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Abstract 

Genetic structure within and among plant populations is a critical component of 

plant biodiversity, informing local adaptation, conservation, and incipient 

speciation. However, its drivers remain poorly understood, especially across 

different spatial scales. In my dissertation I examined factors that affect plant 

population genetic structure at global, regional, and local scales. At the global 

scale, I performed a literature review of population genetic differentiation (FST) in 

seed plants based on a 337-species dataset with data on FST and species traits. 

Using phylogenetic multiple regressions, I found that FST is higher for tropical, 

mixed-mating, non-woody species pollinated by small insects, and lower for 

temperate, outcrossing trees pollinated by wind. At the regional scale, I tested 

the effect of flowering asynchrony on genetic divergence between conspecific 

subpopulations of understory flowering plants in the Andean biodiversity hotspot. 

I documented flowering phenology for nine species at two sites over one year 

and inferred population genetic parameters with a genome-wide genotyping 

approach termed 2b-RAD sequencing. I found that species with higher flowering 

asynchrony between their subpopulations also show greater genetic divergence. 

At the local scale, I examined the effect of insect vs. hummingbird pollination 

modes on the fine-scale spatial genetic structure (SGS) of understory plants in 

the Andes. I focused on six species for which I confirmed putative pollinators 

through fieldwork and used the same genotyping technique as above. I found 

that insect pollination results in a stronger pattern of spatial autocorrelation 

among closely related individuals, relative to hummingbird pollination. Finally, I 
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investigated the effect of animal pollination mode and latitudinal region on plant 

SGS, based on a 147-species global dataset. I found that pollination by small 

insects is significantly associated with stronger SGS relative to pollination by 

large insects and vertebrates, particularly in understory plants. Likewise, species 

from tropical regions have significantly greater SGS than species from temperate 

zones. Thus, factors that affect plant population genetic differentiation are also 

important for plant SGS. Overall, my findings shed light on the global drivers of 

genetic structure in plants, and point to important mechanisms for regional 

genetic divergence and local genetic connectivity in Andean flowering plants.  

 

Keywords: 2b-RAD sequencing, population genetic differentiation, spatial 

genetic structure, Andes, flowering asynchrony, pollination mode, latitudinal 

region. 
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Abstract 

Evaluating the factors that drive patterns of population differentiation in plants is 

critical for understanding several biological processes such as local adaptation 

and incipient speciation. Previous studies have given conflicting results regarding 

the significance of pollination mode, seed dispersal mode, mating system, growth 

form, and latitudinal region in shaping patterns of genetic structure, as estimated 

by FST values, and no study to date has tested their relative importance together 

across a broad scale. Here we assembled a 337-species dataset for seed plants 

from publications with data on FST from nuclear markers and species traits, 

including variables pertaining to the sampling scheme of each study. We used 

species traits, while accounting for sampling variables, to perform phylogenetic 

multiple regressions. Results demonstrated that FST values were higher for 

tropical, mixed-mating, non-woody species pollinated by small insects, indicating 

greater population differentiation, and lower for temperate, outcrossing trees 

pollinated by wind. Among the factors we tested, latitudinal region explained the 

largest portion of variance, followed by pollination mode, mating system and 

growth form, while seed dispersal mode did not significantly relate to FST. Our 

analyses provide the most robust and comprehensive evaluation to date of the 

main ecological factors predicted to drive population differentiation in seed 

plants, with important implications for understanding the basis of their genetic 

divergence. Our study is the first that we are aware of to robustly demonstrate 

greater population differentiation in tropical regions. 

Keywords: FST, life-hostory traits, latitudinal region, pollination mode. 
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Introduction 

Understanding the factors that drive patterns of genetic variation among 

plant populations is central in biology because genetic diversity is the raw 

material on which evolution acts. Quantifying population differentiation, which is 

most frequently done using the fixation index FST (Wright,1951; see Holsinger & 

Weir, 2009; Meirmans & Hedrick, 2011 for a review of FST and related metrics), is 

important for understanding the first stages of allopatric speciation (Harvey, 

Singhal, & Rabosky, 2019; Templeton, 1981), as well as the basis of local 

adaptation (Leimu & Fischer, 2008; Linhart & Grant, 1996), and provides critical 

information for conservation genetics (Ellstrand, 1992; Ellstrand & Elam, 1993; 

Kramer & Havens, 2009). Life history traits are expected to influence population 

genetic structure in seed plants (Duminil et al., 2007; Hamrick & Godt, 1996; 

Loveless & Hamrick, 1984). However, previous studies have given conflicting 

results as to the importance of specific traits, such as pollination mode, seed 

dispersal mode, mating system, and growth form (e.g., Duminil et al., 2007; 

Hamrick & Godt, 1996), and only one study has compared patterns of FST 

variation between latitudinal regions (Dick, Hardy, Jones, & Petit, 2008). 

Furthermore, little is known about the relative importance of these factors. Below, 

we discuss prior evidence for each of these factors in turn, and then detail our 

approach to test them all together in a single analysis that also accounts for 

phylogenetic relatedness.  

Pollination mode is predicted to affect population genetic structure, 

because pollen dispersal is critical to moving alleles between plant populations. 
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Previous reviews have lumped different pollination mutualists together as animal 

pollination and compared them to wind pollination (Hamrick, Godt, & Sherman-

Broyles, 1992; Loveless & Hamrick, 1984), revealing that wind tends to reduce 

genetic structure. Although the idea has not been tested on a broad scale, it has 

long been thought that different types of animal pollinators should also lead to 

differences in population genetic structure due to differences in their movement 

patterns and pollen carry-over capacity (Castellanos, Wilson, & Thomson, 2003). 

In fact, direct measures of pollen dispersal reveal that volant vertebrates and 

large bees transport larger proportions of pollen from individual trees to longer 

geographic distances than small insects (Dick et al., 2008). Given these results, 

we predict that small insects restrict gene flow among plant populations and 

increase FST, compared to large insects, vertebrates, or wind. 

Seed dispersal mode is also expected to influence plant population 

genetic structure because, like pollination mode, it directly affects the movement 

of alleles and thus gene flow among populations. Strong evidence suggests that 

limited dispersal increases fine-scale spatial genetic structure in plants (Gelmi‐

Candusso, Heymann, & Heer, 2017) and in other organisms (Aguillon et al., 

2017), which in consequence might scale up and lead to greater population 

genetic structure (Hamrick & Trapnell, 2011). In fact, reviews of the allozyme 

literature suggest that seed dispersal by wind and ectozoochory results in lower 

FST than dispersal by gravity and endozoochory due to greater gene flow among 

populations from long distance dispersal events (Hamrick & Godt, 1996; 

Hamrick, Murawski, & Nason, 1993). However, Duminil et al. (2007) found that 
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dispersal mode was not a significant predictor of FST. The lack of consistency 

among studies encourages further work with larger sample sizes to fully 

understand the role of seed dispersal mechanisms on population genetic 

structure.  

Unlike pollination and seed dispersal modes, the effect of mating system 

on plant population genetic structure has been well-established in previous 

broad-scale studies (Duminil et al., 2007; Loveless & Hamrick, 1984), which 

suggest that it is the most important predictor of FST variation. Mating system 

affects inbreeding, which lowers within-population variation, inflating between-

population FST values (Charlesworth, 2003). Duminil, Hardy, and Petit (2009) 

found that the outcrossing rate and the inbreeding coefficient, which measures 

biparental inbreeding and selfing, are both significant predictors of FST in seed 

plants. Both selfing and inbreeding increase inbreeding depression and induce 

purging of deleterious alleles, reducing effective population size and increasing 

genetic drift, which can ultimately lead to fixation of different alleles in different 

populations (Angeloni, Ouborg, & Leimu, 2011; Wright, Ness, Foxe, & Barrett, 

2008). In contrast, outcrossing increases gene flow within populations, potentially 

intensifying pollen-mediated gene flow among populations, which counteracts 

genetic drift and thus decreases population genetic structure (Duminil et al., 

2009; Ellstrand, 2014).  

Growth form is also an important predictor of population genetic structure. 

Broad-scale analyses (Duminil et al., 2009; Hamrick et al., 1992) have found 

strong associations between growth form and FST, with woody plants tending to 
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have lower FST than herbaceous plants. The mechanism that causes this 

association is unclear, however, and may actually be driven by correlations 

between growth form and other factors. For example, Duminil et al. (2009) found 

that growth form only affects FST indirectly, through its influence on outcrossing 

rate (tm) and inbreeding coefficient (FIS); woody growth form is associated with 

greater tm and lower FIS. However, Hamrick and Godt (1996) reviewed the 

allozyme literature for over 300 species and found that when considering 

outcrossing plants, woody plants show lower levels of FST than herbs, which 

suggests that growth form directly affects gene flow among populations, 

decreasing population genetic structure. This could be because in trees greater 

geographic distance is presumably required for genetic differences to be 

detected among populations than in herbs, given that trees are larger than herbs. 

Thus, when considered at similar geographic scales, we predict that herbs have 

populations with greater genetic differentiation than trees.  

Finally, the latitudinal region in which a plant occurs could also affect its 

population genetic structure due to differences among regions in spatial and 

climatic landscapes. In general, geographic heterogeneity and seasonal 

asynchrony over short distances are considerably higher in the tropics than in the 

temperate zones (Esquerré, Brennan, Catullo, Torres‐Pérez, & Keogh, 2019; 

Ricklefs, 1977; Stein, Gerstner, & Kreft, 2014), which may act to disrupt mating 

among conspecific subpopulations, and thus limit gene flow (Martin, Bonier, 

Moore, & Tewksbury, 2009; Quintero, González-Caro, Zalamea, & Cadena, 

2014). Additionally, genetic drift could have a more prominent role in the tropics 
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than in the temperate zones, due to the fact that most species in the tropics 

occur at low population densities and thus should have lower effective population 

sizes than in temperate zones (Dick et al., 2008; ter Steege et al., 2013). In fact, 

although their sample size was limited and phylogenetic autocorrelation was not 

accounted for, Dick et al. (2008) found that tropical trees have on average higher 

FST values than temperate trees. Given all of the above effects, we predict that 

FST is higher in the tropics than in the temperate zones.  

Previous studies have not included all of the aforementioned factors 

together when modeling patterns of population genetic structure in seed plants 

(Duminil et al., 2007; Hamrick et al., 1992; Hamrick & Godt, 1996; Loveless & 

Hamrick, 1984; Nybom & Bartish, 2000). Furthermore, the most thorough study 

of FST in seed plants was over a decade ago (Duminil et al., 2007) and thus could 

not take advantage of the wealth of population genetic studies published since 

then. Here we reviewed publications to assemble a 337-species database of 

seed plants with the goal of evaluating the factors predicted to best explain 

variation in plant population genetic structure. We focused on studies that used 

nuclear markers because their genetic structure should reflect both pollen and 

seed movement (due to biparental inheritance), unlike chloroplast markers, which 

only reflect seed movement (due to maternal inheritance) (McCauley, 1994). We 

examined five ecological factors, including pollination mode, seed dispersal 

mode, mating system, growth form, and latitudinal region, while controlling for 

phylogenetic autocorrelation. We also accounted for variables pertaining to the 

sampling scheme that have been shown to affect FST values for plants (Nybom & 
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Bartish, 2000) and other systems (Blasco-Costa & Poulin, 2013; Pascual, Rives, 

Schunter, & Macpherson, 2017; Riginos, Douglas, Jin, Shanahan, & Treml, 

2011); namely, genotyping technique, distance between populations, and sample 

size. Using multiple regressions, we asked: (Q1) What set of life history traits 

promote population divergence in seed plants? (Q2) Do patterns of variation in 

FST differ between latitudinal regions? (Q3) What are the relative importance of 

these factors in explaining variation in FST?  

 

Materials and methods 

Data collection 

We constructed an FST dataset through a systematic search in google 

scholar (key words: “genetic structure”, “population differentiation”, “population 

genetics”, “genetic diversity”, “population gene flow”) for articles published up 

until June 2018. The search yielded 356 peer-reviewed publications on seed 

plants for which measures of population genetic structure (FST) based on nuclear 

markers were available. When multiple studies reported FST values for the same 

species, we recorded the FST from the study with the largest geographic range, 

as this may better represent the genetic diversity found in the species (Cavers et 

al., 2005). By this criterion, we compiled a dataset that included 337 unique 

species. We extracted information for the predictor variables directly from the 

publications, and infrequently complemented this, where necessary, with 

information from peer-reviewed literature on the studied species (see Appendix 

S1 and Table S1 in Supporting Information). Predictor variables were included in 
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multiple regressions to explain variation in FST values (see section FST models). 

We included three factors that pertained to the sampling scheme of each study 

and that can potentially affect FST (Nybom, 2004; Nybom & Bartish, 2000): 

genetic marker used, maximum distance between populations, mean sample 

size per population. We used them to construct a null model to be compared 

against models with our factors of interest. Factors of interest consisted of five 

categorical variables with 2–4 levels: mating system (outcrossing, mixed-mating), 

growth form (non-woody, shrub, tree), pollination mode (large insects, small 

insects, vertebrates, wind), seed dispersal mode (animal, gravity, wind), and 

latitudinal region (tropics, sub-tropics, temperate). Below we explain the FST 

estimates and all eight factors used in this study in greater detail. 

 

FST estimates 

We collected FST and FST analogs as measures of genetic differentiation 

(Holsinger & Weir, 2009; Meirmans & Hedrick, 2011) which we collectively refer 

to FST throughout this paper. Assuming an island model of migration-drift 

equilibrium, Wright (1951) developed a theoretical framework for studying the 

gene frequency variation among subpopulations through the fixation indices, i.e. 

F-statistics. In this model, FST is the degree of gene differentiation among 

subpopulations for genes that have only two alleles. Nei (1973) expanded the 

model for polymorphic genes, and proposed GST as a measure of the gene 

diversity partitioned among subpopulations, relative to the total gene diversity of 

the population. Subsequently, Weir & Cockerham (1984) proposed a standard 
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measure of genetic structure  based on Wright (1951). The statistic  is 

estimated per and across loci, and represents the correlation of genes, or 

coancestry, among individuals in a given population. Excoffier, Smouse, and 

Quattro (1992) proposed AMOVA (Analysis of Molecular Variance) and 

corresponding statistic ST; the proportion of genetic diversity partitioned among 

populations. Finally, Hedrick (2005) proposed a standardized measure of 

population differentiation, G’ST, which accounts for the level of heterozygosity of 

the marker used for genotyping individuals (G’ST=GSToverall/GSTmax). 

The most common statistic in our dataset was . When  was reported per 

loci, we took the mean across loci as the global FST for that species. The AMOVA 

derived ST was also common. Some studies reported both  and ST, in which 

case we used ST as it likely better represents genetic structure among 

populations (Hey & Pinho, 2012). The statistics  and ST were, however, 

frequently almost equivalent. Another common measure was GST; when reported 

for multiple pairs of populations, we used the mean across all pairs. A few 

studies reported G’ST. It was not possible to back-transform G’ST to GST because 

such studies did not report the maximum possible GST in their data (Hahn, 

Michalski, Fischer, & Durka, 2016). Even though G’ST potentially yields a higher 

value than GST (or  and ST) based on the same data (Hedrick, 2005; Meirmans 

& Hedrick, 2011), we still included G’ST values, reasoning that any trend of 

variation in population genetic structure due to the variables here tested should 

still be present. 
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Molecular markers 

FST values can be strongly affected by the genotyping technique 

implemented (Nybom, 2004; Nybom & Bartish, 2000; Meirmans & Hedrick, 

2011), thus, we included this factor in our null model. In our database, the 

majority of studies used nuclear microsatellites (140 species), followed by 

allozymes (114 species). Fewer studies used dominantly inherited markers, 

including Amplified Fragment Length Polymorphism (60 species), Random 

Amplification of Polymorphic DNA (16 species), and Inter-Simple Sequence 

Repeat (7 species). 

 

Distance between populations 

Greater distance between populations should correspond to greater 

genetic differentiation based on an isolation by distance model (Wright, 1943). 

Thus, we also included in our null model the maximum distance between 

populations used in each study. We calculated this based on the coordinates of 

the two most distant populations. When this was not available, we used the scale 

bar of maps showing sampled populations. Distance varied from 0.01–9900 km 

(mean=703 ± 1077 SD). 

 

Mean sample size per population 

The maximum value that FST can take decreases when the within-

population expected heterozygosity increases. Thus, a general concern is that 

large sample sizes are required because small samples can overestimate FST 
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(Holsinger & Weir, 2009; Kalinowski, 2005; Willing, Dreyer, & van Oosterhout, 

2012). We accounted for this potential bias by including the mean sample size 

per population in our null model. Across the studies, this sample size ranged 

from 3 to 285 individuals per population, with an overall mean of 40.12 (± 44.9 

SD).  

 

Pollination mode 

Species were coded as pollinated by wind, small insects, large insects, or 

vertebrates. Small insect pollinators included small Hymenoptera (i.e., Trigona 

and Melipona bees and wasps), Diptera (i.e., hoverflies and gnats), Coleoptera 

(i.e., small curculionids), Hemiptera (i.e. Anthocoridae and Miridae), and 

Thysanoptera (i.e., thrips). Large insects included large bees (i.e., honeybees, 

bumblebees, carpenter bees, euglossine bees) and Lepidoptera (i.e., hawk 

moths and yucca moths, monarch butterflies). We included honeybees in the 

large insect category based on evidence showing that honeybees have flying and 

pollen carry-over capacity similar to bumblebees (Cresswell, Bassom, Bell, 

Collins, & Kelly, 1995; Escaravage & Wagner, 2004). Vertebrates included bats, 

hummingbirds, and other nectarivorous birds such as honeyeaters and sunbirds. 

Some instances of vertebrate pollination were more generalized, with visitors 

including a combination of bats, birds, rodents, and/or marsupials.  

 

Seed dispersal mode 

Species were coded as dispersed by wind, animals, or gravity. Plants 
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adapted to wind dispersal presented fruits or seeds that were particularly light 

and/or winged. For those plants adapted to animal dispersal, exploratory 

analyses showed that different types of animal dispersal were not significantly 

different (results not shown). Thus, we kept the animal dispersal category broad, 

including plants with fruits or seeds dispersed by endo-, ecto-, or syn-zoochory. 

Plants with no adaptations for vector-mediated seed dispersal were coded as 

gravity dispersed. Based on the information reported in publications with FST and 

trait data, we did not find evidence of secondary movement of fruits or seeds by 

biotic agents. In some instances, however, water may play a secondary role in 

dispersing seeds that fall under mother plants, as in the mangrove species 

Avicennia spp. and Rhizophora spp., and for Beta vulgaris L., Casuarina 

cunninghamiana Miq., Cocos nucifera L., and Primula nutans Georgi, as well as 

for many forest trees after floods or inhabiting riparian sites (Levine & Murrell, 

2003; Nilsson, Brown, Jansson, & Merritt, 2010).  

 

Mating system 

We coded species as selfing, mixed-mating, or outcrossing, as identified 

by the authors in each study. Selfing species included strictly autogamous 

species. They were rare (N=7) and not included in the final 337-species dataset, 

due to their low sample size. Mixed-mating species included those that undergo 

both outcrossing and selfing to some extent, through either autogamy or 

geitonogamy (Goodwillie, Kalisz, & Eckert, 2005). Outcrossing species included 

plants that are self-incompatible, unisexual (i.e. monoecious or dioecious), or 
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dichogamous hermaphrodites; i.e. either having the male reproductive organs 

come to maturity before the female organs (protandry), or vice versa (protogyny).  

 

Growth form 

Species were coded as trees, shrubs, or non-woody plants. Trees 

included woody plants >10m tall, typically with a single trunk coming from the 

base. Shrubs included upright woody plants <10 m tall, typically with one or 

several trunks coming from the base. We also included in the shrub category 

hemi-parasites and hemi-epiphytes. Non-woody plants included herbs, 

epiphytes, and non-woody climbers. Growth form of species was often linked to 

habitat in that many non-woody plants and shrubs occurred in the forest 

understory, while many trees occurred in the subcanopy and canopy. However, 

non-woody plants, shrubs, and trees also occurred in open habitats like prairies. 

We did not include habitat as an additional predictor in our models due to its high 

collinearity with growth form. 

 

Latitudinal region 

We recorded the geographic location of each study to create an additional 

categorical variable for latitudinal region. Species were coded as tropical, sub-

tropical, or temperate. Tropical regions included sites between the tropics of 

Cancer and Capricorn (23.5° north and south of the equator, respectively), which 

are characterized by relatively low variation in daylight and temperature 

throughout the year, but with large environmental heterogeneity over short 
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distances. Sub-tropical regions included latitudes from 23.5° to 35° (north and 

south). These regions have climates similar to the tropics, but with more 

seasonal fluctuations. Temperate regions included latitudes greater than 35° 

north and south.  These zones are characterized by a wide range of 

temperatures throughout the year, and by clearly marked seasonal changes. 

 

Analytical framework 

Analyses were performed in R (R Core Team 2018). Prior to model 

testing, we performed transformations of continuous data to improve normality of 

model residuals (details in Appendix S2). FST was transformed using Tukey’s 

ladder of powers transformation (Tukey, 1970) with the function transformTukey 

from the R package rcompanion (Mangiafico, 2018). Continuous predictors were 

transformed using their natural logarithm. We also estimated correlations 

(Plackett, 1983) and evaluated multicollinearity issues (Acock & Stavig, 1979; 

Fox & Monette, 1992) among predictor variables (Appendix S3). The 

multicollinearity tests indicated that all predictors could be included together in a 

multiple regression (Table S2 and Table S3).  

In order to calculate and subsequently perform models that correct for 

phylogenetic signal (Freckleton, Harvey, & Pagel, 2002), a species-level 

phylogeny (Fig. S1) was produced with the R package V.PhyloMaker (Jin & Qian, 

2019). This package prunes a custom list of species from the latest and most 

complete mega-tree of vascular plants (Smith & Brown, 2018) (see Appendix S4 

for details). We then assessed phylogenetic signal in categorical predictors with 



 20 

Abouheif's (1999) method (Jombart, Balloux, & Dray, 2010; Pavoine, Ollier, 

Pontier, & Chessel, 2008), and in FST values with Pagel's (1999)  (Molina-

Venegas & Rodríguez, 2017; Revell, 2012) (Appendix S5). We found that closely 

related species tend to be more similar than expected by chance in their mating 

system, growth form, pollination mode, seed dispersal mode, latitudinal region 

and FST. The highest observed Moran’s I was that of growth form, followed by 

pollination mode, latitudinal region, seed dispersal mode, and lastly mating 

system (Fig. S2). FST values were also phylogenetically autocorrelated (Pagel’s 

=0.52, P<0.001 and Pagel’s =0.53, P<0.001 for raw and transformed FST 

values, respectively). Given the high levels of phylogenetic signal, we 

implemented phylogenetically informed multiple regressions (Symonds & 

Blomberg, 2014) with the function ‘phylolm’ from the R package phylolm (Ho & 

Ané, 2014). For the fit of models, the likelihood of the parameters was calculated 

with a Brownian motion model of evolution (Ho & Ané, 2014) (Appendix S6). 

Finally, for the categorical predictors with more than two levels we chose 

reference levels based on exploratory analyses with phylogenetic ANOVA and 

post-hoc tests (Garland, Dickerman, Janis, & Jones, 1993; Revell, 2012). We 

selected the level which mean was most different from that of other levels 

(Tables S4 and S5). Reference levels were as follow: trees for growth form, small 

insects for pollination mode, gravity for dispersal mode, and temperate for 

latitudinal region.  
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FST models 

We began our phylogenetic multiple regressions analyses of factors 

affecting genetic structure by constructing a null model with the sampling-scheme 

variables. We sequentially added the life history traits to this null model, checking 

whether each addition improved model fit of a multiple regression based on 

Akaike Information Criterion (AIC) scores (Akaike, 1974). Mating system and 

growth form were added together as there is ample evidence of their effect on 

FST (Duminil et al., 2007; Hamrick & Godt, 1992). We then added pollination 

mode and seed dispersal mode, to check whether either, or both together, 

improved the previous model. After finding the best model explaining FST with life 

history traits (Q1), we compared this model to one that included latitudinal region 

as an additional factor (Q2). We assessed the variance explained by each model 

with the R package rr2 and the function ‘R2.pred’ (Ives, 2018; Ives & Li, 2018). 

We further evaluated the best-fit model through a backward stepwise model 

selection with the function ‘phylostep’ in the phylolm package. The functions 

‘phylostep’ and ‘phylolm’ were congruent in finding the same best model.  

We then evaluated the importance of each variable in this best-fit model 

(Q3). We used the R package rr2 and the function ‘R2.lik’ to obtain the unique 

contribution of each factor in terms of the amount of FST variance explained by 

comparing the best-fit model with a reduced model not including the factor of 

interest.  
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Results 

Taxonomic scope and phylogeny 

The 337 species were distributed in 210 genera, representing 96 families 

in 34 orders. The majority of species (268) belonged to the Eudicots, followed by 

43 Monocots, 17 Magnoliids, and 9 Gymnosperms. The families Fabaceae 

(mostly Acacia; 8 species) and Fagaceae (mostly Quercus; 13 species) were 

particularly well represented, with 37 and 26 species respectively (Table S1). The 

resulting phylogeny had 337 tips and 311 nodes (Fig. S1).  In other words, 92% 

of the phylogeny was resolved, and only 26 tips (8%) belonged to polytomies. 

These polytomies correspond to clades for which phylogenetic information 

remains scarce or unclear (Stevens, 2001 onwards): Begonia (Begoniaceae), 

Alcantarea and Encholirium (Bromeliaceae), Streptocarpus (Gesneriaceae), 

Arceuthobium (Santalaceae), Magnolia (Magnoliaceae), Piper (Piperaceae), 

Psychotria (Rubiaceae), Acacia (Fabaceae), and Sorbus (Rosaceae).  

 

Life history traits that promote population divergence in seed plants (Q1) 

Among phylogenetic multiple regressions with the four life history traits 

(models 1–4, Table 1), model 4 was the best-fit, indicating that mating system, 

growth form, pollination mode and seed dispersal mode all influence FST (AIC=–

482.3). However, the performance of model 4 was almost indistinguishable from 

that of model 3 (ΔAIC=2.2), which only differed in the lack of the factor seed 

dispersal mode.  Further evidence for the relative unimportance of seed dispersal 

mode can be seen in the fact that adding seed dispersal mode to model 1 (which 
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only has mating system and growth form) results in much less improvement of fit 

(models 2 vs. 1, ΔAIC=2.5) than adding pollination mode (models 3 vs. 1, 

ΔAIC=16.6). 

 

Differences among latitudinal regions (Q2) 

Adding the factor latitudinal region to models with the four life history traits 

notably increased fit to the data (models 5–7, AIC=–488.6 to –503.9, Table 1). 

This is particularly evident when comparing the best-fit models for each instance 

(models 4 vs. 6, ΔAIC=21.6). Model performance was indistinguishable for 

models 6 vs. 7 (ΔAIC=1), which only differed in the addition of seed dispersal 

mode. Finally, in models 5 and 7 the factor seed dispersal mode was no longer a 

significant predictor of FST (Table 1 and 2). Below we focus on results from model 

7, as it is the most inclusive model of the factors we tested with the best fit to the 

data. 

Figure 1 shows how the levels of each factor affect population 

differentiation as measured by FST values (after transformation). The effect of 

each factor is depicted after accounting for the effect of the other independent 

variables in model 7. For mating system, outcrossers tend to have lower 

population differentiation than mixed-mating plants (Fig. 1a). Trees tend to have 

significantly lower population differentiation relative to non-woody plants and 

shrubs, while the latter two growth forms did not differ between each other (Fig. 

1b). Pollination by small insects leads to significantly greater differentiation 

compared to large insect, vertebrate and wind pollination, while the latter three 
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pollination modes did not differ between each other (Fig. 1c). Temperate zones 

have significantly lower FST values than tropics and subtropics, and the latter two 

regions did not differ from each other (Fig. 1e). Finally, seed dispersal mode was 

not a significant predictor of population genetic differentiation. FST values 

associated with gravity dispersal were highly variable, and although gravity 

dispersal results in higher FST values compared to wind dispersal, this difference 

was not significant. Animal dispersal also resulted in highly variable FST values 

that did not differ from other dispersal modes (Fig. 1d).  

 

Most important factor for explaining FST (Q3) 

Of all of the factors that we analyzed, latitudinal region explained the 

highest percent variation (7%), higher than the life history traits in model 7 (0.9–

6%, Fig 1f). Of the life history traits, mating system and pollination mode had the 

highest independent contribution to the variation in FST values (6% each), 

followed by growth form (4%), while the contribution of dispersal mode was very 

low (0.9%) and not statistically significant (Fig. 1f).  

 

Influence of variables in the null model 

Variables in the null model were significant predictors of FST in all multiple 

regressions (Table 1) and in model 7 (Table S6). Distance had the highest 

independent contribution (8%), compared to genetic marker and mean sample 

size (4% each). In general, FST values become larger when the geographic scale 

of studies increases. In contrast, FST values decrease with larger mean sample 
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sizes of individuals per population. Codominant markers (microsatellites and 

allozymes) tend to underestimate FST values, while dominant markers (AFLP and 

RAPD) overestimate them. ISSR markers did not differ from others.  

 

Discussion 

Here we provide the most robust and comprehensive evaluation to date of 

factors driving population genetic differentiation in seed plants. We largely found 

support for our hypothesis of factors that significantly influence FST and several 

intriguing patterns emerge from our analyses. Overall, we found higher FST for 

tropical, mixed-mating, non-woody species pollinated by small insects, and lower 

FST for temperate, outcrossing, trees pollinated by wind. Latitudinal region was 

the most important predictor for FST relative to the others tested. Mating system 

and pollination mode had equal contributions for explaining FST. Growth form was 

also a key factor influencing FST, while seed dispersal mode was not important in 

our most inclusive model (Table 2, Fig. 1).  

 

Influence of latitudinal region on FST 

Population differentiation was higher in the tropics and subtropics than in 

temperate regions (Fig. 1e). This result supports the idea that patterns of local 

diversity, such as the partitioning of genetic diversity among plant populations, 

cannot be explained in isolation from the geographic and historic processes of 

each region (Ricklefs, 1987, 2004, 2006). Some factors that may contribute 

include regional differences in seasonality, macroevolution, and geography, 
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differences which have more generally been hypothesized to contribute to the 

latitudinal diversity gradient (i.e. increased species richness closer to the 

equator) (Mittelbach et al., 2007; Rolland, Condamine, Jiguet, & Morlon, 2014; 

Schemske, Mittelbach, Cornell, Sobel, & Roy, 2009). Below we discuss some of 

these ideas, including the ‘asynchrony of seasons hypothesis’ (ASH) (Martin et 

al., 2009), the ‘time/area hypothesis’ (Fine & Ree, 2006), and the ‘niche 

conservatism hypothesis’ (Kerkhoff, Moriarty, & Weiser, 2014). 

One compelling explanation for the regional differences in FST is based on 

the idea that the tropics can have highly asynchronous rainfall patterns over 

small spatial scales (Martin et al., 2009). Given that most plants time their 

flowering to seasons (Crimmins, Crimmins, & Bertelsen, 2011; Gaudinier & 

Blackman, 2019), and that seasons are largely determined by rainfall in the 

tropics, small-scale differences in rainfall potentially disrupt gene flow and cause 

high population differentiation over short distances compared to the temperate 

zones. This is the aforementioned ASH, and our analyses support the prediction 

of higher population differentiation in the tropics. We note that the tropics and 

subtropics did not differ in FST, and that these regions have comparable climatic 

patterns (Sitnikov, 2009), thus the ASH may extend to subtropical regions. 

Higher FST in the tropics/subtropics than in the temperate zones can also 

be due to the different history of plant lineages in each region. The ‘time/area 

hypothesis’ (Fine & Ree, 2006) and the ‘niche conservatism hypothesis’ 

(Kerkhoff et al., 2014) allude to the idea that tropical clades are older and tend to 

live in the same environments throughout their evolutionary history, while 
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temperate clades diversified more recently after switching to novel environments 

once cooling began in the Oligocene. Thus, most temperate species likely 

expanded their populations fairly recently post-glaciation (34 Mya), resulting in 

lower population differentiation due to recent gene flow maintaining cohesion. In 

contrast, tropical species may have been in the same place longer and their 

populations have had more time to isolate due to dispersal limitations and build 

up genetic differentiation (Kisel & Barraclough, 2010; Smith et al., 2014). Tropics 

and subtropics share strong floristic affinities (Sarmiento, 1972), which 

corresponds to the similar FST between them.  

Finally, gene flow is likely more restricted in the tropics due to its 

heterogeneous orogeny and rich fluvial systems. Such geographic differences 

have also been hypothesized to contribute to the latitudinal diversity gradient 

(e.g., Smith et al., 2014; Wallace, 1854). This argument becomes particularly 

compelling in combination with the fact that temperature does not vary as 

extremely through the year in the tropics. Given this, different subpopulations 

would be expected to evolve narrower physiological niches that adapt them to 

particular altitudinal zones, and a similarly sized mountain would impose a 

greater barrier to dispersal, and thus to gene flow among subpopulations, in 

tropical than in temperate regions (Ghalambor, 2006; Janzen, 1967).   

Thus, overall, our results are in line with hypotheses that suggest greater 

species diversity in the tropics is due to higher speciation rates rather than lower 

extinction rates. While the specific mechanisms differ, including those mentioned 

above and others (see Mittelbach et al., 2007), these hypotheses all posit greater 
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population-level differentiation that then scales up to faster speciation rates in a 

model of allopatric or parapatric speciation. Direct tests on the influence of 

population differentiation on speciation rates are necessary in order to establish 

that population differentiation is a rate-limiting step of the speciation process 

(Harvey et al., 2019). Such tests are scarce and have only focused on 

vertebrates, finding a positive association in New World birds (Harvey et al., 

2017), and no association in Australian lizards (Singhal et al., 2018). We 

encourage similar tests in seed plants at a global scale. Nevertheless, ours is the 

first study that we are aware of to clearly document such a pattern of greater 

population differentiation in the tropics for seed plants (see Martin & McKay, 

2004 for a study in vertebrates). 

 

Influence of pollination mode on FST 

We found that pollination mode plays a key role in population 

differentiation, contrary to the findings of the latest review of FST and species 

traits in seed plants (Duminil et al., 2007).  Specifically, species pollinated by 

small insects have significantly higher FST than those with other pollination 

modes.  This pattern is likely due to reduced gene flow among plant populations. 

In fact, small insects have a lower pollen carry-over capacity than bumblebees 

and vertebrates (Dick et al., 2008; Rhodes, Fant, & Skogen, 2017), and studies 

of pollinator movement show that euglossine bees, hawkmoths, and bats can all 

travel long distances, even across fragmented habitats (Brunet, Larson-Rabin, & 

Stewart, 2012; Finger, Kaiser-Bunbury, Kettle, Valentin, & Ghazoul, 2014; 
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Janzen, 1971; López-Uribe, Oi, & Del Lama, 2008; McCulloch et al., 2013; 

Skogen, Overson, Hilpman, & Fant, 2019). Our results show that wind, large 

insects, and vertebrates have homogenizing effects on plant FST, which are 

statistically indistinguishable. Taken together, these patterns suggest that plants 

pollinated by small insects might be more sensitive to habitat fragmentation; the 

inability of these pollinators to connect distant fragments may decrease genetic 

diversity within populations, and along with it the ability to adapt in response to 

anthropogenic change.  

One important caveat is that the limited information on pollination systems 

for many species necessitated a relatively coarse-grained division of pollination 

mode into broad taxonomic groups. This approach overlooks potential behavioral 

differences within these groups. For instance, within the vertebrate pollination 

category, territorial hummingbirds likely move pollen much shorter distances than 

trap-lining hummingbirds (Betts, Hadley, & Kress, 2015; Ohashi & Thomson, 

2009), and bats may carry pollen more efficiently (Muchhala & Thomson, 2010) 

and to longer distances than hummingbirds (Lemke, 1984, 1985; Tello-Ramos, 

Hurly, & Healy, 2015).  

 

Influence of mating system on FST 

Our results provide additional support for the idea that mating system is a 

strong predictor of FST (Fig. 1a), even in the presence of other factors (Duminil et 

al., 2007). Mating system associates with FST because any amount of inbreeding 

(through mixed-mating) increases homozygosity within a subpopulation, and 
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reduces its effective population size, leading to increased population structure 

due to genetic drift. In contrast, outcrossing maintains genetic cohesion within 

and among subpopulations, decreasing genetic drift and reducing population 

structure (Charlesworth, 2003). Because populations of mixed-mating species 

are often highly differentiated, they will likely have populations with unique 

genetic diversity. Accordingly, conservation efforts for them should maximize the 

number of populations protected to maximize genetic diversity to increase their 

chances to adapt to environmental change (Ellstrand & Elam, 1993).  

 

Influence of growth form on FST 

We found that trees have populations with significantly lower FST than both 

shrubs and non-woody plants (Fig. 1b). Even though most trees are outcrossing 

in our dataset, our results show that growth form contributes to the variation in 

FST independently from mating system, contrary to the findings of Duminil et al. 

(2007, 2009). The inherent difference in scale between growth forms may 

contribute to this pattern: a given geographic distance between subpopulations 

may restrict gene flow much more for an herb than for a tree. In fact, 

neighborhood size, i.e. the spatial extent of closely related individuals, is larger in 

trees than shrubs and herbs (Vekemans & Hardy, 2004). Furthermore, trees 

usually have greater longevity than shrubs and non-woody plants (Duminil et al., 

2009), which may increase the chances of gene flow between tree 

subpopulations, more than for other growth forms. Finally, the fact that growth 

form and habitat are tightly linked may also contribute; many non-woody plants 
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and shrubs in our dataset occur in the forest understory, while many trees reach 

the canopy. Givnish (2010) and Theim, Shirk, and Givnish (2014) hypothesized 

that the understory imposes more limits to gene flow than the canopy because of 

the sedentary lifestyle of animal mutualists in the understory.  

 

Seed dispersal and FST 

Our results did not support the hypothesis that gravity-mediated seed 

dispersal increases population differentiation compared to wind or animal 

dispersal (Givnish, 2010) (Fig. 1d). This is in line with previous findings 

suggesting that the genetic structure of nuclear markers is largely driven by 

pollen flow (Petit et al., 2005; Sork, Nason, Campbell, & Fernandez, 1999; 

Skogen et al., 2019), and that the effect of seed dispersal is only detectable in 

the population genetic structure of chloroplast genes (Duminil et al., 2007). 

However, we note that gravity dispersal resulted in highly variable FST values, 

potentially due to unrecorded secondary seed vectors. FST values for animal 

dispersal were also highly variable, which suggests that different animals could 

have different effects on population differentiation. Thus overall, as with 

vertebrate pollination, we suspect that more fine-scaled classifications of 

dispersers may improve our understanding of their effects on plant population 

genetic structure. Testing this idea, however, requires more detailed data on 

animal dispersal modes, which can be difficult to characterize. For example, in 

our study many species have a mix of seed dispersers, including small to large 

mammals and birds (like most Arecaceae, Fabaceae, Fagaceae, Myrtaceae, 
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Sapotaceae, among others), making it difficult to assign plants to a disperser-

specific taxonomic affiliation or foraging behavioral trait.  

 

Considerations on model inference 

Phylogenetic multiple regressions allowed us to evaluate the unique effect 

of each predictor on FST while correcting for phylogenetic autocorrelation, which 

had not been accomplished in previous broad-scale studies. Additionally, we 

note that after adding the factor latitudinal region, the scaling parameter that 

corrects for phylogenetic autocorrelation ( fit in Table 1) became insignificant. 

This suggests that latitudinal region decreases the phylogenetic autocorrelation 

in the residuals modeled by our phylogenetic regressions (Freckleton, 2009). In 

fact, an alternative across-species multiple regression of model 7 (i.e., a linear 

model assuming phylogenetic independence) yielded identical results with 

indistinguishable fit to the data (ΔAIC=1.9). We suspect that region captured 

important phylogenetic information in FST and species traits; within each regional 

species pool, lineages share strong biogeographic and phylogenetic affinities. 

Put another way, we think that regional affiliation is the most important underlying 

factor influencing FST values at a global scale, and when not included, 

phylogenetic signal becomes a proxy for latitudinal region due to the tendency for 

closely related species to occur in similar regions.  

 

Future directions 

Understanding how plant population genetic structure is affected by life 
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history traits can greatly improve management strategies for populations facing 

increasingly fragmented habitats due to human-accelerated global change. Our 

study reveals that gene flow is generally more limited in non-woody species 

pollinated by small insects, making them more susceptible to isolation and loss of 

genetic diversity. Thus, in order to preserve the largest amount of genetic 

diversity for species with such traits, conservation efforts should seek to maintain 

numerous subpopulations spanning a wide geographic extent. Future broad-

scale studies of FST variation could provide more even greater insights for 

conservation by including population densities (Murawski & Hamrick, 1991; Sork 

et al., 1999), effects of habitat fragmentation (Aguilar, Quesada, Ashworth, 

Herrerias-Diego, & Lobo, 2008; Skogen et al., 2019), and the landscape context 

of populations (Sork et al., 1999). 

Another avenue for future research involves linking patterns of genetic 

variation at different scales. Little is known about how factors that affect genetic 

patterns over fine spatial scales (i.e., within subpopulations) extend to genetic 

patterns over larger spatial scales (i.e., among subpopulations). Intuitively, 

species with greater fine-scale genetic structure (Loiselle, Sork, Nason, & 

Graham, 1995) should also have greater population genetic structure, but this 

has rarely been tested. For example, a recent review found greater fine-scale 

genetic structure in species with short-distance dispersers, than those dispersed 

by birds (Gelmi‐Candusso et al., 2017), but it is unclear whether this difference 

would extend over larger distances. Overall, we expect that more comprehensive 

studies of ecological interactions, in combination with increasing amounts of 
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genetic data collected at various spatial scales will continue to improve our 

understanding of the factors that influence population genetic structure in seed 

plants. 
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Table 1 Phylogenetic multiple regressions explaining variation in FST. In each 

model only the main effect of factors is considered, i.e., no interactions. AIC and 

 fit (scaling parameter to correct for phylogeny) were estimated using maximum 

likelihood. Underlined variables indicate that at least one of their terms was a 

significant factor in the corresponding model. (Thick underline: P≤0.005, thin 

underline: 0.005<P<0.05) (next page). 
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MODEL Variables † R2 AIC  fit 

Null model  genetic marker 

mean sample size ‡ 

distance § 
 

0.36 –437 0.57 

Model 1 null model 

 

0.41 –463.5 0.48 

Model 2 null model 

 

0.42 –466 0.46 

Model 3 null model 

 

0.43 –480.1 0.37 

Model 4 null model 

  

0.44 –482.3 0.35 

Model 5 null model 

 

0.42 –488.6 <0.001 

Model 6 null model 

 

0.45 –503.9 <0.001 

Model 7 null model 

 

0.46 –502.9 <0.001 

† yellow circle: mating system, green circle: growth form, brown circle: seed 

dispersal mode, red circle: pollination mode, blue circle: latitudinal region. 

‡ mean sample size: natural logarithm of the mean sample size of individuals per 

population. 

§ distance: natural logarithm of the maximum distance between populations. 
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Table 2 Details of model 7, the most inclusive phylogenetic model with factors of 

interest. Variables in bold indicate the reference level for each categorical factor. 

N indicates the sample size of each group without phylogenetic correction. 

Significant P values are in bold. 

Variable N Estimate Std. Error T value P value 

Intercept  0.59 0.04 14.1 <0.001 

Mating system 

     Mixed-mating 

     Outcrossing 

 

80 

257 

 

 

–0.07 

 

 

0.01 

 

 

–4.7 

 

 

<0.001 

Growth form 

     Tree 

     Non-woody 

     Shrub 

 

163 

121 

53 

 

 

0.09 

0.06 

 

 

0.02 

0.02 

 

 

5.3 

3 

 

 

<0.001 

0.003 

Pollination mode 

     Small insects 

     Large insects 

     Vertebrates 

     Wind 

 

176 

48 

44 

69 

 

 

–0.06 

–0.05 

–0.05 

 

 

0.02 

0.02 

0.02 

 

 

–3.4 

–2.6 

–3 

 

 

0.001 

0.01 

0.003 

Seed dispersal mode 

     Gravity  

     Animals 

     Wind 

 

82 

147 

108 

 

 

–0.003 

–0.02 

 

 

0.02 

0.02 

 

 

–0.2 

–1.4 

 

 

0.8 

0.1 

Latitudinal region 

     Temperate 

     Sub-tropical 

     Tropical 

 

134 

78 

125 

 

 

0.07 

0.09 

 

 

0.02 

0.02 

 

 

4.5 

5.4 

 

 

<0.001 

<0.001 
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Fig. 1 Partial regression plots showing the effect of each factor on transformed 

FST values after accounting for the effect of other independent variables in model 

7 (i.e., adjusted FST). Parallel boxplots of the partial residuals are drawn for the 

levels of each factor along with significant differences between groups depicted 

by the upper horizontal grey lines according to model 7 (Table 2): (a) mating 

system, (b) growth form, (c) pollination mode, (d) seed dispersal mode, and (e) 

latitudinal region. Thick horizontal black lines are median values, boxes indicate 

25% and 75% quartiles, whiskers are maximum and minimum values, white 

circles are outliers. (f) Relative importance of each factor (ΔR2 value); the change 

in R2 after each individual factor is removed from model 7 (next page). 
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Additional supporting information that will appear in the expanded online 

version of this article: 

 

Appendix S1. References of publications with data on FST and species traits 

used in this study. 

Appendix S2. Data transformation. 

Appendix S3. Tests of multicollinearity. 

Appendix S4. Phylogeny. 

Appendix S5. Phylogenetic signal. 

Appendix S6. PhyloLM implementation. 

 

Fig. S1. Phylogeny of studied species. 

Fig. S2. Estimation of phylogenetic signal on model variables. 

 

Table S1. Dataset used in this study (in Table S1.xlsx). 

Table S2. Correlation tests between categorical variables. 

Table S3. Estimates of the generalized variance inflation factor on predictors. 

Table S4. Results from phylogenetic ANOVA on FST. 

Table S5. Pairwise post-hoc tests between groups within each categorical 

variable, estimated after performing phylogenetic ANOVA. 

Table S6. Details of model 7 including variables in the null model. 

 

 



 50 

Appendix S1. References of publication with FST data and species traits used in 

this study.  

 
de Abreu Moreira P, Brandão MM, de Araujo NH, de Oliveira DA, Fernandes 

GW. (2015). Genetic diversity and structure of the tree Enterolobium 
contortisiliquum (Fabaceae) associated with remnants of a seasonally dry 
tropical forest. Flora - Morphology, Distribution, Functional Ecology of 
Plants 210: 40–46. 

Addisalem AB, Bongers F, Kassahun T, Smulders MJM. (2016). Genetic diversity 
and differentiation of the frankincense tree (Boswellia papyrifera (Del.) 
Hochst) across Ethiopia and implications for its conservation. Forest 
Ecology and Management 360: 253–260. 

Affre L, Thompson JD. (1997). Population genetic structure and levels of 
inbreeding depression in the Mediterranean island endemic Cyclamen 
creticum (Primulaceae). Biological Journal of the Linnean Society 60: 
527–549. 

Afif M, Messaoud C, Boulila A, Chograni H, Bejaoui A, Rejeb MN, Boussaid M. 
(2008). Genetic structure of Tunisian natural carob tree (Ceratonia siliqua 
L.) populations inferred from RAPD markers. Annals of Forest Science 65: 
710–710. 

Alvarez-Buylla ER, Garay AA. (1994). Population genetic structure of Cecropia 
obtusifolia, a tropical pioneer tree species. Evolution 48: 437–453. 

Alves RM, Sebbenn AM, Artero AS, Clement C, Figueira A. (2007). High levels of 
genetic divergence and inbreeding in populations of cupuassu 
(Theobroma grandiflorum). Tree Genetics & Genomes 3: 289–298. 

Amat ME, Silvertown J, Vargas P. (2013). Strong spatial genetic structure 
reduces reproductive success in the critically endangered plant genus 
Pseudomisopates. Journal of Heredity 104: 692–703. 

Amico GC, Vidal-Russell R, Aizen MA, Nickrent D. (2014). Genetic diversity and 
population structure of the mistletoe Tristerix corymbosus (Loranthaceae). 
Plant Systematics and Evolution 300: 153–162. 

Angelone S, Hilfiker K, Holderegger R, Bergamini A, Hoebee SE. (2007). 
Regional population dynamics define the local genetic structure in Sorbus 
torminalis. Molecular Ecology 16: 1291–1301. 

Barbará T, Martinelli G, Fay MF, Mayo SJ, Lexer C. (2007). Population 
differentiation and species cohesion in two closely related plants adapted 
to neotropical high-altitude inselbergs, Alcantarea imperialis and 
Alcantarea geniculata (Bromeliaceae). Molecular Ecology 16: 1981–1992. 

Barbará T, Martinelli G, Palma-Silva C, Fay MF, Mayo S, Lexer C. (2009). 
Genetic relationships and variation in reproductive strategies in four 
closely related bromeliads adapted to neotropical ‘inselbergs’: Alcantarea 
glaziouana, A. regina, A. geniculata and A. imperialis (Bromeliaceae). 
Annals of Botany 103: 65–77. 



 51 

Baucom RS, Estill JC, Cruzan MB. (2005). The effect of deforestation on the 
genetic diversity and structure in Acer saccharum (Marsh): Evidence for 
the loss and restructuring of genetic variation in a natural system. 
Conservation Genetics 6: 39–50. 

Beatty GE, Brown JA, Cassidy EM, Finlay CMV, McKendrick L, Montgomery WI, 
Reid N, Tosh DG, Provan J. (2015). Lack of genetic structure and 
evidence for long-distance dispersal in ash (Fraxinus excelsior) 
populations under threat from an emergent fungal pathogen: implications 
for restorative planting. Tree Genetics and Genomes 11: 53. 

Beland JD, Krakowski J, Ritland CE, Ritland K, El-Kassaby YA. (2005). Genetic 
structure and mating system of northern Arbutus menziesii (Ericaceae) 
populations. Canadian Journal of Botany 83: 1581–1589. 

Bessega C, Pometti CL, Ewens M, Saidman BO, Vilardi JC. (2016). Fine-scale 
spatial genetic structure analysis in two Argentine populations of Prosopis 
alba (Mimosoideae) with different levels of ecological disturbance. 
European Journal of Forest Research 135: 495–505. 

Bizoux JP, Daïnou K, Bourland N, Hardy OJ, Heuertz M, Mahy G, Doucet JL. 
(2009). Spatial genetic structure in Milicia excelsa (Moraceae) indicates 
extensive gene dispersal in a low-density wind-pollinated tropical tree. 
Molecular Ecology 18: 4398–4408. 

Bodare S, Ravikanth G, Ismail SA, Patel MK, Spanu I, Vasudeva R, Shaanker 
RU, Vendramin GG, Lascoux M, Tsuda Y. (2017). Fine- and local- scale 
genetic structure of Dysoxylum malabaricum, a late-successional canopy 
tree species in disturbed forest patches in the Western Ghats, India. 
Conservation Genetics 18: 1–15. 

Boisselier-Dubayle M-C, Leblois R, Samadi S, Lambourdière J, Sarthou C. 
(2010). Genetic structure of the xerophilous bromeliad Pitcairnia geyskesii 
on inselbergs in French Guiana - a test of the forest refuge hypothesis. 
Ecography 33: 175–184. 

Bottin L, Verhaegen D, Tassin J, Olivieri I, Vaillant A, Bouvet JM. (2005). Genetic 
diversity and population structure of an insular tree, Santalum 
austrocaledonicum in New Caledonian archipelago: sandalwood’s genetic 
diversity and structure. Molecular Ecology 14: 1979–1989. 

Brandão MM, Vieira F de A, Nazareno AG, Carvalho D de. (2015). Genetic 
diversity of neotropical tree Myrcia splendens (Myrtaceae) in a fragment–
corridor system in the Atlantic rainforest. Flora - Morphology, Distribution, 
Functional Ecology of Plants 216: 35–41. 

Broadhurst LM. (2012). Genetic diversity and population genetic structure in 
fragmented Allocasuarina verticillata (Allocasuarinaceae)–implications for 
restoration. Australian Journal of Botany 59: 770–780. 

Broadhurst L, Coates D. (2002). Genetic diversity within and divergence between 
rare and geographically widespread taxa of the Acacia acuminata Benth. 
(Mimosaceae) complex. Heredity 88: 250–257. 

Broadhurst LM, Coates DJ. (2004). Genetic divergence among and diversity 
within two rare Banksia species and their common close relative in the 



 52 

subgenus Isostylis R.Br. (Proteaceae). Conservation Genetics 5: 837–
846. 

Broadhurst LM, Young AG, Murray BG. (2008). AFLPs reveal an absence of 
geographical genetic structure among remnant populations of pohutukawa 
(Metrosideros excelsa, Myrtaceae). New Zealand Journal of Botany 46: 
13–21. 

Brousseau L, Foll M, Scotti-Saintagne C, Scotti I. (2015). Neutral and adaptive 
drivers of microgeographic genetic divergence within continuous 
populations: the case of the neotropical tree Eperua falcata (Aubl.). PLOS 
ONE 10: e0121394. 

Browne L, Ottewell K, Karubian J. (2015). Short-term genetic consequences of 
habitat loss and fragmentation for the neotropical palm Oenocarpus 
bataua. Heredity 115: 389–395. 

Bustamante E, Búrquez A, Scheinvar E, Eguiarte LE. (2016). Population genetic 
structure of a widespread bat-pollinated columnar cactus. PLOS ONE 11: 
e0152329. 

Butcher PA, McDonald MW, Bell JC. (2009). Congruence between environmental 
parameters, morphology and genetic structure in Australia’s most widely 
distributed eucalypt, Eucalyptus camaldulensis. Tree Genetics & 
Genomes 5: 189–210. 

Caetano S, Prado D, Pennington RT, Beck S, Oliveira-Filho A, Spichiger R, 
Naciri Y. (2008). The history of Seasonally Dry Tropical Forests in eastern 
South America: inferences from the genetic structure of the tree Astronium 
urundeuva (Anacardiaceae). Molecular Ecology 17: 3147–3159. 

Caldiz MS, Premoli AC. (2005). Isozyme diversity in large and isolated 
populations of Luma apiculata (Myrtaceae) in north-western Patagonia, 
Argentina. Australian Journal of Botany 53: 781. 

Campbell DR, Dooley JL. (1992). The spatial scale of genetic differentiation in a 
hummingbird-pollinated plant: comparison with models of isolation by 
distance. The American Naturalist 139: 735–748. 

Cavallari MM, Forzza RC, Veasey EA, Zucchi MI, Oliveira GCX. (2006). Genetic 
variation in three endangered species of Encholirium (Bromeliaceae) from 
Cadeia do Espinhaço, Brazil, detected using RAPD Markers. Biodiversity 
and Conservation 15: 4357–4373. 

Cerón-Souza I, Bermingham E, McMillan W, Jones F. (2012). Comparative 
genetic structure of two mangrove species in Caribbean and Pacific 
estuaries of Panama. BMC Evolutionary Biology 12: 205. 

Chase MR, Boshier DH, Bawa KS. (1995). Population genetics of Cordia 
alliodora (Boraginaceae), a neotropical tree. 1. Genetic variation in natural 
populations. American Journal of Botany 82: 468–475. 

Cheng Y-P, Hwang S-Y, Chiou W-L, Lin T-P. (2006). Allozyme variation of 
populations of Castanopsis carlesii (fagaceae) revealing the diversity 
centers and areas of the greatest divergence in Taiwan. Annals of Botany 
98: 601–608. 

Cheng J, Lyu L-S, Shen Y-B, Li K-X, Liu Z-H, Wang W-X, Xie L. (2016). 
Population structure and genetic diversity of Lithocarpus litseifolius 



 53 

(Fagaceae) assessed using microsatellite markers. Nordic Journal of 
Botany 34: 752–760. 

Chung MG. (2000). Spatial distribution of allozyme polymorphisms following 
clonal and sexual reproduction in populations of Rhus javanica 
(Anacardiaceae). Heredity 84: 178. 

Chung MY, Kim K-J, Pak J-H, Park C-W, Sun B-Y, Myers ER, Chung MG. 
(2005). Inferring establishment histories in populations of Quercus dentata 
(Fagaceae) from the analysis of spatial genetic structure. Plant 
Systematics and Evolution 250: 231–242. 

Chung MY, Nason J, Chung MG, Kim K-J, Park C-W, Sun B-Y, Pak J-H. (2002). 
Landscape-level spatial genetic structure in Quercus acutissima 
(Fagaceae). American Journal of Botany 89: 1229–1236. 

Chybicki IJ, Oleska A, Burczyk J. (2011). Increased inbreeding and strong 
kinship structure in Taxus baccata estimated from both AFLP and SSR 
data. Heredity 107: 589–600. 

Coart E, Vekemans X, Smulders MJM, Wagner I, Van Huylenbroeck J, Van 
Bockstaele E, Roldan-Ruiz I. (2003). Genetic variation in the endangered 
wild apple (Malus sylvestris (L.) Mill.) in Belgium as revealed by amplified 
fragment length polymorphism and microsatellite markers. Molecular 
Ecology 12: 845–857. 

Cole CT, Biesboer DD. (1992). Monomorphism, reduced gene flow, and 
cleistogamy in rare and common species of Lespedeza (Fabaceae). 
American Journal of Botany 79: 567–575. 

Collevatti RG, Grattapaglia D, Hay JD. (2001). Population genetic structure of the 
endangered tropical tree species Caryocar brasiliense, based on 
variability at microsatellite loci. Molecular ecology 10: 349–356. 

Collevatti RG, Telles MPC, Lima JS, Gouveia FO, Soares TN. (2014). 
Contrasting spatial genetic structure in Annona crassiflora populations 
from fragmented and pristine savannas. Plant Systematics and Evolution 
300: 1719–1727. 

Colling G, Hemmer P, Bonniot A, Hermant S, Matthies D. (2010). Population 
genetic structure of wild daffodils (Narcissus pseudonarcissus L.) at 
different spatial scales. Plant Systematics and Evolution 287: 99–111. 

Conson ARO, Ruas EA, Vieira BG, Rodrigues LA, Costa BF, Bianchini E, Prioli 
AJ, de Fátima Ruas C, Ruas PM. (2013). Genetic structure of the Atlantic 
Rainforest tree species Luehea divaricata (Malvaceae). Genetica 141: 
205–215. 

Conte R, Sedrez dos Reis M, Mantovani A, Vencovsky R. (2008). Genetic 
structure and mating system of Euterpe edulis Mart. populations: a 
comparative analysis using microsatellite and allozyme markers. Journal 
of Heredity 99: 476–482. 

Costa J, Vaillancourt RE, Steane DA, Jones RC, Marques C. (2017). 
Microsatellite analysis of population structure in Eucalyptus globulus (AL 
Hipp, Ed.). Genome 60: 770–777. 



 54 

Cota LG, Moreira PA, Brandão MM, Royo VA, Junior AFM, Menezes EV, Oliveira 
DA. (2017). Structure and genetic diversity of Anacardium humile 
(Anacardiaceae): a tropical shrub. Genetics and Molecular Research 16. 

Culley TM, Wolfe AD. (2001). Population genetic structure of the cleistogamous 
plant species Viola pubescens Aiton (Violaceae), as indicated by allozyme 
and ISSR molecular markers. Heredity 86: 545–556. 

Daïnou K, Mahy G, Duminil J, Dick CW, Doucet J-L, Donkpégan ASL, Pluijgers 
M, Sinsin B, Lejeune P, Hardy OJ. (2014). Speciation slowing down in 
widespread and long-living tree taxa: insights from the tropical timber tree 
genus Milicia (Moraceae). Heredity 113: 74–85. 

Damasceno JO, Ruas EA, Rodrigues LA, Ruas CF, Bianchini E, Pimenta JA, 
Ruas PM. (2011). Genetic differentiation in Aspidosperma polyneuron 
(Apocynaceae) over a short geographic distance as assessed by AFLP 
markers. Genetics and Molecular Research 10: 1180–1187. 

Dangasuk OG, Gudu S. (2000). Allozyme variation in 16 natural populations of 
Faidherbia albida (Del.) A. Chev. Hereditas 133: 133–145. 

Debout GDG, Doucet J-L, Hardy OJ. (2011). Population history and gene 
dispersal inferred from spatial genetic structure of a Central African timber 
tree, Distemonanthus benthamianus (Caesalpinioideae). Heredity 106: 
88–99. 

De Carvalho MCCG, Da Silva DGG, Ruas PM, Medri ME, Ruas CF. Flooding 
tolerance and genetic diversity in populations of Luehea divaricata. 
Biologia Plantarum 52: 771–774. 

De-Lucas AI, González-Martínez SC, Vendramin GG, Hidalgo E, Heuertz M. 
(2009). Spatial genetic structure in continuous and fragmented 
populations of Pinus pinaster Aiton. Molecular Ecology 18: 4564–4576. 

de Melo Jr. AF, de Carvalho D, Vieira FA, Oliveira DA. (2012). Spatial genetic 
structure in natural populations of Caryocar brasiliense Camb. 
(Caryocareceae) in the North of Minas Gerais, Brazil. Biochemical 
Systematics and Ecology 43: 205–209. 

Demenou BB, Doucet J-L, Hardy OJ. (2018). History of the fragmentation of the 
African rain forest in the Dahomey Gap: insight from the demographic 
history of Terminalia superba. Heredity 120: 547–561. 

Dick CW, Hardy OJ, Jones FA, Petit RJ. (2008). Spatial scales of pollen and 
seed-mediated gene flow in tropical rain forest trees. Tropical Plant 
Biology 1: 20–33. 

Doligez A, Joly HI. (1997). Genetic diversity and spatial structure within a natural 
stand of a tropical forest tree species, Carapa procera (Meliaceae), in 
French Guiana. Heredity 79:72–82. 

Dry P, Burdon J. (1986). Genetic structure of natural populations of wild 
sunflowers (Helianthus annuus L.) in Australia. Australian Journal of 
Biological Sciences 39: 255. 

Duminil J, Daïnou K, Kaviriri DK, Gillet P, Loo J, Doucet J-L, Hardy OJ. (2016). 
Relationships between population density, fine-scale genetic structure, 
mating system and pollen dispersal in a timber tree from African 
rainforests. Heredity 116: 295–303. 



 55 

Dutech C, Joly HI, Jarne P. (2004). Gene flow, historical population dynamics 
and genetic diversity within French Guianan populations of a rainforest 
tree species, Vouacapoua americana. Heredity 92: 69–77. 

El Mousadik A, Petit RJ. (1996). High level of genetic differentiation for allelic 
richness among populations of the argan tree [Argania spinosa (L.) 
Skeels] endemic to Morocco. Theoretical and Applied Genetics 92: 832–
839. 

England PR, Usher AV, Whelan RJ, Ayre DJ. (2002). Microsatellite diversity and 
genetic structure of fragmented populations of the rare, fire‐dependent 
shrub Grevillea macleayana. Molecular Ecology 11: 967–977. 

Fant JB, Havens K, Keller JM, Radosavljevic A, Yates ED. (2014). The influence 
of contemporary and historic landscape features on the genetic structure 
of the sand dune endemic, Cirsium pitcheri (Asteraceae). Heredity 112: 
519–530. 

Fenster CB, Vekemans X, Hardy OJ. (2003). Quantifying gene flow from spatial 
genetic structure data in a metapopulation of Chamaecrista fasciculata 
(Leguminosae). Evolution 57: 995–1007. 

Fontaine C, Lovett PN, Sanou H, Maley J, Bouvet J-M. (2004). Genetic diversity 
of the shea tree (Vitellaria paradoxa C.F. Gaertn), detected by RAPD and 
chloroplast microsatellite markers. Heredity 93: 639–648. 

Foster PF, Sork VL. (1997). Population and genetic structure of the West African 
rain forest liana Ancistrocladus korupensis (Ancistrocladaceae). American 
Journal of Botany 84: 1078–1091. 

Franceschinelli EV, Kesseli R. (1999). Population structure and gene flow of the 
Brazilian shrub Helicteres brevispira. Heredity 82: 355–363. 

Frascaria N, Santi F, Gouyon PH. (1993). Genetic differentiation within and 
among populations of chestnut (Castanea sativa Mill.) and wild cherry 
(Prunus avium L.). Heredity 70: 634–641. 

Fuchs EJ, Hamrick JL. (2010). Genetic Diversity in the Endangered Tropical 
Tree, Guaiacum sanctum (Zygophyllaceae). Journal of Heredity 101: 284–
291. 

Ganzhorn SM, Thomas WW, Gaiotto FA, Lewis JD. (2015). Spatial genetic 
structure of Manilkara maxima (Sapotaceae), a tree species from the 
Brazilian Atlantic forest. Journal of Tropical Ecology 31: 437–447. 

Gaudeul M, Till-Bottraud I, Barjon F, Manel S. (2004). Genetic diversity and 
differentiation in Eryngium alpinum L. (Apiaceae): comparison of AFLP 
and microsatellite markers. Heredity 92: 508–518. 

Ge JP, Cai B, Ping W, Song G, Ling H, Lin P. (2005). Mating system and 
population genetic structure of Bruguiera gymnorrhiza (Rhizophoraceae), 
a viviparous mangrove species in China. Journal of Experimental Marine 
Biology and Ecology 326: 48–55. 

Godt MJW, Hamrick JL. (1993). Genetic diversity and population structure in 
Tradescantia hirsuticaulis (Commelinaceae). American Journal of Botany 
80: 959–966. 

Godt MJW, Hamrick JL. (1999). Population genetic analysis of Elliottia racemosa 
(Ericaceae), a rare Georgia shrub. Molecular Ecology 8: 75–82. 



 56 

Goetze M, Büttow MV, Zanella CM, Paggi GM, Bruxel M, Pinheiro FG, Sampaio 
JAT, Palma-Silva C, Cidade FW, Bered F. (2015). Genetic variation in 
Aechmea winkleri, a bromeliad from an inland Atlantic rainforest fragment 
in Southern Brazil. Biochemical Systematics and Ecology 58: 204–210. 

Gonzalez-Astorga J. (2004). Diversity and genetic structure of the mexican 
endemic epiphyte Tillandsia achyrostachys E. Morr. ex Baker var. 
achyrostachys (Bromeliaceae). Annals of Botany 94: 545–551. 

González-Martínez SC, Dubreuil M, Riba M, Vendramin GG, Sebastiani F, Mayol 
M. (2010). Spatial genetic structure of Taxus baccata L. in the western 
Mediterranean Basin: Past and present limits to gene movement over a 
broad geographic scale. Molecular Phylogenetics and Evolution 55: 805–
815. 

González-Pérez MA, Caujapé-Castells J, Sosa PA. (2004). Allozyme variation 
and structure of the Canarian endemic palm tree Phoenix canariensis 
(Arecaceae): implications for conservation. Heredity 93: 307–315. 

Haase P. (1992). Isozyme variability and biogeography of Nothofagus truncata 
(Fagaceae). New Zealand Journal of Botany 30: 315–328. 

Hahn T, Kettle CJ, Ghazoul J, Frei ER, Matter P, Pluess AR. (2012). Patterns of 
genetic variation across altitude in three plant species of semi-dry 
grasslands. PLoS ONE 7: e41608. 

Hahn CZ, Michalski SG, Durka W. (2017). Gene flow in, and mating system of, 
Rhododendron simsii in a nature reserve in subtropical China. Nordic 
Journal of Botany 35: 1–7. 

Hahn CZ, Michalski SG, Fischer M, Durka W. (2016). Genetic diversity and 
differentiation follow secondary succession in a multi-species study on 
woody plants from subtropical China. Journal of Plant Ecology: rtw054. 

Hall P, Chase MR, Bawa KS. (1994). Low genetic variation but high population 
differentiation in a common tropical forest tree species. Conservation 
Biology 8: 471–482. 

Hall P, Walker S, Bawa K. (1996). Effect of forest fragmentation on genetic 
diversity and mating system in a tropical tree, Pithecellobium elegans. 
Conservation Biology 10: 757–768. 

Hansen OK, Changtragoon S, Ponoy B, Kjær ED, Minn Y, Finkeldey R, Nielsen 
KB, Graudal L. (2015). Genetic resources of teak (Tectona grandis Linn. 
f.)—strong genetic structure among natural populations. Tree Genetics & 
Genomes 11: 802. 

Hardesty BD, Dick CW, Hamrick JL, Degen B, Hubbell SP, Bermingham E. 
(2010). Geographic influence on genetic structure in the widespread 
neotropical tree Simarouba amara (Simaroubaceae): landscape genetic 
diversity of Simarouba amara. Tropical Plant Biology 3: 28–39. 

Hardy OJ, Vekemans X. (2001). Patterns of allozyme variation in diploid and 
tetraploid Centaurea jacea at different spatial scales. Evolution 55: 943–
954. 

Hardy OJ, Maggia L, Bandou E, Breyne P, Caron H, Chevallier M-E, Doligez A, 
Dutech C, Kremer A, Latouche-Hallé C, et al. (2006). Fine-scale genetic 
structure and gene dispersal inferences in 10 Neotropical tree species. 



 57 

Molecular Ecology 15: 559–571. 
He R, Wang J, Huang H. (2012). Long-distance gene dispersal inferred from 

spatial genetic structure in Handeliodendron bodinieri, an endangered tree 
from karst forest in southwest China. Biochemical Systematics and 
Ecology 44: 295–302. 

Heer K, Kalko EKV, Albrecht L, García-Villacorta R, Staeps FC, Herre EA, Dick 
CW. (2015). Spatial scales of genetic structure in free-standing and 
strangler figs (Ficus, Moraceae) inhabiting neotropical forests. PLOS ONE 
10: e0133581. 

Helsen K, Jacquemyn H, Honnay O. (2015). Hidden founder effects: small-scale 
spatial genetic structure in recently established populations of the 
grassland specialist plant Anthyllis vulneraria. Molecular Ecology 24: 
2715–2728. 

Helsen K, Meekers T, Vranckx G, Roldán-Ruiz I, Vandepitte K, Honnay O. 
(2016). A direct assessment of realized seed and pollen flow within and 
between two isolated populations of the food-deceptive orchid Orchis 
mascula (N Vereecken, Ed.). Plant Biology 18: 139–146. 

Heuertz M, Hausman J-F, Hardy OJ, Vendramin GG, Frascaria-Lacoste N, 
Vekemans X. (2004). Nuclear microsatellites reveal contrasting patterns of 
genetic structure between western and southeastern European 
populations of the common ash (Fraxinus excelsior L.). Evolution 58: 976–
988. 

Hipólito J, Viana BF, Selbach-Schnadelbach A, Galetto L, Kevan PG. (2012). 
Pollination biology and genetic variability of a giant perfumed flower 
(Aristolochia gigantea Mart. and Zucc., Aristolochiaceae) visited mainly by 
small Diptera. Botany 90: 815–829. 

Hiraoka K, Tomaru N. (2009). Genetic divergence in nuclear genomes between 
populations of Fagus crenata along the Japan Sea and Pacific sides of 
Japan. Journal of Plant Research 122: 269–282. 

Hmeljevski KV, Nazareno AG, Leandro Bueno M, dos Reis MS, Forzza RC. 
(2017). Do plant populations on distinct inselbergs talk to each other? A 
case study of genetic connectivity of a bromeliad species in an Ocbil 
landscape. Ecology and Evolution 7: 4704–4716. 

Hoban SM, McCleary TS, Schlarbaum SE, Romero-Severson J. (2014). Spatial 
genetic structure in 21 populations of butternut, a temperate forest tree 
(Juglans cinerea L.), is correlated to spatial arrangement, habitat, and 
land-use history. Forest Ecology and Management 314: 50–58. 

Hoey MT, Parks CR. (1994). Genetic Divergence in Liquidambar styraciflua, L. 
formosana, and L. acalycina (Hamamelidaceae). Systematic Botany 19: 
308. 

Hughes M. (2002). Population structure and speciation in Begonia L. PhD thesis, 
University of Glasgow, Scotland. 

Hughes M, MacMaster G, Möller M, Bellstedt DU, Edwards TJ. (2006). Breeding 
system of a plesiomorphic floral type: an investigation of small flowered 
Streptocarpus (Gesneriaceae) species. Plant Systematics and Evolution 
262: 13–24. 



 58 

Hughes M, Moller M, Edwards TJ, Bellstedt DU, Villiers M d. (2007). The impact 
of pollination syndrome and habitat on gene flow: a comparative study of 
two Streptocarpus (Gesneriaceae) species. American Journal of Botany 
94: 1688–1695. 

Huh MK. (1999). Genetic diversity and population structure of Korean alder 
(Alnus japonica; Betulaceae). Canadian journal of forest research 29: 
1311–1316. 

Iddrisu MN, Ritland K. (2004). Genetic variation, population structure, and mating 
system in bigleaf maple (Acer macrophyllum Pursh). Canadian Journal of 
Botany 82: 1817–1825. 

Izquierdo LY, Piñero D. (2000). High genetic diversity in the only known 
population of Aechmea tuitensis (Bromeliaceae). Australian Journal of 
Botany 48: 645. 

Jacquemyn H, Brys R, Honnay O, Hermy M, Roldán-Ruiz I. (2005). Local forest 
environment largely affects below-ground growth, clonal diversity and fine-
scale spatial genetic structure in the temperate deciduous forest herb 
Paris quadrifolia: effects of local environment on Paris quadrifolia. 
Molecular Ecology 14: 4479–4488. 

Jacquemyn H, Honnay O, Galbusera P, Roldan-Ruiz I. (2004). Genetic structure 
of the forest herb Primula elatior in a changing landscape. Molecular 
Ecology 13: 211–219. 

Jeong J-H, Park Y-J, Kim Z-S. (2007). Genetic diversity and spatial structure of 

Symplocarpus renifolius on Mt. Cheonma, Korea. 한국자원식물학회지 20: 

530–539. 
Jerome CA, Ford BA. (2002). The discovery of three genetic races of the dwarf 

mistletoe Arceuthobium americanum (Viscaceae) provides insight into the 
evolution of parasitic angiosperms. Molecular Ecology 11: 387–405. 

Jia H, Jiao Y, Wang G, Li Y, Jia H, Wu H, Chai C, Dong X, Guo Y, Zhang L, et al. 
(2015). Genetic diversity of male and female Chinese bayberry (Myrica 
rubra) populations and identification of sex-associated markers. BMC 
Genomics 16: 394. 

Jiménez P, Agundez D, Alia R, Gil L. (1999). Genetic variation in central and 
marginal populations of Quercus suber L. Silvae Genetica 48: 278–283. 

Jolivet C, Höltken AM, Liesebach H, Steiner W, Degen B. (2011). Spatial genetic 
structure in wild cherry (Prunus avium L.): I. variation among natural 
populations of different density. Tree Genetics and Genomes 7: 271–283. 

Juárez L, Montaña C, Ferrer MM. (2011). Genetic structure at patch level of the 
terrestrial orchid Cyclopogon luteoalbus (Orchidaceae) in a fragmented 
cloud forest. Plant Systematics and Evolution 297: 237–251. 

Jump AS, Rico L, Lloret F, Peñuelas J. (2009). Microspatial population genetic 
structure of the Mediterranean shrub Fumana thymifolia. Plant Biology 11: 
152–160. 

Kang M, Jiang M, Huang H. (2005). Genetic diversity in fragmented populations 
of Berchemiella wilsonii var. pubipetiolata (Rhamnaceae). Annals of 
Botany 95: 1145–1151. 



 59 

Kassa A, Konrad H, Geburek T. (2017). Landscape genetic structure of Olea 
europaea subsp. cuspidata in Ethiopian highland forest fragments. 
Conservation Genetics 18: 1463–1474. 

Kim SH, Jang YS, Han JG, Chung HG, Lee SW, Cho KJ. (2006). Genetic 
variation and population structure of Dendropanax morbifera Lev. 
(Araliaceae) in Korea. Silvae Genetica 55: 7–13. 

Kitamoto N, Honjo M, Ueno S, Takenaka A, Tsumura Y, Washitani I, Ohsawa R. 
(2005). Spatial genetic structure among and within populations of Primula 
sieboldii growing beside separate streams: spatial genetic structure of P. 
sieboldii. Molecular Ecology 14: 149–157. 

Kitamura K, Kawano S. (2001). Regional differentiation in genetic components 
for the American beech, Fagus grandifolia Ehrh., in relation to geological 
history and mode of reproduction. Journal of Plant Research 114: 353–
368. 

Kloss L, Fischer M, Durka W. (2011). Land-use effects on genetic structure of a 
common grassland herb: A matter of scale. Basic and Applied Ecology 12: 
440–448. 

Knight SE, Waller DM. (1987). Genetic Consequences of outcrossing in the 
cleistogamous annual, Impatiens capensis. I. Population-Genetic 
Structure. Evolution 41: 969. 

Kramer AT, Fant JB, Ashley MV. (2011). Influences of landscape and pollinators 
on population genetic structure: Examples from three Penstemon 
(Plantaginaceae) species in the Great Basin. American Journal of Botany 
98: 109–121. 

Kreivi M, Aspi J, Leskinen E. (2011). Regional and local spatial genetic structure 
of Siberian primrose populations in Northern Europe. Conservation 
Genetics 12: 1551–1563. 

Kudoh H, Whigham DF. (1997). Microgeographic genetic structure and gene flow 
in Hibiscus moscheutos (Malvaceae) populations. American Journal of 
Botany 84: 1285–1293. 

Kuss P, Pluess AR, Aegisdottir HH, Stocklin J. (2008). Spatial isolation and 
genetic differentiation in naturally fragmented plant populations of the 
Swiss Alps. Journal of Plant Ecology 1: 149–159. 

Kyndt T, Assogbadjo AE, Hardy OJ, Glele Kakaï R, Sinsin B, Van Damme P, 
Gheysen G. (2009). Spatial genetic structuring of baobab (Adansonia 
digitata, Malvaceae) in the traditional agroforestry systems of West Africa. 
American Journal of Botany 96: 950–957. 

de Lafontaine G, Ducousso A, Lefèvre S, Magnanou E, Petit RJ. (2013). 
Stronger spatial genetic structure in recolonized areas than in refugia in 
the European beech. Molecular Ecology 22: 4397–4412. 

Lamont RW, Conroy GC, Reddell P, Ogbourne SM. (2016). Population genetic 
analysis of a medicinally significant Australian rainforest tree, Fontainea 
picrosperma C.T. White (Euphorbiaceae): biogeographic patterns and 
implications for species domestication and plantation establishment. BMC 
Plant Biology 16: 57. 



 60 

Lasso E, Dalling JW, Bermingham E. (2011). Strong spatial genetic structure in 
five tropical Piper species: should the Baker-Fedorov hypothesis be 
revived for tropical shrubs?. Ecology and Evolution 1: 502–516. 

Latouche-Hallé C, Ramboer A, Bandou E, Caron H, Kremer A. (2003). Nuclear 
and chloroplast genetic structure indicate fine-scale spatial dynamics in a 
neotropical tree population. Heredity 91: 181–190. 

Lau CPY, Saunders RMK, Ramsden L. (2009). Floral biology, breeding systems 
and population genetic structure of three climbing Bauhinia species 
(Leguminosae: Caesalpinioideae) in Hong Kong, China. Journal of 
Tropical Ecology 25: 147–159. 

Le Corre V, Dumolin‐Lapègue S, Kremer A. (1997). Genetic variation at allozyme 
and RAPD loci in sessile oak Quercus petraea (Matt.) Liebl.: the role of 
history and geography. Molecular Ecology 6: 519–529. 

Ledig FT. (2000). Founder effects and the genetic structure of Coulter pine. 
Journal of Heredity 91: 307–315. 

Lee Y-J, Hwang S-Y, Ho K-C, Lin T-P. (2006). Source populations of Quercus 
glauca in the last glacial age in taiwan revealed by nuclear microsatellite 
markers. Journal of Heredity 97: 261–269. 

Lee CT, Lee SL, Ng KKS, Salwana HS, Norwati M, Saw LG. (2007). Allozyme 
diversity of Koompassia malaccensis (Leguminosae) in peninsular 
Malaysia. Journal of Tropical Forest Science 19(2): 73–78. 

Lee S-L, Ng KK-S, Saw L-G, Norwati A, Salwana MHS, Lee C-T, Norwati M. 
(2002). Population genetics of Intsia palembanica (Leguminosae) and 
genetic conservation of Virgin Jungle Reserves in Peninsular Malaysia. 
American Journal of Botany 89: 447–459. 

Lee SL, Wickneswari R, Mahani MC, Zakri AH. (2000). Genetic diversity of a 
tropical tree species, Shorea leprosula Miq. (Dipterocarpaceae), in 
Malaysia: implications for conservation of genetic resources and tree 
improvement. Biotropica 32: 213–224. 

Lemos RPM, D’Oliveira CB, Stefenon VM. (2015). Genetic structure and internal 
gene flow in populations of Schinus molle (Anacardiaceae) in the Brazilian 
Pampa. Tree Genetics & Genomes 11: 75. 

Leonarduzzi C, Piotti A, Spanu I, Vendramin GG. (2016). Effective gene flow in a 
historically fragmented area at the southern edge of silver fir (Abies alba 
Mill.) distribution. Tree Genetics & Genomes 12: 95. 

Ley AC, Hardy OJ. (2016). Spatially limited clonality and pollen and seed 
dispersal in a characteristic climber of Central African rain forests: 
Haumania danckelmaniana (Marantaceae). Biotropica 48: 618–627. 

Leys M, Petit EJ, El-Bahloul Y, Liso C, Fournet S, Arnaud J-F. (2014). Spatial 
genetic structure in Beta vulgaris subsp. maritima and Beta macrocarpa 
reveals the effect of contrasting mating system, influence of marine 
currents, and footprints of postglacial recolonization routes. Ecology and 
Evolution 4: 1828–1852. 

Lhuillier E, Butaud J-F, Bouvet J-M. (2006). Extensive clonality and strong 
differentiation in the insular pacific tree Santalum insulare: Implications for 
its conservation. Annals of Botany 98: 1061–1072. 



 61 

Li C. (2000). RAPD analysis of genetic variation in Eucalyptus microtheca F. 
Muell. populations. Hereditas 132: 151–156. 

Liengsiri C, Yeh FrancisC, Boyle TJB. (1995). Isozyme analysis of a tropical 
forest tree, Pterocarpus macrocarpus Kurz. in Thailand. Forest Ecology 
and Management 74: 13–22. 

Lin T-P. (2001). Allozyme variations in Michelia formosana (Kanehira) 
Masamune (Magnoliaceae), and the inference of a glacial refugium in 
Taiwan: Theoretical and Applied Genetics 102: 450–457. 

Listl D, Reisch C. (2012). spatial genetic structure of the sedge Carex Nigra 
reflects hydrological conditions in an Alpine fen. Arctic, Antarctic, and 
Alpine Research 44: 350–358. 

Liu M, Compton SG, Peng F-E, Zhang J, Chen X-Y. (2015). Movements of genes 
between populations: are pollinators more effective at transferring their 
own or plant genetic markers? Proceedings of the Royal Society B: 
Biological Sciences 282: (2015)0290–(2015)0290. 

Loiselle BA, Sork VL, Nason J, Graham C. (1995). Spatial genetic structure of a 
tropical understory shrub, Psychotria officinalis (Rubiaceae). American 
Journal of Botany 82: 1420–1425. 

Lopez L, Barreiro R. (2013). Genetic guidelines for the conservation of the 
endangered polyploid Centaurea borjae (Asteraceae). Journal of Plant 
Research 126: 81–93. 

Lowe AJ, Jourde B, Breyne P, Colpaert N, Navarro C, Wilson J, Cavers S. 
(2003). Fine-scale genetic structure and gene flow within Costa Rican 
populations of mahogany (Swietenia macrophylla). Heredity 90: 268–275. 

Magalhaes IS, Gleiser G, Labouche A-M, Bernasconi G. (2011). Comparative 
population genetic structure in a plant-pollinator/seed predator system: 
genetic structure in a plant-pollinator system. Molecular Ecology 20: 
4618–4630. 

Maguire TL, Saenger P, Baverstock P, Henry R. (2000). Microsatellite analysis of 
genetic structure in the mangrove species Avicennia marina (Forsk.) 
Vierh. (Avicenniaceae). Molecular Ecology 9: 1853–1862. 

Mahy G, Vekemans X, Jacquemart A-L. (1999). Patterns of allozymic variation 
within Calluna vulgaris populations at seed bank and adult stages. 
Heredity 82: 432–440. 

Marchelli P, Gallo LA. (2001). Genetic diversity and differentiation in a southern 
beech subjected to introgressive hybridization. Heredity 87: 284–293. 

Mariette S, Cottrell J, Csaikl UM, Goikoechea P, Konig A, Lowe AJ, Van Dam 
BC, Barreneche T, Bodénès C, Streiff R. (2002). Comparison of levels of 
genetic diversity detected with AFLP and microsatellite markers within and 
among mixed Q. petraea (Matt.) Liebl. and Q. robur L. stands. Silvae 
Genetica 51: 72–79. 

Mariot A. (2002). Genetic diversity in natural populations of Piper cernuum. 
Journal of Heredity 93: 365–369. 

Marquardt PE, Epperson BK. (2004). Spatial and population genetic structure of 
microsatellites in white pine: genetic variation in white pine. Molecular 
Ecology 13: 3305–3315. 



 62 

Marsico TD, Hellmann JJ, Romero-Severson J. (2009). Patterns of seed 
dispersal and pollen flow in Quercus garryana (Fagaceae) following post-
glacial climatic changes. Journal of Biogeography 36: 929–941. 

Martín MA, Mattioni C, Molina JR, Alvarez JB, Cherubini M, Herrera MA, Villani 
F, Martín LM. (2012). Landscape genetic structure of chestnut (Castanea 
sativa Mill.) in Spain. Tree Genetics & Genomes 8: 127–136. 

Matolweni LO, Balkwill K, McLellan T. (2000). Genetic diversity and gene flow in 
the morphologically variable, rare endemics Begonia dregei and Begonia 
homonyma (Begoniaceae). American Journal of Botany 87: 431–439. 

Matter P, Kettle CJ, Ghazoul J, Pluess AR. (2013). Extensive contemporary 
pollen-mediated gene flow in two herb species, Ranunculus bulbosus and 
Trifolium montanum, along an altitudinal gradient in a meadow landscape. 
Annals of Botany 111: 611–621. 

Mayol M, Palau C, Rosselló JA, González-Martínez SC, Molins A, Riba M. 
(2012). Patterns of genetic variability and habitat occupancy in Crepis 
triasii (Asteraceae) at different spatial scales: insights on evolutionary 
processes leading to diversification in continental islands. Annals of 
Botany 109: 429–441. 

McDonald MW, Rawlings M, Butcher PA, Bell JC. (2003). Regional divergence 
and inbreeding in Eucalyptus cladocalyx (Myrtaceae). Australian Journal 
of Botany 51: 393. 

McGranahan M, Slee M, Bell JC, Moran GF. (1997). High genetic divergence 
between geographic regions in the highly outcrossing species Acacia 
aulacocarpa (Cunn. ex Benth.). International Journal of Forest Genetics 4: 
1–13. 

Medina-Macedo L, Sebbenn AM, Lacerda AEB, Ribeiro JZ, Soccol CR, 
Bittencourt JVM. (2015). High levels of genetic diversity through pollen 
flow of the coniferous Araucaria angustifolia: a landscape level study in 
Southern Brazil. Tree Genetics & Genomes 11: 814(1–14). 

Meirmans PG, Goudet J, IntraBioDiv Consortium, Gaggiotti OE. (2011). Ecology 
and life history affect different aspects of the population structure of 27 
high-alpine plants: life history, ecology and genetic structure. Molecular 
Ecology 20: 3144–3155. 

Melo AT de O, Franceschinelli EV. (2016). Gene flow and fine-scale spatial 
genetic structure in Cabralea canjerana (Meliaceae), a common tree 
species from the Brazilian Atlantic forest. Journal of Tropical Ecology 32: 
135–145. 

Michaud H, Lumaret R, Romane F. (1992). Variation in the genetic structure and 
reproductive biology of holm oak populations. In: Quercus ilex L. 
ecosystems: function, dynamics and management. Springer, 107–113. 

Montalvo AM, Conard SG, Conkle MT, Hodgskiss PD. (1997). Population 
structure, genetic diversity, and clone formation in Quercus chrysolepis 
(Fagaceae). American Journal of Botany 84: 1553–1564. 

Moran G, Bell J, Turnbull J. (1989a). A Cline in Genetic Diversity in River She-
Oak Casuarina cunninghamiana. Australian Journal of Botany 37: 169. 



 63 

Moran GF, Muona O, Bell JC. (1989b). Acacia mangium: a tropical forest tree of 
the coastal lowlands with low genetic diversity. Evolution 43: 231–235. 

Moreira PA, Fernandes GW, Collevatti RG. (2009). Fragmentation and spatial 
genetic structure in Tabebuia ochracea (Bignoniaceae) a seasonally dry 
Neotropical tree. Forest Ecology and Management 258: 2690–2695. 

Moreira RG, McCauley RA, Cortés-Palomec AC, Fernandes GW, Oyama K. 
(2010). Spatial genetic structure of Coccoloba cereifera (Polygonaceae), a 
critically endangered microendemic species of Brazilian rupestrian fields. 
Conservation Genetics 11: 1247–1255. 

Muloko-Ntoutoume N. (2000). Chloroplast DNA variation in a rainforest tree 
(Aucoumea klaineana, Burseraceae) in Gabon. Molecular Ecology 9: 359. 

Murawski DA, Bawa KS. (1994). Genetic structure and mating system of 
Stemonoporus oblongifolius (Dipterocarpaceae) in Sri Lanka. American 
Journal of Botany 81: 155–160. 

Murawski DA, Hamrick JL. (1990). Local genetic and clonal structure in the 
tropical terrestrial bromeliad, Aechmea magdalenae. American Journal of 
Botany 77: 1201–1208. 

Nakagawa M. (2004). Genetic diversity of fragmented populations of Polygala 
reinii (Polygalaceae), a perennial herb endemic to Japan. Journal of Plant 
Research 117: 355–361. 

Navarro C, Cavers S, Pappinen A, Tigerstedt P, Lowe A, Merilä J. (2005). 
Contrasting quantitative Traits and Neutral Genetic Markers for Genetic 
Resource Assessment of Mesoamerican Cedrela odorata. Silvae Genetica 
54: 281–292. 

Nettel A, Dodd RS, Afzal-Rafii Z. (2009). Genetic diversity, structure, and 
demographic change in tanoak, Lithocarpus densiflorus (Fagaceae), the 
most susceptible species to sudden oak death in California. American 
Journal of Botany 96: 2224–2233. 

Nguyen TPT, Tran TH, Nguyen MD, Sierens T, Triest L. (2014). Genetic 
population of threatened Hopea odorata Roxb. in the protected areas of 
Vietnam. Journal of Vietnamese Environment 6: 69–76. 

Nicoletti F, De Benedetti L, Airò M, Ruffoni B, Mercuri A, Minuto L, Casazza G. 
(2012). Spatial genetic structure of Campanula sabatia, a threatened 
narrow endemic species of the Mediterranean Basin. Folia Geobotanica 
47: 249–262. 

Noreen AME, Webb EL. (2013). High genetic diversity in a potentially vulnerable 
tropical tree species despite extreme habitat loss. PLoS ONE 8: e82632. 

Oddou-Muratorio, Klein EK. (2008). Comparing direct vs. indirect estimates of 
gene flow within a population of a scattered tree species. Molecular 
Ecology 17: 2743–2754. 

Ohsako T, Hirai M, Yamabuki M. (2010). Spatial structure of microsatellite 
variability within and among populations of wild radish Raphanus sativus 
L. var. hortensis Backer f. raphanistroides Makino (Brassicaceae) in 
Japan. Breeding Science 60: 195–202. 



 64 

Ojeda-Camacho M, Kjær ED, Philipp M. (2013). Population genetics of 
Guibourtia chodatiana (Hassl.) J. Leonard, in a dry Chiquitano forest of 
Bolivia. Forest Ecology and Management 289: 525–534. 

Oleas NH, von Wettberg EJB, Negrón-Ortiz V. (2014). Population genetics of the 
federally threatened miccosukee gooseberry (Ribes echinellum), an 
endemic North American species. Conservation Genetics. 

Omondi SF, Kireger E, Dangasuk OG, Chikamai B, Odee DW, Cavers S, Khasa 
DP. (2010). Genetic diversity and population structure of Acacia senegal 
(L) Willd. in Kenya. Tropical Plant Biology 3: 59–70. 

Pakkad G, James C, Torre F, Elliott S, Blakesley D. (2003). Genetic variation of 
Prunus cerasoides D. Don, a framework tree species in northern Thailand. 
New forests 27: 189–200. 

Palma-Silva C, Lexer C, Paggi GM, Barbará T, Bered F, Bodanese-Zanettini MH. 
(2009). Range-wide patterns of nuclear and chloroplast DNA diversity in 
Vriesea gigantea (Bromeliaceae), a neotropical forest species. Heredity 
103: 503–512. 

Pandey M, Rajora OP. (2012). Genetic diversity and differentiation of core vs. 
peripheral populations of eastern white cedar, Thuja occidentalis 
(Cupressaceae). American Journal of Botany 99: 690–699. 

Pandey M, Sharma J. (2015). Disjunct populations of a locally common North 
American orchid exhibit high genetic variation and restricted gene flow. 
Open Journal of Genetics 05: 159–175. 

Pardini EA, Hamrick JL. (2008). Inferring recruitment history from spatial genetic 
structure within populations of the colonizing tree Albizia julibrissin 
(Fabaceae). Molecular Ecology 17: 2865–2879. 

Parks CR, Wendel JF, Sewell MM, Qiu Y-L. (1994). The significance of allozyme 
variation and introgression in the Liriodendron tulipifera complex 
(Magnoliaceae). American Journal of Botany 81: 878–889. 

Payn KG, Dvorak WS, Janse BJH, Myburg AA. (2008). Microsatellite diversity 
and genetic structure of the commercially important tropical tree species 
Eucalyptus urophylla, endemic to seven islands in eastern Indonesia. Tree 
Genetics & Genomes 4: 519–530. 

Peakall R, Beattie AJ. (1995). Does ant dispersal of seeds in Sclerolaena 
diacantha (Chenopodiaceae) generate local spatial genetic structure? 
Heredity 75: 351–361. 

Peakall R, Beattie AJ. (1996). Ecological and genetic consequences of 
pollination by sexual deception in the orchid Caladenia tentactulata. 
Evolution 50: 2207. 

Pither R, Shore JS, Kellman M. (2003). Genetic diversity of the tropical tree 
Terminalia amazonia (Combretaceae) in naturally fragmented populations. 
Heredity 91: 307–313. 

Playford J, Bell J, Moran G. (1993). A major disjunction in genetic diversity over 
the geographic range of Acacia melanoxylon R.Br. Australian Journal of 
Botany 41: 355. 



 65 

Pluess AR. (2011). Pursuing glacier retreat: genetic structure of a rapidly 
expanding Larix decidua population: genetic structure of an expanding 
population. Molecular Ecology 20: 473–485. 

Pometti C, Bessega C, Cialdella A, Ewens M, Saidman B, Vilardi J. (2018). 
Spatial genetic structure within populations and management implications 
of the South American species Acacia aroma (Fabaceae). PLOS ONE 13: 
e0192107. 

Premoli AC. (1997). Genetic variation in a geographically restricted and two 
widespread species of South American Nothofagus. Journal of 
Biogeography 24: 883–892. 

Prober SM, Brown AHD. (1994). Conservation of the grassy white box 
woodlands: population genetics and fragmentation of Eucalyptus albens. 
Conservation Biology 8: 1003–1013. 

Qiu Y-L, Parks CR. (1994). Disparity of allozyme variation levels in three 
Magnolia (Magnoliaceae) species from the southeastern United States. 
American Journal of Botany 81: 1300–1308. 

Quevedo AA, Schleuning M, Hensen I, Saavedra F, Durka W. (2013). Forest 
fragmentation and edge effects on the genetic structure of Clusia 
sphaerocarpa and C. lechleri (Clusiaceae) in tropical montane forests. 
Journal of Tropical Ecology 29: 321–329. 

Raspé O, Jacquemart A-L. (1998). Allozyme diversity and genetic structure of 
European populations of Sorbus aucuparia L. (Rosaceae: Maloideae). 
Heredity 81: 537. 

Reif BP, Mathiasen RL, Kenaley SC, Allan GJ. (2015). Genetic Structure and 
Morphological Differentiation of Three Western North American Dwarf 
Mistletoes (Arceuthobium: Viscaceae). Systematic Botany 40: 191–207. 

Ribeiro FE, Baudouin L, Lebrun P, Chaves LJ, Brondani C, Zucchi MI, 
Vencovsky R. (2010). Population structures of Brazilian tall coconut 
(Cocos nucifera L.) by microsatellite markers. Genetics and Molecular 
Biology 33: 696–702. 

Ritchie AL, Nevill PG, Sinclair EA, Krauss SL. (2017). Does restored plant 
diversity play a role in the reproductive functionality of Banksia 
populations?: Reproductive functionality of restored keystone species. 
Restoration Ecology 25: 414–423. 

Robertson A, Newton AC, Ennos RA. (2004). Multiple hybrid origins, genetic 
diversity and population genetic structure of two endemic Sorbus taxa on 
the Isle of Arran, Scotland. Molecular Ecology 13: 123–134. 

Rocha OJ, Lobo JA. (1996). Genetic variation and differentiation among five 
populations of the guanacaste tree (Enterolobium cyclocarpum Jacq.) in 
Costa Rica. International Journal of Plant Sciences 157: 234–239. 

Ross-Davis A, Ostry M, Woeste KE. (2008). Genetic diversity of butternut 
(Juglans cinerea) and implications for conservation. Canadian Journal of 
Forest Research 38: 899–907. 

Rossetto M, Jones R, Hunter J. (2004). Genetic effects of rainforest 
fragmentation in an early successional tree (Elaeocarpus grandis). 
Heredity 93: 610–618. 



 66 

Rusanen M, Vakkari P, Blom A. (2003). Genetic structure of Acer platanoides 
and Betula pendula in northern Europe. Canadian Journal of Forest 
Research 33: 1110–1115. 

Rüter B, Hamrick JL, Wood BW. (1999). Genetic diversity within provenance and 
cultivar germplasm collections versus natural populations of pecan (Carya 
illinoinensis). Journal of Heredity 90: 521–528. 

Saenz-Romero C, Guries RP, Monk AI. (2001). Landscape genetic structure of 
Pinus banksiana: allozyme variation. Canadian Journal of Botany 79: 871–
878. 

Santos AS, Cazetta E, Dodonov P, Faria D, Gaiotto FA. (2016). Landscape-scale 
deforestation decreases gene flow distance of a keystone tropical palm, 
Euterpe edulis Mart (Arecaceae). Ecology and Evolution 6: 6586–6598. 

Sato T, Isagi Y, Sakio H, Osumi K, Goto S. (2006). Effect of gene flow on spatial 
genetic structure in the riparian canopy tree Cercidiphyllum japonicum 
revealed by microsatellite analysis. Heredity 96: 79–84. 

Schnabel A, Hamrick JL. (1990a). Comparative analysis of population genetic 
structure in Quercus macrocarpa and Q. gambelii (Fagaceae). Systematic 
Botany 15: 240. 

Schnabel A, Hamrick JL. (1990b). Organization of genetic diversity within and 
among populations of Gleditsia triacanthos (Leguminosae). American 
Journal of Botany 77: 1060–1069. 

Searle SD, Bell JC, Moran GF. (2000). Genetic diversity in natural populations of 
Acacia mearnsii. Australian Journal of Botany 48: 279. 

Sgorbati S, Labra M, Grugni E, Barcaccia G, Galasso G, Boni U, Mucciarelli M, 
Citterio S, Benavides Iramátegui A, Venero Gonzales L, et al. (2004). A 
survey of genetic diversity and reproductive biology of Puya raimondii 
(Bromeliaceae), the endangered queen of the Andes. Plant Biology 6: 
222–230. 

Shapcott A. (1994). Genetic and ecological variation in Atherosperma 
moschatum and the Implications for Conservation of Its Biodiversity. 
Australian Journal of Botany 42: 663. 

Shapcott. (1998). The patterns of genetic diversity in Carpentaria acuminata 
(Arecaceae), and rainforest history in northern Australia. Molecular 
Ecology 7: 833–847. 

Shapcott A. (1999). Vagility and the monsoon rain forest archipelago of northern 
Australia: patterns of genetic diversity in Syzygium nervosum (Myrtaceae). 
Biotropica 31: 579–590. 

Sheely DL, Meagher TR. (1996). Genetic diversity in Micronesian island 
populations of the tropical tree Campnosperma brevipetiolata 
(Anacardiaceae). American Journal of Botany 83: 1571–1579. 

Sherman-Broyles SL, Broyles SB, Hamrick JL. (1992). Geographic distribution of 
allozyme variation in Ulmus crassifolia. Systematic Botany 17: 33. 

Slavov GT, Leonardi S, Adams WT, Strauss SH, DiFazio SP. (2010). Population 
substructure in continuous and fragmented stands of Populus trichocarpa. 
Heredity 105: 348–357. 



 67 

Sochor M, Vašut RJ, Bártová E, Majeský Ľ, Mráček J. (2013). Can gene flow 
among populations counteract the habitat loss of extremely fragile 
biotopes? An example from the population genetic structure in Salix 
daphnoides. Tree Genetics & Genomes 9: 1193–1205. 

Soltis DE, Gilmartin AJ, Rieseberg L, Gardner S. (1987). Genetic variation in the 
epiphytes Tillandsia ionantha and T. recurvata (Bromeliaceae). American 
Journal of Botany 74: 531–537. 

Song Z, Zhang M, Li F, Weng Q, Zhou C, Li M, Li J, Huang H, Mo X, Gan S. 
(2016). Genome scans for divergent selection in natural populations of the 
widespread hardwood species Eucalyptus grandis (Myrtaceae) using 
microsatellites. Scientific Reports 6: 34941. 

Sork V, Huang S, Wiener E. (1993). Macrogeographic and fine-scale genetic 
structure in a North American oak species, Quercus rubra L. Annales des 
Sciences Forestières 50: 261s–270s. 

Stanton S, Honnay O, Jacquemyn H, Roldán-Ruiz I. (2009). A comparison of the 
population genetic structure of parasitic Viscum album from two 
landscapes differing in degree of fragmentation. Plant Systematics and 
Evolution 281: 161–169. 

Starr TN, Gadek KE, Yoder JB, Flatz R, Smith CI. (2013). Asymmetric 
hybridization and gene flow between Joshua trees (Agavaceae: Yucca) 
reflect differences in pollinator host specificity. Molecular Ecology 22: 437–
449. 

Stefenon VM, Gailing O, Finkeldey R. (2007). Genetic structure of Araucaria 
angustifolia (Araucariaceae) populations in Brazil: Implications for the in 
situ conservation of genetic resources. Plant Biology 9: 516–525. 

Stein K, Rosche C, Hirsch H, Kindermann A, Köhler J, Hensen I. (2014). The 
influence of forest fragmentation on clonal diversity and genetic structure 
in Heliconia angusta, an endemic understory herb of the Brazilian Atlantic 
rain forest. Journal of Tropical Ecology 30: 199–208. 

Suarez-Gonzalez A, Good SV. (2014). Pollen limitation and reduced reproductive 
success are associated with local genetic effects in Prunus virginiana, a 
widely distributed self-incompatible shrub. Annals of Botany 113: 595–
605. 

Sujii PS, Martins K, Wadt LH de O, Azevedo VCR, Solferini VN. (2015). Genetic 
structure of Bertholletia excelsa populations from the Amazon at different 
spatial scales. Conservation Genetics 16: 955–964. 

Suma TB, Balasundaran M. (2003). Isozyme variation in five provenances of 
Santalum album in India. Australian Journal of Botany 51: 243. 

Sun M. (1999). Cleistogamy in Scutellaria indica (Labiatae): effective mating 
system and population genetic structure. Molecular Ecology 8: 1285–
1295. 

Sun R, Lin F, Huang P, Zheng Y. (2016). Moderate genetic diversity and genetic 
differentiation in the relict tree Liquidambar formosana Hance revealed by 
genic simple sequence repeat markers. Frontiers in plant science 7: 1411. 



 68 

Surget-Groba Y, Kay KM. (2013). Restricted gene flow within and between 
rapidly diverging Neotropical plant species. Molecular Ecology 22: 4931–
4942. 

Swift JF, Smith SA, Menges ES, Bassüner B, Edwards CE. (2016). Analysis of 
mating system and genetic structure in the endangered, amphicarpic 
plant, Lewton’s polygala (Polygala lewtonii). Conservation Genetics 17: 
1269–1284. 

Tambarussi EV, Sebbenn AM, Alves-Pereira A, Vencovsky R, Cambuim J, Da 
Silva A, Moraes M, De Moraes MLT. (2017). Dipteryx alata Vogel 
(Fabaceae) a neotropical tree with high level of selfing: implication for 
conservation and breeding programs. Annals of Forest Research 2: 1–19. 

Tarazi R, Moreno MA, Gandara FB, Martins-Ferraz E, Moraes MLT, Vinson CC, 
Ciampi, AY, Vencovsky R, Kageyama PY. (2010). High levels of genetic 
differentiation and selfing in the Brazilian cerrado fruit tree Dipteryx alata 
Vog. (Fabaceae). Genetics and Molecular Biology 33: 78–85. 

Theim TJ, Shirk RY, Givnish TJ. (2014). Spatial genetic structure in four 
understory Psychotria species (Rubiaceae) and implications for tropical 
forest diversity. American Journal of Botany 101: 1189–1199. 

Tinio CE, Finkeldey R, Prinz KA, Fernando ES. (2014). Genetic variation in 
natural and planted populations of Shorea guiso (Dipterocarpaceae) in the 
Philippines revealed by microsatellite DNA markers. Asia Life Sciences 
23: 75–91. 

Tomimatsu H, Ohara M. (2003). Genetic diversity and local population structure 
of fragmented populations of Trillium camschatcense (Trilliaceae). 
Biological Conservation 109: 249–258. 

Tsuda Y, Ide Y. (2005). Wide-range analysis of genetic structure of Betula 
maximowicziana, a long-lived pioneer tree species and noble hardwood in 
the cool temperate zone of Japan: genetic structure of Betula 
maximowicziana. Molecular Ecology 14: 3929–3941. 

Turchetto C, Lima JS, Rodrigues DM, Bonatto SL, Freitas LB. (2015). Pollen 
dispersal and breeding structure in a hawkmoth-pollinated Pampa 
grasslands species Petunia axillaris (Solanaceae). Annals of Botany 115: 
939–948. 

Twyford AD, Kidner CA, Ennos RA. (2014). Genetic differentiation and species 
cohesion in two widespread Central American Begonia species. Heredity 
112: 382–390. 

Ueno S, Setsuko S, Kawahara T, Yoshimaru H. (2006). Genetic diversity and 
differentiation of the endangered Japanese endemic tree Magnolia stellata 
using nuclear and chloroplast microsatellite markers. Conservation 
Genetics 6: 563–574. 

Van Rossum F, Campos De Sousa S, Triest L. (2004). Genetic consequences of 
habitat fragmentation in an agricultural landscape on the common Primula 
veris, and comparison with its rare congener, P. vulgaris. Conservation 
Genetics 5: 231–245. 

Vergara R, Gitzendanner MA, Soltis DE, Soltis PS. (2014). Population genetic 
structure, genetic diversity, and natural history of the South American 



 69 

species of Nothofagus subgenus Lophozonia (Nothofagaceae) inferred 
from nuclear microsatellite data. Ecology and Evolution 4: 2450–2471. 

Victory ER, Glaubitz JC, Rhodes OE, Woeste KE. (2006). Genetic homogeneity 
in Juglans nigra (Juglandaceae) at nuclear microsatellites. American 
Journal of Botany 93: 118–126. 

Vieira FDA. (2009). Genetic differentiation and temporal aspects of the fine-scale 
genetic structure in fragments-vegetation corridors: inferences from a 
dioecious-dominant neotropical tree. PhD Thesis, Universidade Federal 
de Lavras, Minas Gerais, Brazil. 

Wadt LH de O, Kageyama PY. (2004). Estrutura genética e sistema de 
acasalamento de Piper hispidinervum. Pesquisa Agropecuária Brasileira 
39: 151–157. 

Walisch TJ, Matthies D, Hermant S, Colling G. (2015). Genetic structure of 
Saxifraga rosacea subsp. sponhemica, a rare endemic rock plant of 
Central Europe. Plant Systematics and Evolution 301: 251–263. 

Wang R, Compton SG, Shi Y-S, Chen X-Y. (2012). Fragmentation reduces 
regional-scale spatial genetic structure in a wind-pollinated tree because 
genetic barriers are removed. Ecology and Evolution 2: 2250–2261. 

Wang H, Pei D, Gu R, Wang B. (2008). Genetic diversity and structure of walnut 
populations in central and southwestern china revealed by microsatellite 
markers. Journal of the American Society for Horticultural Science 133: 
197–203. 

Wickneswari R, Norwati M. (1993). Genetic diversity of natural-populations of 
Acacia auriculiformis. Australian Journal of Botany 41: 65. 

Williams CF, Guries RP. (1994). Genetic consequences of seed dispersal in 
three sympatric forest herbs. i. Hierarchical population-genetic structure. 
Evolution 48: 791. 

Williams, Jr., JH, Arnold ML. (2001). Sources of genetic structure in the woody 
perennial Betula occidentalis. International Journal of Plant Sciences 162: 
1097–1109. 

Xie C-Y, El-Kassaby YA, Ying CC. (2002). Genetics of red alder (Alnus rubra 
Bong.) populations in British Columbia and its implications for gene 
resources management. New forests 24: 97–112. 

Y. Fu. (2003). Allozyme Variation in Endangered Castanea pumila var. pumila. 
Annals of Botany 92: 223–230. 

Yan J, Chu H-J, Wang H-C, Li J-Q, Sang T. (2009). Population genetic structure 
of two Medicago species shaped by distinct life form, mating system and 
seed dispersal. Annals of Botany 103: 825–834. 

Yan T-F, Zu Y-G, Yan X-F, Zhou F-J. (2003). Genetic structure of endangered 
Rhodiola sachalinensis. Conservation Genetics 4: 213–218. 

Yang A, Dick CW, Yao X, Huang H. (2016). Impacts of biogeographic history and 
marginal population genetics on species range limits: a case study of 
Liriodendron chinense. Scientific Reports 6: 25632. 

Zárate S, Pérez-Nasser N, Casas A. (2005). Genetics of wild and managed 
populations of Leucaena esculenta subsp. esculenta (Fabaceae; 



 70 

Mimosoideae) in La Montaña of Guerrero, Mexico. Genetic Resources 
and Crop Evolution 52: 941–957. 

Zeng X, Michalski SG, Fischer M, Durka W. (2012). Species diversity and 
population density affect genetic structure and gene dispersal in a 
subtropical understory shrub. Journal of Plant Ecology 5: 270–278. 

Zucchi MI, Pinheiro JB, Chaves LJ, Coelho ASG, Couto MA, Morais LK de, 
Vencovsky R. (2005). Genetic structure and gene flow of Eugenia 
dysenterica natural populations. Pesquisa Agropecuária Brasileira 40: 
975–980. 

 
 

Appendix S2. Data transformation. 

We applied transformations to continuous variables in order to improve normality. 

FST was transformed using Tukey’s ladder of powers transformation (Tukey, 

1970) with the function transformTukey from the R package rcompanion 

(Mangiafico, 2018). This function finds the power that makes a variable as 

normally distributed as possible based on the Shapiro-Wilk test (Shapiro & Wilk, 

1965). Transformed FST resulted in FST^0.275 (Shapiro-Wilk statistic=0.27, 

P=0.7). For continuous predictors, the best transformation to improve normality 

was the natural logarithm of the maximum distance between populations and the 

mean sample size per population.  

 

Appendix S3. Tests of multicollinearity. 

Because multicollinearity can complicate the identification of an optimal set of 

explanatory variables for a statistical model, we assessed the correlation 

between species traits. We calculated the Pearson Chi-Square test of 

independence (Plackett, 1983), which is appropriate for categorical data, 

between all pairs of variables. We then calculated Cramer V values, which gives 
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a measure of the strength of the association, using the the R functions chisq.test 

and cramerV. Cramer V values less than 0.3 represent a moderately low 

association and excluding associations higher than 0.3 helps prevent 

multicollinearity issues (Acock & Stavig, 1979). We also estimated the variance 

inflation factor generalized to account for degrees of freedom of each factor 

(GVIF, Fox & Monette, 1992) with the R function VIF. GVIF values smaller than 5 

are generally considered to not cause collinearity problems in model inferences. 

All Cramer V values were ≤0.3 and GVIF values were <2 (Table S2 and S3). 

Thus, multicollinearity did not affect our model inference. 

 

Appendix S4. Phylogeny. 

A species-level phylogeny was produced with the R package V.PhyloMaker (Jin 

& Qian, 2019). This program uses as the backbone tree the latest seed plant 

mega-phylogeny (Smith & Brown, 2018), which is inferred from seven nuclear 

regions retrieved from GenBank and fossil calibrated to include branch lengths. 

Species are pruned from this backbone tree based on a custom species list. 

Species not present in the backbone tree were added as polytomies within their 

respective clade using the same method as Phylomatic (Webb & Donoghue, 

2005), with a branch length calculation as implemented with the branch length 

adjuster algorithm (Webb et al., 2008). Qian & Jin (2016) showed that such 

approach results in phylogenies very similar to empirical species-level 

phylogenies. Of the 337 species in our dataset, 239 were already in the 

backbone tree and 98 were newly added. After these additions, V.PhyloMaker 
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pruned our custom phylogenetic tree to remove tips not in our dataset. Because 

V.PhyloMaker assigns age divergences to particular nodes in the target topology, 

and then places the remaining nodes evenly between them, the resulting time-

calibrated tree is actually a pseudo-chronogram. Pseudo-chronograms show 

lower variability in branch length than well-calibrated phylogenies that use 

molecular clocks, yet they remain appropriate for phylogenetic comparative 

methods (Molina-Venegas & Rodríguez, 2017). 

 

Appendix S5. Phylogenetic signal. 

For categorical traits, we performed Abouheif’s method of serial independence 

(Abouheif, 1999), which is equivalent to Moran's I when computed with a specific 

matrix of phylogenetic weights based on branch lengths and trait distance 

between tips in the phylogeny (Pavoine et al., 2008). Moran’s I and its 

significance were estimated with 1000 permutations of the dataset using the 

function abouheif.moran from the package adephylo (Jombart et al., 2010). For 

continuous variables, we estimated Pagel’s  (Pagel, 1999) and its significance 

with 1000 simulations with the function phylosig from phytools (Revell, 2012). We 

chose Pagel’s  over Blomberg’s K (Blomberg et al., (2003)) because simulations 

demonstrate that Blomberg’s K estimates can be highly inflated in both type I and 

II error when calculated using pseudo-chronograms rather than fully time-

calibrated phylogenies, while Pagel’s  is strongly robust to branch-length biases 

(Molina-Venegas & Rodríguez, 2017). 
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Appendix S6. Phylolm implementation. 

We performed phylogenetic multiple regression models with the function and 

package phylolm (Ho & Ané, 2014). We implemented the lambda phylogenetic 

model for the correction of the error term. The lambda parameter in this model is 

used to transform the error associated to the autocorrelation in the variance–

covariance matrix assuming a Brownian motion model of evolution. We chose 

this model because it consistently had the lowest AIC value when compared to 

the other six methods available in phylolm. Lambda is useful for improving the fit 

of the phylogenetic regression, but the actual evolutionary process resulting in 

lambda is hard to interpret (Revell et al., 2008). 
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Fig. S1. Phylogeny produced with the R package V.PhyloMaker (See Appendix 

S4 for details). 
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Fig. S2. Phylogenetic signal and its significance with Moran’s I obtained with 

Abouheif’s method for categorical species traits in the dataset. Asterisks denote 

statistical significance based on 1000 permutations: P=0.001 (See Appendix S5 

for details).   
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Table S1. Dataset used in this study (in file Table S1.xlsx). Abbreviations are as 

follow: MS, mating system; GF, growth form; PM, pollination mode; DM, dispersal 

mode; MaxDP, maximum distance between populations in km; MSS, mean 

sample size of individuals per population. When more than one publication is 

included per species, the first one reports the FST value used in this study. 

 

Table S2. Pearson Chi-squared test for correlation between categorical variables 

and Cramer’s V degree of association between variables. Significant P values 

are in bold † (next page). 

† Refer to Appendix S3 for details. The strongest association was between 

mating system and life form; most trees are outcrossing species, while most 

mixed-mating species are non-woody plants. Pollination mode was significantly 

associated with growth form, as well as with region; wind pollinated plants are 

almost entirely trees from temperate regions, while vertebrate pollination is more 

common in non-woody tropical plants. Growth form and seed dispersal were also 

correlated; most gravity-dispersed plants are non-woody, most animal dispersed 

plants are trees, and shrubs are rarely wind dispersed. Mating system and seed 

dispersal were also correlated; most outcrossing plants have seeds dispersed by 

animals. Growth form and region were also significantly associated; most tropical 

and subtropical plants are trees, while most non-woody plants are from 

temperate regions. Lastly, seed dispersal and region significantly correlated; 

wind dispersal is more common in the temperate zones, while animal dispersal is 

more common in the tropics. 
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Tested correlations Chi2 DF P value Cramer’s V 

Seed dispersal – Growth form 51.8 4 <0.001 0.28 

Seed dispersal – Mating system 8.7 2 0.01 0.16 

Seed dispersal – Pollination mode 11.8 6 0.06 0.13 

Seed dispersal – Region 14.5 4 0.006 0.15 

Growth form – Mating system 30.4 2 <0.001 0.30 

Growth form – Pollination mode 41.1 6 <0.001 0.25 

Growth form – Region 15.8 4 0.003 0.15 

Mating system – Pollination mode 7.2 3 0.07 0.14 

Mating system – Region 1.3 2 0.52 0.06 

Pollination mode – Region 54.1 6 <0.001 0.28 
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Table S3. Estimates of the generalized variance inflation factor (GVIF), and its 

adjusted value accounting for the degrees of freedom (GVIF^(1/(2*Df))) for each 

variable in tested models. 

Variable GVIF Df GVIF^(1/(2*Df)) 

ln(distance †) 1.28 1 1.13 

ln(MSS ‡) 1.50 1 1.22 

Marker 1.71 4 1.07 

Mating system 1.13 1 1.06 

Growth form 1.79 2 1.16 

Pollination mode 1.69 3 1.09 

Seed dispersal mode 1.30 2 1.07 

Region 1.56 2 1.12 

† distance: maximum distance between populations in km. 

‡ MSS: mean sample size of individuals per population. 
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Table S4. Results from phylogenetic ANOVA on each categorical variable 

(predictor) and FST as the response variable. P values are based on 1000 

simulations. Significant P values are in bold.  

Predictor Sum Sq Mean Sq F value P value 

Mating system 0.5 0.5 24.38 0.002 

      Residuals 6.83 0.02   

Growth form 0.95 0.48 25.06 0.014 

      Residuals 6.37 0.02   

Pollination mode 1.17 0.39 21.03 0.025 

      Residuals 6.16 0.02   

Dispersal mode 0.2 0.1 4.77 0.21 

      Residuals 7.12 0.02   

Region 0.2 0.1 4.78 0.24 

      Residuals 7.12 0.02   
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Table S5. Pairwise post-hoc tests between groups within each categorical 

variable, estimated after performing the phylogenetic ANOVA. P value 

corrections were done with the Holm-Bonferroni method. Significant P values are 

in bold (next page). 
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Pairwise comparisons Pairwise T values Pairwise P values 

Mating system   

      Mixed-mating – Outcrossing 4.93 0.002 

Growth form   

      Tree – Non-woody 6.9 0.045 

      Tree – Shrub 3.71 0.136 

      Non-woody – Shrub 1.46 0.497 

Pollination mode   

      Small insects – Large insects 5.01 0.006 

      Small insects – Vertebrates 1.7 1 

      Small insects – Wind 7.18 0.09 

      Large insects – Vertebrates 2.54 0.68 

      Large insects – Wind 1.08 1 

      Vertebrates – Wind 3.8 0.68 

Seed dispersal mode   

      Gravity – Wind 2.93 0.24 

      Gravity – Biotic 2.54 0.35 

      Wind – Biotic 0.62 0.72 

Region   

      Temperate – Subtropical 2.41 0.24 

      Temperate – Tropical 2.77 0.35 

      Subtropical – Tropical 0.01 0.99 
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Table S6. Details of model 7 including variables in the null model. Variables in 

bold indicate the reference level for each categorical factor; the intercept of all 

other levels is compared to the intercept of this reference. N indicates the sample 

size of each group without phylogenetic correction. The R2 relates to the 

importance of each factor to the explained variance in FST after accounting for the 

other variables in the model. Significant P values are in bold. 

Variable † N Estimate Std. Error T value P value R2 

Intercept  0.59 0.04 14.1 2.2E-16  

Marker 

     SSR 

     AFLP 

     Allozymes 

     ISSR 

     RAPD 

 

14 

60 

114 

7 

16 

 

 

0.06 

0.01 

0.03 

0.08 

 

 

0.02 

0.02 

0.04 

0.03 

 

 

2.8 

0.1 

0.6 

2.7 

 

 

0.005 

0.3 

0.53 

0.007 

0.04 

ln(distance) 337 0.01 0.002 5.5 <0.001 0.08 

ln(mean sample size) 337 –0.03 0.007 –3.7 <0.001 0.04 

† SSR: simple sequence repeat (microsatellites), AFLP: amplified fragment 

length polymorphism, ISSR: inter-simple sequence repeat, RAPD: random 

amplification of polymorphic DNA. Distance: maximum distance between 

populations. Mean sample size: mean sample size of individuals per population. 
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Abstract 

Speciation rates are frequently higher in tropical clades relative to temperate 

counterparts, yet the underlying mechanisms behind regional differences remain 

poorly understood. One compelling but relatively untested idea is the ‘asynchrony 

of seasons hypothesis’ (ASH). It posits that, while seasons are relatively 

synchronized over large areas in temperate regions, there can be seasonal 

asynchrony over short distances in tropical regions due to differences in the 

onset of rainfall between nearby sites. Climatic seasonal asynchrony leads to 

reproductive seasonal asynchrony, imposing a temporal barrier to gene flow and 

thus promoting population genetic divergence among subpopulations, which in 

turn may promote speciation. Here, we focused on understory angiosperms in 

two cloud forest sites in northwestern Ecuador that diverge in rainfall seasonality. 

We tested a central prediction of the ASH: that species with higher flowering 

asynchrony between sites will have genetically more divergent populations. We 

documented flowering phenology for nine species at both sites over one year and 

inferred population genetic parameters with a genome-wide genotyping 

approach. We found a strong positive cross-species association between 

flowering asynchrony and population differentiation. Our results suggest that 

seasonal asynchrony between sites can contribute significantly to population 

genetic divergence, and thus potentially to speciation, in tropical angiosperms. 

Key words: Andes, angiosperms, cloud forest, flowering asynchrony, population 

genetic differentiation, 2b-RAD sequencing.  
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Introduction 

Understanding the spatial and temporal processes that shape the patterns 

of angiosperm diversity is of central interest in biology (Fedorov 1966; Davies et 

al. 2004; Soltis et al. 2019). One prominent pattern exhibited by many clades is 

that of higher diversification rates in the tropics than in the temperate zones 

(Mittelbach et al. 2007; Brown 2014). Phylogenetic evidence from fossil and 

extant species suggest that this is due to higher speciation rates –rather than to 

lower extinction rates– in the tropics, which are predicted to coincide with higher 

population genetic divergence (reviewed in Mittelbach et al. 2007). However, the 

underlying mechanisms responsible for higher population genetic divergence and 

speciation in the tropics remain largely unknown. Several explanations suggest 

that dispersal, and thus gene flow, is more restricted in the tropics than in the 

temperate zones (Salisbury et al. 2012; Schluter and Pennell 2017). Limited 

gene flow between populations promotes population genetic divergence, 

resulting ultimately in reproductive isolation and allopatric speciation (Haffer 

1997; Claramunt et al. 2012). 

Several factors may contribute to gene flow being more restricted in the 

tropics. For example, the complex topography and environmental heterogeneity 

of the region can limit the movement of organisms and thus gene flow, resulting 

in isolated subpopulations (Wallace 1854; Benham and Witt 2016). Furthermore, 

the low temperature seasonality in the tropics can result in subpopulations that 

evolve relatively narrow niches that adapt them to local conditions. If local 

conditions vary widely over short distances, local adaptation would further restrict 
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gene flow among subpopulations, and increase isolation (Janzen 1967; 

Ghalambor et al. 2006). Moreover, local adaptation of subpopulations might 

result in mismatched timing of their reproductive cycles over short distances, 

disrupting gene flow between subpopulations. This temporal disruption to gene 

flow is central to the ‘asynchrony of seasons’ hypothesis (Martin et al. 2009), a 

compelling but relatively untested explanation for higher rates of population 

genetic divergence and speciation in the tropics. 

The ‘asynchrony of seasons hypothesis’ (ASH) is based on the 

observation that seasons in temperate zones are determined by relatively 

constant temperature regimes over large geographical distances, while seasons 

in the tropics are determined primarily by rainfall patterns, which can vary greatly 

over short distances. This results in a geographical mosaic of climatic seasonality 

in the tropics, i.e. high climatic asynchrony between nearby sites. Because 

organisms usually time their reproductive cycles to seasons, such climatic 

asynchrony could result in reproductive asynchrony, which in turn would disrupt 

gene flow among subpopulations and promote population genetic divergence 

and speciation. Thus, a central prediction of the ASH is that tropical species with 

higher reproductive asynchrony will have more highly genetically divergent 

populations. One study found support for this prediction among new world birds: 

seasonal asynchrony was a strong predictor of genetic distance across 

intraspecific pairs of individuals, after accounting for potential geographic barriers 

to dispersal (Quintero et al. 2014). While compelling, this study only examined 

seasonal asynchrony across sites, and did not document whether this in fact 
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corresponds with reproductive asynchrony, a task which would be somewhat 

daunting for birds.  Reproductive cycles are relatively easy to document for 

angiosperms, on the other hand, by simply observing when plants are in flower.  

Thus, angiosperms represent a logical group for an additional test of the ASH 

which can more directly examine the association between reproductive 

asynchrony and genetic divergence. 

The impact of differences in flowering time on gene flow has been 

evaluated among sympatric individuals of the same species (Taylor and Friesen 

2017), but little is known about how differences across a species range can 

impact gene flow among subpopulations. A model of incipient sympatric 

speciation showed that asynchronic flowering time among individuals quickly 

lead to reproductive isolation and speciation (Devaux and Lande 2008) because 

it results in assortative mating among individuals with overlapping flowering (also 

see (Hendry and Day 2005; Gaudinier and Blackman 2019)). In an allopatric 

scenario, flowering time should shift between sites with different seasonality as 

plants adapt to local conditions to maximize their reproductive success 

(Blackman 2017; Gaudinier and Blackman 2019). If shifts in flowering time can 

cause speciation in sympatry (Hendry and Day 2005), we expect they would be 

even more likely to cause speciation in allopatry, in line with the ASH.  

Here, we examine the ASH for the first time, to our knowledge, in tropical 

angiosperms. We test the central prediction that species with higher reproductive 

asynchrony between sites should have greater population genetic divergence. 

We focus on two sites in northern Ecuador, located in the western slope of the 
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Andes. These sites are close enough to share many species, but differ in the 

onset of the rainy season, which we expected would promote divergent flowering 

time between subpopulations. For nine understory species, we documented 

flowering phenology at both study sites for one year. To infer population genetic 

divergence between sites, we used a genome-wide genotyping approach using 

single nucleotide polymorphisms. We then tested whether flowering asynchrony 

between sites explained differences in population genetic divergence across 

species. 

 

Materials and Methods 

Study sites  

This study was performed in Golondrinas and Santa Lucía reserves, two 

cloud forests located in the northwestern slope of the Andean cordillera of 

Ecuador, in the provinces of Carchi and Pichincha, respectively (Fig. 1A). Sites 

are ~100 km apart from each other and range from 1500–2500 m in elevation. 

Rainfall seasonality was inferred from monthly precipitation data extracted from 

the WorldClim database at a projected resolution of 30 arcseconds (Hijmans et 

al. 2005). We delimited two polygons using the coordinates of our focal plants at 

each site (Golondrinas: 0.80–0.84 N, 78.07–78.15 W; Santa Lucía; 0.10–0.13 N, 

78.59–78.64 W). Based on the area of these polygons we extracted mean 

monthly precipitation and calculated standard errors (Fig. 1B). The rainy season 

in Golondrinas extends from October to May, peaking in April, while the rainy 

season in Santa Lucía extends from December to May, peaking in March. 
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Moreover, Santa Lucía receives twice as much rainfall as Golondrinas each year. 

We expected that these differences in precipitation should affect the flowering 

phenology of some portion of our focal species, leading to asynchrony between 

sites.   

 

Study species 

To select our focal species, we began by compiling a list of species 

occurring at both sites using the Tropicos.org database of the Missouri Botanical 

Garden. Through fieldwork, we further narrowed this list to nine perennial 

understory angiosperms, based on sufficient abundance in both study sites for 

flowering phenology surveys and population genetic work. These included 

Begonia tiliifolia C. DC. (Begoniaceae), Besleria solanoides Kunth 

(Gesneriaceae), Burmeistera multiflora Zahlbr. (Campanulaceae), Centropogon 

solanifolius Benth. (Campanulaceae), Drymonia tenuis (Benth.) J.L. Clark 

(Gesneriaceae), Fuchsia macrostigma Benth. (Onagraceae), Gasteranthus 

quitensis Benth. (Gesneriaceae), Kohleria affinis (Fritsch) Roalson & Boggan 

(Gesneriaceae), and Meriania tomentosa (Cogn.) Wurdack (Melastomataceae). 

Based on our observations in the field, all focal species have 

dichogamous hermaphrodite flowers with male parts developing before female 

parts, except for B. tiliifolia, which is monoecious with male flowers developing 

before female flowers. Dichogamy likely reduces self-fertilization for all species, 

although some of them produce multiple flowers at the same time, which might 

result in geitonogamy. Pollination of most species is achieved by hummingbirds, 
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while two species are bat pollinated, and one species is insect pollinated 

(Muchhala 2006; Weinstein and Graham 2017; Dellinger et al. 2019) (Table 1). 

Seed dispersal in focal species remains largely unknown, and we were unable to 

detect seed dispersers from field observations. Those species with berries and 

fleshy capsules (Table 1) are hypothesized to be animal dispersed (Kvist and 

Skog 1992; Loiselle and Blake 1993), while other types of capsules are 

hypothesized to be gravity dispersed (Gamba et al. 2017). 

 

Estimation of flowering phenology  

To assess phenological patterns, we marked 10–25 individuals per 

species located along trails in the reserves. We selected individuals that were at 

least 5 m apart from each other to limit spatial autocorrelation. We recorded the 

number of flowers during twice-per-month surveys over one year (July 2017 

through June 2018; Table S1). For each species at each site, the date with the 

highest number of flowers was taken as the 100% flowering peak and used to 

calculate the percentage of flowers for the rest of survey dates (Table S2).  

 

Evaluation of flowering seasonality and asynchrony 

We evaluated flowering seasonality from the twice-per-month flowering 

percentages with a Fourier spectral analysis using the function ‘spec.pgram’ in 

the stats R package in RStudio V 1.2.5019  (R Core Team 2018). Such analysis 

decomposes the flowering time series into sinusoidal curves representing 

different periodicities (Platt and Denman 1975; Zalamea et al. 2011; Quintero et 
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al. 2014). For each species, we evaluated the fit of the flowering data to 

periodicities corresponding to one peak of flowering per year with a 12-month 

period between peaks (i.e., annual pattern), two peaks of flowering per year with 

a 6-month period (biannual), and three and four peaks of flowering per year, with  

4- and 3-month periods, respectively (sub-annual patterns). To evaluate whether 

the fit of the selected pattern for each species was greater than would be 

expected by chance, we constructed a null distribution of flowering times for each 

species by randomly resampling the flowering data 10,000 times (as in Zalamea 

et al. 2011). All species exhibited statistically significant phenological seasonality, 

exceeding the 95% quantiles of the corresponding null distributions, and this 

pattern was consistent between sites. 

After establishing the periodicity of phenological patterns at each site, we 

then performed Fourier cospectral analyses to estimate the magnitude of 

intraspecific flowering asynchrony between sites. This analysis gives a value in 

radians corresponding to an angle positioning that represents the lag between 

flowering peaks between sites (Quintero et al. 2014). We transformed this value 

to degrees and subsequently to percent asynchrony, where 0º corresponds 0% 

asynchrony (both peaks occurring at the same time), and 180º corresponds to 

100% asynchrony (the peak of flowering in one site coinciding with the valley of 

flowering on the other site). We also used similar Fourier analyses as outlined 

above to estimate rainfall seasonality and percent asynchrony between study 

sites, using the WorldClim data described previously (Table S3). 

 



 93 

Genomic library preparation and sequencing 

We began molecular work by extracting whole genomic DNA from silica-

dried leaf tissue from 20 individuals per species from each study site. We 

followed the CTAB protocol (Doyle and Doyle 1987), modified slightly by 

incorporating additional ethanol washes of the DNA pellet. We quantified DNA 

with a Qubit 2.0 Fluorometer (Invitrogen, Thermo Fisher Scientific), using the 

manufacturer’s protocol. For each of our samples with sufficient DNA, we 

obtained single nucleotide polymorphisms (SNPs) to use as genetic markers for 

population divergence inferences with the restriction site-associated DNA 

sequencing technique called 2b-RAD (Wang et al. 2012). We constructed 2b-

RAD libraries for each individual following the protocol of (Wang et al. 2012). 500 

ng of total genomic DNA were digested with a type IIb endonuclease, BcgI (New 

England Biolabs), which cuts DNA on both sides of a recognition site to obtain 

uniform 36-bp fragments scattered across the genome. Oligonucleotide Illumina 

sequences were ligated to these fragments with 12 double-stranded barcoded 

adapters, one per each column of a 96-sample plate. In order to increase 

sequence coverage per locus, we utilized reduced representation barcoded 

adapters which reduce the total number of loci sequenced. Samples with 

different barcoded adapters were pooled into 8 groups of 12 samples. Following 

initial pooling, Illumina RAD PCR primers (1–8) were incorporated into the 

fragments of each pool via 14 cycles of PCR amplification. Amplified pools were 

then purified via gel electrophoresis, and fragments of 75bp were size-selected 

by excising target bands from the agarose gel. We then used a Min Elute Gel 
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extraction kit (Qiagen) to purify target bands. Purified samples were quantified 

and pooled into a single library in equimolar concentrations. We generated three 

libraries, which together included ~15 individuals per species per study site. 

Libraries were sequenced on Illumina HiSeq 2500 (Brigham Young University, 

UT) and HiSeq 4000 (Duke University, NC) machines, to generate single-end 50 

bp reads. 

 

Building loci and genotyping individuals 

Reads were demultiplexed using a custom script (trim2bRAD) generated 

by the Matz lab at the University of Austin, TX 

(https://github.com/z0on/2bRAD_denovo). This script trims 2b-RAD fragments 

from barcodes to produce one fastq file per sample. The resulting files were 

quality filtered with FastQC (Babraham Bioinformatics) and the FASTX-toolkit 

(Gordon and Hannon 2010). We discarded low quality reads and obtained 

sequences that were 36 bp in length, with a minimum of 90% bases having a 

Phred quality score of at least 20 and an input quality offset of 33. We then used 

the Stacks v2.3e pipeline to genotype individuals and produce a catalog of loci 

for each species (Catchen et al. 2013). We ran Stacks using the default 

parameter settings for building loci, which we considered to be appropriate for 

the short size of the 2b-RAD fragments. These parameter settings included a 

maximum distance of 2 nucleotide differences allowed between reads, a 

minimum depth of coverage of 3 reads required to create a stack, and a 

maximum distance of 4 nucleotide differences allowed to align secondary reads 
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to primary stacks. We also allowed one gap between stacks before merging into 

putative loci. We filtered loci with the program ‘populations’ on the same pipeline. 

We excluded loci that were genotyped in <40% of individuals in each population. 

To avoid effects of linkage disequilibrium in our analyses, we only used one 

random SNP per locus. To prevent potential low-frequency SNP miscalls, we 

discarded alleles that had a frequency <5% in any locus across all individuals. To 

avoid repetitive or paralogous loci, the maximum number of heterozygous 

individuals that may be present in any locus was set to 75%. Lastly, we used the 

program VCFtools v0.1.16 (Danecek et al. 2011) to identify individuals with >50% 

missing data relative to variant sites, which we removed from subsequent 

analyses. 

 

Inference of population genetic divergence  

We used the program GenoDive v3.0 (Meirmans and Van Tienderen 

2004) to calculate genetic diversity statistics. We assessed population genetic 

divergence between study sites for each species using the pairwise fixation 

index, FST (Wright 1965; Nei 1977), and the allelic differentiation statistic, Jost’s D 

(Jost 2008; Jost et al. 2018). The statistical significance of diversity statistics was 

assessed using 1000 random permutations of the data, while standard deviations 

of diversity statistics were obtained by jackknifing over loci and 95% confidence 

intervals were obtained by bootstrapping over loci.  

To further visualize genetic divergence, we inspected genetic clustering in 

focal species. We conducted assignment tests using the program STRUCTURE 
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v.2.3.4 (Pritchard et al. 2000) as implemented in the ipyrad analysis toolkit 

(https://ipyrad.readthedocs.io/en/latest/API-analysis/cookbook-structure.html). 

We examined whether the data fit to K = 1–4 genetic clusters using 20 replicates 

per K with 300,000 generations used as burn in followed by 500,000 generations 

to achieve convergence. Optimal K values were inferred using the Evanno 

method (Evanno et al. 2005). Results were summarized with the program 

CLUMPP v1.1.2 (Jakobsson and Rosenberg 2007). 

 

Testing the relationship between flowering asynchrony and population 

genetic divergence  

We used linear regressions to test if flowering asynchrony predicts 

population genetic divergence between sites across our focal species. To 

evaluate whether this relationship was robust to different measures of population 

genetic divergence, we repeated analyses with either pairwise FST or Jost’s D as 

response variables. We also performed phylogenetic regressions to account for 

potential autocorrelation in the data due to evolutionary relationships. To this 

end, we extracted a species-level phylogeny containing the focal taxa (Fig. S1) 

from an angiosperm mega-tree (Smith and Brown 2018) in the R package 

V.PhyloMaker (Jin and Qian 2019). Branch lengths were inferred using the 

branch length adjuster algorithm in the same package (Qian and Jin 2016). We 

performed linear regressions of population genetic divergence on flowering 

asynchrony with the R function ‘lm’, and phylogenetic regressions with function 

‘phylolm’ from the phylolm R package (Ho and Ané 2014). To assess the fit of 
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our phylolm models to the data, the likelihood of parameters was calculated 

under a Brownian motion model of trait evolution (Symonds and Blomberg 2014). 

We compared the fit of the models using AIC scores (Akaike 1974; Burnham and 

Anderson 2004). To provide a more thorough evaluation of model fit, we also 

measured phylogenetic signal in the error term of each linear regression (as in 

Revell 2010) using Pagel’s  (Pagel 1999). 

 

Results 

Flowering seasonality and asynchrony  

Fourier spectral analyses found an annual flowering periodicity to be the 

most common pattern in both study sites (Table 2).  Most species flowered 

earlier in Golondrinas than in Santa Lucía (Fig. 2), as might be expected given 

the earlier onset of the rainy season in Golondrinas. The only species with 

patterns different from annual were B. multiflora, in which the production of 

flowers was steady with three peaks in the year, and B. solanoides, in which we 

recorded two clear peaks in the year separated by periods of 0% production. 

Among the 7 annually-flowering species, there was variation in the extent 

to which they were also flowering in other parts of the year, which can be 

summarized as three general patterns: 1) constant flower production at >30% of 

highest flower count throughout the year (B. tiliifolia), 2) constant flower 

production at >10% of highest flower count throughout the year (D. tenuis and G. 

quitensis), and 3) discrete flower production, with periods of 0% production 

lasting 1–4 months (C. solanifolius, F. macrostigma, K. affinis, M. tomentosa). 
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Fourier cospectral analyses identified a range of flowering asynchrony values 

across the species, from 2.7–87.0% (Table 2, mean = 26.1 ± 29.5 SD). 

Burmeistera multiflora and F. macrostigma showed the lowest asynchrony, while 

K. affinis, M. tomentosa and C. solanifolius showed the highest. The remaining 

species presented asynchronies between 9.3–16.8%. Similar Fourier cospectral 

analyses of rainfall patterns from WorldClim data across the two study sites 

detected a significant annual pattern in precipitation for both sites and a 

precipitation asynchrony of 19% between them (Table S3). 

 

Filtered genetic datasets 

After SNP calling and quality control using different filtering procedures, 

we obtained a mean of 2,174,885 SNP loci per species (± 834,061 SD; range:  

1,071,520–3,370,979), with a mean coverage ranging from 12.6–22.7 read depth 

per loci across species (Table S4). After removing individuals with >50% missing 

data, final sample sizes of individuals per species per study site ranged from 7–

12 (mean = 9 ± 1.5 SD), and the number of variant loci ranged from 1,082–7,624 

(mean = 3,840 ± 2,199 SD) across species, with missing data across species 

ranging from 35–40% (mean = 38 ± 2.3 SD) (Table S5 and S6).  

Gene diversity was similar across species, with He (expected 

heterozygosity) within sites ranging from 0.19–0.26 (mean = 0.24 ± 0.02). 

Additionally, all species showed statistically significant levels of inbreeding, as 

indicated by significant GIS values, when these values are pooled across sites for 

each species (mean = 0.51 ± 0.2 SD; Table S5) as well as when they are 
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analyzed separately by site for each species (mean = 0.51 ± 0.2 SD, Table S6). 

 

Population genetic divergence 

Population genetic divergence between sites was significant for all species 

(Fig. 3). Pairwise FST values ranged from 0.09–0.30 (mean = 0.16 ± 0.09 SD), 

and Jost’s D values from 0.03–0.13 (mean = 0.06 ± 0.04 SD). Further inspection 

of genetic divergence based on clustering STRUCTURE analyses showed that K 

= 2 was the most common supported number of clusters within species for all of 

the species, with the exception of D. tenuis for which K = 3 was the most likely 

number (Fig. 3 and Fig. S2). These genetic clusters most frequently followed 

geography, with one genetic cluster assigned to each of the two study sites. For 

B. tiliifolia and B. multiflora, there was one admixed individual identified at each 

site based on STRUCTURE Q values, while F. macrostigma and M. tomentosa 

showed no evidence of admixture between clusters. Centropogon solanifolius, G. 

quitensis and K. affinis exhibited a directional pattern of admixture, with varying 

amounts of alleles from Santa Lucía in Golondrinas but not vice-versa. For D. 

tenuis, Santa Lucía was almost homogeneous in cluster assignment except for 

one admixed individual, while all three genetic clusters were present in 

Golondrinas. Lastly, B. solanoides was composed of two genetic clusters present 

in both study sites (Fig. 3). This unexpected result might indicate that B. 

solanoides is composed of two cryptic species which are present at both sites. 
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Flowering asynchrony and genetic divergence 

We performed linear and phylogenetic regressions to evaluate the 

relationship across species between flowering asynchrony and genetic 

divergence (in terms of pairwise FST and Jost’s D values). Because genetic 

clustering results suggest that individuals of B. solanoides may potentially 

represent two species, we repeated regressions either including or excluding B. 

solanoides (Table 3). 

Results demonstrate that flowering asynchrony is a significant predictor of 

pairwise FST F(1, 7) = 39.1, adjusted-R2 = 0.83, p = 0.0004) and Jost’s D (F(1, 7) 

= 33.5, adjusted-R2 = 0.80, p = 0.0007) (Table 3). The same analyses without B. 

solanoides yielded similar positive associations between flowering asynchrony 

and pairwise FST (F(1, 6) = 36.3, adjusted-R2 = 0.83, p = 0.0009) and Jost’s D 

(F(1, 6) = 29.2, adjusted-R2 = 0.80, p = 0.002) (Table 3 and Fig. 4A, B). 

Phylogenetic regressions did not improve model fit and produced identical 

results. Similarly, Pagel’s  tests of phylogenetic signal on the error term of all 

linear regressions were non-significant (Table 3), consistent with a lack of 

phylogenetic autocorrelation in the data.  

 

Discussion 

Our results reveal a robust positive association between flowering 

asynchrony and population genetic divergence across our nine focal species of 

Andean angiosperms (Table 3, Fig. 4). Those species with greater shifts in 

flowering patterns across our two study sites had greater levels of genetic 
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divergence between their two subpopulations. Given that precipitation patterns 

were significantly different across these sites, these results support the idea that 

spatial variation in climatic seasonality may drive increased levels of genetic 

divergence, which in turn might be an important mechanism for the origin of new 

species of angiosperms. 

Our study design controlled for many other factors that might impact 

population genetic divergence, increasing the probability that the association we 

found is in fact due directly to flowering asynchrony rather than a confounding 

variable. For instance, by choosing the same two study sites for all species, 

geographic distance could not influence differences in FST values across species. 

Similarly, study species are likely all exposed to the same geographic barriers. 

They all occur in the understory of cloud forests on the same slope of the Andes, 

and both sites belong to the southern end of the Choco Andean corridor 

(Mordecai et al. 2009) and are presumably well-connected by a continuous 

corridor of forests due to the presence of the Cotacachi-Cayapas national park 

between them. Finally, differences in inbreeding levels do not seem to underlie 

the differences in population genetic divergence. Inbreeding can affect population 

genetic structure (Duminil et al. 2007), however we do not find such association 

in our dataset: the inbreeding coefficient (GIS in Table S5) does not predict FST (F 

(1, 7) = 0.19, adjusted R2 = −0.11, p = 0.7). 

We note that six of our study species presented relatively high inbredding 

coeffiecients (i.e., FIS values were > 0.5 in B. tiliifolia, B. solanoides, C. 

solanaoides, D. tenuis, G. quitensis, and K. affinis), which is generally associated 



 102 

with selfing. This is stricking given that five of the species are largely visited by 

hummingbirds (Weinstein and Graham 2017), while only one (B. tiliifolia) is 

presumably insect pollinated (pers. obs.). Studies of the pollination biology of B. 

tiliifolia are lacking, but it is possible that this monoecious herb is self-compatible, 

as are many other Begonia (Agren and Schemske 1993; Matolweni et al. 2000; 

Waytt & Sazima 2011). Self-compatibility is also common among other species 

related to our focal taxa, as has been shown in Besleria (Martin-Gajardo 1999), 

Drymonia (Steiner 1985), and other neotropical species (Schatz 1990). However, 

spontaneous self-pollination is unlikely due to monoecy in B. tiliifolia, and 

protandry in the hummingbird pollinated species. It is likely that pollinators 

promote geitonogamy and thus increase inbreeding within subpopulations, 

especially for hummingbird pollinated species that produce multiple flowers 

simultaneously (i.e., G. quitensis and K. affinis).  

We also note that species with lower genetic divergence (e.g., B. 

multiflora) showed a more constant production of flowers throughout the year, 

while species with greater genetic divergence showed markedly interrupted 

production of flowers, with periods of 0% production ranging from 1–4 months. 

Specifically, in M. tomentosa zero-flowering periods were long and extended (~ 4 

months, one valley per year, figure 2), while in C. solanifolius zero-flowering 

periods were short and intermittent (~ 2 months or shorter, multiple valleys per 

year, Fig. 2). Thus, some zero-flowering periods at a given site may be an 

important contributor to cutting off gene flow between nearby sites. 

The mode of gene dispersal between subpopulations could also affect 
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the importance of flowering asynchrony in population genetic divergence. If gene 

flow between nearby sites is mainly achieved via pollen dispersal, flowering 

asynchrony would be the primary mechanism for genetic divergence. However, if 

gene flow is also achieved via seed dispersal, flowering asynchrony might not be 

as important to promote genetic divergence. In the presence of seed dispersal, 

the association between flowering asynchrony and genetic divergence will largely 

depend on the fate of migrant seeds in a new site in combination with the 

underlying drivers of flowering time. If flowering time is a phenotypically plastic 

response to rainfall patterns (Levin 2009), adult migrants would flower at the 

same time as the local population, while if it is an evolved response to some 

other cue (Hall and Willis 2006), these migrants may remain out-of-synch with 

conspecifics in the new site.  Common garden experiments (as in Fudickar et al. 

2016), or reciprocal transplants (as in Hall and Willis 2006), would help to 

evaluate the role of phenotypic plasticity and environmental cues in determining 

flowering phenology.  

If migrants remain out of synch with conspecifics in the new site, 

flowering asynchrony could arise within a site and prevent gene flow between 

sympatric individuals. Asynchrony in flowering time among sympatric individuals 

is often termed allochrony (Gaudinier and Blackman 2019) and has been 

proposed as a possible mechanism for reproductive isolation in sympatry 

(Hendry and Day 2005; Taylor and Friesen 2017). A model of speciation in 

sympatry proposes that reproductive isolation can quickly evolve within small 

populations exhibiting long population-level periods of flowering, but short 
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individual-level periods of flowering, as this will cluster individuals genetically 

according to their flowering time (Devaux and Lande 2008). However, whether or 

how frequently this occurs in nature remains unclear. Allochrony has also been 

proposed as a mechanism that strengthens boundaries between incipient 

species when ranges rejoin in secondary contact, with prominent empirical 

examples in nature (Briscoe Runquist et al. 2014; Hipperson et al. 2016; Spriggs 

et al. 2019). This evidence suggests that flowering asynchrony likely evolves in 

allopatry, in line with the ‘asynchrony of seasons hypothesis’ (ASH), and its 

persistence after secondary contact helps to reduce gene flow and maintain 

species boundaries. 

Among our focal species, B. solanoides was the only taxon for which we 

detected two genetic clusters that did not correspond to the two study sites, but 

rather both occurred at both study sites. Interestingly, we note that one genetic 

cluster (in blue in figure 3) corresponds to early bloomers in both study sites, 

while the other (in orange) is composed of late bloomers in both study sites. 

Thus, these clusters might represent cryptic species separated by flowering time. 

This pattern suggests empirical support for the scenario discussed above, where 

shifts in flowering time evolved in allopatry (as per the ASH) and now maintain 

boundaries of these hypothetical cryptic species after one or both expanded their 

range into sympatry. Remarkably, the pairwise FST between genetic clusters was 

0.23 (p<0.001), greater than the pairwise FST between sites (0.09, Table 3). A 

thorough taxonomic and demographic study including individuals across B. 

solanoides’ range would help to evaluate this hypothesized scenario of cryptic 
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speciation after secondary contact driven by flowering asynchrony. 

One important caveat to our study is that the relationship between 

flowering asynchrony and population genetic divergence between sites only 

establishes a correlation, not a causation. Greater asynchrony may drive 

increased genetic divergence, as we have argued above. However, it could also 

be that subpopulations in each study site first became genetically differentiated 

due to other factors, and this divergence then led to differences in flowering 

phenologies. In such a case, flowering asynchrony would further strengthen the 

existing genetic divergence between subpopulations. Nonetheless, whether shifts 

in flowering time cause or strengthen genetic divergence, our main finding 

supports flowering asynchrony as an important mechanism that limits gene flow 

between subpopulations.  

Our study provides the first test to date of the ‘asynchrony of seasons 

hypothesis’ (Martin et al. 2009) in flowering plants. We found evidence for a 

central prediction of the ASH, namely that reproductive asynchrony between 

tropical sites with different seasonality is associated with increased population 

genetic divergence. Thus, reproductive asynchrony may accelerate rates of 

population differentiation, and ultimately speciation in tropical plants. Before our 

study, ASH had only been tested in birds (Moore et al. 2005; Quintero et al. 

2014). We thus encourage more phenological studies, in flowering plants and 

other organisms, to broadly document patterns of reproductive asynchrony and 

how these relate to ‘isolation by time’ in allopatry. Future work should also 

examine whether reproductive asynchrony is more prevalent in tropical than in 
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temperate systems, as predicted by their increased seasonal asynchrony. If so, 

flowering asynchrony could represent a key explanation for the latitudinal 

diversity gradient observed in flowering plants.   
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Fig. 1 (a) Location of study sites in northwestern Ecuador, South America, with 

map color representing elevation over sea level in m. The grey circle is Bosque 

Protector Golondrinas and the black circle is Santa Lucía Cloud Forest Reserve. 

(b) Rainfall seasonality at study sites: the y-axis is the amount of monthly rainfall 

in mm. Boxplots show the distribution of rainfall data across the geographic 

extent of each reserve; black circles are monthly means, horizontal grey lines are 

medians, and the boxes’ lower and upper limits are 25th and 75th percentiles. 

Elevation and monthly rainfall data come from WorldClim raster layers at a 

projected resolution of 1 km2. 
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Fig. 2 Flowering phenology of the nine studied species recorded for one year 

(July 2017 – June 2018). Flowering data is depicted in the y-axis as a monthly 

percent of peak flowering in the year. Grey lines correspond to flowering in 

Golondrinas, and black lines in Santa Lucía. 
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Fig. 3 Identified genetic clusters and Bayesian admixture proportions depicted for 

individual plants of each species. For most species K = 2 was the best K-fit to the 

data, except for D. tenuis which best K = 3. The black vertical bar on each 

structure plot separates individuals from Santa Lucía to the left and Golondrinas 

to the right (clusters between species are independent). Measures of genetic 

divergence between sites are indicated with pairwise FST values (fixation index) 

and Jost’s D values (allelic differentiation). All statistics were significant (p<0.005) 

based on 1000 permutations. 
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Fig. 4 The positive and significant (p < 0.005) association between flowering 

asynchrony and population genetic divergence across eight species of tropical 

angiosperms (excluding B. solanoides): A with pairwise FST in the y-axis, and B 

with Jost’s D in the y-axis. The blue line represents the prediction based on linear 

models with associated error in grey shading. 
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Table 1 Characteristics of studied species. 

Species Growth form Pollinators Fruit type 

Begonia tiliifolia Herbaceous Insects (pers. obs.) Indehiscent capsule 

Besleria solanoides Shrub Hummingbirds (1) Berry 

Burmeistera multiflora Herbaceous Bats (2) Inflated berry 

Centropogon solanifolius Herbaceous Hummingbirds (1) Indehiscent capsule 

Drymonia tenuis Sub-shrub Hummingbirds (1) Berry 

Fuchsia macrostigma Herbaceous Hummingbirds (1) Indehiscent capsule 

Gasteranthus quitensis Sub-shrub Hummingbirds (1) Fleshy capsule 

Kohleria affinis Epiphyte Hummingbirds (1) Fleshy capsule 

Meriania tomentosa Shrub Bats and hummingbirds (3) Indehiscent capsule 

 (1) Weinstein and Graham 2017 

(2) Muchhala 2006 

(3) Dellinger et al. 2019 
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Table 2 Flowering seasonality and asynchrony of studied species. A significance 

test of Fourier spectral analyses indicated that periodicity (i.e. seasonality) was 

significant for all studied species and consistent between sites (p < 0.05). A 

Fourier cospectral analysis was used to quantify flowering asynchrony (% async) 

between sites. 

 Seasonality (sample size) 

Species Santa Lucía Golondrinas % async 

Begonia tiliifolia annual (25) annual (10) 10.5 

Besleria solanoides bi-annual (25) bi-annual (25) 11.1 

Burmeistera multiflora sub-annual (25) sub-annual (10) 2.7 

Centropogon solanifolius annual (25) annual (25) 87.0 

Drymonia tenuis annual (25) annual (10) 16.8 

Fuchsia macrostigma annual (25) annual (25) 6.4 

Gasteranthus quitensis annual (25) annual (15) 9.3 

Kohleria affinis annual (25) annual (15) 26.3 

Meriania tomentosa annual (20) annual (15) 64.6 
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Table 3 Results of linear regressions of population genetic divergence as 

predicted by flowering asynchrony for four tests. Tests (1) and (2) include B. 

solanoides. Tests (3) and (4) exclude B. solanoides. Significance of linear 

models is denoted in bold. Pagel’s  measures phylogenetic signal in the error 

term of each linear model. Phylogenetic regressions produced identical results. 

Test Response Estimate Std. E t-value p-value adj-R2 AIC  

1 intercept 0.092 0.016 5.7 0.0007    

 FST 0.003 0.0004 6.3 0.0004 0.83 -30.9 <0.001 

2 intercept 0.031 0.008 4.0 0.005    

 Jost's D 0.001 0.0002 5.7 0.0007 0.80 -44.3 <0.001 

3 intercept 0.100 0.02 5.8 0.001    

 FST 0.003 0.0004 6.0 0.0009 0.83 -27.3 <0.001 

4 intercept 0.033 0.008 3.9 0.008    

 Jost's D 0.001 0.0002 5.4 0.002 0.80 -38.7 <0.001 
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Additional supporting information that will appear in the expanded online 

version of this article: 

 

Fig. S1 Phylogeny of studied species extracted with V.PhyloMaker. 

Fig. S2 Summary of Delta K results for each species. 

 

Table S1 Total flower count per species at each survey date (Table S1.xlsx). 

Table S2 Percent of flowering peak data per species (TableS2.xlsx). 

Table S3 Results from Fourier spectral and cospectral analyses (TableS3.xlsx). 

Table S4 Unfiltered catalog of loci for studied species. 

Table S5 Genetic diversity of studied species across loci. 

Table S6 Genetic diversity of studied species within sites. 
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Fig. S1 Phylogeny of studied species extracted from a backbone tree in 

V.PhyloMaker. 
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Fig. S2 Summary of Delta K results for each species based on the Evanno et al. 

(2005) method. K = 2 was the best-fit to the data for most species, except for D. 

tenuis where the best K = 3. 

 

 

Table S1 Total flower count per species at each survey date (in file 

TableS1.TotalFlowers.xlsx).  

 

Table S2 Percent of flowering peak data per species per site used for Fourier 

spectral and cospectral analyses (in file TableS2.FlowersRdata.xlsx) 

 

TableS3 Results of Fourier spectral and cospectral analyses, significance of 

seasonality tests and estimated flowering asynchrony (in 

TableS3.SpectralCospectralResults.xlsx) 
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Table S4 Unfiltered catalog of loci recovered with the STACKS v2.3e pipeline for 

non-model organisms. N is the number of individuals. Coverage refers to the 

mean depth of reads used to build loci. 

 

  total N 

genotyped 

total loci 

genotyped 

Effective depth of coverage 

(reads/loci) 

Species mean stdev min max 

Begonia tiliifolia 25 2196507 15.6 4 8.4 26 

Besleria solanoides 26 1751170 12.6 3.8 6.1 19.8 

Burmeistera multiflora 21 3370979 17.7 7.6 9.1 33.5 

Centropogon solanifolius 23 1469286 20.8 5 11.7 31.3 

Drymonia tenuis 26 3266205 16 5.7 6.4 31.4 

Fuchsia macrostigma 21 2439480 16.1 5.3 6.6 26.5 

Gasteranthus quitensis 23 1326095 16.2 3.8 11.3 23.9 

Kohleria affinis 22 1071520 15.2 3.9 10.7 30 

Meriania tomentosa 27 2682725 22.7 13.1 7.1 51.8 
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Table S5 Genetic diversity of studied species estimated across filtered loci. N var loci: number of variant loci, N total a: total number of alleles, 

%md: percent missing data, N a: mean number of alleles per locus, Ne a: mean effective number of alleles per locus, Ho: observed 

heterozygosity, Hs: mean expected heterozygosity across subpopulations, Ht: total expected heterozygosity over all subpopulations, GIS: 

inbreeding coefficient. Standard deviations of statistics (in parentheses) were obtained through jackknifing over loci and significance (p < 0.005) 

through 1000 permutations (denoted in bold). 

Species N var loci N total a % md N a Ne a Ho Hs Ht GIS 

Begonia tiliifolia 4608 9035 40 

1.96 

(0.003) 

1.29 

(0.003) 

0.09 

(0.002) 

0.24 

(0.002) 

0.26 

(0.002) 

0.62 

(0.01) 

Besleria solanoides 1082 2144 35 

1.98 

(0.004) 

1.31 

(0.007) 

0.11 

(0.005) 

0.25 

(0.004) 

0.26 

(0.004) 

0.55 

(0.019) 

Burmeistera multiflora 7624 14175 36 

1.86 

(0.004) 

1.30 

(0.002) 

0.19 

(0.002) 

0.24 

(0.002) 

0.25 

(0.002) 

0.22 

(0.008) 

Centropogon solanifolius 3182 6281 40 

1.97 

(0.003) 

1.25 

(0.003) 

0.08 

(0.003) 

0.22 

(0.002) 

0.26 

(0.003) 

0.62 

(0.011) 

Drymonia tenuis 2389 4708 39 

1.88 

(0.006) 

1.28 

(0.005) 

0.11 

(0.003) 

0.24 

(0.003) 

0.25 

(0.003) 

0.53 

(0.011) 

Fuchsia macrostigma 6634 12908 37 

1.95 

(0.003) 

1.31 

(0.003) 

0.17 

(0.002) 

0.25 

(0.002) 

0.27 

(0.002) 

0.32 

(0.007) 

Gasteranthus quitensis 3251 6179 41 

1.90 

(0.005) 

1.27 

(0.004) 

0.06 

(0.002) 

0.24 

(0.003) 

0.27 

(0.003) 

0.77 

(0.009) 

Kohleria affinis 1457 2716 36 

1.92 

(0.007) 

1.26 

(0.005) 

0.08 

(0.004) 

0.22 

(0.003) 

0.24 

(0.004) 

0.66 

(0.016) 

Meriania tomentosa 4224 8236 36 

1.95 

(0.003) 

1.29 

(0.003) 

0.16 

(0.003) 

0.23 

(0.002) 

0.28 

(0.002) 

0.33 

(0.010) 
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Table S6 Genetic diversity of studied species within sites estimated from filtered loci. S: Santa Lucía, G: Golondrinas, N: number of individuals in 

the final genetic dataset, Ne: effective number of individuals, P a: number of private alleles, % P a: proportion of private to total alleles, N a: mean 

number of alleles per locus, Ne a: mean effective number of alleles per locus, Ho: observed heterozygosity, Hs: mean expected heterozygosity 

within site, GIS: inbreeding coefficient. Significance (p < 0.005) was obtained through 1000 permutations and is denoted in bold. 

Species Site N Ne P a % P a N a Ne a Ho Hs GIS 

Begonia tiliifolia 
S 11 7.4 1809 0.20 1.74 1.36 0.09 0.26 0.67 

G 9 6.3 945 0.10 1.54 1.29 0.09 0.22 0.57 

Besleria solanoides 
S 12 8.2 295 0.14 1.73 1.32 0.11 0.23 0.54 

G 8 5.6 269 0.13 1.70 1.37 0.12 0.27 0.56 

Burmeistera multiflora 
S 7 5.9 2563 0.18 1.62 1.34 0.20 0.24 0.17 

G 7 4.9 1721 0.12 1.60 1.33 0.18 0.24 0.27 

Centropogon solanifolius 
S 10 6.7 1086 0.17 1.58 1.29 0.09 0.21 0.60 

G 10 6.2 1090 0.17 1.60 1.30 0.08 0.23 0.63 

Drymonia tenuis 
S 10 5.7 535 0.11 1.59 1.34 0.12 0.26 0.54 

G 7 7.0 668 0.14 1.62 1.30 0.10 0.22 0.54 

Fuchsia macrostigma 
S 7 5.8 1954 0.15 1.68 1.35 0.18 0.25 0.30 

G 9 5.9 1701 0.13 1.66 1.35 0.17 0.25 0.33 

Gasteranthus quitensis 
S 8 6.0 1081 0.17 1.54 1.32 0.06 0.25 0.77 

G 9 6.4 1127 0.18 1.59 1.32 0.06 0.24 0.78 

Kohleria affinis 
S 9 6.4 388 0.14 1.50 1.25 0.07 0.19 0.63 

G 9 6.2 628 0.23 1.65 1.35 0.08 0.26 0.69 

Meriania tomentosa 
S 10 7.9 1507 0.18 1.65 1.35 0.16 0.24 0.33 

G 10 7.0 1082 0.13 1.60 1.33 0.15 0.23 0.32 
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Abstract 

Animal pollinators have a direct effect on plant gene flow because they carry the 

pollen grains. Pollinators with restricted mobility are predicted to limit gene flow 

within and among populations, while pollinators that fly longer distances likely 

promote genetic cohesion. Such predictions, however, remain surprisingly poorly 

tested. Here, we examined population genetic structure and fine-scale spatial 

genetic structure (SGS) in six perennial understory angiosperms in Andean cloud 

forests of northwestern Ecuador. Species belong to three families and within 

each family we selected one insect-pollinated species and one hummingbird-

pollinated species. Based on differences in foraging behavior and flying ability, 

we tested the predictions that species pollinated by insects should have greater 

population genetic differentiation among study sites (as quantified with the FST 

statistic), and stronger SGS (as quantified with the SP statistic), than species 

pollinated by hummingbirds. We confirmed putative pollinators through a 

literature review and fieldwork, and inferred population genetic parameters with a 

genome-wide genotyping approach. Generalized linear mixed-effects models 

showed that insect pollination is significantly associated with both greater 

population genetic differentiation and stronger SGS than hummingbird 

pollination. Our results clearly show for the first time that pollination by insects 

significantly restricts the spatial scale of intraspecific gene flow relative to 

pollination by hummingbirds 

Key words: 2b-RAD sequencing, Andean cloud forest understory, fine-scale 

spatial genetic structure, animal pollination, population genetic structure. 
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Introduction 

Understanding how plant mutualists influence spatial patterns of genetic 

diversity is central to plant biology, especially in the present scenario of 

biodiversity decline due to human-accelerated environmental change (Hardy et 

al. 2006; Dick et al. 2008; Aguilar et al. 2008, 2019). Animal pollinators directly 

affect gene flow within and among flowering plant populations because they are 

the carriers of pollen grains (Loveless and Hamrick 1984; Hamrick et al. 1992). 

Previous broad-scale studies on patterns of genetic structure in plants have 

lumped together all animals, and compared them to wind, thus overlooking the 

effect of different animals on gene flow dynamics within and among plant 

population (Hamrick and Godt 1996; Duminil et al. 2007). Findings from such 

studies reveal that wind tends to homogenize plant gene pools, while animal 

pollination is associated with higher population genetic differentiation as well as 

stronger fine-scale spatial genetic structure (i.e., the non-random spatial 

distribution of closely related individuals) (Dick et al. 2008; Gelmi‐Candusso et al. 

2017). Thus, in general, animal pollination may significantly disrupt gene flow 

relative to wind pollination within and among populations. Such patterns, 

however, should vary depending on the pollen dispersal ability of the pollinator, 

which will depend on foraging behavior and pollen carry-over capacity (Levin 

1979). Pollinators with large foraging areas can carry pollen long distances, 

potentially enhancing gene flow within and among plant populations. In contrast, 

pollinators with local foraging behavior potentially reduce pollen dispersal, likely 

disrupting gene flow within and among plant populations. This potential trend has 
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been suggested in seminal reviews (Levin 1981; Loveless and Hamrick 1984), 

and in some empirical studies (Linhart et al. 1987; Linhart and Grant 1996; 

Kramer et al. 2011; Amico et al. 2014). However, no study to date has formally 

tested the prediction that pollinators with limited mobility should lead to stronger 

patterns of isolation by distance across individuals, potentially increasing 

population genetic differentiation across subpopulations, relative to pollinators 

that fly longer distances. 

Vertebrate pollinators, such as nectarivorous bats and birds, generally fly 

longer distances during foraging bouts than insects, likely enhancing pollen flow 

among distantly spaced individuals and subpopulations, even across fragmented 

habitats (Levin 1979; Machado et al. 1998; Sahley 2001; Southerton et al. 2004; 

Byrne et al. 2007; Dick et al. 2008; Hadley and Betts 2009; McCulloch et al. 

2013; Breed et al. 2015; Krauss et al. 2017; Solís-Hernández and Fuchs 2019). 

Thus, pollination by volant vertebrates potentially results in larger genetic plant 

neighborhoods (sensu Wright 1946; Webb 1984) than pollination by insects 

(Karron et al. 1995; Krauss 2000; Krauss et al. 2009; Bezemer et al. 2016). 

Although studies on the contrasting effects of pollination by volant vertebrates vs. 

insects on plant gene flow are remarkably lacking, this idea is supported by 

pollination studies on focal species. For example, studies in entomophilous 

plants show that small insects such as flies, solitary bees, and small beetles 

generally visit most flowers in a single plant, and then move to nearby plants 

restricting foraging to relatively small areas (Campbell 1985; Escaravage and 

Wagner 2004; Hasegawa et al. 2015). Furthermore, large insects such as large 
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bees and lepidoptera have larger foraging areas, frequently associated with 

traplining behavior (i.e., repeated sequence of floral visits over several locations) 

(Levin 1979; Schmitt 1980; Murawski and Gilbert 1986; Rhodes et al. 2017). 

Similarly, vertebrate pollinators such as non-territorial hummingbirds and bats 

also follow a traplining foraging behavior (Fleming 1982; Lemke 1984, 1985; 

Tello-Ramos et al. 2015), and potentially cover even larger areas than large 

insects (Linhart 1973; Webb and Bawa 1983; Melampy 1987; Campbell and 

Dooley 1992; Sahley 2001; Castellanos et al. 2003; Serrano-Serrano et al. 

2017). Taken together, pollination by volant vertebrates should increase the 

spatial scale of intraspecific plant gene flow relative to pollination by insects. 

In this study we aimed to test two predictions: (1) insect pollination is 

associated with greater genetic differentiation between plant populations than 

hummingbird pollination, and (2) insect pollination is associated with stronger 

fine-scale spatial genetic structure (SGS) within plant populations than 

hummingbird pollination. We focused on six perennial understory angiosperms in 

the Andean cloud forest of northwestern Ecuador, a highly diverse but threatened 

ecosystem. Species belong to three families and within each family we selected 

one insect-pollinated species (euglossine bees, or small buzzing bees, or 

hoverflies and wasps), and one hummingbird-pollinated species (traplining 

hummingbirds) (Renner 1989; Gamba and Almeda 2014; Weinstein and Graham 

2017; Dellinger et al. 2019) (Table 1). All six focal species are likely very limited 

in their seed dispersal, as they are dispersed by gravity or by understory birds 

with sedentary lifestyles (Renner 1989; Loiselle and Blake 1993, 1999; Kessler-
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Ríos and Kattan 2012; Theim et al. 2014). Thus, we expect that any trend of 

variation in population genetic differentiation and SGS across species will be due 

primarily to pollination mode. We confirmed putative pollinators through field 

work, and we used a genome-wide genotyping approach to obtain genetic data. 

We then tested whether animal pollination mode explained differences in 

population genetic differentiation, as well as in strength of SGS, across species. 

 

Materials and Methods 

Study sites 

We performed this study in Santa Lucía (0.12 N, 78.6 W), El Pahuma 

(0.02 N, 78.6 W), Bellavista (0.01 S, 78.7 W), and Las Tángaras (0.08 S, 78.8 

W), four private reserves located on the northwestern slope of the Andean 

cordillera of Ecuador, in the province of Pichincha around 40 km northwest of 

Quito. Sites are 5–23 km apart from each other and are composed of secondary 

and primary cloud forest ranging from 1800–2500 m in elevation. Because they 

are nearby and similar in elevation, they share many species, yet the distance 

between them potentially imposes a physical barrier for movement of pollinators, 

making them ideal for testing our predictions. 

 

Study species and pollinators  

To select our focal species, we began by compiling a list of species 

occurring at all sites using the Tropicos.org database of the Missouri Botanical 

Garden. Through fieldwork we further narrowed this list to six perennial 
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understory angiosperms from three families, with one insect-pollinated and one 

hummingbird-pollinated species per family, including Drymonia brochidodroma 

Wiehler and Drymonia tenuis (Benth.) J.L. Clark (Gesneriaceae), Miconia 

rubescens (Triana) Gamba & Almeda and Meriania tomentosa (Cogn.) Wurdack 

(Melastomataceae), and Notopleura longipedunculoides (C.M. Taylor) C.M. 

Taylor and Palicourea demissa Standl. (Rubiaceae; with the hummingbird-

pollinated species listed second in each case). Among study species, M. 

tomentosa is also pollinated by nectarivorous bats (Muchhala and Jarrín-V 2002). 

Pairing by family allowed us to control for phylogenetic autocorrelation in 

subsequent tests. Based on our observations in the field, the spatial distribution 

of all species appeared widespread and consistent within sites, with occasional 

clusters of individuals. Additionally, seed dispersal in selected species is mostly 

achieved by understory birds with sedentary lifestyles such as tanagers and 

manakins, as has been shown for fleshy berries in Rubiaceae (Loiselle and Blake 

1993, Loiselle et al. 1995; Theim et al. 2014) and Melastomataceae (Renner 

1989; Loiselle and Blake 1999; Kessler-Ríos and Kattan 2012), and for fleshy 

capsules (often referred as display-capsules) in understory Gesneriaceae (Clark 

et al. 2012). The dry indehiscent capsules of M. tomentosa are likely gravity 

dispersed, as are many understory Melastomataceae with the same type of fruit 

(Renner 1989). 

We obtained information on pollination mode from peer-reviewed literature 

of studied species (Renner 1989; Muchhala and Jarrín-V 2002; Gamba and 

Almeda 2014; Weinstein and Graham 2017; Dellinger et al. 2019), and by 
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videotaping plants in the field (Table 1). Specifically, for species with little 

information on pollination mode (D. brochidodroma and N. longipedunculoides), 

we confirmed putative pollinators by videotaping flowers with four high definition 

Sony digital camcorders for four days at each site. Cameras simultaneously 

videotaped four individuals per day (one species per day, eight individuals per 

species per site). Flowers were videotaped in the morning (0630 to 1130) and in 

the afternoon (1330 to 1830) (Additional file 1). 

 

Genomic sampling, library preparation and sequencing 

For molecular work, we collected leaf tissue in silica gel from 20 

individuals per species from each of the three study sites (see Table 1 for 

sampled sites per species). We largely followed available trails in the reserves, 

making sure sampled individuals were at least 20 m apart from each other, and 

taking geographic coordinates in decimal degrees for each of them (Additional 

file 2).  

We extracted total genomic DNA from silica-dried leaf tissue following the 

CTAB protocol (Doyle and Doyle 1987), but incorporating two additional ethanol 

washes of the DNA pellet. We quantified DNA with a Qubit 2.0 Fluorometer 

(Invitrogen, Thermo Fisher Scientific), using the manufacturer’s protocol. For 

each of our samples with sufficient DNA, we obtained single nucleotide 

polymorphisms (SNPs) using 2b-RAD, a restriction site-associated DNA 

sequencing technique (Wang et al. 2012). We constructed 2b-RAD libraries for 

each individual following the available protocol (Wang et al. 2012). Five hundred 



 133 

ng of total genomic DNA were digested with a type IIb endonuclease, BcgI (New 

England Biolabs), which cuts DNA on both sides of a recognition site to obtain 

uniform 36-bp fragments distributed across the genome. Oligonucleotide Illumina 

sequences were ligated to these fragments with 12 double-stranded barcoded 

adapters, one per each column of a 96-sample plate. In order to increase 

sequence coverage per locus, we utilized reduced representation barcoded 

adapters which reduce the total number of loci sequenced. Samples with 

different barcoded adapters were pooled into 8 groups of 12 samples. Following 

initial pooling, Illumina RAD PCR primers (1–8) were incorporated into the 

fragments of each pool via 14 cycles of PCR amplification. Amplified pools were 

then purified via gel electrophoresis. Fragments of 75bp were size selected by 

excising target bands from the agarose gel. We then used a Min Elute Gel 

extraction kit (Qiagen) to purify target bands. Purified samples were quantified 

and pooled into a single library in equimolar concentrations. We generated three 

libraries, which together included ~ 15–20 individuals per species per study site. 

Libraries were sequenced on Illumina HiSeq 4000 (Duke University, NC) 

machines, to generate single end 50 bp reads. 

 

Building loci and genotyping individuals 

Reads were demultiplexed using a custom script (trim2bRAD) generated 

by the Matz lab at the University of Austin, TX 

(https://github.com/z0on/2bRAD_denovo). This script trims 2b-RAD fragments 

from barcodes to produce one fastq file per sample. The resulting files were 
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quality filtered with FastQC (Babraham Bioinformatics) and the FASTX-toolkit 

(Gordon and Hannon 2010). We discarded low quality reads and obtained 

sequences that were 36 bp in length, with a minimum of 90% bases having a 

Phred quality score of at least 20 and an input quality offset of 33 (fastq files will 

be available in the Dryad repository). We then used the Stacks v2.3e pipeline to 

genotype individuals and produce a catalog of loci for each species (Catchen et 

al. 2013). We ran Stacks using the default parameter settings for building loci, 

which we considered to be appropriate for the short size of the 2b-RAD 

fragments, including a maximum distance of 2 nucleotide differences allowed 

between reads, a minimum depth of coverage of 3 reads required to create a 

stack, and a maximum distance of 4 nucleotide differences allowed to align 

secondary reads to primary stacks. We also allowed one gap between stacks 

before merging into putative loci. We filtered loci with the program ‘populations’ 

on the same pipeline. We excluded loci that were genotyped in <40% of 

individuals within each species. To avoid using SNPs in high linkage 

disequilibrium, we used one random SNP per locus. To prevent potential low-

frequency SNP miscalls, we discarded alleles that had a frequency <5% in any 

locus across all individuals per species. To avoid repetitive or paralogous loci, 

the maximum number of heterozygous individuals that may be present in any 

locus was set to 75%. Lastly, we used the program VCFtools v0.1.16 (Danecek 

et al. 2011) to identify individuals with >50% missing data relative to variant sites 

and removed these individuals from subsequent analyses. We removed a total of 

51 individuals across all species, with an average of 9 individuals/species (± 4 
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SD, range = 2–17 individuals/species). 

 

Inference of population genetic parameters 

We used the program GenoDive v3.0 (Meirmans and Van Tienderen 

2004) to calculate genetic diversity statistics for each species. We assessed 

population genetic structure using the F-statistics derived from an Analysis of 

Molecular Variance or AMOVA (Excoffier et al. 1992). AMOVA determines the 

proportion of genetic variance partitioned within individuals, among individuals 

within subpopulations, and among subpopulations. Related F-statistics were 

obtained with an infinite allele model; thus, they are equivalent to G-statistics (Nei 

1973; Nei and Chesser 1983). These include FIT (the mean reduction in 

heterozygosity of an individual relative to the total population), FIS (the inbreeding 

coefficient among individuals within sites), and FST (the global genetic 

differentiation among sampled sites). The statistical significance of diversity 

statistics was assessed using 1000 random permutations of the data, while their 

standard deviations were obtained by jackknifing over loci. 

 

Inference of fine-scale spatial genetic structure (SGS) 

We evaluated SGS for each species via spatial autocorrelation analyses 

at the individual level (Vekemans and Hardy 2004) using the program SPAGeDi 

v. 1.3a (Hardy and Vekemans 2002). We first transformed individuals’ decimal 

degrees coordinates into the Universal Transverse Mercator coordinate system, 

which is compatible with the SPAGeDi version we used. We then assessed 
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genetic relatedness between all pairs of individuals i and j with Nason’s kinship 

coefficient, Fij (Loiselle et al. 1995). We specified 5 distance intervals for each 

species and allowed the program to define their maximal distance such that the 

number of pairwise comparisons within each interval was kept approximately 

constant. Fij values were regressed on the natural logarithm of the spatial 

distance separating pairs of individuals, ln(dij), in order to quantify regression 

slopes, b. To test for SGS, spatial positions of individuals were permuted 1000 

times to obtain a frequency distribution of b under the null hypothesis that Fij and 

ln(dij) are not correlated. We quantified the strength of SGS with the SP statistic 

(Vekemans and Hardy 2004), which is calculated as −b/(1 − F1), where F1 is the 

mean Fij between all pairs of individuals in the first distance interval containing 

nearest neighbors (< ~1 km for all species). The SP statistic mainly depends on 

the slope of the kinship-distance curve, allowing direct comparisons of SGS 

among species (Vekemans and Hardy 2004). Standard errors of all SGS 

statistics were obtained by jackknifing over loci. To visualize SGS, we plotted the 

mean Fij at each distance interval over the five distance intervals for each 

species. 

 

Testing for the effect of animal pollinators on plant FST and SGS 

We used generalized linear mixed-effects models in RStudio V 1.2.5019 

(R Core Team 2018) to examine if insect pollination is associated with both 

higher genetic differentiation across subpopulations (i.e., higher FST values) and 

stronger SGS across individuals (i.e., higher Sp values) than hummingbird 
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pollination, across our study species. Given that the natural logarithm of FST and 

SP values are normally distributed, we fitted models with the R function glmer() 

and the ‘lognormal’ distribution (family=gaussian, link=‘log’) for the structure of 

the residuals, specifying taxonomic family as a random effect.  

 

Results 

Pollinators 

We recorded a total of 10 individuals and 30 hours (i.e., ~3 

hours/individual) for Drymonia brochidodroma, and 12 individuals and 35 hours 

(i.e., ~2.9 hours/individual) for Notopleura longipedunculoides. From these 

videos, we observed that D. brochidodroma was exclusively visited by 

Euglossine bees, with 5 bee visits lasting ~10 seconds each, while N. 

longipeduncoloides was visited by wasps, hoverflies, and small bees. We 

recorded 18 wasp visits lasting ~60 seconds each, 10 hoverfly visits ~ 30 

seconds each, and 5 bees visits ~15 seconds each. 

 

Filtered genetic datasets 

After SNP calling and quality control using different filtering procedures, 

we obtained a mean of 2,797,308 SNP loci per species (± 1,091,949 SD; range: 

879,138–4,151,836), with a mean coverage ranging from 14–95.1 read depth per 

loci across species (Table S1). After removing individuals with >50% missing 

data, final sample sizes of individuals per species per study site ranged from 8–

18 (mean = 13 ± 3 SD), and the number of variant loci ranged from 1,044–4,907 
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(mean = 2,699 ± 1,427 SD) across species, with missing data across species 

ranging from 24–38% (mean = 33% ± 5 SD) (Table S2 and S3). 

Gene diversity was similar across species; total expected heterozygosity 

(HT) ranged from 0.21–0.25 (mean = 0.23 ± 0.02) across species (Table S2) and 

mean expected heterozygosity within sites (HS) ranged from 0.17–0.26 (mean = 

0.22 ± 0.02). Additionally, all species showed statistically significant levels of 

inbreeding, as indicated by significant GIS values whether these are pooled 

across sites (mean = 0.30 ± 0.14 SD; Table S2) or analyzed separately by site 

(mean = 0.32 ± 0.16 SD, Table S3). 

 

Population genetic structure 

AMOVA results revealed that in all species most of the genetic diversity 

resides within individuals and among individuals within sites, while less genetic 

diversity resides among sites (Table S4). AMOVA FIT showed that for most 

species a large proportion of individuals across study sites were out of Hardy-

Weinberg equilibrium, likely due to inbreeding among individuals. In fact, AMOVA 

FIS was significant for all species, congruent with our GIS estimates above, and 

confirming that there is substantial genetic inbreeding within sites across studied 

species. Furthermore, AMOVA FST was variable (range = 0.03–0.21, mean = 

0.10 ± 0.06) but significant for all species, hence there is considerable genetic 

differentiation among study sites (Table 2). 
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Fine-scale spatial genetic structure (SGS) 

SGS was significant for all studied species; regression slopes b of 

pairwise kinship coefficients on the natural logarithm of spatial distance were 

significantly negative in all species (Table 3). Additionally, the extent of SGS as 

quantified with the SP statistic was quite variable across species, ranging from 

0.009–0.089 (mean = 0.04 ± 0.03 SD). Such variation is evident in our SGS 

visualizations (Fig. 1, Tables S5–S10), which show that species pollinated by 

insects tend to have steeper average kinship-distance slopes (Fig. 1 a, c, e) than 

species pollinated by vertebrates (Fig. 1 b, d, f). Given that standard errors 

associated with each average Fij are vanishingly small (Tables S5–S10), they are 

not observable in Fig. 1. 

 

Effect of insect vs. vertebrate pollination modes on plant FST and SGS  

We hypothesized that insect pollination results in both stronger SGS and 

higher population genetic differentiation than hummingbird pollination. On 

average, plants pollinated by insects had greater FST values (0.14 ± 0.07 SD) 

than plants pollinated by hummingbirds (0.06 ± 0.04 SD) (Table 2). We observed 

a similar trend for SP values; 0.054 ± 0.03 SD for plants pollinated by insects vs. 

0.017 ± 0.01 SD for plants pollinated by hummingbirds (Table 3). Results from a 

generalized linear mixed-effects model (GLMM), specifying taxonomic family as a 

grouping factor, supported our predictions: insect pollination is associated with 

both significantly higher FST and significantly higher SP values than vertebrate 

pollination (Fig. 2, Table 4).  
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Discussion  

The contrasting effect of different animal pollinators on plant gene flow has 

remained largely unexplored across plant species. Our study provides an 

important advance in this matter and our results supported our predictions: 

species pollinated by insects had significantly greater levels of population genetic 

differentiation and stronger fine-scale spatial genetic structure than species 

pollinated by hummingbirds (Table 4, Fig.1 and 2). Our findings support the idea 

that pollinator movement during foraging has strong effects on the spatial scale 

of intraspecific plant gene flow. The limited movement of insects restricts gene 

flow within and among populations, while the traplining behavior of hummingbirds 

promotes genetic cohesion. 

Our chosen study species allowed us to control for other factors that might 

impact plant population genetic structure and SGS, increasing the probability that 

the association we found is in fact due directly to animal pollination mode rather 

than a confounding variable. For example, choosing species pairs with distinct 

animal pollination modes (insect vs. vertebrate), each pair in one plant family, 

allowed us to control for evolutionary relationships that could have resulted in 

phylogenetic autocorrelation in our dataset. Furthermore, all species belong to 

cloud forest understory sites inside the southern end of the Choco Andean 

corridor (Mordecai et al. 2009) that are relatively well-connected by a continuous 

corridor of forests. Thus, pollinator movement between sites for all species 

should be constrained by the same type of geographic barriers inherent to the 

landscape heterogeneity of the Andes. Likewise, seed dispersal across species 
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is likely limited; seeds either fall under mother plants or are dispersed by 

sedentary understory birds like tanagers and manakins (Loiselle and Blake 1993, 

1999; Smith 2001; Gamba and Almeda 2014). Additionally, most species pairs 

have the same type of fruit: x and x of gesner havex, x and x of x have x.  The 

exception are the Melastomataceae pair, in which Miconia rubescens has fleshy 

berries and Meriania tomentosa has indehiscent capsules. We would expect 

indehiscent capsules to be more dispersed limited that fleshy berries, resulting in 

higher FST and SP values. Our data instead found that M. tomentosa has smaller 

FST and SP values than M. rubescens, suggesting vertebrate pollination in the 

former may override any dispersal limitation imposed by the indehiscent 

capsules. Overall, we expect that seed dispersal likely contributes little to gene 

flow. Finally, differences in inbreeding levels do not seem to underlie the 

differences in population genetic differentiation or strength of SGS. Inbreeding 

can affect population genetic structure and SGS (Vekemans and Hardy 2004; 

Duminil et al. 2007), however we do not find such association in our dataset: the 

inbreeding coefficient (AMOVA FIS in Table 2) does not predict FST (GLMM, 

p=0.9) or SP values (GLMM, p=0.5). 

We note that differences in FST and SP values were more pronounced 

between the Rubiaceae species pairs (7 and 10-fold, respectively), followed by 

the Melastomataceae pairs (2.2 and 2.5-fold, respectively), and lastly by the 

Gesneriaceae pairs (almost equivalent values) (Table 2 and 3). Notopleura 

longipedunculoides is largely pollinated by tiny wasps and hoverflies that probe 

most flowers in the same individual and stay among nearby plants (pers. obs), 
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consistent with the greatest observed FST and SP values. Miconia rubescens is 

pollinated by Melipona and Trigona, which are relatively small pollen collecting 

bees (Renner 1989), consistent with the intermediate FST and SP values. Finally, 

Drymonia brochidodroma is pollinated by euglossine bees (pers. obs.), which are 

larger and have been reported to flight long distances (Janzen 1971; López-Uribe 

et al. 2008), which is in line with D. brochidodroma having the smallest FST and 

SP values among our insect pollinated plants. Thus, differences between insect 

pollinators may explain this pattern. Among vertebrate pollinated plants, 

Palicourea demissa is visited by ~15 hummingbird species, Meriania tomentosa 

is visited by ~8 hummingbird species and by nectarivorous bats (Muchhala and 

Jarrín-V 2002), and Drymonia tenuis is visited by ~7 hummingbird species 

(Weinstein and Graham 2017), consistent with lower FST and SP values. The fact 

that the two Drymonia species had such similar FST and SP values suggests that 

euglossine bees and hummingbirds are similar in their pollen dispersal ability. 

Direct measures of pollen dispersal based on paternity analyses are in line with 

the patterns of genetic structure we found, in that bats and hummingbirds can 

transport pollen for several kilometers, large insects such as large bees 

(including euglossine bees) for over 600 meters, while most small insects 

(smaller than a honeybee) rarely transfer pollen more than 300 meters (Webb 

and Bawa 1983; Dick et al. 2008). 

One important consideration of our study is that we categorized pollination 

systems fairly broadly as insects vs. vertebrates. But in the same way that 

insects can vary in pollen dispersal ability, as described above, different 
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vertebrates may also differ in pollen dispersal. For instance, traplining vs. 

territorial behavior among hummingbirds might strongly impact plant gene flow 

(Murawski and Gilbert 1986; Cuevas et al. 2018; Schmidt‐Lebuhn et al. 2019), 

since territorial hummingbirds have been shown to move pollen much shorter 

distances than traplining hummingbirds (Ohashi and Thomson 2009; Wolowski et 

al. 2013; Betts et al. 2015). There also might be differences between 

hummingbirds and bats, as the latter have been found to carry pollen more 

efficiently (Muchhala and Thomson 2010) and to longer distances than 

hummingbirds (Lemke 1984, 1985; Tello-Ramos et al. 2015). Future work should 

look more in depth at how plant gene flow is affected by differences within 

pollinator guilds, including large vs. small insects, territorial vs. traplining 

hummingbirds, and nectarivorous bats vs. hummingbirds. 

Our study provides new evidence on the contrasting effect that different 

animal pollinators can have on the spatial scale of intraspecific plant gene flow. 

We found that insect-pollinated plants have significantly higher population 

genetic differentiation and stronger fine-scale spatial genetic structure than 

hummingbird pollinated plants. Thus, the effect of animal pollinators on plant 

gene flow is significant at local (within populations) and regional (among 

populations) scales. Our results support the idea that plants pollinated by insects 

are likely very susceptible to habitat fragmentation (more so than vertebrate 

pollinated plants; e.g. Côrtes et al. 2013), because it can further isolate 

populations and result in loss of genetic variability due to increased genetic drift 

(Aguilar et al. 2008, 2019). Nevertheless, focal studies reveal that hummingbird 
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and bat pollinated plants can also experience detrimental effects due to habitat 

fragmentation (Wanderley et al. 2020).  Increased deforestation results in 

significant declines of hummingbird species richness and thus of pollinator 

availability (Hadley and Betts 2009; Hadley et al. 2018). Furthermore, habitat 

destruction due to urbanization likely decreases areas of cross-pollination 

mediated by nectarivorous bats, because their habitat becomes restricted to few 

forest fragments inside large tropical cities (Nunes et al. 2017). Future studies 

should seek to compare how animal foraging behavior and its related effect on 

plant gene flow might be altered due to anthropogenic disturbance. In general, 

the current scenario of human-accelerated change should push conservation 

efforts to maintain connectivity between fragments that harbor many understory 

tropical species. 
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Table 1 Characteristics of studied species and sites where they were sampled.  

Species Growth form Pollinators (source) Fruit type Sites † 

Drymonia brochidodroma Herbaceous Euglossine bees (pers. obs.) Fleshy capsule SL, T 

Drymonia tenuis Sub-shrub Traplining hummingbirds (1) Fleshy capsule SL, P, B 

Miconia rubescens Shrub Small-buzzing bees (2) Berry SL, P, B 

Meriania tomentosa Shrub Traplining hummingbirds/bats (1, 3) Dry capsule SL, P, B 

Notopleura longipedunculoides Sub-shrub Wasps/flies/bees (pers. obs.) Berry SL, P, B 

Palicourea demissa Shrub Traplining hummingbirds (1) Berry SL, B 

(1) Weinstein and Graham 2017 

(2) Gamba and Almeda 2004 

(3) Dellinger et al. 2019 

† SL: Santa Lucía, T: Las Tángaras, P: El Pahuma, B: Bellavista. 
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Table 2 Estimates of population genetic structure for each studied species. N total, number of genotyped individuals in the 

final genetic dataset; N loci, number of variant loci in the final genetic dataset; AMOVA FIT represents the deviation from 

Hardy-Weinberg Equilibrium within individuals relative to the expected heterozygosity in the total population; AMOVA FIS 

represents the inbreeding coefficient among individuals within sites; AMOVA FST represents the global genetic 

differentiation among sampled sites. Population genetic parameters (FIS and FST) were all statistically significant (p = 

0.001 in bold) based on 1000 permutations of the data. 

Species 
N 

total 

N 

loci 

AMOVA FIT 

(SE) 

AMOVA FIS 

(SE) 

AMOVA FST 

(SE) 

Drymonia brochidodroma 35 4907 0.42 (0.007) 0.37 (0.007) 0.08 (0.004) 

Drymonia tenuis 29 1044 0.56 (0.014) 0.51 (0.015) 0.10 (0.010) 

Miconia rubescens 34 2171 0.50 (0.009) 0.43 (0.010) 0.13 (0.005) 

Meriania tomentosa 32 3883 0.29 (0.008) 0.24 (0.008) 0.06 (0.003) 

Notopleura longipedunculoides 41 1815 0.35 (0.013) 0.17 (0.014) 0.21 (0.008) 

Palicourea demissa 30 2376 0.22 (0.012) 0.19 (0.012) 0.03 (0.003) 

 

 



 153 

Table 3 Estimates of SGS parameters for each studied species. N pairs, number of comparisons between all pairs of 

conspecific individuals; F1, kinship coefficient between individuals in the first distance interval (separated by <1 km); b 

ln(distance), slope of the regression of kinship coefficients on the natural logarithm of spatial distance; SP, intensity of 

SGS for each species. Standard errors (SE) were obtained through jackknifing over loci. SGS parameters (F1 and b) were 

all statistically significant (p < 0.01 in bold) based on 1000 permutations of individual locations. 

Species 
N 

pairs 

F1 

(SE) 

b  

ln(distance) 

SP 

(SE) 

Drymonia brochidodroma 595 0.053 (0.003) −0.024 0.025 (0.001) 

Drymonia tenuis 406 0.044 (0.007) −0.021 0.022 (0.002) 

Miconia rubescens 561 0.105 (0.005) −0.043 0.048 (0.002) 

Meriania tomentosa 496 0.051 (0.002) −0.018 0.019 (0.001) 

Notopleura longipedunculoides 820 0.180 (0.006) −0.073 0.089 (0.003) 

Palicourea demissa 435 0.018 (0.002) −0.009 0.009 (0.001) 
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Table 4 Results from generalized linear mixed-effects models with taxonomic 

family specified as a grouping factor and pollination mode as a fixed effect on (1) 

FST values and (2) SP values across six species of cloud forest understory 

angiosperms. Significant p-values (<0.05) are denoted in bold. 

TEST Response Estimate Std. Error t-value p-value 

1 Intercept −2.88 0.46 −6.19 <0.0001 

 FST 0.91 0.44 2.07 0.04 

   Groups Variance Std. Dev. 

   Family 0.03 0.18 

   Residual 0.002 0.04 

2 Intercept −4.63 0.61 −7.65 <0.0001 

 SP 1.49 0.43 3.45 0.0006 

   Groups Variance Std. Dev. 

   Family 0.14 0.39 

   Residual 0.0002 0.014 
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Figure 1 Average kinship-distance curves of each studied species. Filled 

symbols represent significant (p < 0.05) average kinship coefficient values based 

on 1000 permutations of individual spatial locations among all individuals. For 

associated standard errors of average Fij at each distance interval refer to tables 

S5–S10. (a) Drymonia brochidodroma. (b) Drymonia tenuis. (c) Miconia 

rubescens. (d) Meriania tomentosa. (e) Notopleura longipedunculoides. (f) 

Palicourea demissa. 
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Figure 2 Marginal effect of animal pollination mode on predicted (a) FST values 

and (b) SP values in the GLMMs with taxonomic family specified as a random 

effect. Black dots are predicted means for each category and surrounded black 

bars correspond to ± one standard deviation. Vertebrate and insect pollination 

modes were significantly different on both models (p<0.05). 
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Additional supporting information that will appear in the expanded online 

version of this article: 

 

Table S1 Unfiltered catalog of loci recovered with STACKS v2.3e 

Table S2 Genetic diversity of studied species across filtered loci. 

Table S3 Genetic diversity of studied species within sites. 

Table S4 AMOVA results showing the percent of genetic variation partitioning. 

Tables S5–S10 Results of the spatial genetic structure (SGS) analysis. 
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Table S1 Unfiltered catalog of loci recovered with the STACKS v2.3e pipeline for non-model organisms. N is the number 

of individuals. Coverage refers to the mean depth of reads used to build loci. 

 total N 

genotyped 

total loci 

genotyped 

Effective depth of coverage (reads/loci) 

Species mean stdev min max 

Drymonia brochidodroma 37 4151836 14 3.8 8.7 31 

Drymonia tenuis 42 3215520 16 5.3 6.6 32.4 

Miconia rubesens 41 2923808 22.5 10.6 9.8 51.3 

Meriania tomentosa 44 3164936 23.3 13.4 7 56.8 

Notopleura longipedunculoides 50 879138 95.1 36.5 9.5 170.3 

Palicourea demissa 38 2448608 18.9 6.2 9.2 42 
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Table S2 Genetic diversity of studied species estimated across filtered loci. N ind: number of genotyped individuals in the 

final genetic dataset, N var loci: number of variant loci, N total a: total number of alleles, %md: percent missing data, N a: 

mean number of alleles per locus, Ne a: mean effective number of alleles per locus, HO: observed heterozygosity, HS: 

mean expected heterozygosity across subpopulations, HT: total expected heterozygosity over all subpopulations, GIS: 

inbreeding coefficient. Standard deviations of statistics (in parentheses) were obtained through jackknifing over loci and 

significance of GIS (p < 0.005) through 1000 permutations (all were statistically significant). 

Species N ind 
N var 

loci 

N total 

a 
% md N a Ne a HO HS HT GIS 

Drymonia brochidodroma 35 4907 9800 37 
2.00 

(0.001) 

1.29 

(0.003) 

0.14 

(0.002) 

0.22 

(0.002) 

0.23 

(0.002) 

0.37 

(0.01) 

Drymonia tenuis 29 1044 2018 38 
1.93 

(0.008) 

1.22 

(0.006) 

0.09 

(0.003) 

0.19 

(0.004) 

0.21 

(0.004) 

0.51 

(0.02) 

Miconia rubescens 34 2171 4314 34 
1.99 

(0.002) 

1.29 

(0.004) 

1.13 

(0.003) 

0.23 

(0.003) 

0.25 

(0.003) 

0.45 

(0.01) 

Meriania tomentosa 32 3883 7727 30 
1.99 

(0.001) 

1.31 

(0.004) 

0.18 

(0.003) 

0.23 

(0.002) 

0.25 

(0.002) 

0.25 

(0.01) 

Notopleura 

longipedunculoides 
41 1815 3621 24 

2.00 

(0.002) 

1.28 

(0.005) 

0.18 

(0.004) 

0.21 

(0.003) 

0.25 

(0.003) 

0.17 

(0.01) 

Palicourea demissa 30 2376 4691 32 
1.97 

(0.003) 

1.29 

(0.005) 

0.18 

(0.003) 

0.22 

(0.003) 

0.22 

(0.003) 

0.19 

(0.01) 

 

 



 160 

Table S3 Genetic diversity of studied species within sites estimated from filtered loci. B: Bellavista, T: Las Tángaras, P: 

Pahuma, S: Santa Lucía. N: number of individuals in the final genetic dataset, Ne: effective number of individuals, P a: 

number of private alleles, % P a: proportion of private to total alleles, N a: mean number of alleles per locus, Ne a: mean 

effective number of alleles per locus, HO: observed heterozygosity, HS: mean expected heterozygosity within site, GIS: 

inbreeding coefficient. Significance (p < 0.005) was obtained through 1000 permutations (all were statistically significant). 

Species Site N Ne P a % P a N a Ne a HO HS GIS 

Drymonia brochidodroma 
T 18 12 930 0.19 1.83 1.31 0.14 0.22 0.37 

S 17 11 737 0.15 1.81 1.30 0.14 0.22 0.37 

Drymonia tenuis 

B 9 7 74 0.07 1.51 1.24 0.10 0.17 0.44 

P 11 8 80 0.08 1.65 1.28 0.09 0.21 0.55 

S 9 8 114 0.11 1.52 1.26 0.09 0.19 0.54 

Miconia rubescens 

B 8 7 183 0.08 1.57 1.34 0.10 0.24 0.58 

P 13 9 80 0.04 1.71 1.33 0.15 0.23 0.35 

S 13 9 164 0.08 1.73 1.33 0.14 0.23 0.40 

Meriania tomentosa 

B 11 9 136 0.04 1.73 1.34 0.18 0.23 0.21 

P 11 9 162 0.04 1.65 1.33 0.17 0.22 0.20 

S 10 8 385 0.10 1.73 1.37 0.17 0.26 0.32 

Notopleura longipedunculoides 

B 14 11 57 0.03 1.56 1.29 0.18 0.18 0.02 

P 14 11 339 0.19 1.77 1.38 0.17 0.25 0.32 

S 13 11 202 0.11 1.59 1.32 0.18 0.20 0.12 

Palicourea demissa 
B 14 10 235 0.10 1.77 1.31 0.18 0.22 0.18 

S 16 13 479 0.20 1.84 1.31 0.18 0.22 0.20 
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Table S4. AMOVA results showing the percent of genetic variation partitioned within individuals, among individuals within 

sites, and among sites for all studied species. 

 Source of Variation 

Species Within individuals 
Among individuals 

within sites 
Among sites 

Drymonia brochidodroma 0.58 0.34 0.08 

Drymonia tenuis 0.44 0.46 0.10 

Miconia rubescens 0.50 0.37 0.13 

Meriania tomentosa 0.71 0.23 0.06 

Notopleura longipedunculoides 0.65 0.14 0.21 

Palicourea demissa 0.78 0.19 0.03 
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Legend for Tables S5–S10: Results of the spatial genetic structure (SGS) 

analysis based on all pairs of individuals within six studied species. Maximum 

distance: the upper limit of each distance interval. Mean distance: the average 

distance separating pairs of individuals within each interval. Mean ln(distance): 

the average natural logarithm of the distance separating pairs of individuals 

within each interval. Number of pairs: the number of pairs of individuals 

separated by the given distance interval. % partic: the percentage of individuals 

participating at least once in a pairwise comparison within each interval. CV 

partic: the coefficient of variation (i.e. the ratio of the standard deviation over the 

average) of the number of times each individual participates in pairwise 

comparisons within each interval. Kinship coefficients (Fij) were calculated 

according to Loiselle et al. (1995). Respective standard errors (SE) were 

obtained through jackknifing over loci. Significance tests (p < 0.05 is denoted in 

bold) are based on the comparison of the observed Fij values with the 

corresponding frequency distributions of 1000 random permutations of individual 

spatial locations among all individuals (next 2 pages). 
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Table S5 SGS analysis for Drymonia brochidodroma based on 35 individuals and 4907 

loci. 

Distance interval 1 2 3 4 5 

Maximum distance (km) 0.47 2.06 17.40 17.93 23.43 
Mean distance (km) 0.18 1.08 10.80 17.68 19.05 
Mean ln(distance) -2.04 0.01 2.14 2.87 2.94 
Number of pairs 119 119 119 119 119 
% partic 94 94 100 86 97 
CV partic 0.43 0.45 0.95 0.47 0.76 
Fij (Loiselle) 0.053 0.040 -0.013 -0.057 -0.069 
SE 0.003 0.003 0.002 0.003 0.003 

 

 

Table S6 SGS analysis for Drymonia tenuis based on 29 individuals and 1044 loci. 

Distance interval 1 2 3 4 5 

Maximum distance (km) 0.62 5.50 10.32 13.26 15.57 
Mean distance (km) 0.18 3.03 6.68 11.00 13.89 
Mean ln(distance) -2.26 0.87 1.87 2.40 2.63 
Number of pairs 81 81 81 81 82 
% partic 93 100 76 90 66 
CV partic 0.58 0.66 0.74 0.68 0.78 
Fij  0.044 0.005 -0.032 -0.021 -0.079 
SE 0.007 0.006 0.005 0.006 0.008 

 

 

Table S7 SGS analysis for Miconia rubescens based on 34 individuals and 2171 loci. 

Distance interval 1 2 3 4 5 

Maximum distance (km) 0.51 5.56 10.42 11.12 15.29 
Mean distance (km) 0.26 2.47 7.74 10.78 13.83 
Mean ln(distance) -1.59 0.45 2.01 2.38 2.62 
Number of pairs 112 112 112 112 113 
% partic 97 100 97 74 85 
CV partic 0.52 0.54 0.76 0.72 0.79 
Fij  0.105 0.007 0.013 -0.079 -0.104 
SE 0.005 0.005 0.003 0.005 0.006 
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Table S8 SGS analysis for Meriania tomentosa based on 32 individuals and 3883 loci. 

Distance interval 1 2 3 4 5 

Maximum distance (km) 0.36 5.65 11.94 15.40 16.56 
Mean distance (km) 0.20 3.19 8.31 12.80 15.82 
Mean ln(distance) -1.88 0.65 2.06 2.55 2.76 
Number of pairs 99 99 99 99 100 
% partic 91 91 94 88 100 
CV partic 0.55 0.81 0.63 0.63 0.77 
Fij  0.051 0.005 -0.013 -0.048 -0.028 
SE 0.002 0.002 0.002 0.002 0.002 

 

 

Table S9 SGS analysis for Notopleura longipedunculoides based on 41 individuals and 

1815 loci. 

Distance interval 1 2 3 4 5 

Maximum distance (km) 0.55 5.33 10.42 13.46 16.28 
Mean distance (km) 0.30 2.90 6.68 11.60 14.45 
Mean ln(distance) -1.43 0.78 1.87 2.45 2.67 
Number of pairs 164 164 164 164 164 
% partic 100 100 81 83 68 
CV partic 0.41 0.62 0.75 0.66 0.75 
Fij 0.180 0.046 -0.006 -0.118 -0.144 
SE 0.006 0.007 0.003 0.006 0.009 

 

 

Table S10 SGS analysis for Palicourea demissa based on 30 individuals and 2376 loci. 

Distance interval 1 2 3 4 5 

Maximum distance (km) 0.36 1.20 14.02 14.44 16.47 
Mean distance (km) 0.20 0.74 8.61 14.22 15.24 
Mean ln(distance) -1.82 -0.38 1.71 2.65 2.72 
Number of pairs 87 87 87 87 87 
% partic 87 100 100 80 90 
CV partic 0.67 0.49 0.83 0.66 0.81 
Fij  0.018 0.018 -0.019 -0.028 -0.014 
SE 0.002 0.002 0.002 0.002 0.002 
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Abstract 

Spatial genetic structure (SGS) in plants results from the nonrandom distribution 

of genotypes within populations, which is influenced by life-history traits including 

mating system, growth form, and seed dispersal mode. However, the effect of 

animal pollination and latitudinal region remain largely unknown. Based on their 

lower flying ability compared to other animals, we predict that SGS should be 

stronger in plants pollinated by small insects relative to plants pollinated by large 

insects and vertebrates. Likewise, we predict that plant SGS should be stronger 

in the tropics than in temperate zones, because higher spatial heterogeneity at 

local scales, lower population densities and higher species richness in the tropics 

may restrict plant gene flow. To test our predictions, we performed a literature 

review and assembled a 147-species global dataset of animal-pollinated plants 

with data on SGS intensity, as quantified with the SP statistic. Generalized linear 

models demonstrated that pollination mode, latitudinal region, and growth form 

were all significant predictors of SP values, while mating system and seed 

dispersal mode were not significant. Our findings strongly supported our 

predictions, particularly in non-woody plants and shrubs, highlighting differences 

among latitudinal regions, and the importance of animal pollination mode in 

shaping patterns of plant SGS. 

Key words: animal pollination, flowering plants, fine-scale spatial genetic 

structure, latitudinal region, SGS, SP statistic. 
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Introduction 

Fine-scale spatial genetic structure (SGS) in plants results from the non-

random distribution of closely related individuals in space and represents the 

spatial scale of intraspecific gene flow within populations [1]. Understanding the 

factors that affect plant SGS is critical for analyzing demographic patterns such 

as the extent of genetic cohesion, or ‘neighborhood size’ [2,3], within natural and 

fragmented populations. Likewise, factors that influence plant SGS can strongly 

affect evolutionary processes within populations, such as local adaptation [4], 

and the maintenance of genetic diversity [5]. Plant life-history traits such as 

mating system, growth form, pollination mode and seed dispersal mode can 

influence patterns of SGS because they are directly involved in gene dispersal. In 

general, selfing herbs have significantly greater SGS than outcrossing trees [6], 

and animal-pollinated plants have greater SGS than wind-pollinated ones [5]. 

Additionally, SGS is greater in species with short-distance dispersers, lower in 

species dispersed by birds, and highly variable in species dispersed by active or 

passive seed accumulators [4,5], suggesting that dispersal limitation leads to 

high SGS. In fact, seed dispersal is often assumed to be the main determinant of 

SGS [7]. However, this relationship will ultimately depend on how successfully 

seeds establish and become adult plants. If most seeds fall under a mother plant 

—a common sign of dispersal limitation— but do not survive, then other factors 

that affect plant gene flow, such as pollination mode and landscape 

heterogeneity in a given region, should become important determinants of plant 

SGS. The effect of different animal pollinators on broad-scale patterns of plant 
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SGS, however, remains largely understudied.  

Different pollinators can differ substantially in their flying ability and pollen 

carry-over capacity.  Volant vertebrates and large insects, for example, generally 

fly longer distances during foraging bouts than small insects [5,8–12]. Studies on 

pollen carry-over in entomophilous plants reveal that small insects such as flies, 

solitary bees, and small beetles generally visit most flowers in a single plant, and 

then usually stay among nearby plants in the same patch [10–13]. In contrast to 

this, bumblebees are generally associated with significantly greater pollen carry-

over and pollen dispersal distances [15]. For example, enclosed experiments and 

studies in natural populations show that although bumblebees deposit most 

pollen in nearby plants, significant amounts of pollen are transported to more 

distant flowers even after grooming [14,16,17]. Similarly, honeybees deposit 

pollen across distances three times larger than predicted by common exponential 

functions that evaluate pollen deposition, fitting a leptokurtic distribution 

comparable to that of bumblebees [18,19]. Furthermore, bumblebees and 

butterflies are highly directional in their flight while foraging, suggesting they can 

increase pollen flow distances when pollen carry-over is successful [8,20]. 

Studies of pollinator movement show that euglossine bees, hawkmoths, birds 

and bats can all travel quite far, even across fragmented habitats, potentially 

connecting individual plants across large distances [21–29]. In support of this, 

direct measures of pollen dispersal reveal that bats can transport pollen for 

several kilometers, large insects such as honeybees can transport pollen for 

>600 meters, while pollen transfer by most small insects (smaller than a 
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honeybee) rarely reaches 300 meters (reviewed in [5]). Based on these 

differences in the extent of pollen dispersal among animal pollinators, we predict 

that plants pollinated by small insects (smaller than a honeybee) should have 

stronger SGS than plants pollinated by large insects (honeybee or larger) or 

volant vertebrates (nectar-feeding birds and bats).  

Furthermore, the influence of different latitudinal regions (i.e., temperate, 

tropical, subtropical), which differ substantially in landscape heterogeneity, is 

poorly understood. Across broader latitudinal scales, there are important 

environmental differences that may result in distinct patterns of SGS between 

plants in different latitudinal regions. For example, tropical regions have 

substantial habitat heterogeneity at a local scale, resulting in contrasting 

microclimates that could restrict plant demographic-range expansion at a given 

site [30–32]. Such restriction could limit gene flow within plant populations, and in 

turn potentially increase plant SGS in tropical plants relative to temperate ones. 

Subtropical forests similarly show considerable heterogeneity at a local scale 

compared to temperate ones [33], which could also result in higher plant SGS in 

subtropical than in temperate regions. Moreover, population densities tend to be 

significantly lower in tropical regions than temperate zones, which is usually 

associated with higher species diversity [5]. For instance, in a study of Ardisia 

crenata populations in subtropical China, sites with low population density and 

high species diversity were associated with greater SGS, relative to sites with 

high population density and low species diversity [34]. Given all of the above, we 

predict that species in tropical and subtropical regions should associate with 
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stronger SGS than species in temperate regions. 

The strength of SGS can be quantified with the SP statistic [6], which is 

based on a model of isolation by distance at migration–drift equilibrium [2,3]. This 

model describes the degree to which genetic relatedness between individuals, as 

quantified with the kinship coefficient Fij [1], decreases with increasing 

geographic distance. SP is defined as −b/(1 − F1), where b is the regression slope 

of genetic relatedness (Fij) on geographic distance (dij) between individuals i and 

j, and F1 is the mean Fij [1] between all pairs of individuals in the first distance 

interval containing nearest neighbors. Because SP mainly depends on the 

regression slope b, it is not affected by an arbitrary choice of distance intervals 

defined in a given study, making it comparable across species and thus ideal for 

investigating the factors that affect the strength of plant SGS globally. 

Additionally, studies that use the SP statistic to characterize plant SGS frequently 

work at intermediate spatial scales (typically tens to hundreds of kilometers) at 

which both pollen and seed dispersal patterns have important effects on genetic 

diversity and population structure [5]. This is because the majority of seed 

dispersal often occurs at a small scale (i.e, <0.1 km), at which its effect is 

expected to determine plant SGS. At larger scales, i.e., beyond the bulk of seed 

dispersal, pollen dispersal can become equally or more important [5,35]. Thus, 

studies that report SP values allow investigation of the effects of pollen dispersal 

mode across zoophilous species. 

While the effects of animal pollination mode and latitudinal region have 

been largely overlooked in previous reviews on plant SGS variation [4–6,35], 
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they were evaluated in a recent review on global patterns of population genetic 

differentiation in seed plants based on FST values (D. Gamba and N. Muchhala, 

in review). Results of that study showed that tropical and subtropical mixed-

mating non-woody plants pollinated by small insects were associated with higher 

FST values relative to temperate outcrossing trees and to plants pollinated by 

large insects and vertebrates. FST represents the proportion of genetic diversity 

partitioned among subpopulations, relative to the total population, and is usually 

taken at larger geographic scales than SGS studies (typically hundreds to 

thousands of kilometers). Thus, the SP statistic describes isolation by distance 

among conspecific individuals, while the FST statistic may be used to examine 

isolation by distance among conspecific subpopulations [2,36,37]. Although SP 

and FST values describe the arrangement of genetic diversity at different spatial 

scales, i.e., within (fine-scale) and among (large-scale) populations, respectively, 

the same processes, namely genetic drift, gene flow, and selection, underlie their 

patterns of variation. Thus, we expect that the same factors that affect FST also 

affect SP, in line with our predictions. To our knowledge, however, no study to 

date has tried to connect patterns of SP and FST variation. Furthermore, because 

seed dispersal is generally considered to be more important locally [4,5], it likely 

affects plant SP values more than plant FST values. On the other hand, because 

pollen dispersal can generally reach longer distances [5,35], it likely affects plant 

SP values as much as plant FST values. 

Here, we took advantage of the wealth of publications that report SP 

values and assembled a 147-species dataset of animal-pollinated plants at a 
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global scale. To the best of our knowledge, ours is the largest plant SGS dataset 

to be analyzed to date. We aimed to evaluate the effect of animal pollination 

mode and latitudinal region on SP values, while also accounting for other factors 

that have been shown to affect SP, namely mating system, growth form, seed 

dispersal mode, and genetic marker choice. Using multiple regressions, we 

tested two predictions: (1) that species pollinated by small insects (smaller than a 

honeybee) have on average greater SP values that species pollinated by large 

insects (honeybees or larger) and vertebrates (hummingbirds and bats), and (2) 

that species from regions at tropical and subtropical latitudes have on average 

greater SP values that species from regions at temperate latitudes. We also 

examined the relative contributions of factors to explaining variation in SP values, 

in order to identify the most important factor affecting plant SGS.  

 

Materials and Methods 

Dataset compilation 

We constructed an SP dataset by conducting a systematic literature 

search in Google Scholar (key words: “fine-scale spatial genetic structure” OR 

“SGS” OR “spatial genetic structure” OR “SP statistic”) focused on articles 

published through June 2018. This search yielded 254 peer-reviewed 

publications on seed plants for which SP values based on nuclear markers were 

available. We also included 6 more species from a recent unpublished study (D. 

Gamba & N. Muchhala, in prep.). Because we were mainly interested in animal-

pollinated plants, we did not include wind-pollinated or selfing species in the 
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database. Furthermore, we only considered studies of adult plants, rather than 

on seedlings or saplings, given that adults should better represent the long-term 

effects of animal pollinators on SGS. Based on these criteria, our final dataset 

included mean SP values and metadata for 147 species (Table S1, Appendix S1). 

When a single study reported SP values for multiple populations of the same 

species, we calculated the mean SP value for all populations surveyed. When 

multiple studies reported SP values for the same species, we calculated the 

mean SP value for all populations across studies. For clonal species (Asclepias 

syriaca and Piper sp.), we used the published SP value based on genets 

(excluding clones). 

Previous studies suggest that the SP statistic can be unduly influenced by 

the genetic marker chosen to infer SGS parameters [4,38,39]. Thus, we also 

scored the genotyping technique used for each species (microsatellites; 

allozymes; AFLP: amplified fragment length polymorphism; SNP: single-

nucleotide polymorphisms). When a single species was analyzed with multiple 

markers, we used the marker with the greatest sample size of individuals per 

population. We did not include studies based on RAPD (randomly amplified 

polymorphic DNA) markers, because these were scarce (N = 3) and we wanted 

to minimize potential bias on SP estimates due to marker type.  

 

Species traits 

We extracted information on species traits directly from the source 

publications, including pollination mode (small insects; large insects; 
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vertebrates), latitudinal region (tropics; subtropics; temperate), growth form (non-

woody; shrub; tree), mating system (mixed-mating; outcrossing), and seed 

dispersal mode (animals; gravity; wind). Below, we explain how we coded factors 

in more detail. 

Pollination mode— Small insect pollinators of species in our dataset 

included small Hymenoptera (Trigona and Melipona bees and wasps), Diptera 

(hoverflies and gnats), Coleoptera (small curculionids), Hemiptera (Anthocoridae 

and Miridae), and Thysanoptera (i.e., thrips). Large insects included large bees 

(honeybees, bumblebees, carpenter bees, euglossine bees) and Lepidoptera 

(hawk moths and yucca moths, monarch butterflies). Vertebrates included bats, 

hummingbirds, and other nectarivorous birds such as honeyeaters and sunbirds.  

Latitudinal region— Tropical regions included sites between the Tropic of 

Cancer and Tropic of Capricorn (23.5° north and south of the equator, 

respectively), sub-tropical regions included latitudes from 23.5° to 35° (north and 

south of the equator), and temperate regions included latitudes greater than 35° 

(north and south of the equator).  

Growth form— Trees included woody plants >10 m tall, typically with a 

single trunk coming from the base. Shrubs included upright woody plants <10 m 

tall, typically with one or several trunks coming from the base. Hemi-epiphytes 

(Ficus citrifolia and F. obtusifolia) and woody climbers (Ancistrocladus 

korupensis) were included in the shrub category, while epiphytes (Aechmea 

nudicaulis) and non-woody climbers (Borderea pyrenaica, Dioscorea japonica, 

and Haumania danckelmaniana) were included in the non-woody category.  
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Mating system— Mixed-mating species included those that undergo both 

outcrossing and selfing to some extent, through either autogamy or geitonogamy. 

Outcrossing species included plants that are self-incompatible, unisexual (i.e. 

monoecious or dioecious), or dichogamous hermaphrodites—i.e. either having 

the male reproductive organs come to maturity before the female organs 

(protandry), or vice versa (protogyny).  

Seed dispersal mode— Plants that presented fruits or seeds that were 

particularly light and/or winged were coded as wind dispersed. Plants with no 

adaptations for vector-mediated seed dispersal were coded as gravity dispersed. 

Publications often did not include disperser identities for animal-dispersed 

species, and some species were dispersed by many taxonomic groups, making 

animal dispersal difficult to characterize. Thus, we maintained a broad animal 

dispersal category including all zoochorous plants (effects of zoochory on plant 

SGS are reviewed in [4]). 

 

Statistical analyses 

We used multiple regression models to examine the influence of different 

animal pollinators and latitudinal regions on plant SGS intensity, while accounting 

for other potentially significant predictors (growth form, mating system, seed 

dispersal mode, and genetic marker). Given that natural logarithm-transformed 

SP values are normally distributed, we fitted generalized linear models (GLMs) 

with the ‘glm’ function in RStudio V 1.2.5019 [40] under a lognormal distribution 

structure for the residuals (family = ‘Gaussian’, link = ‘log’). First, we built a GLM 
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that included all variables to estimate multicollinearity between predictors with the 

generalized variance inflation factor (GVIF) [41] calculated using the ‘vif’ R 

function. All GVIF values were >1 and <3.05 (Table S2), indicating the presence 

of some correlations among predictors, but that these were not sufficiently 

problematic to create multicollinearity issues negatively influencing a multiple 

regression [42]. Then, we examined our most inclusive model and sequentially 

removed factors that did not significantly contribute to the explained variation in 

SP values in order to find the best-fit model to the data. We compared the fit of 

GLMs using model selection based on the Akaike Information Criterion (AIC) 

[43,44]. Finally, we tested for two-way interactions of pollination mode and 

latitudinal region with other factors in the best-fit model. 

In order to measure and account for potential autocorrelations among the 

data due to evolutionary relationships, we calculated phylogenetic signal in the 

residual error of all models simultaneously with the regression parameters, 

following recommendations by Revell [45]. We extracted a species-level 

phylogeny containing our focal taxa (Fig. 1) from the angiosperm mega-tree [46] 

available in the V.PhyloMaker R package [47]. Branch lengths were inferred 

using the branch length adjuster algorithm in V.PhyloMaker [48]. Phylogenetic 

signal was measured with Pagel’s  [49] as implemented in the ‘phylosig’ R 

function in phytools [50]. We consistently obtained  < 0.001 (p = 1), indicating a 

lack of phylogenetic autocorrelation in the residuals of our GLMs; thus, we only 

present and interpret results from non-phylogenetic GLMs. 

After finding the best-fit model, we used the rr2 R package [51] and the 
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‘R2.lik’ function to obtain the unique contribution of each factor, in terms of the 

amount of SP variance explained, by comparing the best-fit model with a reduced 

model not including the factor of interest. We also obtained the partial R2 for each 

interaction term found to be significant. We visualized the marginal effect of each 

factor on SP values in the best-fit model using the R packages sjPlot and ggplot2 

[52,53] and the function ‘plot_model’ (with type = ‘eff’). For conditional effects 

among factors (i.e., interactions), we set the plot_model type to ‘int’. 

 

Results 

Taxonomic scope and phylogeny 

The 147 animal-pollinated species were distributed in 113 genera, 

representing 54 families in 28 orders. The majority of species (118) belonged to 

the Eudicots, followed by 20 Monocots, 8 Magnoliids, and one Gymnosperm 

(Zamia fairchildiana). The families Fabaceae and Moraceae (mostly Ficus; 9 

species) were the most well represented in the dataset, with 16 and 10 species, 

respectively (Table S1). The resulting phylogeny had 147 tips and 138 internal 

nodes (Fig. 1), indicating that 94% of the phylogeny was resolved, and only 9 tips 

(6%) belonged to polytomies. These polytomies were located within clades for 

which phylogenetic information remains scarce or unclear [54]: Alcantarea 

(Bromeliaceae) and Psychotria (Rubiaceae).  

 

Best-fit model explaining variation in SGS intensity 

Among the predictors we tested, pollination mode, latitudinal region and 
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life form had significant effects on SP values, while the effect of mating system 

was only marginally significant (Table 1). Seed dispersal mode and genetic 

marker did not enter the best-fit model. Although animal-dispersed plants, and 

plants for which SP was obtained with AFLP markers, tended to have slightly 

higher mean SP values than the other groups (Fig. S1), these differences were 

not statistically significant (p > 0.05). In fact, removing these factors from the 

most-inclusive model (Table S3) greatly increased model fit to the data (ΔAIC = 

5.95).  

Our estimation of the relative contribution of each factor to the explained 

variance of SP values showed that growth form was the most important predictor 

in the best-fit model, with a partial R2 of 0.20. Latitudinal region was second in 

importance with a partial R2 of 0.13, followed by pollination mode (partial R2 = 

0.05), and lastly by mating system (partial R2 = 0.02).  

 

Patterns of SP variation  

Our results reveal that species pollinated by small insects are associated 

with significantly greater SP values than species pollinated by vertebrates and 

large insects, while the latter two animal pollination modes did not differ from 

each other (Fig. 2a). We also found that species in tropical regions have 

significantly greater SP values than species in subtropical and temperate regions, 

while the latter two regions did not differ from each other (Fig. 2b). Consistent 

with initial expectations, we confirm that trees have significantly lower SP values 

relative to non-woody plants and shrubs. The three types of growth form were 
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also significantly different from each other, with mean SP values increasing from 

trees to shrubs to non-woody plants (Fig. 2c). Lastly, mixed-mating plant species 

were associated with marginally higher SP values than outcrossing species (Fig. 

2d).  

Because we were mostly interested in examining the effect of different 

animal pollinators and latitudinal regions on SP values, we tested for interactions 

between pollination mode and latitudinal region with the other factors in our best-

fit model, respectively. First, we found that differences between animal pollinators 

were significantly conditional on growth form (p = 0.03). Pollination by small 

insects is associated with higher mean SP values relative to vertebrate and large 

insect pollination in non-woody plants and shrubs, but not in trees. Rather, 

vertebrate pollination tends to increase mean SP in trees relative to large insects 

(Fig. 3a). The amount of variance explained by the model with this interaction 

was R2 = 0.26, and this interaction had a partial R2 = 0.04. Including it in the best-

fit model, however, decreased model fit to the data (model with interaction AIC = 

−721.57, ΔAIC = 2.58). Second, we found that differences between latitudinal 

regions are marginally conditional on growth form (p = 0.08). Tropical regions 

tend to be associated with higher SP values relative to subtropical and temperate 

zones in non-woody plants, but not in shrubs and trees. In shrubs, tropical 

regions seem related with higher SP values relative to subtropical regions, while 

values from temperate regions were highly variable and appeared not different 

from other regions. Trees, on the other hand, did not seem to differ in SP values 

among latitudinal regions (Fig. 3b). The amount of variance explained by the 
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model with this interaction was R2 = 0.26, and this interaction had a partial R2 = 

0.03. Including this interaction in the best model, however, decreased model fit to 

the data (model with interaction AIC = −720.11, ΔAIC = 4.04). 

 

Discussion 

Here, we analyzed for the first time the effects of animal pollination mode 

and latitudinal region on plant SGS using a comprehensive global dataset of SP 

values. Our results revealed a number of interesting patterns. Strikingly, we 

found that small insect pollination significantly increases SP values relative to 

large insect and vertebrate pollination, particularly in non-woody plants and 

shrubs (Fig. 2a, 3a). Likewise, species from tropical regions are associated with 

higher SP values relative to those from subtropical and temperate regions, 

especially for non-woody plants (Fig. 2b, 3b). Growth form was the most 

important predictor of SP values relative to the other factors, followed by 

latitudinal region and pollination mode, while mating system was the least 

important and only marginally significant. Seed dispersal mode and genetic 

marker were not significant predictors of SP. Before discussing the roles of these 

different factors in influencing SGS in more detail, below we compare our results 

to those from a review on global patterns of population genetic differentiation (as 

quantified with the FST statistic) in seed plants (D. Gamba & N. Muchhala, in 

review). 

Our results are largely concordant with general patterns of variation in FST 

values, particularly with our predictions in respect to animal pollination mode and 
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latitudinal region. In general, small insect pollination is associated with higher FST 

and SP values compared to both large insect and vertebrate pollination. Similarly, 

species from tropical regions have significantly higher FST and SP values 

compared to species from temperate regions. Additionally, trees have 

significantly lower FST and SP values relative to non-woody plants. These 

patterns of variation suggest that the same factors affect the arrangement of 

genetic diversity at different spatial scales: from fine-scale spatial structure within 

populations to broad-scale spatial structure among populations. Although this is 

expected given that any structuring of genetic diversity ultimately depends on the 

fundamental processes of gene flow, genetic drift and selection, ours is the first 

study we are aware of to link patterns of FST and SP variation at a broad scale. 

Furthermore, seed dispersal mode was also not significant for explaining 

variation in FST or SP values. Because seed dispersal is generally considered to 

be more important at local scales [1,4–7,60], we expected that it would have an 

effect on SP values, particularly when comparing gravity vs. other modes of seed 

dispersal. We think that unrecorded secondary movement of seeds that fall under 

mother plants potentially precluded us from finding such difference. Finally, one 

difference between patterns of variation of FST and SP values was the effect of 

mating system. It was a significant predictor for FST values, but only marginally 

significant for SP values, with mixed-mating species generally associated with 

higher values. This was somewhat unexpected, given that mating system affects 

inbreeding, which lowers within-population variation, inflating between-population 

differentiation. Thus mixed-mating should increase both FST and SP values due to 
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increased local genetic drift. Our result could simply be due to considerable 

amounts of outcrossing among the mixed-mating species in our SP dataset, 

counteracting local genetic drift. 

 

Influence of pollination mode on SP 

The strength of SGS was higher in species pollinated by small insects 

than in species pollinated by large insects and vertebrates (Fig. 2a). This is in 

line with differences in foraging behavior, pollen carry-over capacity, and flying 

ability among animal pollinators, which indicate that pollen dispersal by small 

insects is more limited compared to large insects and vertebrates [5,8,15]. Direct 

measures of pollen dispersal based on paternity analyses also support the 

limited distance covered by small insects in trees, as they reach maximum 300 

meters [5]. This idea is also supported by indirect measures of pollen dispersal—

i.e., obtained from observed SGS values derived from an isolation-by-distance 

process at equilibrium combined with estimates of the effective population 

density— which suggest they rarely surpass 20 meters in non-woody plants and 

shrubs [6,11,34], and 265 m in trees [5]. A remarkable exception is the pollen 

dispersal of fig trees by tiny agaonid wasps, which with the help of wind can 

achieve cross-pollination between trees separated by several kilometers [55]. 

Our dataset included 5 Ficus trees classified as pollinated by small insects. The 

mean SP value for such Ficus was 0.017 (± 0.015 SD), which was not lower than 

expected compared to the mean SP value of other tree species pollinated by 

small insects (0.013 ± 0.01 SD). However, the mean SP value for all trees 
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pollinated by small insects (0.014 ± 0.01 SD) was considerably lower than that of 

non-woody plants and shrubs pollinated by small insects (0.032 ± 0.03 SD). This 

difference between trees vs. non-tree species in our dataset suggests that small 

insect pollination does not result in larger SP values in trees. In fact, we also 

found that differences between animal pollinators in their effect on plant SP 

values are rather restricted to non-woody plants and shrubs (Fig. 3a). Although it 

is not clear why this is the case, we propose that, as in agaonid wasps, other 

small insects that pollinate trees in our dataset could also be transported by wind 

when they reach the canopy. This would result in large breeding areas for many 

small insect pollinated trees, corresponding to their observed small SP values. 

 

Influence of latitudinal region on SP 

We predicted that species from tropical and subtropical regions should 

have stronger SGS than species from temperate regions. We did in fact find that 

tropical species had greater SP values than temperate species, however 

subtropical and temperate species did not differ from each other (Fig. 2b). In 

general, tropical regions have greater species richness and higher habitat 

heterogeneity at local scales [30,56], and this combination could be underlying 

the pattern of SP variation we found. This is because such combination likely 

makes gene dispersal less effective at local scales, decreasing the spatial scale 

of intraspecific gene flow and thus increasing SP values. For example, high 

species richness implies that conspecific individuals are potentially separated by 

interspecific ones [57], making cross-pollination and thus intraspecific gene flow 
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harder to achieve across long distances in the tropics. Furthermore, high habitat 

heterogeneity at local scales in the tropics may result in tropical species and their 

mutualists to be highly restricted to certain microclimates due to local adaptation 

[58]. Such fine-scale narrow niches suggest that conspecific individuals should 

become rapidly genetically isolated with increasing geographic distance, 

associating with high SP values.   

Differences among latitudinal regions, however, tend to be restricted to 

non-woody plants, to a lesser extent to shrubs, and not apparent in trees (Fig. 

3b). A similar pattern was reported in Dick et al. [5], where SP values were not 

different between temperate and tropical trees. This result is in line with findings 

showing that trees worldwide can have extensive breeding areas, thus high gene 

flow among distant individuals, even in tropical regions where inbreeding has 

been hypothesized to be prevalent [5,55,59]. Even if trees are very good at 

dispersing their genes, either via pollen or seed, it is not clear why differences 

between latitudinal regions affect other types of growth forms but not trees. The 

mode of zoochory might be a more important determinant of SGS strength in 

trees (see [4,5,60]), which we were not able to analyze in our dataset, precluding 

us from finding a pattern of SP variation among trees. 

 

Influence of growth form on SP 

Growth form in animal-pollinated plants was by far the most important 

predictor of SP variation in our best-fit model, with SP values increasing from 

trees to shrubs to non-woody plants (Fig. 2c). A similar pattern was reported by 
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Vekemans and Hardy [6], although they did not provide an explanation for it. This 

pattern may reflect the fact that larger plants will be higher in the canopy and 

thus better at dispersing genes, whether via pollen or seeds. The pattern may 

also simply reflect scale: smaller plants show more fine-grained dispersal and 

thus will have more fine-grained genetic structure. Furthermore, growth form is 

frequently tightly linked to habitat, in that non-woody plants and shrubs live in the 

understory while many trees reach the canopy. The understory may restrict gene 

flow more than the canopy, due to the lower dispersal propensity and the 

sedentary lifestyle of animal mutualists in the understory [61–63].  

 

Factors that did not influence SP 

We did not find a significant effect of mating system on SP values in the 

animal-pollinated plant species included in our study. Mixed-mating plants tend to 

have higher SP values than outcrossing plants (Fig. S1d, 2d), but the difference 

between them was only marginally significant (Table 1). Selfing increases local 

genetic drift by reducing the effective number of reproductive individuals, which 

associates with higher SP values than outcrossing [6]. Moreover, gene dispersal 

in outcrossing plants occurs via pollen and seed dispersal, whereas gene 

dispersal in selfing plants is solely determined by seed dispersal, increasing SP 

values in selfing plants. We note that we did not include solely-selfing species in 

our analysis, thus the amounts of outcrossing in the mixed-mating species may 

have led to the only marginally significant effects of mating system that we 

detected. 
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We also failed to find an effect of seed dispersal mode on SP values either 

(Table 1, Fig S1e). However, we note that our classification of dispersal mode 

was somewhat coarse, in that we lumped together all zoochorous plants. Indeed, 

differences in foraging behavior among seed dispersing animals have previously 

been found to affect plant SP: species with short-distance dispersers have 

greater Sp values than those dispersed by birds, while Sp values are highly 

variable in species dispersed by scatter-hoarding animals [4,60]. Our dataset 

included gravity dispersed plants, which should be the most dispersal limited, but 

surprisingly they were not associated with higher SP values. This is probably due 

to some animals (like ants and rodents) creating equally restricted seed dispersal 

patterns, and because some gravity-dispersed species might have unrecorded 

secondary seed vectors. Similarly, SP values for wind dispersal were highly 

variable in our study. Previous studies suggest that wind dispersal is often 

restricted [5,60], but our results suggest that wind does not have a predictable 

effect on gene dispersal. 

 

Conclusions 

Our results have important implications for understanding the origin and 

maintenance of biodiversity and can inform conservation strategies. For example, 

we found a general pattern in which genetic relatedness rapidly decreases with 

increasing geographic distance (i.e., high SP values) among tropical non-woody 

plants and shrubs pollinated by small insects. This suggests that such plants 

likely have more genetically isolated subpopulations than other animal-pollinated 
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plants. A recent review on global patterns of population genetic differentiation in 

seed plants supports this idea. Non-woody tropical species pollinated by small 

insects were associated with greater FST values than other plants (D. Gamba & 

N. Muchhala, in review). Such genetic isolation at small to large spatial scales 

(i.e., within and among populations) could result in nearby subpopulations that 

harbor unique genetic diversity. This in turn, could increase the probability for 

local adaptation and reproductive isolation if divergent selection between close-

by sites is strong and seed-mediated gene flow is ineffective. Non-

woody/shrubby tropical species pollinated by small insects, nonetheless, are 

likely very susceptible to non-random habitat fragmentation (more so than 

vertebrate pollinated plants; e.g. [64]), which can further isolate populations and 

result in loss of genetic variability due to increased genetic drift [65,66]. The 

current scenario of human-accelerated change should thus push conservation 

efforts to maintain connectivity between fragments that harbor many understory 

tropical species pollinated by small insects. 
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Table 1 Details of the best-fit model explaining variation in SP values. Variables 

in bold indicate the reference level for each categorical factor. N indicates the 

sample size of each group. Significant p-values are in bold. Model R2 = 0.24, 

Model AIC = −724.15. 

Variable N Estimate Std. Error t-value p-value 

Intercept  −2.58 0.21 −12.302 <0.001 

Pollination mode 

      Small insects 

      Large insects 

      Vertebrates 

 

82 

38 

27 

 

 

−0.38 

−0.50 

 

 

0.19 

0.21 

 

 

−1.97 

−2.42 

 

 

0.05 

0.02 

Latitudinal region 

      Tropics 

      Subtropics 

      Temperate 

 

97 

17 

33 

 

 

−0.70 

−1.01 

 

 

0.27 

0.25 

 

 

−2.60 

−4.12 

 

 

0.01 

<0.001 

Growth form 

      Non-woody 

      Shrub 

      Tree 

 

43 

37 

67 

 

 

−0.45 

−1.26 

 

 

0.19 

0.23 

 

 

−2.39 

−5.48 

 

 

0.02 

<0.001 

Mating system 

      Mixed-mating 

      Outcrossing 

 

34 

113 

 

 

−0.26 

 

 

0.21 

 

 

−1.89 

 

 

0.06 

 

 

 

 



 194 

Figure 1 Phylogeny of studied species showing the taxonomic extent of this 

study with plotted SP values in a logathmic scale, revealing their general lability 

across the phylogenetic tree. Plotting of SP values was achieved with the R 

package ‘phytools’ and the function ‘contMap’. 
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Figure 2 Marginal effects of factors on predicted SP values in the best-fit model: 

(a) pollination mode, (b) latitudinal region, (c) growth form, (d) mating system. 

Black dots are predicted SP means and surrounding bars correspond to ± one 

standard deviation. Significant differences between groups are depicted by 

letters on top of bar.  
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Figure 3 Marginal effects conditional on growth form of predicted SP values for 

(a) animal pollination mode and (b) latitudinal region. Colors correspond to 

grouping categories (animal pollination modes or latitudinal regions). Each 

interaction was estimated as an additional term in the best-fit model. Dots in the 

plot are predicted SP means and surrounding bars correspond to ± one standard 

deviation. 
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Additional supporting information that will appear in the expanded online 

version of this article: 

 

Appendix S1. References of publication with SP data and species traits used in 

this study.  

 

Fig. S1 Violin plots of SP values as a function of factors tested in this study. 

 

Table S1 Dataset used in this study (in file Table S1.xlsx). 

Table S2 Estimates of the generalized variance inflation factor on predictors. 

Table S3 Details of the most-inclusive model explaining variation in SP values. 
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Figure S1 Violin plots of SP values as a function of (a) pollination mode, (b) 

latitudinal region, (c) growth form, (d) mating system, (e) seed dispersal mode, 

and (f) genetic marker. Central black dots indicate the mean SP for each group, 

surrounding black dots are all observations. Thick horizontal grey lines are 

median values, boxes indicate 25% and 75% quartiles, and grey bars are 

minimum and maximum values. (Abbreviations: S-ins: small insects, L-ins: large 

insects, verts: vertebrates, mixed-m: mixed-mating, allo: allozymes, SSR: 

microsatellites) (next page). 
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Table S1 Dataset used in this study (in file Table S1.xlsx). 

 

Table S2 Estimates of the generalized variance inflation factor (GVIF), and its 

adjusted value accounting for the degrees of freedom (GVIF^(1/(2*Df))) for each 

factor in the most-inclusive model explaining variation in SP values. 

Variable GVIF Df GVIF^(1/(2*Df)) 

Marker 3.05 3 1.20 

Mating system 1.79 2 1.16 

Growth form 1.27 1 1.13 

Animal pollination mode 2.88 2 1.30 

Seed dispersal mode 2.28 2 1.23 

Latitudinal region 1.94 2 1.18 
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Table S3 Details of the most-inclusive model explaining variation in SP values. 

Variables in bold indicate the reference level for each categorical factor. N 

indicates the sample size of each group. Significant p-values are in bold. Model 

R2 = 0.26, Model AIC = −718.2. 

Variable N Estimate Std. Error t-value p-value 

Intercept  −2.39 0.27 −8.99 <0.001 

Genetic marker 

      AFLP 

      Allozymes 

      Microsatellites 

      SNPs 

 

19 

32 

89 

7 

 

 

−0.02 

−0.29 

−0.33 

 

 

0.23 

0.21 

0.28 

 

 

−0.08 

−1.37 

−1.21 

 

 

0.94 

0.17 

0.23 

Seed dispersal mode 

      Animals 

      Gravity 

      Wind 

 

84 

24 

39 

 

 

−0.15 

−0.08 

 

 

0.26 

0.19 

 

 

−0.57 

−0.41 

 

 

0.57 

0.68 

Pollination mode 

      Small insects 

      Large insects 

      Vertebrates 

 

82 

38 

27 

 

 

−0.34 

−0.40 

 

 

0.21 

0.22 

 

 

−1.66 

−1.82 

 

 

0.10 

0.07 

Latitudinal region 

      Tropics 

      Subtropics 

      Temperate 

 

97 

17 

33 

 

 

−0.72 

−1.08 

 

 

0.28 

0.29 

 

 

−2.54 

−3.76 

 

 

0.01 

<0.001 

Growth form 

      Non-woody 

      Shrub 

      Tree 

 

43 

37 

67 

 

 

−0.54 

−1.25 

 

 

0.22 

0.25 

 

 

−2.50 

−5.01 

 

 

0.01 

<0.001 

Mating system 

      Mixed-mating 

      Outcrossing 

 

34 

113 

 

 

−0.19 

 

 

0.15 

 

 

−1.27 

 

 

0.21 
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