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ABSTRACT 

Wild birds are teeming with microorganisms, ranging from commensal bacteria to 

eukaryotic parasites. These microbes impact host health in diverse ways; some long-

term residents may aid digestion or provide immune system training, while others at 

times may induce disease. However, the factors driving the varying colonization 

patterns seen across taxa are still not fully understood, and wild avian populations are 

particularly understudied when compared to mammalian or domesticated systems. This 

work examines the relative importance of genetic and environmental factors driving 

microbiome composition and function in wild birds. We collected fecal and blood 

samples from Galapagos penguins (Spheniscus mendiculus) in Ecuador, and from 

Eurasian tree sparrows (Passer montanus) in the United States, screened all samples for 

blood parasites, and used a combination of targeted amplicon sequencing and whole 

genome sequencing to characterize the composition and function of the gut 

microbiome. We additionally used targeted amplicon sequencing to characterize major 

histocompatibility complex diversity in the Eurasian tree sparrow. Results showed that: 

(1) environmental and demographic factors drive microbial community structure in 

terms of alpha diversity, beta diversity, and differential abundance, particularly in the 

sparrow system with high environmental heterogeneity, (2) both gut pathogens and 

blood parasites are associated with significant shifts in microbial community structure, 

although putative bacterial pathogens in the gut are associated with the strongest 

variation in both community structure and function, and (3) genetic variation at immune 

system loci is associated with the Eurasian tree sparrow gut microbiome in terms of 
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MHC diversity, but this relationship is generally outweighed by other drivers in this 

system. Using a metagenomic approach across two distinct systems, this work provides 

greater insight into the role the gut microbiome plays in avian health by demonstrating 

significant associations with disease status and immunogenetics.  
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CHAPTER 1.  

Composition and function of the Galapagos penguin gut microbiome vary with age, 

location, and a putative bacterial pathogen 

 

Sage D. Rohrer1, Gustavo Jiménez-Uzcátegui2, Patricia G. Parker1,3, & Lon M. Chubiz1 

 

1Department of Biology and Whitney R. Harris World Ecology Center, University of 

Missouri-St. Louis, One University Blvd., St. Louis, MO 63121, USA  

2Charles Darwin Research Station, Charles Darwin Foundation, Galapagos, Ecuador  

3WildCare Institute, Saint Louis Zoo, One Government Drive, St. Louis, MO 63110, USA 

 

 

Abstract:  

Since microbial colonization plays a direct role in host health, understanding the ecology 

of the resident microbial community for a given host species is an important step for 

detecting population vulnerabilities like disease. However, the idea of integrating 

microbiome research into conservation is still relatively new, and wild birds have 

received considerably less attention than mammals or domesticated animals. Here we 

examine the composition and function of the gut microbiome of the endangered 

Galapagos penguin (Spheniscus mendiculus) with the goal of characterizing the normal 
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microbial community and resistome, identifying likely pathogens, and testing 

hypotheses of structuring forces for this community based on demographics, location, 

and infection status. We collected fecal samples from wild penguins in 2018 and 

performed 16S rRNA gene sequencing and whole genome sequencing (WGS) on 

extracted DNA. 16S sequencing revealed that the phyla Fusobacteria, 

Epsilonbacteraeota, Firmicutes, and Proteobacteria dominate the community. 

Functional pathways were computed from WGS data, showing genetic functional 

potential primarily focused on metabolism. WGS samples were each screened for 

antimicrobial resistance, characterizing a resistome made up of nine antibiotic 

resistance genes. Samples were screened for potential enteric pathogens using 

virulence factors as indicators; Clostridium perfringens was revealed as a likely 

pathogen. Overall, three factors appear to be shaping the alpha and beta diversity of the 

microbial community: penguin developmental stage, sampling location, and presence or 

absence of C. perfringens. We found that juvenile penguins have significantly lower 

alpha diversity than adults based on three metrics, as well as significantly different beta 

diversity compared to adults. Location effects are slight, but one site has significantly 

lower Shannon diversity than the other primary sites. Finally, when samples were 

grouped by C. perfringens virulence factors, we found dramatic changes in beta diversity 

based on operational taxonomic units, protein families, and functional pathways. This 

study provides a baseline microbiome for an endangered species, implicates both 

penguin age and the presence of a potential bacterial pathogen as the primary factors 



9 
 

associated with microbial community variance, and reveals widespread antibiotic 

resistance genes across the population.  

 

Keywords: Avian microbiome, gut pathogens, conservation, Galapagos penguin.  

 

Original Article under review.  
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Introduction:  

Resident microbes have a diverse impact on animal health. Some long-term members of 

the microbiome may facilitate digestion or provide immune system training for the host 

(Hills et al. 2019). Colonization resistance is an important benefit, as mutualistic 

microbes may out-compete a pathogenic invader for space and nutrients or even 

release toxins as a deterrent (Lazar et al. 2018). Some community members may also be 

opportunistically pathogenic, occupying an inconspicuous position in the microbiome 

until a disruption occurs and then infecting the host (Brown et al. 2012, Krismer et al. 

2017).  

Characterizing the normal microbiome for species of concern provides an essential 

baseline from which to measure changes. This has the potential to help zoos improve 

their level of care for collection animals as well as to increase reintroduction success by 

mimicking a species’ normal microbiome (Bahrndorff et al. 2016, Trevelline et al. 2019). 

However, microbial community assessments can also improve management of wild 

populations in a number of ways. Dysbiosis in the microbiome (i.e. disruption of the 

normal bacterial community) can be an indicator of health problems and is associated 

with a number of diseases (Hills et al. 2019, Videvall et al. 2020). Metagenomic 

assessments can reveal potential pathogens that may pose a threat to the population 

(Gu et al. 2021). Sequencing data can additionally be used to assess the level of 

antimicrobial resistance in the community, known as the “resistome,” which at high 

levels can indicate a potentially dangerous level of connectivity between humans and 



11 
 

wildlife (Wheeler et al. 2012). Thus, microbiome research provides a critical perspective 

for conservation efforts.  

Factors structuring these resident microbial communities are complex and can vary 

substantially between taxa. Diet is known to be a primary driver of microbiome 

composition and taxa with atypical diets tend to have distinct microbiomes (Roggenbuck 

et al. 2014, Carmody et al. 2015, Waite and Taylor 2015). For instance, the vampire finch 

(Geospiza septentrionalis) supplements its diet in an unusual way by eating eggs, guano, 

and the blood of larger birds, and the species also exhibits a unique microbiome profile 

compared to the other Darwin’s finches (Michel et al. 2018). These dietary changes can 

be rapid – one study of human diet found that switching from a plant- to animal-based 

diet resulted in reduced carbohydrate fermentation and increased protein fermentation 

by gut microbes in a matter of days, with corresponding abundance changes in bacteria 

associated with those activities (David et al. 2014). Environmental factors such as season 

and habitat are known to affect gut microbiomes as well, though these differences are 

largely attributed to changes in food availability between seasons (Tasnim et al. 2017, 

Hu et al. 2018). However, diet is a better predictor for microbiome composition and 

function in mammals than it is for birds, and the effect of diet is weakest in the 

microbiomes of both bats and flying birds (Song et al. 2020).  

Demographic factors such as the host’s sex or developmental stage can also play a role, 

as males and females of some species have different gastrointestinal microbiomes 

(Escallón et al. 2019, Vemuri et al. 2019). One study found that cloacal microbiomes 

differed between male and female rufous-collared sparrows during breeding seasons, 
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with the male microbiome becoming more diverse at the onset of the breeding season 

(Escallón et al. 2019). Hormonal differences or immune variation between sexes may be 

responsible to some degree (Markle et al. 2013, Bolnick et al. 2014b, Escallón et al. 

2019). Many taxa also undergo microbiome changes throughout development; for 

example, little penguins (Eudyptula minor) exhibit increased abundances of Firmicutes 

and Bacteroidetes as they mature (Dewar et al. 2017). Microbial community differences 

based on sex and age are not consistent across taxa, and in some cases the effect size is 

quite small compared to other factors, indicating a continued need to assess community 

drivers on a case-by-case basis in wild populations (Bolnick et al. 2014a, Taylor et al. 

2019).  

This study examines the gut microbiome of the Galapagos penguin (Spheniscus 

mendiculus), a highly range-restricted species which occurs only in the Galapagos Islands 

(Vargas et al. 2005). This penguin faces regular population bottleneck events when the 

nutrient-rich Cromwell Current is disrupted periodically by warm El Niño weather 

patterns (Vargas et al. 2006). The species is classified as Endangered by the International 

Union for Conservation of Nature (IUCN) due to the severe declines associated with 

these events as well as their highly restricted range (Vargas et al. 2005, 2006). The 

frequent population bottlenecks are likely the reason for the genetic homogeneity 

found in this species – both microsatellite markers and major histocompatibility 

complex (MHC) sequences demonstrate a low degree of genetic variation (Akst et al. 

2002, Bollmer et al. 2007, Nims et al. 2008).  
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The low genetic variation may leave the penguin population vulnerable to introduced 

diseases (Sommer 2005, Levin et al. 2009). Previous studies have found evidence of 

prior infections by Chlamydophila psittaci and Toxoplasma gondii (Travis et al. 2006, 

Deem et al. 2010), as well as infections by microfilariae (species unknown) and a lineage 

of Plasmodium (Lineage A) (Merkel et al. 2007, Levin et al. 2009). However, microbiome 

characterization and a thorough assessment of enteric pathogens using next-generation 

sequencing tools has not been completed and would provide valuable insight into the 

health of this species. Furthermore, widespread antibiotic resistance genes have been 

found previously in the Galapagos Islands (Wheeler et al. 2012, Overbey et al. 2015, 

Nieto‐Claudin et al. 2019), but the extent to which antibiotic resistance is associated 

with the Galapagos penguin was unknown as we began this study.   

This research thus has four goals: (1) establish a baseline for gut microbiome taxonomy 

and function in the Galapagos penguin, (2) identify putative enteric pathogens, (3) 

characterize the resistome; and (4) explore drivers of community structure. We 

hypothesized that hormonal variation and contrasting foraging habits may lead to 

distinctive microbiomes, and so microbial community structure would vary depending 

on both sex and age, respectively. Due to the largely homogeneous environment of the 

western coast of Isabela Island, we hypothesized that different locations may be a 

minimal factor in the gastrointestinal communities, particularly since the penguin 

population shows significant movement between sites and the penguins tend to forage 

near the coast (Steinfurth et al. 2008, Nims et al. 2008). Finally, we hypothesized that 
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gut pathogens -if found- may be associated with community changes facilitated through 

either disruptive or opportunistic invasion.  

Methods:  

All Galapagos penguin fecal samples used in this study were collected in July of 2018 

from Isabela Island and the Marielas Islets in Galapagos, Ecuador. To collect samples, 

wild penguins were safely captured at each site using long-handled nets and brought to 

a large boat for processing. Processing included morphological measurements and 

opportunistic fecal collection. The fecal collection procedure involved harvesting feces 

from clean plastic sheets placed beneath the penguins during transport and handling, 

immediately following capture. Fecal samples were preserved in 95% ethanol at room 

temperature (Song et al. 2016). Males and females were identified based on bill depth 

measurements and size (Cappello and Boersma 2018, Jiménez-Uzcátegui et al. 2021). 

Fecal DNA was later extracted using Qiagen PowerFecal extraction kits and stored at -

20°C.  

Targeted Sequencing:  

Sequencing of the 16S rRNA gene V4 region was performed with Illumina MiSeq on 40 

of the DNA samples, excluding samples with insufficient DNA (<20ng), at the University 

of Michigan Medical School Microbiome Core. The V4 region was selected because its 

length of 250bp allows forward and reverse reads to fully overlap when sequenced with 

the cost-efficient Illumina platform, reducing the error rate (Kozich et al. 2013). Method 

standardization also facilitates comparisons between microbiome studies, and the V4 

region has widespread use, notably through the Earth Microbiome Project and the 
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Mothur Standard Operating Procedure (SOP) (Kozich et al. 2013, Thompson et al. 2017). 

Negative sampling and extraction controls were included to assess contamination during 

processing, and a water sample and a mock community (ZymoBIOMICS Microbial 

Community Standard) were added by the Microbiome Core prior to library preparation 

as negative and positive PCR amplification and sequencing controls, respectively. 

Several penguin samples were later resequenced alongside a ZymoBIOMICS Gut 

Microbiome Standard, which had been stored in 95% ethanol prior to extraction to 

serve as a positive control for the preservation/extraction methods. The resequenced 

samples were examined to ensure bacterial composition was comparable to the 

originally sequenced samples; however, all data included in the downstream analysis 

was generated from the first sequencing run to avoid any potential batch effects. The 

ZymoBIOMICS Microbial Community Standard was also added to this second sequencing 

run by the Microbiome Core as a sequencing positive control.  

Read analysis was conducted in Mothur, following the Schloss MiSeq standard operating 

procedure (Schloss et al. 2009, Kozich et al. 2013). Reads were filtered by base quality 

and length, aligned with the SILVA 132 reference database (Yilmaz et al. 2014) and 

filtered for alignment quality and chimeras. Samples with less than 10,000 reads 

following data cleaning steps were excluded, leaving 34 samples. Operational taxonomic 

unit (OTU) clustering was based on a 97% similarity threshold. Unclassified reads and 

reads that matched mitochondria, chloroplasts, or archaea were filtered out. Filtered 

reads were subsampled in Mothur to match the sample with the lowest read count 

(11,295 reads). Community data were imported into R version 3.6.3 to analyze alpha 
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diversity (within individuals) and beta diversity (between individuals) (R Core Team 

2020).  

Whole Genome Sequencing:  

Whole genome sequencing (WGS) was performed on 20 of the extracted fecal samples 

by the University of Michigan Microbiome Core using the Illumina Nextera DNA Flex kit 

(Franzosa et al. 2018). Several of these samples were later resequenced with the 

ZymoBIOMICS Gut Microbiome Standard included in the same run as a positive control 

to ensure comparable results – the resequenced samples were examined to make sure 

the bacterial compositions were similar to the original sequence results, but 

downstream analysis included only data generated in the initial sequencing run. Quality 

control was performed by trimming reads using Trimmomatic with a sliding window of 

4, minimum quality score of 20, and minimum length of 70 (Bolger et al. 2014). These 

cleaned reads were used directly for read mapping with KMA (k-mer alignment) against 

two databases, VFDB (Virulence Factor Database) and CARD (Comprehensive Antibiotic 

Resistance Database), on the platform PATRIC (Pathosystems Resource Integration 

Center), to identify likely pathogens by virulence factors and to assess probable 

antibiotic resistance genes (Liu et al. 2019, Alcock et al. 2020, Davis et al. 2020). The 

cleaned reads were categorized taxonomically using the k-mer based program Kraken 2, 

also available on PATRIC (Wood et al. 2019).  

The trimmed reads were also assembled with SPAdes, using the recommended K-mer 

lengths of 21, 33, 55, 77, 99, and 127, with the BayesHammer module for error 

correction enabled (Bankevich et al. 2012, van der Walt et al. 2017). SPAdes output was 
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assessed with MetaQuast (Mikheenko et al. 2016). The assembly quality was not 

consistent across samples. N50 ranged from ~600 - ~2300, misassemblies ranged from 

1-79, and longest contigs per sample ranged from 3375bp - 489281bp. Compared to 

single genome assemblies, lower quality is expected for metagenomic assemblies, but 

two samples with the worst assemblies were ultimately excluded from much of the 

functional analysis due to poor downstream annotation results; alternate tools relying 

on reads rather than contigs were similarly problematic for those two samples. The 

contigs from the SPAdes assembly were classified taxonomically using Kraken 2 on 

PATRIC.  

Finally, parallel read-based and assembly-based approaches were used to achieve a 

robust picture of the functional profile in these communities. Cleaned reads were 

categorized functionally using the program HUMAnN 3.0, while contigs were annotated 

using the program MetaErg (Franzosa et al. 2018, Dong and Strous 2019). Pfam (Protein 

Family Database) annotations were obtained through both pipelines, which notably 

annotated virulence-associated proteins in addition to the virulence factors (pathogen 

indicators) obtained via PATRIC (Mistry et al. 2021). Pathways were only computed for a 

minority of gene families in both HUMAnN 3.0 and MetaErg, leaving a majority 

unclassified. Protein families and metabolism-related KEGG (Kyoto Encyclopedia of 

Genes and Genomes) pathways detected from the metagenomic assemblies were 

imported to R to examine differences in metabolic profiles between groups (R Core 

Team 2020). Protein family abundances and pathway abundances were subsampled to 

match the lowest sample (22,259 and 19,684 reads, respectively), after excluding one 
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sample with insufficient protein families and two samples with insufficient pathway 

results, to allow comparisons between samples without depth-biased results.  

Control Assessment:  

Since negative controls contained ≤30 reads following batch filtering steps for the 16S 

dataset, and <15 classified fragments following Kraken 2 classification of trimmed 

shotgun sequencing reads, potential contamination (from sampling, extraction kits, 

sequencing crossover, etc.) was considered negligible. 16S sequences from the Zymo 

preservation/extraction control (ZymoBIOMICS Gut Microbiome Standard) were 

mapped to manufacturer-provided reference sequences using the “seq.error” function 

in Mothur, which calculated an error rate of 0.0079%. Sequences from the Zymo 

sequencing control (ZymoBIOMICS Microbial Community Standard) were mapped to 16S 

reference sequences provided by the MBC, with an error rate of 0.015% and 0.005% for 

the first and second sequencing runs. All expected bacterial species with theoretical 

abundances >0.01% were detected in the mock communities following processing; 

some abundance skew was apparent, but this is unlikely to affect the reported results as 

all study samples were processed in the same batch and comparable to each other. 

Shotgun sequences of the ZymoBIOMICS Gut Microbiome Standard were directly 

mapped to the whole genome reference sequences provided by the manufacturer using 

Bowtie2 (Langmead and Salzberg 2012). Reads successfully mapped to all expected 

bacteria, archaea, and yeasts.  

Diversity Calculations and Statistical Analysis:  
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Alpha diversity was calculated for each sample from the subsampled 16S rRNA gene 

sequencing data using the R package phyloseq for three metrics: observed richness, 

Simpson’s Index, and Shannon Diversity Index (McMurdie and Holmes 2013). Significant 

differences based on alpha diversity values were assessed between groups using Kruskal 

Wallis tests (R Core Team 2020). Jaccard distance was used to calculate beta diversity in 

the phyloseq package for both 16S and WGS datasets, and differences in beta diversity 

were assessed using permutational multivariate analysis of variance (PERMANOVA) in 

the R package vegan (Anderson and Walsh 2013, McMurdie and Holmes 2013, Oksanen 

et al. 2019). The dispersion assumption for PERMANOVA, PERMDISP, was tested for 

significant values using the vegan package (Anderson 2001, Anderson and Walsh 2013, 

Oksanen et al. 2019). Kruskal Wallis tests were used to assess significant differences 

between relative abundances of metabolic pathways and groups from the WGS dataset, 

and false discovery correction was applied with the Benjamini-Hochberg method 

(Benjamini and Hochberg 1995).  

Results:  

The primary bacterial phyla found in the Galapagos penguin fecal samples are 

Fusobacteria, Epsilonbacteraeota, Firmicutes, and Proteobacteria, and the most 

common families are Fusobacteriaceae, Helicobacteraceae, Clostridiaceae, 

Pasteurellaceae, and Peptostreptococcaceae (Fig. 1). WGS samples were profiled 

functionally using level II of the BRITE hierarchy for classifying KEGG pathways. Most 

identified KEGG pathways were involved in metabolic activity, primarily amino acid 
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metabolism, carbohydrate metabolism, energy metabolism, and nucleotide metabolism 

(Fig. 1).  

 

Figure 1. Bacterial phyla and families detected in 16S rRNA sequencing data (A, B), and metabolic KEGG 

pathway groups computed from shotgun sequencing data (C).  
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Alpha and beta diversity were calculated to assess diversity within and between 

communities, respectively. Overall, alpha diversity was low; no raw sample exceeded 

100 identified OTUs and most contained fewer than 50 OTUs. Alpha diversity was 

significantly lower in juveniles compared to adults in each of the three diversity 

measures used (Fig. 2, observed richness P = 0.0068, Simpson’s P = 0.0046, Shannon P = 

0.0071). Beta diversity significantly differed between age classes after controlling for 

location in the model (PERMANOVA, R2 = 0.06615, P = 0.016; PERMDISP, P = 0.816). 

Adult penguins did not vary by sex when comparing either alpha or beta diversity. No 

functional differences based on age or sex were apparent in the WGS dataset with 

either metabolic pathways or protein families.  

 

Figure 2. Alpha diversity is significantly lower in juveniles compared to adults when measured as observed 

richness (A), Simpson’s Diversity Index (B), and Shannon Diversity Index (C).  

We also examined the importance of location for microbiome composition. Due to the 

uneven sample distribution across sites, single samples from El Muñeco (at the northern 

end of Isabela Island) and Playa Perros (near Puerto Pajas) were first excluded. The 

remaining three sites – Caleta Iguana, Puerto Pajas, and Marielas – represent the largest 
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penguin colonies. Caleta Iguana is only represented by four samples following filtering 

steps, constraining our ability to compare between all three sites.  

A Principal Coordinates Analysis (PCoA) indicates slight clustering by location (Fig. 3). 

Compared to the more exposed sample sites, Marielas is slightly different 

(PERMANOVA, 999 permutations, R2 = 0.05970, P = 0.038; PERMDISP, P = 0.293). 

However, when the sites are limited to Marielas and Puerto Pajas there is no significant 

difference (PERMANOVA, 999 permutations, R2 = 0.06588, P = 0.061). Shannon Diversity 

Index values significantly differ between the three sites (P = 0.03857), with the lowest 

Shannon Diversity seen at Marielas, but observed richness and Simpson’s Index do not 

significantly vary (Fig. 3).  
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Figure 3. Alpha and beta diversity show minor variation between samples from the three primary 

sampling sites on Isabela Island: Caleta Iguana (CI), Puerto Pajas (PP), and Marielas (M). Observed richness 

and Simpson’s Index are similar between sites (A, B), but Shannon Diversity Index significantly differs (C). 

A PCoA illustrates slight clustering between locations (D). Sample sites are shown along the western coast 

of Isabela Island, with the Galapagos Archipelago in the map inset (E).  

Antibiotic Resistance Screening:  

Screening shotgun sequencing reads from each sample with the CARD database 

revealed a total of nine putative antibiotic resistance genes (Table 1). Two resistance 

genes corresponding to Helicobacter pylori reference genomes were particularly 

widespread, occurring in almost all samples (19/20); these genes confer resistance to 

Tetracyclines and Macrolides. Genes resistant to Aminoglycosides and Lincosamides 

were also common in this small sample set, and one Peptide-resistant gene 

corresponding to C. perfringens SM101 was found in six samples.  

 

 

CARD Accession Function # Samples Reference Genome Antibiotic Class 

ARO:3003510
Helicobacter pylori  16S rRNA mutation

conferring resistance to tetracycline
19 Helicobacter pylori 26695 Tetracycline 

ARO:3004134
Helicobacter pylori  23S rRNA with mutation 

conferring resistance to clarithromycin
19 Helicobacter pylori Macrolide 

ARO:3003493
Pasteurella multocida  16S rRNA mutation 

conferring resistance to spectinomycin
9 Pasteurella multocida  36950 Aminoglycoside 

ARO:3004149
Escherichia coli  23S rRNA with mutation 

conferring resistance to clindamycin
9 Escherichia coli  CFT073 Lincosamide 

ARO:3003773 Clostridium perfringens  mprF 6 Clostridium perfringens  SM101 Peptide 

ARO:3001219
Clostridium difficile  EF-Tu mutants 

conferring resistance to elfamycin
6 Clostridium difficile Elfamycin 

ARO:3003512

Salmonella enterica  serovar Typhimurium 16S 

rRNA mutation in the rrsD gene conferring 

resistance to spectinomycin

5
Salmonella enterica 

subsp. salamae
Aminoglycoside 

ARO:3004058
Staphylococcus aureus  23S rRNA with 

mutation conferring resistance to linezolid
1 Staphylococcus aureus Oxazolidinone 

ARO:3003403
Escherichia coli 16S rRNA mutation in the rrsB gene 

conferring resistance to paromomycin
1 Escherichia coli K-12 Aminoglycoside 

Table 1. Antibiotic resistance genes detected in Galapagos penguin samples
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Pathogen Screening:  

WGS samples were screened for virulence factors using three tools with two databases: 

PATRIC (VFDB), HUMAnN 3.0 (Pfam), and MetaErg (Pfam). Virulence factors across all 

three tools were associated with a single bacterium, Clostridium perfringens. Most of 

the reference genome matches from the VFDB were from strain 13, which is classified as 

type A (Table 2). C. perfringens virulence factors from the VFDB were detected in 12/20 

penguins, though the taxonomic search using Kraken 2 showed the presence of the 

bacterium in an additional seven penguins (19/20). The virulence-associated BrkB 

protein family was also classified with C. perfringens in both HUMAnN 3.0 and MetaErg 

(BrkB Pfam accession: PF0361), though to varying degrees – read-based HUMAnN 3.0 

detected BrkB with C. perfringens in 8/20 samples, while contig-based MetaErg detected 

it in 10/20 samples.  

 

Additional bacterial taxa were associated with virulence factors in Pfam, though none 

appeared in the VFDB search. Cetobacterium ceti, Clostridium baratii, Clostridium 

thermobutyricum, Paeniclostridium sordellii, and Photobacterium damselae were 

Template Gene Product Virulence Factor # Samples Reference Genome 

VFDB|VFG002274 plc phospholipase C alpha-toxin 9 C. perfringens str. 13 

VFDB|VFG002277 nagH hyaluronidase mu-toxin 8 C. perfringens str. 13

VFDB|VFG002276 colA collagenase kappa-toxin 7 C. perfringens str. 13

VFDB|VFG002284 nanJ exo-alpha-sialidase sialidase 7 C. perfringens str. 13

VFDB|VFG002285 nanH sialidase sialidase 7 C. perfringens  ATCC 13124 

VFDB|VFG002275 pfoA perfringolysin O theta-toxin 6 C. perfringens str. 13 

VFDB|VFG002282 cloSI alpha-clostripain alpha-clostripain 6 C. perfringens str. 13

VFDB|VFG002283 nanI exo-alpha-sialidase sialidase 6 C. perfringens str. 13

VFDB|VFG002278 nagI hyaluronidase mu-toxin 6 C. perfringens str. 13

VFDB|VFG002279 nagJ hyaluronidase mu-toxin 6 C. perfringens str. 13

VFDB|VFG002280 nagK hyaluronidase mu-toxin 5 C. perfringens str. 13

VFDB|VFG002281 nagL hyaluronidase mu-toxin 5 C. perfringens str. 13

VFDB|VFG002286 cpe enterotoxin Cpe CPE (C. perfringens  enterotoxin) 2 C. perfringens  SM101 

Table 2. Clostridium perfringens  virulence factors detected in PATRIC
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detected with virulence-associated protein families by both HUMAnN 3.0 and MetaErg. 

The contig-based approach, MetaErg, found an additional 28 virulence-associated 

species; the most common were Helicobacter brantae, Gallibacterium anatis, 

Helicobacter sp. 002287135, Helicobacter sp. 001693335, and Fusobacterium sp. 

900015295. Most taxa were associated with the Pfam virulence factor BrkB, but others 

matched with a haemolysin (SMP_2), virulence-associated protein E, or virulence 

protein RhuM family, among others.  

Since C. perfringens was the only bacterium consistently implicated as a pathogen by all 

pipelines, the presence of C. perfringens virulence factors was examined as a potential 

structuring force for the microbial communities. Samples grouped by C. perfringens 

virulence factors from the VFDB revealed signals of dysbiosis (Fig. 4). Beta diversity was 

calculated from protein families and from metabolic pathway abundances, and in both 

cases samples with virulence factors clustered away from samples without virulence 

factors on a PCoA. After controlling for location and including age and sex in the models, 

both protein families (PERMANOVA, 999 permutations, R2 = 0.14156, P = 0.020; 

PERMDISP, P = 0.076) and metabolic pathways (PERMANOVA, 999 permutations, R2 = 

0.22465, P = 0.014; PERMDISP, P = 0.081) were significantly different based on the 

presence of C. perfringens virulence factors. Three metabolic groups and 17 metabolic 

KEGG pathways significantly differed between samples divided by virulence factors 

(adjusted P-values <0.05). This pattern held true in the 16S dataset, revealing taxonomic 

clustering based on the presence of C. perfringens virulence factors (PERMANOVA, 999 

permutations, R2 = 0.17409, P = 0.001; PERMDISP, P = 0.27). However, alpha diversity 
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did not significantly vary between groups. No significant relationship was found 

between C. perfringens status with age, sex, or location.  

 

Figure 4. The penguin microbiome varies with C. perfringens virulence factors (VFs). Principal Coordinates 

Analysis shows distinct clustering based on OTUs from16S rRNA gene sequencing data (A), protein families 

from shotgun sequencing data (B), and KEGG metabolic pathways from shotgun sequencing data (C) when 

separated by Jaccard distance and sorted by the presence of C. perfringens virulence factors from the 

VFDB. Relative abundance of three metabolic groups significantly varies in the presence of C. perfringens 

(D).  

Discussion:  

Overall, these results indicate that developmental stage, location, and pathogen 

presence are structuring the gut microbiome in this species. The taxonomic profile of 
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this community appears similar to previously published penguin microbiomes, though 

the gut microbiome of the Galapagos penguin notably appears dominated by 

Fusobacteria and lacking in Bacteroidetes (Dewar et al. 2013, 2017, Lee et al. 2019). We 

found adult Galapagos penguins have significantly higher alpha diversity (observed 

richness, Shannon Diversity, and Simpson’s Index) in their gut microbiomes compared to 

juvenile penguins. Differences in foraging behaviors between adults and juveniles may 

be an explanatory factor, as juveniles often return to the nest area as they gradually 

learn how to forage and adults occasionally demonstrate extended parental care during 

this learning period by feeding fully-fledged juveniles (Borboroglu and Boersma 2013, 

Boersma et al. 2017).  Hormonal differences could also play a role since some adults 

were in breeding condition – this is known to increase alpha diversity in males in other 

avian species – but surprisingly, no sex-based differences were found (Escallón et al. 

2019). The lack of sex-based differences may again be related to foraging habits, as 

males and females exhibit similar foraging behaviors (Steinfurth et al. 2008). It is 

important to understand how factors such as developmental stage can influence the 

avian microbiome, as this could indicate a varied degree of vulnerability to disease 

depending on host age.  

Though location does not appear to be a strong force structuring the microbiome, both 

alpha and beta diversity show some differences at the Marielas Islets compared to the 

other primary sampling sites. The similar environment along the coast of Isabela and the 

movement of penguins between sites are likely factors behind the general homogeneity 

of microbiomes between locations; for example, during our short sampling period we 
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recaptured some of the same individuals at multiple sites. The small differences 

observed may be explained by unique diets between sites or exposure to different 

environmental microbes. Perhaps significantly, the Sierra Negra shield volcano on 

Isabela Island was erupting during the 2018 sampling trip. Lava flowed down the 

volcano’s northwestern flank and reached the sea near the Marielas sampling site 

(Vasconez et al. 2018). This contributed to warmer water temperatures at that site and 

likely altered pH levels. The proximity to volcanic activity may have led to the slight 

variation in microbial signatures found between sites. Differing amounts of 

environmental heavy metal may also play a role, as this is known to alter microbiome 

compositions in some systems – a previous study found variation in heavy metal 

concentrations in Galapagos penguin feathers from different sites, with significantly 

higher levels of lead in feathers from Marielas (Jiménez-Uzcátegui et al. 2017, Xia et al. 

2018).  An additional factor may be the relatively exposed position of the southern sites 

compared to the more sheltered location of the Marielas away from the primary 

current.  

We determined that the putative resistome for this species contains at least nine 

resistance genes. Two resistance genes associated with Helicobacter pylori were almost 

ubiquitous, detected in all but one penguin. Antibiotic resistant genes have been 

previously found in the Galapagos Islands in marine water, tortoise feces, and both land 

iguana and marine iguana feces, but this is the first time to our knowledge that they 

have been detected in Galapagos penguins (Wheeler et al. 2012, Overbey et al. 2015, 

Nieto‐Claudin et al. 2019). Some antibiotic resistance occurs naturally, in areas as 
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remote as Antarctica, and resistance genes could potentially be found in Galapagos even 

in the absence of human activity (Marcelino et al. 2019). However, the increasing 

amount of antibiotic resistance found in the wild is broadly attributed to selection from 

the heavy use of antibiotics in modern agricultural and clinical settings (Ventola 2015). 

In one example of likely anthropogenic effects, a study in Galapagos found that 

proximity to humans (e.g. ports, towns) was generally associated with the antibiotic 

resistance found in seawater and reptile feces, with increased resistance detected in 

most populated areas and no resistance detected at certain isolated sites (Wheeler et al. 

2012).  

The exchange of antibiotic resistance genes happens readily among bacteria through 

horizontal gene transfer, making it challenging to prevent resistance genes from 

spreading. Antibiotic resistance is found at high levels in bacteria from human waste, 

and even after waste treatment sewage remains a potent source of antibiotics or 

resistance genes (Grehs et al. 2021). Resistance genes can even be transferred by 

wildlife across large distances, such as through resident flora of migratory birds 

(Marcelino et al. 2019). In Galapagos, the release of sewage into the ocean from towns 

and boats is a likely way in which antibiotics and/or bacteria with resistance genes could 

be introduced into the environment (which can also be detrimental to human health), 

though resistance genes may also arrive from other sources (Overbey et al. 2015). 

Wastewater control is thus an essential factor to limit the spread of antibiotic resistance 

in wild communities. Finding antibiotic resistance consistently in the penguin samples 

indicates that it is present even in more isolated areas along Isabela Island, emphasizing 
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a need for further investigation into the extent of resistance genes associated with 

anthropogenic activity (such as cruise ships) and whether wastewater management 

changes should be considered in the islands.    

Finally, our pathogen screening highlighted a few potential enteric pathogens – 

Clostridium perfringens, Paeniclostridium sordelli, Clostridium baratii, Gallibacterium 

anatis, and Photobacterium damselae were among the most common bacteria linked 

with virulence-associated protein families in this microbiome. The class Clostridia 

contains some of the primary agents of enteric disease in birds, and C. perfringens, P. 

sordellii and C. baratii have all been associated with enteric disease (Crespo et al. 2013, 

Cooper et al. 2013). Gallibacterium anatis (previously Pasteurella anatis) has also been 

implicated as a pathogen in several avian species and is considered an emerging poultry 

disease (Varan Singh and R Singh 2015). However, the detection of virulence-associated 

factors is by itself no guarantee that a microbe is actually pathogenic to the host, and 

microbes such as Gallibacterium anatis are also commonly found as members of the 

normal flora (Persson and Bojesen 2015). Further, several bacteria in the microbiome 

were associated with virulence proteins but are unlikely to be pathogenic to penguins – 

for example, Photobacterium damselae was linked to several different virulence-

associated protein families in this microbiome, though this bacterium is recognized as a 

pathogen in taxa such as fish and marine mammals rather than birds (Rivas et al. 2013).  

Clostridium perfringens was the only putative pathogen detected with the Virulence 

Factor Database in addition to the Protein Family Database (Pfam). C. perfringens is an 

extremely widespread bacterium and a normal member of many microbiomes, but it is 
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also notorious for causing necrotic enteritis in poultry and other birds (as well as enteric 

diseases in humans, dogs, and a number of other taxa) (Petit et al. 1999, Kiu and Hall 

2018). In poultry, C. perfringens injects toxins into the intestines, resulting in intestinal 

lesions and a range of clinical signs including lethargy, loss of appetite, and mortality 

(though lethal cases may also occur without any observable symptoms) (Cooper et al. 

2013). Outbreaks of C. perfringens leading to fatalities have also been documented in 

captive penguin populations (Penrith et al. 1994). The pathogenicity of the detected 

strain of C. perfringens in Galapagos penguins is unknown, and we notably did not 

detect the netB gene encoding a pore-forming toxin which is associated with most 

occurrences of necrotic enteritis in poultry (Lepp et al. 2010). However, the detected 

virulence factors correspond to type A and the genes plc and cpe, which are associated 

with toxin production and avian enteric disease (Petit et al. 1999). Coupled with the 

apparent dominance of C. perfringens in the observed microbial communities and the 

strong structural changes observed in the presence of virulence factors, this suggests a 

level of pathogenicity at the time of sampling. Resampling the population is necessary to 

shed light on the role C. perfringens plays in this species’ microbiome.  

Conclusions:  

This work establishes a baseline microbiome for an Endangered penguin, identifies two 

primary drivers of microbial community structure, and emphasizes the importance of 

minimizing interaction between wildlife and humans. Even in a place as remote and 

well-protected as the Galapagos Islands, human influence is still visible through factors 

such as antibiotic resistance genes. The human-inhabited islands also have some 
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domesticated animals, which increases the possibility of disease spillover occurring 

between domestic and wild species – the apparent pathogenicity of C. perfringens found 

in Galapagos penguins is concerning when considering the proximity of the penguin 

population to domestic chickens (Gottdenker et al. 2005). Thus, monitoring and limiting 

anthropogenic effects on wildlife is critical to the continued long-term preservation of 

Galapagos endemic species.  
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CHAPTER 2. 

Seasonal shifts in the function and composition of the Eurasian tree sparrow gut 

microbiome 
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Abstract:  

Vertebrates are extensively colonized by bacteria, forming microbial communities which 

can be closely tied to host health. The importance of host-associated microbial 

communities is increasingly recognized and has been studied extensively in recent years, 

but many questions remain about how these communities form in wild avian 

populations and how stable they remain over time. Using a locally abundant introduced 

species, the Eurasian tree sparrow (Passer montanus), we collected fecal samples from 

birds at two sites in Missouri to assess variation in the gut microbiome from spring 

through fall over two years. We used a combination of targeted amplicon sequencing 

and whole genome sequencing to examine bacterial community variation over time. 

Alpha diversity results showed a non-significant downward trend in Shannon diversity 

from spring to fall at both sites. Beta diversity based on both ASVs and predicted 

metabolic pathways significantly clustered between seasons, indicating differing 
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composition and function in the gut community based on season. Differential 

abundance analysis showed a high number of ASVs significantly decreasing in fall 

compared to spring, including many members of Bacilli and Alphaproteobacteria. 

Finally, we detected a large number of virulence-associated genes in samples across all 

seasons, indicating that the sparrow microbiome contains a relatively large number of 

likely pathogenic bacteria throughout much of the year. These results shed light on 

temporal stability in the wild avian microbiome, indicating that microbial communities 

in birds are dynamic and subject to structural changes across seasons.  
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Introduction:  

The microbiome has been linked to host health in many vertebrates (Hills et al. 2019). 

Resident microbes often carry out key functions for the host such as synthesizing 

vitamins or preventing pathogen colonization (Rowland et al. 2018). Microbial diversity 

is an important factor, typically measured in terms of species richness and evenness 

within a given microbial community, and high diversity within a host-associated 

microbiome is often associated with better health outcomes for the host (Videvall et al. 

2020). However, whether resident microbial communities remain stable over time is still 

unclear in many wild systems. Seasonal shifts in host-associated microbiomes have been 

studied the most in mammals, revealing diet-associated patterns occurring in seasonal 

cycles across several mammalian species, but similar research in other taxa such as birds 

lags far behind (Bergmann et al. 2015, Gong et al. 2021). Given the importance of 

microbial mutualists to health-related processes (Hills et al. 2019, Sun et al. 2022), 

understanding community stability over time is an essential foundational step in wild 

microbiomes.  

Life history changes are responsible for some of the cyclical changes seen in certain taxa 

(Markle et al. 2013, Cao et al. 2020, Si et al. 2022). For example, the hormonal changes 

associated with reproductive cycles can influence microbial composition (Markle et al. 

2013, Escallón et al. 2019). One study found that microbial diversity increased in the 

cloacal microbiomes of male rufous-collared sparrows (Zonotrichia capensis) as they 

went into breeding condition, with diversity returning to normal after the reproductive 

season, a pattern which correlated with testosterone levels (Escallón et al. 2019). 
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Migration is also associated with changes in microbial composition, as animals are 

exposed to different environments and dietary sources (Cao et al. 2020, Obrochta et al. 

2022). For example, migratory Canada geese (Branta canadensis) have lower gut 

microbiome diversity but higher abundances of putatively beneficial microbes compared 

to urban geese (Obrochta et al. 2022).   

Other cyclical changes in vertebrate-associated microbial communities may be simply 

due to the differences in diet which accompany changing seasons, although microbial 

patterns are inconsistent (Hu et al. 2018, Gong et al. 2021). Some studies have found 

that changes in diet can prompt significant alterations in microbial communities of wild 

hosts such as the North American bison (Bison bison) (Bergmann et al. 2015) and yaks 

(Bos grunniens) (Guo et al. 2021). Season-associated patterns have been identified in 

mammals such as forest musk deer (Moschus berezovskii), which have higher bacterial 

diversity in winter and spring when they consume dry leaf diets than they do in summer 

and fall with fresh leaf diets (Hu et al. 2018).  In great evening bats (Ia io), dietary shifts 

from insects in the summer to birds in the fall lead to microbiomes clustering by season 

(an indication of compositional changes) and significantly higher abundances of certain 

microbes; however, microbial diversity levels remain similar between summer and fall 

(Gong et al. 2021). More work is needed to determine how prevalent these seasonal 

patterns of microbial variation are in avian microbiomes and to understand how 

predictable these patterns might be across systems.  

For this study, we examined seasonal variation from spring to fall (April to November) in 

a locally abundant avian species, the Eurasian tree sparrow (Passer montanus). The 
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species was introduced to St. Louis approximately 150 years ago and now has a patchy 

distribution extending North of the St. Louis area along the Mississippi River (Jackson 

2003). Many of our predictions rely on alpha diversity, which is measured as the 

richness and/or evenness of microbial species within each sample, or beta diversity, 

which measures the community similarities between samples. We expected to see the 

highest alpha diversity in summer due to greater foraging opportunities, as a more 

diverse diet generally leads to a more diverse microbiome (Heiman and Greenway 

2016), and we predicted seasonal clustering based on community composition. We 

expected to see differentially abundant bacteria between seasons. Finally, since several 

studies have found higher rates of bacterial infections in younger birds (Benskin et al. 

2009, Minich et al. 2022), we expected putative pathogens would be significantly more 

prevalent in young birds, and thus would be more prevalent during summer when 

juvenile tree sparrows are common.  

Methods:  

Field sampling:  

We captured juvenile and adult Eurasian tree sparrows using mist nets at two sites 

during spring (April – mid June), summer (late June – early September), and fall (late 

September – November) in 2020 and 2021 (n = 100). The sites are both in Saint Louis 

County, Missouri, with one at the Columbia Bottom Conservation Area (Columbia 

Bottom CA) visitor center and the other approximately 20 miles away at a residential 

site in Webster Groves. Bird feeders with similar feed mixes were present at each 
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sample site, but the Columbia Bottom CA site is adjacent to undeveloped forests and 

fields while the Webster Groves site is entirely residential, likely resulting in different 

food sources between sampling sites. While efforts were made to sample evenly across 

seasons with a buffer period between each season, factors such as site access, uneven 

capture rates, and unpredictable DNA yields resulted in uneven sample numbers 

between seasons. This was most notable at Columbia Bottom CA, where we were 

unable to collect samples earlier than June in either year. We banded each bird to 

identify recaptured individuals and collected basic morphological measurements 

including wing chord, mass, and bill length. We collected feces from each bird by placing 

them individually into bags with alcohol-swabbed double floors, which allows feces to 

fall through the wire mesh floor onto the clean bag floor below (Knutie and Gotanda 

2018). Samples were placed on ice immediately and taken to a freezer after field 

sampling was complete for each day.  

16S rRNA gene sequencing and data processing:  

Fecal sample DNA was extracted with QIAamp PowerFecal Pro DNA Kits following 

manufacturer instructions and quantified using a Qubit fluorometer. Samples containing 

at least 20ng of DNA were sequenced in three separate runs by the University of 

Michigan Medical School Microbiome Core with 16S rRNA gene sequencing, using the 

methods and V4 region primers described in detail in Kozich et al. 2013 (Kozich et al. 

2013). Negative sampling, extraction, and sequencing controls were included with the 

runs. Positive sequencing controls were included with each run by the sequencing 
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company (Zymo Microbial Community Standard), and positive extraction controls were 

also included in the second and third runs (Zymo Gut Microbiome Standard).  

Sequencing reads were imported into R (version 4.2.0) using the program Dada2, then 

filtered and classified following the Dada2 pipeline (Callahan et al. 2016 p. 2). 

Recommended Dada2 steps for quality filtering and trimming were followed, and 

merged reads <250bp and >256bp long were discarded. SILVA v138 was used as a 

reference to assign taxonomies to amplicon sequence variants (ASVs) (Yilmaz et al. 

2014). Using the package phyloseq, further read filtering was performed to remove any 

reads that matched mitochondria, chloroplasts, or Archaea (McMurdie and Holmes 

2013). Controls revealed negligible contamination and all expected bacteria >1% were 

detected by the pipeline following processing. Sample reads were filtered for likely 

contaminants using the package decontam (Davis et al. 2018), and two ASVs were 

flagged as contaminants and removed from all samples. A minimum threshold of 4000 

reads was then applied, which excluded six samples and left a sample size of 100.  

To examine community patterns in alpha and beta diversity, filtered reads were then 

subsampled (rarefied) to 4108 reads using phyloseq to match the sample with the 

lowest read count following filtering steps. Simple relative abundances were calculated 

from the rarefied data by dividing the total read number of each taxon per group by the 

total reads in the sample (4108) using the R packages phyloseq and tidyverse, then used 

to create plots with phyla and families to visualize community diversity. Phyloseq was 

used to calculate two common metrics of alpha diversity: ASV-level observed richness 

and Shannon diversity for each individual. Beta diversity was also measured in phyloseq 
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by calculating Bray-Curtis dissimilarity between each sample pair from the rarefied data 

to create a distance matrix. Alpha and beta diversity were visualized using phyloseq and 

ggplot2 (Wickham et al. 2019). A Shapiro-Wilk test was used to assess whether Shannon 

diversity and observed richness deviated from a normal distribution; the test was not 

significant for Shannon diversity (P = 0.2993) but was significant for observed richness (P 

< 0.05), so only Shannon diversity was used for parametric statistical tests.  Shannon 

diversity variation between individuals grouped by season was tested using an ANOVA 

in R with sequencing run, age, and location included as confounding variables. 

PERMANOVAs in the R package vegan were used to test beta diversity variation 

between seasons using the previously described distance matrix while controlling for 

sequencing run, age, and location (Anderson 2001). PERMDISP was used for any 

significant PERMANOVA results to check whether dispersion was confounding the 

PERMANOVA test (Anderson 2017, Oksanen et al. 2019).  

Differential abundance analysis was also performed using the R package DESeq2 to 

examine whether fall samples contain any specific ASVs that are more or less abundant 

compared to spring (Love et al. 2014 p. 2). Summer samples were excluded to test how 

samples later in the year (fall) differed from samples early in the year (spring), and the 

previously filtered (but not rarefied) fall and spring samples were pruned by excluding 

any taxa found fewer than 3 times in fewer than 5% of the samples. DESeq2 was run 

with default settings using spring as the reference level. The Benjamini and Hochberg 

method was used to perform false discovery correction, including only results with 

adjusted p values >0.01 to reduce false positives (Benjamini and Hochberg 1995).  
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Metagenomic sequencing and data processing:  

A subset of samples was selected from each season at the two sites to use for 

metagenomic whole genome sequencing, with the goal of estimating potential 

metabolic activity and identifying likely pathogens using virulence factors. These 

samples were chosen based on higher DNA yield (required for metagenomic 

sequencing), sampling location, season, age, and sex. Approximately equal groups were 

obtained for each category with a total sample size of 28. The DNA was sent to the 

University of Michigan Medical School Microbiome Core for whole genome sequencing 

alongside negative and positive controls. Following sequencing, quality filtering and 

adapter removal  was performed on the raw WGS sequences with the University of 

Missouri Cluster using the program BBDuk (settings: minlen=50, qtrim=rl, trimq=20, 

k=23, mink=11, ktrim=r) (“BBTools” in press). Contaminating host sequences and PhiX 

sequences were removed with BBSplit using whole-genome references obtained from 

GenBank. Cleaned reads were then mapped with KMA (k-mer alignment) against the 

Virulence Factor Database on the platform PATRIC (Pathosystems Resource Integration 

Center) to obtain an estimation of how many putative pathogens were present in the 

bacterial communities based on the presence of virulence factors (Davis et al. 2018, Liu 

et al. 2019, “BBTools” in press). Kraken 2 was used for taxonomic classification of WGS 

reads on PATRIC (Lu and Salzberg 2020).  

To obtain functional annotations of the metagenomic data, reads were assembled using 

MetaSPAdes with default settings (Nurk et al. 2017). Reads were then mapped to 

contigs and resulting bam files were sorted using BBMap and Samtools (Li et al. 2009, 
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“BBTools” in press). Depth files were created for each sample based on sorted bam files 

using MetaBat, and contigs were annotated with MetaErg with depth files included 

(Kang et al. 2015, Dong and Strous 2019). MetaCyc pathway annotations generated by 

MetaErg were converted to an abundance table, normalized using HUMANn2, and 

imported into R for further analysis using phyloseq and vegan (Caspi et al. 2014, 

Franzosa et al. 2018, Dong and Strous 2019). Kruskal Wallis tests followed by the 

Benjamini-Hochberg correction were used to assess differential abundance in metabolic 

pathways between seasons, and Principal Coordinates Analysis (PCoA) based on 

MetaCyc pathway abundances was generated using phyloseq to visualize beta diversity 

variation between groups. PERMANOVA was used to assess significant variation in 

metabolic pathway beta diversity between seasons (Caspi et al. 2014, Anderson 2017).  

Samples with parallel 16S rRNA gene and whole genome sequencing data were 

examined to determine whether the presence of virulence factors (pathogenic 

indicators) is associated with community shifts in terms of alpha or beta diversity. Binary 

logistic regressions were used to test whether the number of infected birds is 

significantly influenced by season, age, or location.  

Results:  

The tree sparrow microbiome was largely composed of Firmicutes, Proteobacteria, and 

Actinobacteriota (Fig. 1). A small number of samples had high proportions of 

unclassified bacteria, but for most samples the number of unclassified reads was 
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negligible (<1%). The gut microbiome for this species was highly diverse, and eight phyla 

were represented in proportions greater than 1%.  

 

Figure 1. Bacterial composition across seasons (relative abundances). 

Alpha diversity was high in this sample set, with observed richness of approximately 

100-200 ASVs per individual in samples rarefied to 4108 reads, but no significant 

patterns were apparent based on season. Shannon diversity trended downward across 

seasons but did not vary significantly (Fig. 2). PERMANOVAs based on ASVs revealed 

significant clustering between seasons across both sites, although the results were 

somewhat confounded by significantly different dispersion between seasons 

(PERMANOVA, 9999 permutations, P = 0.0001, R2 = 0.0593; PERMDISP, P = 0.0139; Fig. 

2). The other significant variables included in the model were sex (R2 = 0.01375, P = 

0.0446), age (R2 = 0.02726, P = 0.0001), and location (R2 = 0.02864, P = 0.0002). When 

limited to the 28 samples of more balanced design used for both 16S rRNA gene 

sequencing and whole genome sequencing, the dispersion effect for season 
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disappeared, leaving a clear seasonal pattern of varying beta diversity for both sites 

combined (PERMANOVA, 9999 permutations, P = 0.0001, R2 = 0.12813; PERMDISP, 9999 

permutations, P = 0.6926; Fig. 3).  

 

Figure 2. Alpha diversity trended downward from spring to fall, but ANOVAs were not significant (A). Beta 

diversity (Bray-Curtis dissimilarity) showed clustering in PCoAs based on season at each of the two sites, 

Columbia Bottom Conservation Area and Webster Groves (B). Beta diversity significantly varied based on 
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season (PERMANOVA, 9999 permutations, P = 0.0001, R2 = 0.059), but dispersion was also significantly 

different (PERMDISP, 9999 permutations, P = 0.0139, B). 

 

Figure 3. When limited to the 28 samples of balanced design which were used for both 16S rRNA gene 

sequencing and whole genome sequencing, seasons were clearly distinguished at both sites combined 

(PERMANOVA P = 0.0001) based on beta diversity from 16S data with no confounding dispersion effect 

(PERMDISP P > 0.05).  

DESeq2 analysis revealed a high number of ASVs that were differentially abundant 

between spring and fall (Fig. 4). Of the 46 ASVs that significantly varied following false 

discovery correction, 13 belonged to the class Bacilli, 10 to Alphaproteobacteria, eight 

to Gammaproteobacteria, and seven to Actinobacteria. The remaining ASVs belonged to 

the classes Clostridia, Planctomycetes, Thermoleophilia, Acidimicrobiia, TK10, and 

Chloroflexia.  
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Figure 4. DESeq2 analysis revealed many ASVs that were differentially abundant in fall compared to 

spring. These ASVs belonged to five phyla (A) and ten classes (B). ASVs to the right of the grey bar were 

significantly more abundant in fall, while ASVs to the left of the grey bar were significantly less abundant 

in fall.  

Virulence factors were detected using the VFDB in 16/27 samples (59%). The virulence 

factors were distributed roughly evenly across seasons. 73% of juveniles had detected 

virulence factors compared to 46% of adults, and 71% of birds from Webster Groves had 
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detected virulence factors compared to 50% at Columbia Bottom CA; however, binary 

logistic regression results were not significant for any variable (P > 0.05).  These assorted 

virulence factors matched several reference genomes: Escherichia coli, Mycobacterium 

tuberculosis, Brucella melitensis, Klebsiella pneumoniae, Salmonella enterica, Shigella 

dysenteriae, Staphylococcus aureus, Enterococcus faecalis, and Yersinia pestis. Most of 

these genome matches corresponded to bacteria which were also identified using 

Kraken 2, but two appeared misclassified: the sample with a virulence factor matching 

Yersinia pestis had a Kraken 2 match for fellow Yersiniaceae member Serratia 

marcescens, while individuals with virulence factors matching Mycobacterium 

tuberculosis had Kraken 2 matches for M. avium. Metabolic pathways computed from 

whole genome sequencing data revealed clustered seasonal beta diversity similar to the 

seasonal beta diversity patterns shown in ASVs from 16S sequencing data (Fig. 5). Beta 

diversity based on metabolic pathways significantly varied between seasons 

(PERMANOVA, 9999 permutations, P = 0.0305, R2 = 0.14450; PERMDISP, 9999 

permutations, P = 0.1141).  
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Figure 5. A PCoA based on Bray-Curtis dissimilarity (beta diversity) from predicted MetaCyc pathways 

revealed a season-associated clustering pattern which was similar to the seasonal clustering pattern 

found in the ASV data. Beta diversity significantly varied between seasons (PERMANOVA, 9999 

permutations, P = 0.0305, R2 = 0.14450; PERMDISP, 9999 permutations, P = 0.1141).  

When examining ASV-based variation between groups with virulence factors versus 

groups without, alpha diversity was not significantly different but beta diversity varied 

(P = 0.0090, R2 = 0.05312). A PCoA based on ASVs visualized clustering between birds 

with putative bacterial pathogens and those without, although substantial overlap still 

appears (Fig. 6).  
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Figure 6. A PCoA based on Bray-Curtis dissimilarity (beta diversity) visualized clustering between birds 

with virulence factors detected (VFs) versus those with no detected virulence factors. Beta diversity 

between these groups significantly varied (P = 0.0090, R2 = 0.05312).  

Discussion:  

In this system with high environmental heterogeneity, the gut microbiome exhibited 

temporal shifts at several levels of the community. Alpha diversity did not significantly 

vary, although Shannon diversity generally decreased from spring to fall. However, beta 

diversity based on ASVs significantly varied between seasons, and PCoA visualization of 

beta diversity revealed a clustering pattern that appears consistently within each 

individual site as well as in the combined sites. The discrepancy between alpha and beta 

diversity suggests that while the total number of microbial taxa within each sample may 

remain relatively consistent across seasons, differences exist between samples from 
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each season in terms of microbial identities and abundances. Between the two sampling 

sites, beta diversity clustering by season was more pronounced at Webster Groves, 

where we were able to begin sampling earlier in the year and to leave a larger buffer 

period between sampling Spring, Summer, and Fall. Many bacteria were also 

differentially abundant in fall compared to spring, most notably members of Bacilli, 

Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria. Members of Bacilli are 

often associated with better health outcomes for hosts (Arif et al. 2021), and so the 

general decrease in abundance of Bacilli members in fall hints at a possibly less 

beneficial microbiome toward the end of the year. While the availability of feeders at 

each site provided some diet stability, seasonal changes in food availability from 

environmental sources is likely responsible for the seasonal variation seen here (Hu et 

al. 2018, Gong et al. 2021).  

Functional microbiome results echoed the same patterns shown with community 

composition data. Beta diversity based on computed metabolic pathways showed 

similar seasonal clustering when visualized with PCoA. Somewhat surprisingly, however, 

the prevalence of likely pathogenic bacteria appeared relatively consistent across 

seasons, and no metadata factors emerged as significant drivers for pathogenicity in the 

microbiome. Our prediction of more gut pathogens in juveniles during the summer was 

thus unsupported. A relationship between pathogenic bacteria and the overall bacterial 

community was still seen, albeit to a lesser extent than seasonal variation, and beta 

diversity based on ASVs significantly differed between birds with detected virulence 

factors compared to seemingly uninfected birds.  
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Together, these results show that community composition changes in consistent ways 

across sites throughout the year, that many putatively beneficial microbes are present 

in reduced abundances toward the end of the year, and that metabolic activity in the 

microbiome changes throughout the year. Further work is needed to determine to what 

extent host diet is responsible for this variation. In all, this work provides useful insight 

into the temporal stability of the avian microbiome.  
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Abstract:  

Recent expansion of microbiome research has uncovered connections between resident 

microbial communities and blood parasite risk, establishing the potential for microbial 

disease treatments such as probiotics in the future. However, this field has largely 

focused on humans and model organisms, leaving much unknown about how microbial 

communities might directly or indirectly impact parasite infection in wild populations 

and non-mammals. To contribute to this knowledge base in wild birds, we collected 

fecal and blood samples from wild Eurasian tree sparrows (Passer montanus) in the 
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United States to test for associations between blood parasite infection and the gut 

microbiome. We used a widespread molecular approach to test 81 samples from 

peripheral blood for Plasmodium and Haemoproteus, and we characterized the gut 

microbiome using fecal samples as a proxy. Neither alpha nor beta diversity significantly 

varied with detected Plasmodium infection. However, differential abundance analysis 

highlighted a number of significantly varying bacteria, with the greatest representation 

within the phyla Proteobacteria and Firmicutes in Plasmodium-infected birds. These 

differentially abundant taxa offer a starting point for experimental work establishing the 

relationship between microbial abundance and Plasmodium infection.  
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Introduction:  

Avian malarial parasites are globally distributed, with the mosquito-vectored parasites 

from the genus Plasmodium found on every continent other than Antarctica (Fecchio et 

al. 2021). Plasmodium species and other haemosporidian parasites can cause high 

mortality among avian species that are immunologically naïve, both in captive settings 

and in the wild (Hernandez-Colina et al. 2021). For example, when mosquito vectors of 

Plasmodium relictum were introduced to Hawaii, the introduction contributed to 

dramatic population reductions and extinctions of many native Hawaiian birds (Warner 

1968, LaPointe et al. 2012, Liao et al. 2017). Avian species with a long evolutionary 

history with malaria parasites generally exhibit a higher tolerance to infection, but 

negative effects including decreased fitness and mortality are still observed (Marzal et 

al. 2005, Lachish et al. 2011, Ilgūnas et al. 2019). The global importance of this infectious 

disease underscores the need to understand factors influencing susceptibility and 

resistance to infection.  

Malaria parasites undergo complex life stages within avian hosts. Following injection of 

parasite sporozoites into the host from a mosquito vector, the sporozoites invade skin 

and tissue cells and go through multiple phases of preerythrocytic asexual reproduction 

to produce merozoites (Valkiunas 2005). Some merozoites then invade red blood cells 

and asexual reproduction continues simultaneously in erythrocytes (erythrocytic 

merogony) and in host tissues (exoerythrocytic merogony) (LaPointe et al. 2012, 

Valkiūnas and Iezhova 2017). Gametogony (production of gametocytes) occurs within 

some infected erythrocytes, and gametocytes remain inside the red blood cells until 
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they are taken up by a vector to continue the sexual reproduction stage of the parasite’s 

life cycle (Valkiunas 2005).  

Infection of an avian host typically occurs over two stages: acute and chronic (van Riper 

et al. 1986, LaPointe et al. 2012, Asghar et al. 2012). The highest numbers of parasites in 

the blood (i.e. parasitemia levels) occur during the primary acute phase, typically within 

about two weeks, although the initial dose amount and a number of host-specific 

factors can vary the timeline of infection (van Riper et al. 1986, Atkinson et al. 1995). 

Birds undergoing the acute phase often suffer from severe anemia, and necropsies of 

deceased birds typically reveal swollen and abnormally colored livers and spleens (van 

Riper et al. 1986, LaPointe et al. 2012). In surviving birds, the acute stage is often 

followed by a chronic infection, which can persist for years and is associated with long-

term fitness effects (Manwell 1934, LaPointe et al. 2012, Asghar et al. 2015). Even after 

parasitemia has decreased and the chronic stage has begun, exoerythrocytic invasion 

can lead to sudden mortality by blocking brain capillaries, resulting in cerebral ischemia 

(Ilgūnas et al. 2016).  

A bird’s risk of malaria infection depends on many factors. Habitat and/or temperature 

can have a strong influence, as warmer temperatures at lower elevations can be optimal 

for the vector stage of parasite development (LaPointe et al. 2010). Behavioral changes 

such as migration and nesting can affect infection rates; one recent study found that 

some birds with high levels of nest care exhibit substantially higher rates of 

haemosporidian infection than brood parasites in the same area, particularly in birds 

with open nests (Ganser et al. 2020). This cost of parental care could be a result of the 
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physiological changes which accompany nesting, or due to reduced ability to avoid 

vectors while nesting (Ganser et al. 2020). Host genetics are also important predictors of 

disease risk, and many studies have demonstrated significant associations between 

major histocompatibility complex genes and haemosporidian parasite infection or 

infection intensity (Sommer 2005, Westerdahl et al. 2005, Bonneaud et al. 2006, Loiseau 

et al. 2008).  

In addition to these many predictors of infection risk, several recent studies have 

demonstrated connections between the host microbiome and susceptibility to malaria, 

primarily in mammalian systems within laboratory settings. For example, mice resistant 

to Plasmodium yoelii exhibit differential expression of bacterial genes when compared 

to genetically similar susceptible mice (Stough et al. 2016). Resistant mice also show 

significant enrichment of Lactobacillus and Bifidobacterium in the gut microbiome 

(Villarino et al. 2016). In a rare field example, human stool samples collected 

longitudinally through a high Plasmodium falciparum transmission season reveal 

bacterial community profiles that correlate with malaria infection risk – resistant 

individuals possess higher proportions of Bifidobacterium, Streptococcus, and 

Enterobacteriaceae Escherichia/Shigella (Yooseph et al. 2015). Infection by Plasmodium 

parasites may in turn cause dysbiosis in the microbiome, and Plasmodium berghei 

infection in mice is accompanied with physical intestinal changes (including intestinal 

shortening and increased permeability) as well as altered bacterial communities 

(Taniguchi et al. 2015). 
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In some cases, microbiome-associated resistance is inducible in animals that were 

previously susceptible. For example, injecting mice with Lactobacillus casei can confer 

resistance to Plasmodium chabaudi, reducing the parasite load and shortening infection 

periods (Martínez-Gómez et al. 2006).  Transplanting the cecal microbiome from 

susceptible or resistant mice to new germfree mice can similarly transfer risk or 

resistance (Villarino et al. 2016). Treating susceptible mice with antibiotics followed by 

yogurt probiotics containing Lactobacillus and Bifidobacterium can also result in a lower 

parasite infection intensity (Villarino et al. 2016). The precise mechanism of resistance is 

unclear in these examples, but increased levels of host immune response correlate with 

decreased infection severity in mice (Villarino et al. 2016), hinting at an interactive 

relationship between the microbiome, host immune system, and pathogen infection.  

One mechanistic explanation for microbiome-Plasmodium associations may be through 

bacterial priming of the immune system prior to parasite invasion. Pathogens commonly 

express a glycan epitope called alpha-gal (α-gal), which provokes an immune response in 

primates in general, Old World monkeys in particular (Galili et al. 1988), and other non-

mammal vertebrates including birds (Yilmaz et al. 2014b, Mateos-Hernández et al. 

2020).  Production of α-gal has been confirmed in several species of Plasmodium, 

expressed on the surfaces of sporozoites (Yilmaz et al. 2014b). Antibodies specific to α-

gal are higher in humans with greater resistance to Plasmodium infection, although 

antibody levels are not predictive of febrile malaria outcome (Yilmaz et al. 2014b). 

Notably, when “human-like” mice (lacking the ability to express α-gal) are treated with 

antibiotics and inoculated with an E. coli strain O86:B7 that exhibits high expression of 
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α-gal, they demonstrate increased α-gal antibody production and increased resistance 

to colonization by Plasmodium through antibody-mediated blockage of sporozoites 

(Yilmaz et al. 2014b). More work is needed to demonstrate other specific mechanisms 

linking the microbiome to host immune response and Plasmodium risk.  

While evidence thus points to indirect effects between the microbiome and Plasmodium 

infection in mammals, it remains unclear whether this interaction occurs in avian 

systems. Mammalian malaria and avian malaria share many similarities in pathogenesis, 

although tissue infection is more extensive in avian malaria and disease tends to be 

more severe (Ilgūnas et al. 2016, Valkiūnas and Iezhova 2017, 2018), and it is plausible 

for microbial influence on parasite invasion to exist in birds as well as mammals. One of 

the few studies examining this potential relationship focused on the uropygial gland 

microbiome in house sparrows (Passer domesticus) (Videvall et al. 2021). No correlation 

was observed between alpha or beta diversity in microbiome samples and infection 

status, but several uropygial gland bacteria were differentially abundant between 

infected and uninfected birds (Videvall et al. 2021). Whether or not the gut microbiome 

influences blood parasite infection in birds, or vice versa, remains an open question.  

Here we tested whether several diversity and abundance measures of the gut 

microbiome correlate with Plasmodium infection in wild Eurasian tree sparrows (Passer 

montanus). This locally abundant species was introduced to St. Louis, Missouri in 1870 

with a founding population of approximately 20 individuals (Louis and Barlow 1988). 

Range expansion has occurred northward to a limited extent, and this sparrow is now 

present primarily in northern Missouri, Illinois, and Iowa (Burnett et al. 2017). A 
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previous study reported haemosporidian parasite infections in the local population of 

Eurasian tree sparrows as high as 60% (Lee et al. 2006). This introduced bird presents an 

opportunity to examine associations between the gut microbiome and blood parasite 

infection in a species of little conservation concern with a known history of infection 

with malaria parasites.  

We hypothesized that the community composition or presence of specific members of 

the Eurasian tree sparrow microbiome may confer resistance or susceptibility to blood 

parasite infection. We expected to see lower alpha diversity in individuals infected with 

Plasmodium and significant clustering based on beta diversity between birds grouped by 

infection status. Based on results from previous studies in mammals, we predicted 

differentially abundant bacteria between infected and uninfected birds in groups such 

as Lactobacillus, Bifidobacterium, Streptococcus, or Escherichia/Shigella (Yooseph et al. 

2015, Villarino et al. 2016).  

Methods:  

Adult and juvenile Eurasian tree sparrows (n = 81) were captured using mist nets at two 

sites in Saint Louis County, Missouri – a residential site in Webster Groves and the visitor 

center of Columbia Bottom Conservation Area (directly adjacent to residential areas). 

The sites are approximately 20 miles apart. Feces was collected from each bird using 

bags with double floors that had been swabbed with alcohol prior to sampling; the fecal 

sample falls through the wire floor at the bottom of the bag onto a clean surface 

immediately below (Knutie and Gotanda 2018). Birds were banded to identify 
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individuals, and basic measurements were taken including wing chord and body mass. 

Small blood samples (<50uL) were taken from the brachial vein and preserved in 

Longmire’s lysis solution (Longmire et al. 1997) and thin blood smears. Slides were fixed 

with methanol within one hour and later stained with Giemsa. All birds were released 

after handling. Fecal samples were kept on ice during sampling and immediately placed 

in frozen storage following return from the field.  

Blood Parasite Testing:  

Blood sample DNA was extracted with a standard phenol-chloroform method. DNA 

samples were then tested in triplicate for Plasmodium/Haemoproteus blood parasites 

using a nested PCR protocol. This protocol amplifies a region of cytochrome B using the 

primer pair HAEMNF and HAEMNR2 for the first reaction and the primers HAEMF and 

HAEMR2 for the second reaction (Waldenström et al. 2004). All positive amplicons were 

sent for Sanger sequencing at Eurofins Genomics LLC, with forward and reverse reads 

obtained for each positive amplicon as well as for duplicate amplicons when applicable 

(up to three duplicates per individual bird).  

High-quality forward and reverse trace files and duplicates were assembled using the 

“Pearl” tool on GEAR Genomics (https://www.gear-genomics.com/) (Rausch et al. 2020). 

Consensus sequences obtained from the assembly were matched to existing parasite 

sequences using the BLAST tool on the MalAvi database (Bensch et al. 2009). Assembled 

traces generally matched to the same lineages as the raw traces, but using consensus 

sequences substantially improved the percent match of the lineage in most cases. Any 
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samples with lineage matches <100% were re-amplified and sequenced again. All 

samples included in the analysis had a 100% match to a MalAvi lineage.  

16S rRNA Gene Sequencing and Processing:  

DNA was extracted from the frozen fecal samples using the Qiagen Power Fecal Pro DNA 

Kit following manufacturer instructions. Extracted DNA samples with at least ~205ng of 

DNA (measured by a Qubit fluorometer) were then sent to the University of Michigan 

Medical School Microbiome Core for 16S rRNA gene sequencing of the V4 region, using 

the V4 primers and methods described in Kozich et al. 2013 (Kozich et al. 2013). 

Negative controls for the sampling and extraction protocols were also sent for the 

sequencing runs, and an extra negative sequencing control (water) and positive 

sequencing control (ZymoBIOMICS Microbial Community Standard) were added by the 

Microbiome Core for each of the two sequencing runs. A positive extraction control 

(ZymoBIOMICS Gut Microbiome Standard) was extracted alongside fecal samples and 

included in the second sequencing run. The resulting sequencing reads were processed 

using the Dada2 pipeline (Callahan et al. 2016). Quality filtering and trimming were 

performed using recommended Dada2 filtering steps (keeping only merged reads 

between 250-256bp long) and taxonomies were assigned to amplicon sequence variants 

(ASVs) using SILVA v138 as a reference (Yilmaz et al. 2014a). Reads that matched 

mitochondria, chloroplasts, or Archaea were removed. Following Dada2 filtering steps, 

all expected genera were detected in the two microbial community standards, and 

unclassified reads and/or potential contamination represented ~0% in the first run and 

~0.15% in the second run. All genera with expected abundances ≥0.97% (based on 
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manufacturer guidelines) were also apparent in the more complex gut microbiome 

standard, but low-abundance Salmonella (expected abundance 0.009%) appears 

misclassified by the pipeline as the fellow Enterobacteriaceae member Aquamonas, and 

the two bacteria with the lowest expected abundances, Enterococcus (0.0009%) and 

Clostridium (0.0002%), were not detected, indicating that more abundant community 

members are reliably detected by this pipeline but that the rarest community members 

may not be well-represented. Unclassified reads or potential contamination represented 

~0.05% of the gut microbiome standard.  

Filtered reads were imported into R for analysis using the R package phyloseq 

(McMurdie and Holmes 2013, R Core Team 2020). Negative controls were used to 

determine probable contaminant ASVs with the R package decontam, and the two 

detected contaminant ASVs were then removed from all samples (Davis et al. 2018). 

Samples with fewer than 4000 reads were excluded, a threshold based on minimum 

read depth used in other studies and the distribution of read depth in this dataset. 

Following filtering steps, 81 samples were included in the analysis, including 14 birds 

with Plasmodium infection evident in the peripheral blood and 67 with no detected 

infections.  

Differential Abundance Analysis:  

Filtered reads were further pruned using the R package phyloseq to limit taxa to those 

found at least 3 times in at least 5% of the samples. The phyloseq object was then 

converted to DESeq2 format, and DESeq2 was run using default settings (which includes 

a data normalization step) to simultaneously test for differential taxa based on 
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Plasmodium status while controlling for sequencing run, age, season, and location in the 

model (Love et al. 2014). Uninfected individuals were set as the reference level for 

DESeq2. False discovery correction was performed using the Benjamini and Hochberg 

method, and adjusted p values were filtered using alpha = 0.01 to reduce the probability 

of false positives (Benjamini and Hochberg 1995). Only ASVs with adjusted p values < 

0.01 are reported here.  

Alpha and Beta Diversity:  

Filtered samples (without the additional DESeq2 pruning) were subsampled to 4005 

reads per sample in phyloseq to match the sample with the lowest read count above 

4000. Observed richness and Shannon Diversity were calculated in phyloseq based on 

the rarefied ASV tables. Significant variation in alpha diversity between groups was 

tested in R using ANOVAs with sequencing run, location, season, and age included in the 

models. Beta diversity was calculated from the rarefied ASV tables using Bray–Curtis 

dissimilarity and visualized using phyloseq and ggplot2 (Wickham et al. 2019). Beta 

diversity significance between infected and uninfected groups was assessed using 

PERMANOVAs that controlled for sequencing run and included season, location, and age 

in the model, using the R package vegan (Anderson and Walsh 2013, Anderson 2017, 

Oksanen et al. 2019). Significant PERMANOVA results were checked with PERMDISP to 

determine whether dispersion was a confounding factor (Anderson and Walsh 2013, 

Oksanen et al. 2019).  
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Results:  

All parasite sequences were classified as Plasmodium (Table 1). Two lineages, SEIAUR01 

and WW3, were detected at both Webster Groves and Columbia Bottom Conservation 

Area. A third lineage, PADOM11, was only detected at Columbia Bottom. Detected 

Plasmodium prevalence in these two sites was 14% at Webster Groves (7/47) and 20% 

at Columbia Bottom CA (7/34), for a total prevalence of 17% in this sample set (14/81). 

Since sample size per lineage is low, we did not examine potentially varying effects 

based on Plasmodium lineage but instead considered all Plasmodium infections as one 

group.  

 

Table 1. Sampling sites and Plasmodium lineages.  

16S rRNA gene sequencing showed that the primary bacterial phyla in these 

communities are Firmicutes, Proteobacteria, and Actinobacteria (Fig. 1). Bacterial 

community composition at a lower taxonomic level was highly varied, and 17 bacterial 

families were detected in proportions greater than 1%. Among the most abundant 

families were Catellicoccaceae, Enterobacteriaceae, and Staphylococcaceae (Fig. 1).  

 

Sampling Site Total Samples Total Positives SEIAUR01 WW3 PADOM11 

Webster Groves 47 7 3 4 0 

Columbia Bottom CA 34 7 3 2 2 
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Figure 1. Relative diversity at phylum (a) and family (b) levels across individuals with no detected blood 

parasites vs. those infected with Plasmodium. 

Alpha diversity did not significantly vary between infection states or any other variable 

when measured as observed richness or Shannon Diversity with ANOVAs that controlled 

for the potential confounding variables of sequencing run, location, season, and age. 

Principal Coordinates Analysis based on Bray–Curtis dissimilarity showed substantial 

overlap between the two groups (Fig. 2). PERMANOVAs testing for variation in beta 
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diversity between groups were not significant at either site based on infection status 

when including sequencing run, season, and age in that order in separate models for 

each site, or in a combined model controlling for location (Columbia Bottom, 

PERMANOVA, R2 = 0.02702, P = 0. 5658; Webster Groves, PERMANOVA, R2 = 0.02197, P 

= 0. 2396; combined, PERMANOVA, R2 = 0.01329, P = 0.2110). In the combined model 

(Table 2), significant beta diversity variation was observed for location (PERMANOVA, P 

= 0.0001, R2 = 0.03678; PERMDISP, P = 0.655) and season (PERMANOVA, P = 0.0001, R2 = 

0.07285; PERMDISP, P = 0.002), but not for sequencing run (PERMANOVA, P = 0.3375, R2 

= 0.01212) or age (PERMANOVA, P = 0.0591, R2 = 0.01605).   

 

  Df Sum Of Sqs R2 F Pr(>F) 

Sequencing Run 1 0.406 0.0121 1.0569 0.3375 
Location 1 1.231 0.0368 3.2065 0.0001*** 
Season 2 2.439 0.0729 3.1752 0.0001*** 
Age 1 0.537 0.0161 1.3993 0.0591 
Infection Status 1 0.445 0.0133 1.1587 0.211 
Residuals 74 28.421 0.8489   
Total 80 33.479 1     

 
Table 2: PERMANOVA results showing beta diversity differences based on Bray-Curtis similarity 

for combined samples grouped by infection status. The PERMANOVA controlled for sequencing 

run, location, season, and age. Location and age both significantly varied in this model.  

 



81 
 

 

Figure 2. PCoA based on Bray–Curtis dissimilarity of infected birds vs. birds with no detected Plasmodium 

infections.  

DESeq2 analysis identified several bacterial taxa that significantly differed between 

infected birds and birds with no detected parasites when controlling for sequencing run, 

age, season, and location (Fig. 3). Twenty-seven ASVs in ten bacterial classes 

significantly varied based on adjusted P values. Six ASVs belonged to the class Bacilli, six 

to the class Gammaproteobacteria, five to the class Actinobacteria, and four to the class 

Alphaproteobacteria, with the remaining classes represented by a single ASV each. Four 

of the seven ASVs with the highest calculated base mean (>15) were from the class 

Bacilli, from the genera Streptococcus (97.362 base mean), Ligilactobacillus (40.189 base 

mean), Staphylococcus (30.11 base mean), and Weissella (18.363 base mean). The other 

ASVs with high base mean values were from the classes Gammaproteobacteria 

(Shimwellia, 250.24 base mean, and Escherichia-Shigella, 18.78 base mean) and 

Alphaproteobacteria (Candidatus Tokpelaia, 54.177 base mean).  
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Figure 3. DESeq2 results showing log2 fold change in significantly different bacterial classes (a) and 

families (b) with uninfected samples as a reference. Each dot represents an ASV. Taxa with positive log2 
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fold change values are significantly more abundant in individuals infected by Plasmodium; negative values 

are significantly less abundant in infected individuals. 

Discussion:  

These results point to ASV-level associations between the gut microbiome and 

Plasmodium infection, but not to large-scale changes to the broader community 

structure. DESeq2 analysis highlighted 27 bacterial ASVs (out of a total of 373 ASVs 

following filtering steps) that were differentially abundant in infected birds while 

controlling for confounding effects of sequencing run, season, location, and bird age. 

However, alpha and beta diversity did not vary with Plasmodium infection while 

controlling for confounding variables, and infection status explained only ~1.33% of the 

beta diversity for the two sites combined. The significantly varying bacterial taxa may be 

indicative of a small-scale relationship between members of the gut microbiome and 

avian malaria infection. While a relationship between the gut microbiome and blood 

parasite infection has been identified previously in mammalian systems (Yooseph et al. 

2015, Villarino et al. 2016), this is one of the first studies demonstrating similar 

associations in an avian species (Videvall et al. 2021).  

Of the 27 differentially abundant ASVs, six belonged to the bacterial class Bacilli and six 

to the class Gammaproteobacteria, followed by five from Alphaproteobacteria and four 

from Actinobacteria. The classes Chloroflexia, Oligoflexia, Planctomycetes, Polyangia, 

Gitt-GS-136, and Myxococcia were each represented by a single ASV.  Results at a genus 

level are highly varied, containing bacteria from putatively beneficial groups such as 

Ligilactobacillus (formerly Lactobacillus) as well as a number of genera with pathogenic 
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member species such as Escherichia-Shigella, Pseudomonas, Shimwellia, Enterococcus, 

Streptococcus, Staphylococcus and Serratia (Devriese et al. 1994, Benskin et al. 2009). 

Somewhat surprisingly, most of the members of potentially pathogenic groups were 

present at significantly lower abundances in birds infected with Plasmodium (except for 

the significantly enriched Staphylococcus), while the likely beneficial Ligilactobacillus 

was significantly enriched in infected birds. These results include some bacterial groups 

that have been found to significantly differ in mammals infected with Plasmodium, such 

as Streptococcus, Lactobacillus, and Escherichia-Shigella (Yooseph et al. 2015, Villarino 

et al. 2016). 

Interpretation of these results is complicated by the impossibility of knowing which 

uninfected birds were naïve and which had previously cleared or undetectable 

infections. Additionally, most of the birds with infections detected in this study likely 

represented chronic infections, because birds suffering acute infections are caught less 

frequently in mist nets (Lachish et al. 2011). Further work is therefore needed to 

ascertain directionality of the associations between bacterial taxa and Plasmodium 

infection found in this study, and a larger proportion of infected birds in the sample set 

or a larger overall sample size would be beneficial. The differentially abundant ASVs may 

have already varied prior to infection, thus indicating a potential susceptibility factor, or 

blood parasite infection could have prompted a change in the microbial communities. 

Those outcomes are not mutually exclusive, and both microbial influence on 

Plasmodium susceptibility and Plasmodium influence on microbial composition have 
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been found previously in experimental mouse studies (Taniguchi et al. 2015, Villarino et 

al. 2016).  

Future research that includes experimental inoculation of captive birds with 

Plasmodium would help to understand how initial gut microbiome structure and 

community members may predict outcomes and change with infection, although 

differences between captive and wild microbiomes in many species limit inferences 

about wild microbiomes from captive studies (Alberdi et al. 2021, San Juan et al. 2021).  

Longitudinal studies with high site fidelity among avian focal species could clarify the 

directionality of this relationship in wild populations by, ideally, sampling the same 

individuals before and after parasite exposure. The bacterial taxa highlighted by this 

study could also be used as a starting point for future work on indirect interactions 

between the microbiome and blood parasites, such as examining whether treatment 

with this combination of bacteria measurably influences bird susceptibility to malaria 

under controlled conditions.  

The rapidly advancing field of animal microbiomes is beginning to turn toward the use of 

probiotics for prevention or treatment of infectious diseases in animals (McKenzie et al. 

2018, Stedman et al. 2020). For example, probiotics with antifungal properties are being 

explored in endangered amphibians as a potential defense against the emerging fungal 

disease chytridiomycosis (which has contributed to the extinction of several amphibian 

species) (Woodhams et al. 2016, Harrison et al. 2020), although interactive effects with 

the host immune system complicate potential treatments (Woodhams et al. 2020). 

Additional studies are exploring probiotics across varied systems, including as a 
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treatment to increase trout survival from Aeromonas salmonicida infection (Balcázar et 

al. 2007) and to prevent diseases such as American foulbrood in honeybees (Audisio 

2017, Daisley et al. 2020). Probiotics made up of commensal bacteria (such as 

Lactobacillus or Bifidobacterium) are already being used in poultry feed to reduce 

severity of bacterial infections in commercial birds (Redweik et al. 2020). However, 

much work remains to be done to fully understand both the relationship between the 

microbiome and disease, as well as how specific probiotics might be used to improve 

outcomes in avian species.  

Several studies in mammals have already demonstrated the potential for microbial-

based treatments to modulate the severity of blood parasite infections. Under 

controlled conditions, Plasmodium infection intensity has been reduced by various 

treatments such as injecting mice with probiotics prior to parasite infection (Martínez-

Gómez et al. 2006), transplanting cecal microbiomes from resistant mice to susceptible 

mice (Villarino et al. 2016), or treating mice with yogurt probiotics (Villarino et al. 2016). 

However, in avian systems, very little is known about interactive effects between the 

microbiome and blood parasites. The results of this study indicate several bacterial taxa 

with differential abundances in infected wild sparrows, which can be used as a 

foundation for future studies examining the relationship between the gut microbiome 

and Plasmodium infection in wild birds.  
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composition in a wild sparrow 
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Abstract:  

The major histocompatibility complex (MHC) plays a key role in the detection of 

pathogens by the host immune system, and surprisingly high MHC diversity is 

maintained across most vertebrate taxa. Balancing selection due to pathogen pressure 

is thought to be an important force driving this high genetic diversity. At a population 

level, higher MHC diversity can provide a wider arsenal of responses to invading 

pathogens, while heterozygote advantage and divergent allele advantage have been 

proposed as mechanisms in which higher MHC diversity can improve individual fitness. 

However, MHC variation may also be maintained as a way to modulate the gut 

microbiome, most likely through immune recognition of antigens aided by MHC 

molecules. Using an introduced species, the Eurasian tree sparrow (Passer montanus), 

we collected fecal and blood samples to characterize MHC diversity across sites in the 

Saint Louis region and to test for correlations with the gut microbiome. Results show 
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that MHC effects on the microbiome in this system are overshadowed by environmental 

effects such as season, but small associations are evident in differentially abundant 

bacteria. Individuals with higher MHC diversity have several differentially abundant taxa 

compared to individuals with lower MHC diversity, providing slight support for the 

divergent allele advantage hypothesis. These results indicate that the major 

histocompatibility complex does play a role in shaping the microbiome, but it is not a 

primary driver in this system.  
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Introduction:  

One of the most polygenic and polymorphic regions of vertebrate genomes is the major 

histocompatibility complex (MHC). However, the evolutionary forces maintaining that 

strikingly high diversity across taxa are not entirely clear (Garrigan and Hedrick 2003, 

Sommer 2005). MHC proteins are essential for pathogen recognition by the host 

immune system, with MHC Class I genes encoding proteins that help identify antigens 

from intracellular pathogens while Class II genes are associated with extracellular 

pathogens (Minias et al. 2018). Since each MHC protein can recognize a unique range of 

antigens, higher MHC variation is associated with greater flexibility in population-level 

responses to new pathogens (Sommer 2005, Borg et al. 2011). Thus, balancing selection 

due to pathogen pressure is thought to be an important force maintaining high genetic 

variability in MHC genes across most vertebrates (Garrigan and Hedrick 2003, Sommer 

2005).  

Even at an individual level, higher MHC variation may promote host fitness. The 

hypothesis of “heterozygote advantage” suggests that individuals who are heterozygous 

for MHC genes will have greater resistance to pathogens than homozygotes. Support for 

this idea is mixed (Doherty and Zinkernagel 1975, Wakeland et al. 1990, Penn et al. 

2002). The “divergent allele advantage” hypothesis counters that simple heterozygosity 

matters less than the actual level of polymorphism between alleles of a heterozygote 

(Wakeland et al. 1990, Froeschke and Sommer 2012). In other words, heterozygotes 

with highly varying alleles may be more resilient to pathogen pressure than 

heterozygotes with similar alleles (Froeschke and Sommer 2012). Specific alleles can 
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additionally make a host more or less likely to be parasitized by a specific 

microorganism, or they can simply have a modulating effect on infection severity 

(Bonneaud et al. 2006, Loiseau et al. 2008, 2011, Westerdahl et al. 2013, Karlsson et al. 

2015). Wild populations may exhibit a mixture of these patterns – for example, one 

study examining susceptibility of great reed warblers (Acrocephalus arundinaceus) to 

three species of malarial parasites found that either possessing one specific MHC I allele 

or having a greater number of alleles in general made a host less likely to contract a 

severe case of malaria (Westerdahl et al. 2013). More work is needed in wild 

populations to determine how widely applicable these patterns are across taxa.  

However, a newer hypothesis posits that high MHC diversity is also evolutionarily 

maintained to regulate resident microbial communities by contributing to antigen 

recognition of the host immune system (Kubinak et al. 2015, Khan et al. 2019). This 

benefit of higher MHC diversity would thus be an extension of the divergent allele 

advantage hypothesis (Sommer 2005, Bolnick et al. 2014). Laboratory studies in mice 

and rats have established that differences in MHCII genes between individuals under 

highly controlled conditions result in markedly different microbiomes (Toivanen et al. 

2001, Lin et al. 2014, Kubinak et al. 2015, Khan et al. 2019). Field studies on this topic 

are few, but specific MHC motifs have been associated with variations in bacterial family 

abundances between the gut microbiomes of wild three-spined sticklebacks 

(Gasterosteus aculeatus), although diversity levels did not correlate (Bolnick et al. 2014). 

A recent study in wild Seychelles warblers (Acrocephalus sechellensis) found a significant 

association between two MHCIIB alleles and gut microbiome composition, although the 
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study  used only total allele numbers to measure MHC diversity (rather than quantifying 

variation between alleles) and did not find a relationship between MHC diversity and 

the microbiome (Davies et al. 2022). Additionally, a significant association between MHC 

IIB heterozygosity and uropygial gland microbiota has been noted in male Leach’s storm 

petrels (Oceanodroma leucorhoa), though the sample size was quite small (n=8) (Pearce 

et al. 2017). In blue petrels (Halobaena caerulea), higher MHC IIB diversity has been 

associated with decreased diversity in feather microbiota (Halobaena caerulea), 

matching study predictions that higher MHC diversity would lead to lower microbiome 

diversity due to greater antigen recognition capacity (Leclaire et al. 2019). Whether the 

MHC-microbiome relationship is present across other taxa in the wild is unknown, and 

the importance of divergent alleles to shape the gut microbiome remains unclear.  

We tested associations between MHC diversity, specific alleles, and the gut microbiome 

in an introduced species, the Eurasian tree sparrow (Passer montanus). Passerines have 

one of the highest degrees of polymorphism at MHC loci of all major vertebrate groups 

(Bollmer et al. 2010, Minias et al. 2018). However, the North American population of the 

Eurasian tree sparrow underwent a founding event when ~20 individuals were 

introduced to St. Louis from Germany in 1870, and since then the species has only 

slightly expanded its range beyond the St. Louis region to neighboring states (Burnett et 

al. 2017). Previous studies have established that this introduction led to a founder effect 

in the population (Louis and Barlow 1988), but balancing selection on MHC loci is likely 

still acting on this population to some degree (Borg et al. 2011). This population 

provides the opportunity to test these widely applicable patterns in a species which is 
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not of conservation concern, while also shedding light on how MHC diversity is 

maintained after bottleneck events.  

The aim of this work was to further characterize the genetic diversity of this introduced 

species using neutral markers and MHC loci, to examine microbial variation at a fine 

geographic scale across several sites in the region, and to test the hypothesis of 

divergent allele advantage in the context of the gut microbiome. We predicted that 

certain alleles would be associated with microbial community metrics. We expected that 

higher MHC diversity would correlate with lower alpha diversity in the microbial 

community due to increased pathogen recognition, we anticipated beta diversity 

clustering between individuals with high versus low MHC diversity, and we expected 

differential abundances of microbial taxa between individuals with varying MHC 

diversity.  

Methods:  

We captured Eurasian tree sparrows (N = 135) using mist nets at six sites in Saint Louis 

County and Saint Charles County (Missouri, USA) in 2020 and 2021. Birds were banded 

with numbered color bands to identify recaptures, wing chord and body mass were 

measured, and fecal samples were collected using bags with false floors (Knutie and 

Gotanda 2018). Age was recorded based on the plumage variation visible between 

juveniles (prior to first molt) and adults (after first molt). Small blood samples (<60ul) 

were collected from each bird via the brachial vein to preserve in Longmire’s solution 

(Longmire et al. 1997). Thin blood smears were also collected, fixed in methanol within 

one hour, and stained with Giemsa within one month. Fecal samples were immediately 
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placed on ice in the field and taken to frozen storage later that day. All birds were 

released in the same capture site after sampling. This handling protocol is minimally 

invasive (Sheldon et al. 2008), and an UMSL IACUC protocol was approved prior to 

sampling (#1568558). A Missouri Department of Conservation Wildlife Collector’s Permit 

was also obtained (#18682).  

Microbiome Characterization 

DNA was extracted from fecal samples using the QiaAMP Power Fecal Pro DNA Kit using 

manufacturer instructions. A negative sampling control, negative extraction control, and 

positive extraction control (ZymoBIOMICS Gut Microbiome Standard) were extracted 

with the fecal samples using the same protocols. Extracted DNA was measured by a 

Qubit fluorometer and samples with more than 200ng of DNA were sent to the 

University of Michigan Medical School Microbiome Core. To characterize the gut 

microbiome, we used sequences of the V4 region of the 16S rRNA gene (Kozich et al. 

2013). Sequencing was performed on an Illumina MiSeq by the Microbiome Core for a 

total of three separate sequencing runs in 2020 and 2021. The negative and positive 

sampling and extraction controls were included for the sequencing runs, and the 

sequencing core added a negative sequencing control (water) and positive sequencing 

control (ZymoBIOMICS Microbial Community Standard) to each run. The Dada2 pipeline 

was used to process the 16S sequencing reads (Callahan et al. 2016). Recommended 

parameters were used for Dada2 quality filtering and trimming, merged reads outside of 

the 250-256bp range were excluded, and SILVA v. 138 was used to assign taxonomies to 

amplicon sequence variants (ASVs) (Yilmaz et al. 2014). Further filtering was performed 
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in R v. 4.2.0 using the package phyloseq to remove all reads matching mitochondria, 

chloroplasts, or Archaea (McMurdie and Holmes 2013). The package decontam was 

then used with the negative controls to identify ASVs which were likely contaminants in 

R; this process identified two ASVs as putative contaminants and they were removed 

from each sample (Davis et al. 2018). A minimum threshold of 3900 reads was applied 

and all samples with read counts below that number were excluded. 

Microsatellites:  

DNA from blood samples was extracted at the University of Missouri-St. Louis (UMSL) 

using a standard phenol-chloroform protocol. Nine microsatellite loci were selected 

from the literature based on their previous use with the Eurasian tree sparrow and their 

high number of previously observed alleles: Pamo1, Pamo7, Pamo8, Pamo12 (Izumi et 

al. 2009), Pdo3, Pdo5, Pdo9, (Griffith et al. 2007, Seress et al. 2007), ZC02, and Ctc105 

(Tarvin 2006, Poesel et al. 2009, Yang et al. 2020). A multiplex PCR was performed for 

each sample using the Qiagen Type-it Microsatellite PCR Kit with fluorescently labeled 

primers (with each locus assigned to a unique dye and fragment size combination) and 

an annealing temperature of 57°C. Amplicons were diluted 1:10 with purified water and 

sent to the University of Missouri Genomics Technology Core for fragment analysis. A 

sample was amplified as a control for each PCR to verify that results were consistent 

between reactions. One locus, Pdo9, amplified poorly in the multiplex and was excluded 

from the analysis. The program Geneious Prime v. 2022.2.2 was used to call peaks and 

classify alleles (https://www.geneious.com). Pairwise Fst values were calculated from 
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the microsatellite data in Gene Pop v. 4.7.5 to examine potential population 

differentiation.  

MHC Genotyping:  

We isolated and amplified a 159bp segment of the classical MHC IIB region (Burri et al. 

2014) using barcoded primers developed in Dr. John Eimes’ lab (Sungkyunkwan 

University, South Korea) to target the MHC IIB region in Eurasian tree sparrows 

(unpublished data). The MHC IIB region was chosen based on previous studies which 

focused on class II due to its potential for interaction with extracellular bacteria (Bolnick 

et al. 2014). The barcoded amplicons were pooled and sent to the University of Missouri 

Genomics Technology Core for Illumina sequencing for a total of two separate 

sequencing runs. Raw Illumina reads were merged using BBmerge and quality trimming 

was performed with BBduk (minlen=200, qtrim=rl, trimq=30) using the Lewis computing 

cluster at the University of Missouri (“BBTools” in press). The cleaned and merged reads 

were then demultiplexed and genotyped using the clustering approach offered in the 

AmpliSAS pipeline, which provided a degree of normalization by using 5000 reads per 

sample (Sebastian et al. 2016). Amplicons with fewer than 5000 reads prior to 

genotyping were excluded. Following the methods described in Biedrzycka et al. 2017, 

we set the “minimum dominant frequency” parameter to 10%, which keeps variants 

which are similar to each other but excludes many high-frequency artefacts (Biedrzycka 

et al. 2017). The “maximum number of alleles per amplicon” parameter was set to 30.  

This high-throughput method allows for more effective MHC characterization, since 

passerines typically have highly complex MHC regions with many loci (Minias et al. 2018, 
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O’Connor et al. 2019). We first ran the clustering program on the preliminary data set 

from the first sequencing run at regularly spaced thresholds of “minimum amplicon 

frequency” (0%, 0.1%, 0.2%, 0.3%, etc.) to determine a reasonable variant frequency 

cutoff for this system. We ultimately set 0.2% as the “minimum amplicon frequency”, 

based on the largest drop in the number of unique variants at that threshold, as 

described in other studies (Biedrzycka et al. 2017, Rekdal et al. 2018). This was near the 

value chosen for other studies in highly variable passerine MHC loci, such as 0.4% in 

Biedrzycka et al. 2017 and 0.2% in Rekdal et al. 2018. MHCII alleles for Passer montanus 

and Passer domesticus were taken from Genbank to use as allele references for the 

clustering pipeline.  

Allelic Divergence:  

Several measures of allelic divergence exist which generally correlate with each other, 

but we chose to use Grantham distance because a previous study showed it is the most 

consistent predictor of peptide binding capacity (Pierini and Lenz 2018). Grantham 

distance accounts for chemical properties of amino acid residues to create an estimate 

of bound peptides (Grantham 1974). We used the R package MHCtools to calculate 

average Grantham distances from the allelic nucleotide sequences corresponding to 

each sample (Roved et al. in press). For one part of the analysis, the sample with the 

median Grantham distance was identified, and 20 samples immediately above and 

below the median were excluded to create two distinct groups of individuals with higher 

Grantham distances and individuals with lower Grantham distances (N=88). This allowed 
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us to test the tails of the Grantham score distribution across the sample set. This smaller 

dataset will be referred to as the divergence subset.  

MHC Diversity and the Microbiome:  

Microbiome samples were rarefied to 3908 reads per sample using phyloseq. Relative 

abundances were then calculated from the rarefied dataset by dividing each taxon read 

count by the total number of reads (3908), and these relative abundances were used to 

visualize community composition for each individual. Rarefied ASV tables were used to 

calculate alpha diversity of each individual in the R package vegan, using three common 

alpha diversity metrics of Shannon diversity, observed richness, and Simpson’s diversity 

(Oksanen et al. 2019).  As Shannon diversity was normally distributed, ANOVAs were 

used to test variation in Shannon diversity between groups. Non-parametric Kruskal 

Wallis tests were used to assess statistical differences between individuals based on 

observed richness and Simpson’s diversity. Beta diversity was measured for each sample 

pair using Bray-Curtis dissimilarity to create a distance matrix, and the results were 

visualized via Principal Coordinates Analysis (PCoA). Statistical significance in beta 

diversity between locations, MHC allele groups, and MHC diversity groups was tested 

using Permutational Multivariate Analysis of Variance (PERMANOVA) (Anderson 2001, 

2017). PERMDISP was used to check significant PERMANOVA results for the potentially 

confounding effect of dispersion (Anderson and Walsh 2013).  

Thirteen alleles with frequencies between 5% and 95% were tested for associations with 

alpha and beta diversity (Loiseau et al. 2011). For each allele, the confounding variables 
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of sequencing run, location, season, and age were included first in the model. Linear 

regressions were used to test whether Grantham distances correlate with microbial 

alpha diversity.  

Using the divergence subset (described above), groups with high versus low MHC 

diversity were tested for associations with alpha and beta diversity as well as 

differentially abundant bacteria. Clean reads (without rarefaction) were used with the R 

package DESeq2 to calculate differential abundances of ASVs based on MHC diversity 

(Love et al. 2014). Phyloseq was first used to trim the dataset to taxa found at least 3 

times in at least 5% of samples. DESeq2 was then used with default settings, including 

confounding variables of sequencing run, location, season, and age first in the model. 

Individuals with lower MHC diversity (Grantham distance averages) were set as the 

reference level for the model. The Benjamini and Hochberg method was used for false 

discovery correction, and a lower adjusted p value threshold of 0.01 was used to reduce 

false positives (Benjamini and Hochberg 1995).  

Results:  

Gut microbiome geographic variation:  

Gut microbiome composition was highly variable across individuals both between and 

within sampling sites (Fig. 1). While most taxa belonged to the same three phyla 

(Firmicutes, Proteobacteria, and Actinobacteriota), the taxonomic makeup at lower 

levels was much more diverse; at a family level, 17 families were found in abundances 
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greater than 1%. The most abundant family was Catellicoccaceae, followed by 

Staphylococcaceae, Enterobacteriaceae, Lactobacillaceae, and Micrococcaceae.  

 

Figure 1. Microbial diversity shown as relative abundance at phylum (A) and family (B) levels 

across six sampling sites, with columns representing individual birds.  

Alpha diversity was high in these communities, with Shannon diversity averaging 

between 2.5 and 3.5 for each sampling site (Fig. 2A). Shannon diversity did not 

significantly differ between sites, however, as an ANOVA controlling for confounding 

variables was not significant (Fig. 2A). A PCoA visualizing beta diversity demonstrated 

substantial overlap between community composition at each site (Fig. 2B). Several of 

the sites with smaller sample sizes overlapped almost completely. PERMANOVA was 

used to test significance between different sites based on beta diversity, and location 

significantly varied when first controlling for sequencing batch, age, and season in the 
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model (9999 permutations; R2 = 0.06726, P = 0.001; Table 1). However, PERMDISP was 

also significant for location (9999 permutations, P = 0.0003), indicating that the 

significant PERMANOVA result may be due to dispersion variance. The other variables 

which significantly differed based on beta diversity were age (R2 = 0.01741, P = 0.001) 

and season (R2 = 0.04324, P = 0.001). Sequencing run and sex were not significant.  

 

Figure 2. Shannon diversity remained broadly consistent across all sampling sites (P = 0.8147) 

(A). A PCoA visualizing beta diversity showed substantial overlap between sample sites (B). A 
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PERMANOVA was significant for location (9999 permutations, R2 = 0.06726, P = 0.001), but 

PERMDISP was also significant (P = 0.0003), indicating confounding dispersion effects.  

  Df Sum of Sqs R2 F Pr(>F) 

Sequencing Run 2 0.884 0.01683 1.1425 0.15 

Sex 1 0.446 0.0085 1.1544 0.214 

Age 1 0.914 0.01741 2.3645 0.001*** 

Season 2 2.27 0.04324 2.936 0.001*** 

Location 5 3.532 0.06726 1.8268 0.001*** 

Residual 115 44.466 0.84677   

Total 126 52.513 1   
 

Table 1. Significant PERMANOVA results for location using Bray-Curtis dissimilarity, controlling 

for sequencing run, sex, age, and season. Both age and season also significantly varied.  

Genetic variation:  

Putatively neutral markers (microsatellites) were used to estimate Eurasian tree 

sparrow population differentiation between sites in the St. Louis region. Pairwise Fst 

values calculated from microsatellites are shown for each locus and for combined loci in 

Table 2. The Fst results were very low, with all values less than 0.1 and most values 

approximately 0, indicating high levels of gene flow between sites.  
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 Webster Groves Kirkwood Columbia Bottom CA Ballwin Sappington 

  Pamo8 

Kirkwood 0.0160         

Columbia Bottom CA -0.0032  0.0213       

Ballwin -0.0027  0.0221 -0.0088     

Sappington -0.0152 -0.0103 -0.0233 -0.0432   

Saint Charles 0.0485  0.0626  0.0112  0.0203 -0.0006 

            

 Pamo12 

Kirkwood -0.0144         

Columbia Bottom CA 0.0097 -0.0055       

Ballwin -0.0031 -0.0216  0.0260     

Sappington 0.0359  0.0356  0.0719  0.0285   

Saint Charles -0.0241 -0.0309 -0.0329 -0.0111  0.0026 

            

 Pamo1 

Kirkwood 0.0298         

Columbia Bottom CA -0.0033  0.0203       

Ballwin -0.0028 -0.0083 -0.0112     

Sappington -0.0017  0.0726  0.0120  0.0052   

Saint Charles -0.0246  0.0159 -0.0235 -0.0331 -0.0112 

            

 Pdo5 

Kirkwood 0.0128         

Columbia Bottom CA 0.0150 -0.0127       

Ballwin 0.0096 -0.0007  0.0047     

Sappington -0.0101 -0.0074  0.0043 -0.0180   

Saint Charles 0.0353 -0.0147  0.0055  0.0302  0.0127 

            

 Pdo3 

Kirkwood -0.0067         

Columbia Bottom CA 0.0109  0.0177       

Ballwin -0.0047 -0.0022 -0.0089     

Sappington -0.0062  0.0060  0.0330  0.0157   

Saint Charles -0.0004  0.0009  0.0013 -0.0052  0.0043 

            

 ZC02 

Kirkwood 0.0363         

Columbia Bottom CA 0.0092  0.0123       

Ballwin 0.0165  0.0566  0.0066     

Sappington 0.0082  0.0867  0.0067  0.0550   

Saint Charles 0.0136  0.0433  0.0357  0.0917  0.0373 
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 Pamo7 

Kirkwood 0.0369         

Columbia Bottom CA -0.0006  0.0660       

Ballwin -0.0036  0.0748  0.0008     

Sappington -0.0124  0.0480 -0.0343 -0.0128   

Saint Charles -0.0211  0.0804 -0.0260 -0.0442 -0.0271 

              

 Ctc105 

Kirkwood -0.0151         

Columbia Bottom CA 0.0015 -0.0101       

Ballwin -0.0034 -0.0131  0.0052     

Sappington -0.0025 -0.0211  0.0100  0.0234   

Saint Charles 0.0810  0.0550  0.0387  0.1178  0.0545 

            

 Combined Loci 

Kirkwood 0.0123         

Columbia Bottom CA 0.0049  0.0134       

Ballwin 0.0009  0.0138  0.0017     

Sappington -0.0011  0.0251  0.0104  0.0071   

Saint Charles 0.0165  0.0284  0.0031  0.0244  0.0105 

 

Table 2. Fst values calculated from microsatellite data indicated little population structuring. 

 

A total of 35 MHC IIB alleles were detected in the 135 samples included in this analysis 

(Fig. 3). Six alleles were fixed (100%) or nearly fixed (>91%) in the population - 

PadoIIB_02, PadoIIB_22, PadoIIB_25, PadoIIB_09, PamoIIB_26 and PadoIIB_10. The 

number of total alleles per individual was high, ranging from 5-13 with an average of 

eight. Fourteen alleles occurred in less than 5% of the samples.  
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Figure 3. MHC IIB allelic variation across six sampling sites.  

Allelic variation and the microbiome:  

Specific MHC alleles did not significantly vary with the microbiome when controlling for 

potentially confounding variables. All alleles were non-significant when tested with 

Shannon diversity (alpha diversity) using ANOVAs, and no other variable significantly 

varied based on alpha diversity – sequencing run, location, season, and age were all 

non-significant. All alleles were similarly non-significant when tested with beta diversity, 

and no significant clustering patterns were observed.  

High vs. low MHC diversity:  

Relative abundances for the microbiome composition of individuals with higher 

Grantham distances (high diversity) vs. individuals with lower Grantham distances (low 
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diversity) from the divergence subset dataset are visualized in Figure 4 at a phylum (A) 

and family (B) level.  

  

Figure 4. Phyla representing >1% of the communities (A) and families representing >1% of the 

communities (B) visualized in samples with high versus low MHC diversity (samples near median 

excluded).  

Alpha diversity was measured as observed richness, Shannon diversity, and Simpson’s 

diversity for each group of high and low MHC diversity (Fig. 5). An ANOVA testing 
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Shannon diversity variation between MHC diversity groups was not significant (Table 3). 

Kruskal Wallis tests assessing observed richness and Simpson’s diversity between groups 

were not significant.  

 

Figure 5. Alpha diversity did not vary between samples with high versus low MHC diversity (P > 

0.05), measured as Grantham distances.  

  Df Sum Sq Mean Sq F Value Pr(>F) 

Sequencing Run 2 0.46 0.2312 0.182 0.834 
Location 5 5.4 1.0796 0.85 0.519 
Season 2 0.98 0.491 0.387 0.681 
Age 1 0 0.0021 0.002 0.968 
MHC IIB Diversity  1 0.02 0.0239 0.019 0.891 
Residual 76 96.53 1.2701     

 

Table 3. ANOVA results for Shannon diversity between groups with high vs. low MHC diversity. 

Microbial beta diversity was also examined between groups with high versus low MHC 

diversity. A PCoA made with Bray-Curtis dissimilarity demonstrated extensive overlap 

between the groups (Fig. 6). A PERMANOVA confirmed that beta diversity did not 
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significantly differ in groups with high MHC diversity (R2 = 0.00971, P = 0.6342; Table 4), 

although location and season were still significant (Table 4).  

 

Figure 6. Principal Coordinates Analysis visualizing microbiome beta diversity of individuals with 

low MHC diversity compared to those with high diversity (PERMANOVA, P = 0.6342, R2 = 

0.00971). Confidence ellipses indicate the variance for each group and demonstrate a high 

degree of overlap.  

  Df Sum of Sqs R2 F Pr(>F) 

Sequencing Run 2 0.795 0.02212 1.0243 0.383 
Location 5 3.166 0.0881 1.6319 0.0001*** 
Season 2 1.703 0.0474 2.1949 0.0001*** 
Age 1 0.433 0.01204 1.1152 0.2565 
MHC IIB Diversity 1 0.349 0.00971 0.8997 0.6342 
Residual 76 29.486 0.82062   
Total 87 35.931 1     

Table 4. PERMANOVA results for beta diversity (Bray-Curtis dissimilarity) of the subset of 

samples divided by high and low Grantham distances. 
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Finally, DESeq2 analysis identified 18 different ASVs (from a total of 419 ASVs used for 

the analysis) with significantly different abundances in birds with high MHC diversity 

compared to those with low diversity (Fig. 7). Six ASVs were from the class 

Alphaproteobacteria, four were from the class Bacilli, three were from the class 

Actinobacteria, and the rest were from the classes Chloroflexia, Polyangia, KD4-96, 

Planctomycetes, and Gammaproteobacteria. The significantly varying taxa with the 

largest base means were the genera Ligilactobacillus (family Lactobacillaceae) with a 

base mean of 63, Lactococcus (Streptococcaceae) with a base mean of 55, and 

Glutamicibacter (Micrococcaceae) with a base mean of 43, all of which were significantly 

more abundant in individuals with higher MHC diversity.  
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Figure 7. DESeq2 analysis showed ASVs that were differentially abundant in individuals with 

higher MHC diversity (measured as higher average Grantham distance). Each dot represents a 
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single ASV, categorized at a phylum level (A) and class level (B). All ASVs to the right of the grey 

bar were significantly more abundant in birds with higher MHC diversity, while all ASVs to the 

left were significantly less abundant in birds with higher MHC diversity. Two ASVs with 

significantly higher abundances lacked family-level classifications in the taxonomic database 

used, and they are indicated by “NA” in the figure.  

Discussion:  

These results demonstrated a consistently diverse gut microbiome in Eurasian tree 

sparrows across the St. Louis region. Alpha diversity values were high, but no significant 

relationship was observed between alpha diversity levels at different sampling sites. 

Beta diversity appeared to overlap substantially when visualized with a PCoA; a 

significant PERMANOVA result for location signaled some compositional differences 

between sites, but dispersion was also significant, confounding the initial result by 

violating the PERMANOVA assumption of homogeneous dispersion (Anderson and 

Walsh 2013). The most prevalent bacteria in the gut microbiomes of the Eurasian tree 

sparrows sampled for this study are strikingly different from the gut microbes found in 

captive Eurasian tree sparrows in a recent study in China (Jiang et al. 2020); at the 

broadest scale, the wild tree sparrows in our study had much higher abundances of 

Firmicutes but very low abundances of Bacteroidetes compared to the captive tree 

sparrows in China. These differences may simply be due to the captivity of the tree 

sparrows used for the other study, as captive animals are well known to have 

significantly varying microbiomes compared to their wild counterparts (Gibson et al. 

2019, Alberdi et al. 2021).  
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From a genetic perspective, we found high levels of diversity at MHC IIB loci with no 

evidence for population differentiation in neutral markers. Microsatellite data revealed 

consistently low Fst values across sites. Since the sampling sites were within 30 miles of 

each other, high gene flow is unsurprising, although we never observed or recaptured 

banded individuals at any location other than their original capture site (the recapture 

rate was quite low at ~5% across all sampling sites). The tree sparrows exhibited the 

high MHC diversity often associated with passerines (Bollmer et al. 2010, Minias et al. 

2018), ranging from 5-13 alleles per individual, with a mean and median of ~8 alleles.  

We also detected a small but significant relationship between gut microbiome 

composition and the major histocompatibility complex in this species, although it was 

not reflected at higher community levels. Alpha diversity did not vary significantly 

between individuals with specific alleles or groups with high versus low MHC diversity 

(measured as Grantham distance averages), and beta diversity also did not significantly 

vary based on either specific allele presence or MHC diversity. However, differential 

abundance analysis revealed 18 bacterial ASVs with significantly higher and/or lower 

abundances in individuals with higher MHC diversity. The genera with the largest base 

means were Ligilactobacillus and Lactococcus, both members of the class Bacilli. These 

two genera were both significantly more abundant in individuals with high MHC 

diversity. This may indicate a more beneficial microbiome in the groups with higher 

MHC diversity, as members of Bacilli (and specifically Ligilactobacillus) are generally 

associated with better host health and are often targeted for probiotic use in 

environments such as poultry farms (Dec et al. 2021, Arif et al. 2021). However, the 
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varying abundances of the other bacterial groups are more difficult to interpret, since 

potential benefits or costs are less understood in those groups in the context of the 

avian microbiome and because base means were lower.  

The association between high MHC diversity and putatively beneficial bacteria provides 

some support for the divergent allele advantage hypothesis (Davies et al. 2022). 

Differences in microbial community composition caused by MHC genotype could 

logically translate to direct fitness benefits or detriments for the hosts, as the 

microbiome is involved in varied tasks such as digestion, nutrient acquisition, and 

immune system training (Clemente et al. 2012). One study using laboratory mice found 

that the gut microbiomes of heterozygotes have more diversified functional capacity, 

greater metabolic capability, and increased resistance to invasion compared to 

homozygotes (Khan et al. 2019). This implies that higher MHC diversity may promote 

host fitness via the gut microbiome rather than incur costs, though a major caveat to 

this study was that their conclusions were drawn from functional predictions based on 

16S rRNA gene sequencing rather than observations using shotgun metagenomic 

sequencing of bacterial communities (Khan et al. 2019). Our findings of putatively 

beneficial bacteria at higher abundances in birds with high MHC diversity are an 

interesting indication that MHC diversity may have measurable impacts on health-

associated components of microbiomes in wild populations.  

However, the scale of the associations found here indicates that MHC influence is 

substantially less important than environmental drivers of community variance, as we 

found significant differences and higher R2 values in beta diversity when comparing 
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individuals across sampling sites and seasons. In some systems, genotype can be an 

important driver of microbial colonization patterns, and a study using wild sticklebacks 

found that MHC genotype had a stronger effect over microbiome composition than diet 

or sex, accounting for approximately 10% of microbial variation (Bolnick et al. 2014). 

However, in the tree sparrow system, genotype appears overshadowed by 

environmental heterogeneity observed in terms of geographic and seasonal differences. 

More work is needed to understand how much MHC diversity may shape the 

microbiomes of other taxa, and a functional microbiome perspective would be a useful 

addition. In all, these results show small-scale support for the divergent allele advantage 

hypothesis in the context of the microbiome, with implications for the maintenance of 

MHC diversity and host health in other vertebrate groups.  
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CONCLUSIONS: THE AVIAN MICROBIOME AND DISEASE 

Vertebrates are extensively colonized by bacteria, creating microbial assemblages that 

are collectively called the microbiome (Gilbert et al. 2018). These microbial communities 

are vast, with a recent estimate placing the total number of bacteria on a typical human 

at about 39 trillion (Sender et al. 2016). Microbiomes are highly variable, with distinct 

communities found between host species and even between individuals of the same 

species, and varied factors such as developmental stage, sex, and diet are known to 

cause variation in the microbiome (Gilbert et al. 2018, Bodawatta et al. 2022). Host-

associated microbiomes carry out many activities that are necessary for host health; for 

example, some mutualists process essential vitamins for the host or aid in immune 

function (Rowland et al. 2018, Hills et al. 2019). Alternatively, some microbial 

community members may function as commensals or even pathogens rather than 

mutualists, with bacteria out-competing beneficial members of the microbiome or 

inducing disease (Gilbert et al. 2018, Hills et al. 2019).  

Host-associated microbiomes have been studied extensively in humans and some 

domestic mammals, reaching an exciting point where microbiomes may be harnessed to 

develop more effective diagnostics or even microbial treatments (Gilbert et al. 2018). 

However, parallel research in other systems such as wild birds still lags behind, despite 

the potential for microbiome research to contribute to conservation goals (Bahrndorff 

et al. 2016, Bodawatta et al. 2022). For this dissertation, I addressed several gaps in 

avian microbiome research related to avian health and disease risk, including 
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associations with disease state, community stability and pathogenicity over time, and 

the influence of immunogenetic variation on the microbiome.   

Gut Pathogens and the Microbiome 

Enteric pathogens are closely intertwined with gut microbiome dynamics, with some 

pathogenic invaders out-competing members of the microbiome to colonize the host 

while other opportunistic pathogens exist as normal members of the microbiome until 

they take advantage of perturbations in the community (Hills et al. 2019). Factors such 

as microbial diversity (i.e. the number of species in a community) can be important – for 

example, one study using juvenile captive ostriches found that juveniles with initially 

low bacterial diversity were more likely to develop pathogen-associated dysbiosis and 

later succumb to enterocolitis mortality compared to juveniles with high initial diversity 

(Videvall et al. 2020). Despite the apparent conservation benefits of understanding 

pathogen-associated dysbiosis and identifying risk factors in vulnerable species, little is 

known about this relationship in wild birds, and bacterial pathogens tend to be 

identified using targeted screening approaches rather than examining community-wide 

patterns (Smith et al. 2020). Furthermore, many avian microbiome studies rely solely on 

16S rRNA gene sequencing, which provides little indication of whether detected bacteria 

are pathogenic or not (Smith et al. 2020).  

We examined microbial community-level associations with enteric pathogens in two 

avian species with a combination of 16S rRNA gene sequencing and metagenomic whole 

genome sequencing (WGS), using genetic virulence factors detected in the WGS 
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datasets as indicators that certain bacteria were likely pathogenic (Chapters 1 & 2). In 

the low-diversity microbiome of the Galapagos penguin, only Clostridium perfringens 

was identified as a likely pathogen (Chapter 1). The presence of C. perfringens virulence 

factors was associated with striking microbial community changes: community 

composition, protein family composition, and putative metabolic activity all significantly 

varied between infected and uninfected birds, and metabolic activity was significantly 

decreased in birds with C. perfringens virulence factors. In the higher-diversity 

microbiome of the Eurasian tree sparrow, nine bacteria were identified as likely 

pathogens, and birds with virulence-associated bacteria had significantly different 

community composition in their microbiomes compared to birds without detected 

virulence factors (Chapter 2). However, no significant predictors such as age or sex were 

discernible in either system. Significant temporal variation was detected in the sparrow 

microbiome across seasons in terms of community composition, but no seasonal 

associations with pathogenic bacteria were found from spring to fall (Chapter 2). More 

work is needed to determine several key points, such as the prevalence of enteric 

pathogens across wild bird species, the directionality of common enteric pathogen 

infections and microbial perturbations, and the factors rendering certain birds 

susceptible to enteric infections (Smith et al. 2020).  

Blood Parasites and the Microbiome 

While enteric pathogens have an obvious relationship with the normal gut microbiome, 

other disease associations may be less direct. Recent studies have indicated a 

fascinating link between microbial community composition and Plasmodium infection 
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risk, demonstrating that captive mice exhibit varying levels of susceptibility to blood 

parasite infection based solely on microbiome composition and that transferring 

microbiomes to naïve mice also transfers the degree of susceptibility (Villarino et al. 

2016). One mechanism explaining this relationship is that certain microbes may prime 

the immune system, allowing it to react more rapidly and efficaciously to Plasmodium 

invasion (Yilmaz et al. 2014). This relationship is increasingly established in mammals, 

but whether it exists similarly in birds remains unclear.  

We tested associations between the gut microbiome and Plasmodium infection status in 

the Eurasian tree sparrow (Chapter 3; Rohrer et al. in press). We did not find large-scale 

associations between community structure and disease; neither alpha nor beta diversity 

significantly varied in the presence of Plasmodium infection. However, we found several 

microbes which were differentially abundant in birds infected with Plasmodium. Many 

of the bacteria with significantly lower abundances in infected birds belonged to genera 

with many pathogenic members such as Pseudomonas, Shimwellia, Enterococcus, and 

Serratia, while a putative mutualist – Ligilactobacillus – was present in significantly 

higher abundances in infected birds. Unfortunately, it is not possible to identify causality 

from this study, as we could not determine key factors such as whether uninfected birds 

were naïve or had been previously exposed to Plasmodium, whether infected birds 

represented acute or chronic infections, and whether the detected microbial variations 

were present prior to infection or were caused by Plasmodium invasion. Longitudinal 

studies in wild birds with high recapture rates would be an ideal way to assess causality 

(for example, using nest boxes), as the microbial alterations typically caused by captivity 
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limit inferences from captive studies (Alberdi et al. 2021, San Juan et al. 2021). Probiotic 

treatments or inoculation with the set of bacteria highlighted in our study would clarify 

the directionality of this Plasmodium-microbiome relationship in wild birds.  

Immunogenetics and the Microbiome 

Adding to the complexity of the microbiome relationship with disease risk is the 

potential influence of the host immune system. Genome wide association studies have 

identified some immune-related markers associated with altered microbiome 

composition, but one of the most promising targets is the major histocompatibility 

complex (MHC) (Bolnick et al. 2014, Goodrich et al. 2014, 2016). The highly polymorphic 

MHC is a key part of microbial recognition by the adaptive immune system, and some 

studies have found associations between variation at MHC loci and microbial 

community structure (Sommer 2005, Bolnick et al. 2014). Studies in captive mice, wild 

three-spined sticklebacks, and Seychelles warblers have found specific alleles associated 

with altered community composition in the gut microbiome (Bolnick et al. 2014, 

Kubinak et al. 2015, Davies et al. 2022). This variation may in turn affect disease risk; for 

example, one study found that captive-reared mice with different MHC genotypes had 

contrasting levels of susceptibility to Salmonella enterica Typhimurium, and when the 

microbiomes from those mice were transferred to germfree mice with identical 

genotypes, the mice with the transplanted microbiomes exhibited similar susceptibility 

or resistance to S. e. Typhimurium infection compared to the original mice (Kubinak et 

al. 2015).  
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It remains unclear whether MHC variation shapes the microbiome only through host-

specific associations with certain alleles, or whether there might be more generalizable 

patterns related to the degree of MHC diversity present in an individual. The 

heterozygote advantage and divergent allele advantage hypotheses have been 

proposed as a way to explain the astonishing diversity present at MHC loci of many 

birds; essentially, these hypotheses posit that greater allelic diversity allows a wider 

range of responses to pathogenic invaders at an individual level (Sommer 2005, 

O’Connor et al. 2016). In a microbiome context, higher MHC variation could be 

maintained as a way to modulate the microbial community (Bolnick et al. 2014, Khan et 

al. 2019).  

We examined the MHC-microbiome relationship in the Eurasian tree sparrow, testing 

microbial associations with specific MHC IIB alleles as well with the degree of allelic 

diversity found within each individual (Chapter 4). No large-scale microbiome 

associations were evident, and alpha and beta diversity were not associated with 

specific alleles or with MHC diversity. However, higher MHC diversity was associated 

with higher abundances of certain putatively beneficial bacteria such as Ligilactobacillus. 

These results indicate that higher MHC diversity may lead to higher abundances of 

beneficial microbes in wild birds, providing some support for the divergent allele 

advantage hypothesis. However, much remains unclear about how widespread these 

associations may be and whether these differences are substantial enough to influence 

disease risk in wild populations. Future studies in other systems should examine how 
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these significant MHC-microbiome associations influence host fitness and disease 

outcomes.  

Conclusions:  

The host-associated microbiome can influence disease risk in many ways, but much 

work remains to be done in wild populations to achieve generalizable patterns across 

taxa. Understanding microbiome dynamics is key to determining susceptibility factors 

and designing microbiome-based treatments (Hills et al. 2019). Some early examples 

already exist of potential microbial treatments for disease using probiotics or fecal 

transplants, indicating exciting potential outcomes for this relatively new field – for 

example, probiotic additives are already in widespread use in poultry feed to prevent 

bacterial infections (Redweik et al. 2020). Future avian microbiome studies in wild 

populations should focus on identifying causal relationships between the microbiome, 

host immune system, and disease.  
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