

calculating probabilities. 

 

G.CP.A.7  

Apply and Interpret the general Multiplication 

Rule in a uniform probability model. 

 

G.CP.A.8  

Use permutations and combinations to solve 

problems. 
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APPENDIX B 

2018 Missouri Geometry End of Course Practice Exam 

 

 

1. A student is working on a geometric construction. 

 

If AD is drawn, what geometric construction is shown? 

A. angle bisector  C. perpendicular bisector  

B. copying an angle   D. measuring an angle 

 

2. A sector is part of a circle’s area that is defined by a central angle. The ratio of the sector’s 

area, A, to the circle’s area, πr2, is identical to the ratio of the central angle, θ, to the total 

measure of the circle, 360°. 

 
 

Which option represents the formula for the area of a sector?  

 

A. A = 360° πr 2   C. A = 360°πr2 

θ 

 

B. A = θπr2    D. A =    θ    πr2  

                   360° 
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3. Select the responses that correctly complete the sentence.  

 

Given △ABC with A(5, 4), B(2, −2), and C(7, −1). 

 

△ABC is classified as __________ because _______________________ . 

  

 

 

4. Point P is between D(2, 5) and F(5, −1). What are the coordinates of P along the directed DF 

if the ratio of DP to PF is 1:2? 

 

Enter the correct coordinates in the boxes. 

 

Value of the x-coordinate:   Value of the y-coordinate: 

 

5. Given quadrilateral ABCD, what are the coordinates for the resulting image, A″B″C″D″, after 

the two transformations listed? 

 

First transformation: Rotate 90° clockwise about the origin.  

Second transformation: Translate (x + 1, y − 2). 

 

    
 

Enter the coordinates for the resulting image A″B″C″D″ in the boxes. 

 

A″ = (             ,             )   C″ = (             ,             )  

 

 

B″ = (             ,             )   D″ = (             ,             ) 
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6. The following table provides a list of four international cities, their populations, and the area 

of the cities.  

 
 

Determine the population densities of each city and then order them from least to greatest. 

Which list shows the population densities of each city in order from least to greatest?  

 

A. Mexico City, Sao Paulo, Seoul, Tokyo  C. Seoul, Sao Paulo, Mexico City, Tokyo 

 

B. Sao Paulo, Tokyo, Seoul, Mexico City   D. Tokyo, Mexico City, Sao Paulo, Seoul 

 

7. The endpoints of AB are A(1, 2) and B(5, 6). Line k is the perpendicular bisector of AB.  

 

Graph AB and line k. 

   

8. What are the possible cross sections of a right circular cone? 

Select all that apply.  

 

A. ellipse  D. parabola   

B. triangle   E. rectangle 

C. circle 
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9. Olivia is constructing the circumscribed circle of a triangle as shown in the diagram. What 

should be her next step in the process?  

 
A. Construct the angle bisector of ∠A.  

B. Construct the perpendicular bisector of BC.  

C. Set the compass width to AB, then draw a circle with center point A.  

D. Set the compass width to BC, then draw a circle with center point C. 

 

 

10. Given: JM  is the perpendicular bisector of  LK 

Prove: J is equidistant from L and K D. E. F.  

   
Mark the letters in the table for the statements that complete the proof correctly. 
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11. A circle has its center at (−2, 3) and point (4, 6) is on its circumference. What is the correct 

written equation of the circle? 

 

A. (x + 3)2 + (y − 2)2 = 85  C. (x − 2)2 + (y + 3)2 = 85 

 

B. (x − 3)2 + (y + 2)2 = 45   D. (x + 2)2 + (y − 3)2 = 45 

 

 

12. Draw a line from the words to the correct descriptions. Not all options will be used. 

 

 
 

13. Triangle ABC is shown. The lengths of the sides of the triangle are represented by a, b, and c. 

 
Select the next step that is needed to derive the equation for the area of triangle ABC when 

sides BC, AC, and the included angle C are given. 
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14. Points A, B, and D lie on circle C.  

 
Determine the measure of the indicated angles given that m∠A = 30°.  

Enter the measures in the boxes.  

 

m∠BCD =              °  

 

m∠ABD =              ° 

 

15. The right triangle shown is missing the lengths of two sides. 

 
Enter the lengths of the two missing sides in the boxes below. Round your answers to the 

nearest tenth.  

 

Length of the hypotenuse:                  cm  

 

Length of the leg:                  cm 

 

16. Which of the following two-dimensional cross sections are circles? Select all that apply.  

 

A. any cross section of a sphere   D. cross section of a cone perpendicular to its base 

B. horizontal cross section of a cube     E. cross section of a right cylinder parallel to its base 

C. cross section of a cone parallel to its base    F. cross section of a pyramid perpendicular to its  

     base 
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17. Parallelogram ABCD is shown.  

 
What are the values of x and y?  

 

the correct values in the boxes.  

x =    y = 

 

18. On the coordinate plane, △ART is shown with points R and T plotted on the y-axis. 

 
What three-dimensional figure is created by rotating △ART around the y-axis?  

 

A. cone  C. cylinder 

B. sphere   D. pyramid 

 

19. Two triangles are shown.  

 
Which is a true statement about the two triangles?  

 

A. The triangles are not similar.  C. △ABC ∼ △FDE by SAS Similarity Postulate 

B. △ABC ∼ △EDF by AA Similarity Postulate  D. △ABC ∼ △FDE by AA Similarity Postulate 
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20. Select the values that correctly complete the sentence about the symmetry of a regular 

pentagon. 

A regular pentagon has _____ lines of symmetry and has ___________ rotational symmetry. 

 

 

21. A right cone has a diameter of 10 inches and a slant height of 13 inches. The cone is shown. 

 
Which is the volume of the cone? 

   
 

22. △ABC and △DEF are plotted on the coordinate plane shown.  

 
Which conclusions can be made about △ABC and △DEF if △ABC is mapped onto △DEF by 

reflecting △ABC over the y-axis and reflecting it over the x-axis? Select all that apply. 
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23. Points A, B, D, and E lie on circle C. 

 

  

 

 

 

24. Given △ABC ∼ △FDE, what are the values of x and y? 

 
Select all that apply.  

A. x = −1   D. y = −2 

B. x = 2   E. y = 2 

C. x = 4  F. y = 23 

 

25. A candle maker has 301.59 cubic centimeters (cm3) of liquid wax to make cone-shaped 

candles. Each candle has a circular base with a diameter of 3 cm and a height of 5 cm. What 

is the maximum number of candles that can be made from the liquid wax? 

 

A. 6  C. 25   

B. 7  D. 26 

 

 

26. Which is the equation of the parabola with focus (2, 5) and directrix y = 3? 
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27. Britney found an irregularly shaped metal object on the beach that has a mass of 232.5 

grams. To determine the volume, she partially filled a cylindrical water bottle and dropped 

the object in. The water level in the bottle rose by 1.2 cm. The bottle has a diameter of 5 cm. 

Calculate the density of the metal to determine what type of metal Britney found. Densities, 

measured in grams per cubic centimeter, 
𝑔

𝑐𝑚3     , for some common metals are listed. 

 

 • Copper: 8.86 
𝑔

𝑐𝑚3      • Bronze: 9.87 
𝑔

𝑐𝑚3      • Silver: 10.5 
𝑔

𝑐𝑚3      • Gold: 19.3 

𝑔

𝑐𝑚3      

 

Select the word that correctly completes the sentence. Based on the density of the metal, it 

is most likely that the metal Britney found is _______________. 

 

a. copper  c. silver 

b. bronze  d. gold 

 

 

28. In △ABC, ∠B is a right angle. The coordinates for each point are A(10, 7), B(5, 9), and C(3, 4).  

 
Rounded to the nearest tenth, what is the area, in square units, of △ABC? Enter the area in 

the box.  

 

units2 
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29. △ABC is shown on the coordinate plane.  

 
After rotating △ABC 180° about the origin and then reflecting it over the x-axis, what are 

the coordinates of △A″B″C″?  

 

A. A″(2, 6), B″(5, 4), C″(2, 1)   C. A″(−2, 6), B″(5, 4), C″(−2, 1) 

B. A″(6, 2), B″(4, 5), C″(1, 2)   D. A″(6, −2), B″(4, −5), C″(1, −2) 

 

30. Right triangle ABC is shown.  

 
What must be true about ∠A and ∠B? Select all that apply. 
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31. The pre-image of △ABC and its image △A′B′C′ are shown on the coordinate plane. 

 
Which rule describes the transformation represented in the graph? 

 

 

32. Two angle measures for both △ABC and △XYZ are given.  

 

Using the given information about the triangles, is △ABC ∼ △XYZ?  

 

A. Yes, the triangles are similar by AA.  

B. No, because only 1 pair of corresponding angles are congruent.  

C. No, we cannot determine similarity without knowing the third angles.  

D. No, we cannot determine similarity without knowing the side ratios. 
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APPENDIX C 

John Keller’s (2010) Course Interest Survey 

 

Keller’s Original Version of CIS 

Student Instructions: 

1. There are 34 statements in this section. Please think about each statement in relation 

to the instructional materials you have just studied, and indicate how true it is. Give 

the answer that truly applies to you, and not what you would like to be true, or what 

you think others want to hear. 

 

2. Think about each statement by itself and indicate how true it is. Do not be influenced 

by your answers to other statements. 

 

3. Record your responses on the answer sheet that is provided, and follow any additional 

instructions that may be provided in regard to the answer sheet that is being used with 

this survey.  Thank you. 

 

1 = Not true  2 = Slightly true    3 = Moderately true    4 = Mostly true    5 = Very true 

 

1. The instructor knows how to make us feel enthusiastic about the subject matter of this 

course. 

2. The things I am learning in this course will be useful to me. 

3. I feel confident that I will do well in this course. 

4. This class has very little in it that captures my attention. 

5. The instructor makes the subject matter of this course seem important. 

6. You have to be lucky to get good grades in this course. 

7. I have to work too hard to succeed in this course. 

8. I do NOT see how the content of my this course relates to anything I already know. 

9. Whether or not I succeed in this course is up to me. 

10. The instructor creates suspense when building up to a point. 
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11. The subject matter of this course is just too difficult for me. 

12. I feel that this course gives me a lot of satisfaction. 

13. In this class, I try to set and achieve high standards of excellence. 

14. I feel the grades or other recognition I receive are fair compared to other students. 

15. The students in this class seem curious about the subject matter. 

16. I enjoy working for this course. 

17. It is difficult to predict what grade the instructor will give my assignments 

18. I am pleased with the instructor’s evaluations of my work compared to how well I 

think I have done. 

19. I feel satisfied with what I am learning from this course. 

20. The content of this course relates to my expectations and goals. 

21. My instructor does unusual or surprising things that are interesting. 

22. The students actively participate in this class. 

23. To accomplish my goals, it is important that I do well in this course. 

24. My instructor uses an interesting variety of teaching techniques. 

25. I do NOT think I will benefit much from this course. 

26. I often daydream while in this class. 

27. As I am taking this class, I believe that I can succeed if I try hard enough. 

28. The personal benefits of this course are clear to me. 

29. My curiosity is often stimulated by the questions asked or the problems given on the 

subject matter in this class. 

30. I find the challenge level in this course to be about right: neither too easy nor too 

hard. 



EFFECTS OF AN EXPERIENTIAL GEOMETRY COURSE                                                                            179 
 

31. I feel rather disappointed with this course. 

32. I feel that I get enough recognition of my work in this course by means of grades, 

comments, or other feedback. 

33. The amount of work I have to do is appropriate for this type of course. 

34. I get enough feedback to know how well I am doing. 

 

Customized Version of CIS 

Student Instructions: There are 34 statements in this section. Please think about each 

statement in relation to the geometry class you are taking and indicate how true it is. Give 

the answer that truly applies to you, and not what you would like to be true, or what you 

think others want to hear. 

 

Think about each statement by itself and indicate how true it is. Do not be influenced by 

your answers to other statements.  

  

Click on the circle next to the response that best fits your experience so far. Use the 

following values to indicate your response to each item.   

 

1 = Not true  2 = Slightly true    3 = Moderately true    4 = Mostly true    5 = Very true 

 

1. My math teacher knows how to make us feel enthusiastic about math. 

2. The things I am learning in math class will be useful to me. 

3. I feel confident that I will do well in math class. 

4. Math class has very little in it that captures my attention. 

5. My teacher makes math seem important. 

6. You have to be lucky to get good grades in my math class. 

7. I have to work too hard to succeed in math class. 

8. I do NOT see how the content of my math class relates to anything I already know. 

9. Whether or not I succeed in math class is up to me. 
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10. My math teacher creates excitement when building up to a point. 

11. The subject matter of my math class is just too difficult for me. 

12. I feel that my math class gives me a lot of satisfaction. 

13. In my math class, I try to set and achieve high standards of excellence. 

14. I feel the grades or other recognition I receive in math are fair compared to other 

students. 

15. The students in my math class seem curious about the subject matter. 

16. I enjoy working in my math class. 

17. It is difficult to predict what grade my teacher will give my math assignments. 

18. I am pleased with my math teacher’s evaluations of my work compared to how well I 

think I have done. 

19. I feel satisfied with what I am learning from my math class. 

20. The things I learn in math class meets my expectations and goals. 

21. My math teacher does unusual or surprising things that are interesting. 

22. The students actively participate in my math class. 

23. To accomplish my goals, it is important that I do well in math class. 

24. My math teacher uses a variety of teaching techniques. 

25. I do NOT think I will benefit much from my math class. 

26. I often daydream while in math class. 

27. As I am taking this math class, I believe that I can succeed if I try hard enough. 

28. The personal benefits of math class are clear to me. 

29. My curiosity is often stimulated by the questions asked or the problems given in math 

class. 
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30. I find the challenge level in math class to be about right: neither too easy nor too hard. 

31. I feel disappointed with math class. 

32. I feel that I get enough recognition of my work in math class by means of grades, 

comments, or other feedback. 

33. The amount of work I have to do is appropriate for this type of math class. 

34. I get enough feedback to know how well I am doing in math class.  
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APPENDIX D 

Statistical Analyses of Assumptions Passed for ANCOVA 

In order to address research questions one and two, analysis of covariance 

(ANCOVA) was used to statistically analyze differences in geometry end of course exam 

scores between the treatment and control group while controlling for algebra I end of 

course exam scores.  Laerd Statistics (2018c), described nine assumptions data must pass 

in order for ANCOVA to yield valid results.  Following is an analysis of the data and 

evidence addressing those assumptions. 

Assumption #1: The dependent variable and covariate are measured on a continuous 

scale.   

The dependent variable, achievement in geometry, and the covariate, achievement in 

algebra I were continuous variables representing the percentage of correct test questions.  

The values could have been any number from 0 to 100. 

Assumption #2: The independent variable consists of two categorical, independent 

groups. 

The independent variable, group, consisted of two categories.  Participants either 

experienced the Geometry In Construction curriculum (treatment group), or a traditional 

geometry curriculum (control group), but not both.  Gender is a more complex variable 

including more than two categories, and participants were given a choice to self-report 

gender other than male or female.  All participants reported a gender category of either 

male or female, therefore, the independent variable, gender, consisted of two categories. 
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Assumption #3: Groups are independent. 

Each participant experienced only one geometry curriculum.  No participant experienced 

both curricula nor did they identify with more than one gender, therefore there was no 

relationship between the data collected from participants within or between groups. 

Assumption #4: There are no significant outliers. 

Boxplots of algebra I and geometry end of course exam scores, separated by group and 

gender, and using 95% confidence limits, revealed only one significant outlier in the 

sample.  The outlier was confirmed as an accurate data point and was not excluded from 

the data analysis.   

 

Figure D1.  Distribution of treatment group geometry EOC exam scores by gender. 

0 = male, 1 = female.  One outlier identified among males. 



EFFECTS OF AN EXPERIENTIAL GEOMETRY COURSE                                                                            184 
 

 

 

Figure D2. Distribution of treatment group algebra I EOC exam scores by gender. 

0 = male, 1 = female. 

 

 

 

Figure D3. Distribution of control group geometry EOC exam scores by gender. 

0 = male, 1 = female. 
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Figure D4. Distribution of control group algebra I EOC exam scores by gender. 

0 = male, 1 = female. 

 

 

Assumption #5: Residuals should be approximately normally distributed. 

 

Assumption #6: Residuals demonstrate homoscedasticity. 

 

 

 

 

 

 

 

 

Figure D5. Analysis of residuals for all participants. Q-Q plot indicates residuals 

normally distributed.  Scatter plot random pattern demonstrates homoscedasticity.   



EFFECTS OF AN EXPERIENTIAL GEOMETRY COURSE                                                                            186 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D6. Analysis of residuals for treatment group. Q-Q plot indicates residuals nearly 

normally distributed.  ANCOVA is robust to slight violations of normality.  Scatter plot 

random pattern demonstrates homoscedasticity.   

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure D7. Analysis of residuals for males. Q-Q plot indicates residuals normally 

distributed.  Scatter plot random pattern demonstrates homoscedasticity.   
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Figure D8. Analysis of residuals for females. Q-Q plot indicates residuals normally 

distributed.  Scatter plot random pattern demonstrates homoscedasticity.   

 

Assumption #7: Variances are equal between groups. 

A folded F test was used to test for equality of variance in algebra I EOC exam scores 

and geometry EOC exam scores between groups. 

 

Figure D9. Analysis of variances in algebra I EOC exam scores between treatment and 

control groups. p value = 0.6816 indicates variances are equal. 

 

 

Figure D10. Analysis of variances in geometry EOC exam scores between treatment and 

control groups. p value = 0.2564 indicates variances are equal. 
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Assumption #8: The covariate is linearly related to the dependent variable. 

Simple linear regression of geometry EOC exam scores on algebra I EOC exam scores 

was performed to determine the relationship between the covariate and the dependent 

variable. 

 

Figure D11. Least squares model analysis of linear regression of dependent variable on 

covariate.  Results indicate a significant linear relationship between dependent variable 

and covariate 
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Assumption #9: Regression slopes are equal. 

An F test performed on a generalized linear model was used to identify interactions 

between independent variables and the covariate.  When an F test is significant (p < .05), 

regression slopes are not equal.  

Figure D12. Comparison of the regression line slopes, when regressing geometry EOC 

exam scores on algebra I EOC exam scores, for treatment and control groups. Result of F 

test indicates the regression line slopes are equal. 

 

Figure D13. Comparison of the regression line slopes, when regressing geometry EOC 

exam scores on algebra I EOC exam scores, for males and females in the treatment 

group. Result of F test indicates the regression line slopes are equal. 

 

Figure D14. Comparison of the regression line slopes, when regressing geometry EOC 

exam scores on algebra I EOC exam scores, for males in the treatment and control 

groups. Result of F test indicates the regression line slopes are equal. 
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Figure D15. Comparison of the regression line slopes, when regressing geometry EOC 

exam scores on algebra I EOC exam scores, for females in the treatment and control 

groups. Result of F test indicates the regression line slopes are equal. 
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APPENDIX E 

Statistical Analyses of Assumptions Passed for t-tests 

In order to address research questions three and four, independent t-tests were 

used to statistically analyze differences in scores between the treatment and control 

groups on a survey measuring motivation to learn geometry.  Laerd Statistics (2018b), 

described six assumptions data must pass in order for t-tests to yield valid results.  

Following is an analysis of the data and evidence addressing those assumptions. 

Assumption #1: The dependent variable is measured on a continuous scale. 

There were five dependent variables related to motivation:  overall motivation, attention, 

relevance, confidence, and satisfaction.  Each dependent variable was measured on a 

whole number Likert Scale with values ranging from one to five. 

Assumption #2: The independent variable consists of two categorical, independent 

groups. 

The independent variable, group, consisted of two categories.  Participants either 

experienced the Geometry In Construction curriculum (treatment group), or a traditional 

geometry curriculum (control group), but not both.  Gender is a more complex variable 

including more than two categories, and participants were given a choice to self-report 

gender other than male or female.  All participants reported a gender category of either 

male or female, therefore, the independent variable, gender, consisted of two categories. 
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Assumption #3: Groups are independent. 

Each participant experienced only one geometry curriculum.  No participant experienced 

both curricula nor did they identify with more than one gender, therefore there was no 

relationship between the data collected from participants within or between groups. 

Assumption #4: There are no significant outliers. 

Boxplots of motivation scores, separated by group and gender, and using 95% confidence 

limits, were used to identify outliers.  The few outliers identified were confirmed as 

accurate data points and were not excluded from the data analysis. 

 

 

 

 

 

 

 

 

 

Figure E1. Distribution of overall motivation scores by course. 1 = treatment, 2 = control. 
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Figure E2. Distribution of attention scores by course. 1 = treatment, 2 = control. 

 

 

 

Figure E3. Distribution of relevance scores by course. 1 = treatment, 2 = control. 
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Figure E4. Distribution of confidence scores by course. 1 = treatment, 2 = control. 

Two outliers identified in treatment group. 

 

 

Figure E5. Distribution of satisfaction scores by course. 1 = treatment, 2 = control. 
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Figure E6. Distribution of overall motivation scores of males. 1 = treatment, 2 = control. 

 

Figure E7. Distribution of overall motivation scores of females. 

1 = treatment, 2 = control. 
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Figure E8. Distribution of attention scores of males. 1 = treatment, 2 = control. 

 

Figure E9. Distribution of attention scores of females. 1 = treatment, 2 = control. 
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Figure E10. Distribution of relevance scores of males. 1 = treatment, 2 = control. 

 

 

 

 

 

Figure E11. Distribution of relevance scores of females. 1 = treatment, 2 = control. 
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Figure E12. Distribution of confidence scores of males. 1 = treatment, 2 = control. 

Two outliers identified in treatment group. 

 

 

 

Figure E13. Distribution of confidence scores of females. 1 = treatment, 2 = control. 
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Figure E14. Distribution of satisfaction scores of males. 1 = treatment, 2 = control. 

One outlier identified in treatment group. 

 

 

 

Figure E15. Distribution of satisfaction scores of females. 1 = treatment, 2 = control. 
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Assumption #5: The dependent variable should be approximately normally distributed. 

 

A Kolmogorov-Smirnov (K-S) test was used to determine if data were normally 

distributed.   

Table E1 

K-S Test Results for Normal Distribution of Motivation Scores 

Independent 

Variable Group 

Data Set K-S Test 

 p value 

Conclusion 

treatment overall motivation 0.040 data is not normally distributed 

treatment attention 0.150 data is normally distributed 

treatment relevance 0.150 data is normally distributed 

treatment confidence 0.010 data is not normally distributed 

treatment satisfaction 0.150 data is normally distributed 

control overall motivation 0.150 data is normally distributed 

control attention 0.150 data is normally distributed 

control relevance 0.150 data is normally distributed 

control confidence 0.010 data is not normally distributed 

control satisfaction 0.091 data is normally distributed 

treatment males overall motivation 0.150 data is normally distributed 

treatment males attention 0.150 data is normally distributed 

treatment males relevance 0.147 data is normally distributed 

treatment males confidence 0.150 data is normally distributed 

treatment males satisfaction 0.150 data is normally distributed 

control males overall motivation 0.150 data is normally distributed 

control males attention 0.150 data is normally distributed 

control males relevance 0.150 data is normally distributed 

control males confidence 0.150 data is normally distributed 

control males satisfaction 0.150 data is normally distributed 

treatment females overall motivation 0.026 data is not normally distributed 

treatment females attention 0.150 data is normally distributed 

treatment females relevance 0.150 data is normally distributed 

treatment females confidence 0.010 data is not normally distributed 

treatment females satisfaction 0.150 data is normally distributed 

control females overall motivation 0.150 data is normally distributed 

control females attention 0.150 data is normally distributed 

control females relevance 0.150 data is normally distributed 

control females confidence 0.045 data is not normally distributed 

control females satisfaction 0.150 data is normally distributed 
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Assumption #6: Variances are equal between groups. 

A folded F test was used to test for equality of variance in motivation scores between all 

groups of the independent variable. 

Table E2 

Folded F Test Results for Equality of Variances in Motivation Scores 

Independent Variable Groups 

Compared 

Data Set F Test 

 p value 

Conclusion 

treatment and control overall motivation 0.5845 variances are equal 

treatment and control attention 0.4668 variances are equal 

treatment and control relevance 0.1223 variances are equal 

treatment and control confidence 0.0275 variances are not equal 

treatment and control satisfaction 0.5160 variances are equal 

treatment males and females overall motivation 0.7803 variances are equal 

treatment males and females attention 0.8744 variances are equal 

treatment males and females relevance 0.7690 variances are equal 

treatment males and females confidence 0.1830 variances are equal 

treatment males and females satisfaction 0.6993 variances are equal 

treatment males and control males overall motivation 0.5460 variances are equal 

treatment males and control males attention 0.7359 variances are equal 

treatment males and control males relevance 0.3201 variances are equal 

treatment males and control males confidence 0.1829 variances are equal 

treatment males and control males satisfaction 0.1935 variances are equal 

treatment females and control females overall motivation 0.6099 variances are equal 

treatment females and control females attention 0.6191 variances are equal 

treatment females and control females relevance 0.1142 variances are equal 

treatment females and control females confidence 0.1378 variances are equal 

treatment females and control females satisfaction 0.8775 variances are equal 
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Appendix F 

Statistical Analyses of Nonparametric Distributions of Motivation Data 

For data sets of motivation scores that were not normally distributed, a Wilcoxon 

Rank-Sum Test was used to compare the outcomes between two groups.  The results are 

shown below. 

Figure F1. Results of Wilcoxon Rank Sum Test comparing overall motivation scores of 

treatment and control groups. 

 

Figure F2. Results of Wilcoxon Rank Sum Test comparing confidence scores of 

treatment and control groups. 

 

Figure F3. Results of Wilcoxon Rank Sum Test comparing overall motivation scores of 

males and females in the treatment group. 
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Figure F4. Results of Wilcoxon Rank Sum Test comparing confidence scores of males 

and females in the treatment group. 

 

Figure F5. Results of Wilcoxon Rank Sum Test comparing overall motivation scores of 

females in the treatment group and females in the control group. 

 

Figure F6. Results of Wilcoxon Rank Sum Test comparing confidence scores of females 

in the treatment group and females in the control group. 
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