
University of Missouri, St. Louis University of Missouri, St. Louis 

IRL @ UMSL IRL @ UMSL 

Dissertations UMSL Graduate Works 

4-19-2023 

Loss Scaling and Step Size in Deep Learning Optimizatio Loss Scaling and Step Size in Deep Learning Optimizatio 

Nora Alosily 
University of Missouri-St. Louis, namb2@umsystem.edu 

Follow this and additional works at: https://irl.umsl.edu/dissertation 

 Part of the Artificial Intelligence and Robotics Commons, and the Theory and Algorithms Commons 

Recommended Citation Recommended Citation 
Alosily, Nora, "Loss Scaling and Step Size in Deep Learning Optimizatio" (2023). Dissertations. 1286. 
https://irl.umsl.edu/dissertation/1286 

This Dissertation is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has 
been accepted for inclusion in Dissertations by an authorized administrator of IRL @ UMSL. For more information, 
please contact marvinh@umsl.edu. 

https://irl.umsl.edu/
https://irl.umsl.edu/dissertation
https://irl.umsl.edu/grad
https://irl.umsl.edu/dissertation?utm_source=irl.umsl.edu%2Fdissertation%2F1286&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=irl.umsl.edu%2Fdissertation%2F1286&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=irl.umsl.edu%2Fdissertation%2F1286&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/dissertation/1286?utm_source=irl.umsl.edu%2Fdissertation%2F1286&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:marvinh@umsl.edu


Loss Scaling and Step Size in Deep Learning Optimization

Nora Alosily

M.S., Computer Science, University of Missouri-St. Louis, 2017

B.S., Computer Science, Qassim University, Saudi Arabia, 2010

A Dissertation Submitted to The Graduate School

at the University of Missouri-St. Louis

in partial fulfillment of the requirements for the degree

Doctor of Philosophy in Mathematical and Computational Sciences with an

emphasis in Computer Science

May 2023

Advisory Committee

Sanjiv Bhatia, Ph.D. Chairperson

Badri Adhikari, Ph.D.

Sharlee Climer, Ph.D.

Henry Kang, Ph.D.

© Copyright, Nora Alosily, 2023



To my parents, Munirah and Ibrahim.

To my husband, Abdullah.

To my daughters, Sarah and Lubna.

i



Acknowledgments

I am immensely grateful for the support and guidance of the following individuals,

without whom this dissertation would not have been possible. From the bottom

of my heart, I extend my sincere appreciation to all who have contributed to my

academic and personal growth throughout this journey.

First and foremost, I want to express my gratitude to my supervisor, Professor

Sanjiv Bhatia, for his unwavering support and guidance throughout my Ph.D.

journey. His computer vision class opened my eyes to high-dimensional data and

changed the way I think about data foreve, and he also introduced me to different

math topics in an approachable, problem-solving manner. Professor Bhatia not

only assisted me in enhancing my research skills but also introduced me to many

valuable tools and resources. My dissertation is a result of remote collaboration,

which began during the COVID-19 pandemic. I am incredibly grateful to him as

a mentor striking the perfect balance between giving me the space to grow and

learn independently and providing me with feedback and guidance when needed.

I would also like to express my gratitude to the members of my dissertation com-

mittee. Firstly, Professor Badri Adhikari introduced me to deep learning with his

hands-on and impactful class, I would not have considered pursuing deep learn-

ing optimization otherwise. Secondly, Professor Sharlee Climer’s encouragement

and creation of an environment of trust, respect, and understanding were indis-

pensable. Lastly, I am honored to have Professor Henry Kang whose invaluable

suggestions that helped improve this dissertation.

ii



I would also like to acknowledge the staff and faculty of the Department of Com-

puter Science for providing a stimulating academic environment. Special thanks

to Kimberly Stanger for her invaluable support and help, as well as the In-

ternational Office, especially Lenka Garimella, for making remote collaboration

possible during and after the pandemic.

Lastly, I express my heartfelt appreciation to my family and friends, whose love

and support sustained me throughout this journey. I am particularly grateful

for my husband Abdullah, who was always there to listen, encourage, and offer

insightful advice, even during the most challenging times. I am blessed to have

him in my life, and I will always cherish his role in my academic success.

Finally, I want to thank all those who contributed, directly or indirectly, to this

dissertation. Your support and encouragement were invaluable, and I could not

have achieved this accomplishment without you.

iii



Notation and Symbols Guide

This section is devoted for notation convention and followed by list of symbols.

It is a useful reference throughout the text. Finally, please zoom in if you find

figures or charts are not sufficiently large, because they are either vector images

or in high resolution.

Notation

For the sake of simplicity, I follow the notation described below in math descrip-

tion.

Listing

To list a set of n elements we write:

{x1, x2, . . . , xi, . . . , xn} (1)

Or alternatively we can write it in a more compact notation:

{x}ni=1 (2)

Similarly, the set {x1, x2, . . . , xn} becomes {x}n1 . The same goes for vectors and

other groups of elements. A vector of n elements is usually written as:

[x1, x2, . . . , xi, . . . , xn] (3)
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Which becomes [x
n

]
i=1

with the compact notation.

Assignment

Left arrow← in math of this text means evaluating the right hand side variables

at their current values and then assigning the result to the left hand side. This

is to avoid unnecessary complicated notation. For example, instead of writing:

xt+1 = xt − gt · xt (4)

We can simply write:

x← x− g · x (5)

I will also try to avoid super and subscripts unless there is a real need for them,

as in unfolding a recurrence. For example, it is helpful to index a recurrent items

when unfolding the above:

x1 = x0 − g0 · x0 (6)

and

x2 = x1 − g1 · x1 (7)

x2 = x1 − g1 · x0 − g0 · x0 (8)

v



Symbols

Symbol Description

L A layer.

i A layer counter {L0, . . . , Li, . . . Ln}. L0 is the input layer and Ln is the output

layer.

di Dimensions of layer i.

d Input dimensions, implicit of d0.

a An activation or output of a neuron. ai
j is the output of neuron j at layer i

j A neuron counter.

Ai Set of neurons outputs at layer i. Ai = [a1, . . . , aj , . . . adi ]

W i
j Set of weights at unit j and layer i.

k Weight counter.

wj,k A single weight k at unit j .

N Number of samples in a dataset.

n Number of samples in a minibatch, 1 ≤ n ≤ N

b A single bias.

z An affine function applied on the dot product of the weights and input zj =
∑di−1

k ai−1
k · wk.

f Model function.

D Dataset D = {(x, y)1, . . . , (x, y)n} = {(x, y)1:n}.
X Set of inputs in a dataset. X = {x1, . . . , xn} = {x1:n}
Y Set of outputs correspond to the inputs. Y = {y1, . . . , yn} = {y1:n}
L Loss value.

θ Set of network trainable parameters typically weights and biases.

η Learning rate .

α scaling factor.

η Learning rate .

β First moment hyperparameter.

γ Second moment hyperparameter.
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Abstract

Deep learning training consumes ever-increasing time and resources, and that is

due to the complexity of the model, the number of updates taken to reach good

results, and both the amount and dimensionality of the data. In this dissertation,

we will focus on making the process of training more efficient by focusing on the

step size to reduce the number of computations for parameters in each update.

We achieved our objective in two new ways: we use loss scaling as a proxy for

the learning rate, and we use learnable layer-wise optimizers. Although our work

is perhaps not the first to point to the equivalence of loss scaling and learning

rate in deep learning optimization, ours is the first to leveraging this relationship

towards more efficient training. We did not only use it in simple gradient descent,

but also we were able to extend it to other adaptive algorithms. Finally, we use

metalearning to shed light on various relevant aspects, including learnable losses

and optimizers. In this regard, we developed a novel learnable optimizer and

effectively utilized it to acquire an adaptive rescaling factor and learning rate,

resulting in a significant reduction in required memory during training.
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Chapter 1

Introduction

Most of the optimization problems have been addressed by classical hand-engineered

algorithms that provide a machine with detailed step-wise guidance toward the

solution. More recently, machine learning algorithms are being used to train

an automaton on some examples to perform tasks without explicitly stating ev-

ery step. Generally, the hand-engineered algorithms produce more efficient and

precise solutions once the task is well understood whereas the machine learning

algorithms tend to approximate; they are suitable for different kinds of tasks.

Using machine learning for computationally sensitive tasks would be a waste of

resources and may lead to undesirable results, especially tasks that are heavily

computational in nature. Other tasks that involve pattern recognition, like rec-

ognizing a stop sign, while trivial to humans, have proved to be challenging for

conventional algorithms.

We can train a learning algorithm with a number of input examples to achieve

an objective and learn certain representation, in what is known as unsupervised

learning that does not use output examples. Sometimes, however, the objec-

tive is to learn a representation that produces a specific output by providing

the algorithm with the input examples as well as output examples, in what is

known as supervised learning. In between these two end of the spectrum lies

semi-supervised learning where we need to compensate for the missing outputs.

1



Chapter 1: Introduction

Another method, reinforcement learning does not provide explicit outputs but

rather some rewards that prods the learning algorithm into the right direction.

We can also categorize machine learning algorithms according to the way they

transform their input such as shallow learning and deep learning algorithms.

Typical machine learning algorithms learn a task in a single layer, such that the

algorithm takes an input, transforms and processes that input, and then produces

an output without further processing, which is basically shallow learning. Exam-

ples of this kind include the support vector machines (svm), decision trees, and

linear and logistic regressors among others. Deep learning, on the other hand,

is the process of learning a task in multiple layers, such that the model learns

internally by transforming the input from one layer to the next. In other words,

the output of at least one layer is not to be dispensed to the outside world, but

rather injected back into the model to refine the final output. Neural networks,

discussed next, are examples of deep learning. Nonetheless, any model that learns

in multiple layers is considered a deep learning model [84, 116]. Our main focus

in this dissertation is on neural networks, discussed next.

1.1 Neural Network Model

Neural network is a computational model inspired by the biological neural net-

works in a human brain. It performs a task using a set of interconnected artificial

neurons – excitable memory structures – that transmit the right signal for a spe-

cific input that is adjusted in a learning process. Each neuron consists of set of

adjustable memory units, and neurons are grouped into sets called layers. The

input layer in the network receives the input data, and the subsequent layers

transform the input using some weights until the output is generated at the out-

put layer. At the end, a loss function compares the output to the desired output

to measure the error. This comparison concludes the forward pass, and starts the

backward pass in which the error is used to modify the weights. The two passes

are repeated until the network learns the weights that minimize the error.

The learning algorithm that minimizes the error is one of three basic elements for

2



1.1 Neural Network Model

a neural network to function properly: the model itself and how it is structured,

the data to be transformed by the model, and the learning algorithm that adjusts

the model to improve its computational process. We will discuss each element

briefly, but the focus of this thesis is on the learning algorithm. First, the model

structure or topology describes the way the layers of parameters are connected to

each other, and how different structures transform the same data in a different

manner. The second element is the training data that is provided for the model

to learn from and to process in the future. It comes in various distributions; thus

one model may transform various types of data differently. Finally, the learning

algorithm dictates a mechanism to update the parameters. The same learning

algorithm may be used to train different neural network topologies. For example,

stochastic gradient descent algorithm may be used to train convolutional networks

and recurrent networks. Similarly, the same topology may learn using different

learning algorithms. We can train the convolutional nets using backpropagation,

forward-forward algorithm [50] or genetic algorithms.

In the remainder of this section, we start with the model itself, followed by a dis-

cussion on data in section 1.2, and finally we’ll introduce the learning algorithms

in more details in sections section 1.3 and section 5.1.

1.1.1 Building Blocks

A neural network may be viewed as a function composition Ln(. . . (L1(L0))), or

a mapping L0 7→ L1 7→ · · · 7→ Ln. Each function may be abstracted as a layer of

neurons from the input layer L0 to the output layer Ln. Neurons are the basic

units that perform arithmetic operations; each neuron has its own coefficients

and biases known as the learnable weights or parameters (θ). A neuron receives

different inputs from other neurons, applies its parameters on the input, and

transmits copies of its output to other neurons. A single layer consists of a

number of neurons; this number determines the width of a layer. The width of

the whole network is the width of its widest layer. The number of layers defines

the depth of the network.

3



Chapter 1: Introduction

Layer i

jj

Layer i − 1 Layer i + 1

... ...

(a) Dense layers

ai−1
di−1

...

ai−1
2

ai−1
1

×

×

...

×

w1

w2

...

wdi−1

∑
+

b

z f ai
j

(b) A simple neuron (j) at layer (i)

Figure 1.1: A simple neural network model

1.1.1.1 Classical Unit (Neuron)

The basic operations that a simple neuron can performs are weight multiplication

and bias addition. For a network with n layers {i}n1 , each layer can have a variable

number of neurons {j}di1 in which di specifies the dimensions or the number of

neurons in that layer. Figure 1.1a shows a set of layers (. . . , i − 1, i, i + 1, . . .)

that have (. . . , 4, 3, 2, . . .) neurons respectively.

Neuron (j) in Figure 1.1a receives four inputs and thus has four corresponding

weights. In the same manner, the neuron transmits copies of its output into two

neurons in the following layer. The details of neuron j are shown in Figure 1.1b.

Each neuron at layer i receives the same input vector Ai−1 from previous layer,

4



1.1 Neural Network Model

and transforms it by its weight vector Wj = [w]
di−1

1 using the dot product oper-

ation:

aj = AT
i−1Wj =

di−1∑
k=1

ak · wk (1.1)

This is optimized in practice by using matrix multiplication to compute outputs

of the same layer simultaneously, which is as follows for Figure 1.1a:

Ai = AT
i−1

[
W1 W2 W3

]
i

(1.2)


a1

a2

a3


i

=
[
a1 a2 a3 a4

]
i−1


w1,1 w2,1 w3,1

w1,2 w2,2 w3,2

w1,3 w2,3 w3,3

w1,4 w2,4 w3,4


i

(1.3)

The linear combination in Equation 1.1 is able to produce a hyperplane bound-

ary on the input vector. Adding a bias b to the linear combination makes the

boundary more powerful because the hyperplane does not necessarily intersect

with the origin. Finally, the expressiveness of the affine function z = ATW + b

is improved by applying an activation function.

The activation function may be used to change the shape of the hyperplane, the

term activation comes from the original function used – the threshold function

where the input is activated or not. Some of the widely used functions are the

logistic, the rectifier, the hyperbolic tangent, and the identity functions; please

check Appendix A for more details on those functions. If the logistic function is

used, a single neuron is viewed as a logistic model.

1.1.1.2 Other Types of Units

For the rest of this dissertation, we will refer to a neuron as a unit to generalize

to different kinds of cells and to adhere to the terminology of the field. There

are different types of units that can be used to compose a layer other than the

classical unit. Examples include bilinear unit, lstm unit, and gru unit, which are

listed in Table 1.1 below.

5



Chapter 1: Introduction

Unit Input Transformation Parameters

Linear x y = xTW + b θ = {W , b }

Biinear x y = W1x
TW2 + b θ = {W1, W2, b }

RNN x, y g = x ·Wg + bg
h = y ·Wh + bh
y ← tanh(g + h)

θ = {W∗, b∗ }

GRU x, y h = σ(Wh · x+Wh,y · y + bh)
g = σ(Wg · x+Wg,y · y + bg)
o = Wo,y · y + bo
c = tanh(Wc ·+bc,x + h⊙ o)
y ← (1− g)⊙ c+ g ⊙ y

θ = {W∗, b∗ }

LSTM x, y, c i = σ(x ·Wi + y ·Wi,y + bi)
h = σ(x ·Wh + y ·Wh,y + bh)
g = σ(x ·Wg + y ·Wg,y + bg)
o = σ(x ·Wo + y ·Wo,y + bo)
c← h⊙ c+ i⊙ g
y ← o⊙ tanh(c)

θ = {W∗, b∗ }

Table 1.1: Description of neural network units.

In the table, different activations can be added to linear layers to produce non-

linear transformation. Moreover, existed activation can be changed. Finally, the

symbol ⊙ signifies the Hadamard or element wise product, and y = f(x). Now

that have introduced the basic units, we can consider how these building blocks

are grouped and connected in a certain way to form various types layers.

1.1.2 Neural Network Topology

A neural network is composed of one or more layers such that the neurons in a

layer operate on the input and produce outputs. In practice, a layer is composed
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1.1 Neural Network Model

of the same type of units, but different types of connections between layers allow

the input to be transformed differently. The flow of transformation can be sum-

marized in two basic types: the recursive neural networks that allow the flow to

go back to the same layer or to some previous layers, and the feedforward net-

works that allow the flow to proceed in just one direction. In both types of flow,

there are different kinds of topologies, or ways to connect the layers. Different

types of layers may coexist in the same architecture, and examples are described

below.

1.1.2.1 Dense Layers

One of the basic types is the dense topology, which means fully connecting one

layer to another. The other layer could be a previous, the same, or next layer in

the network. This type of network usually operates on vector input, thus the in-

put needs to be converted into a vector, or flattened, beforehand. One of the first

examples in a feedforward network was implemented in 1986 to predict people in

family trees [95]. This architecture is prevalent to this day and usually coexists

with other types in a single network. The layer can be expressed mathematically

as a function multiplication with the result of input layer:

Dense g(f(x)) = g · f (1.4)

The fact that dense layers throw away some of the embedded information, such

as spatial interdependence, motivated the development of convolutional neural

networks.

1.1.2.2 Convolutional Layers

Convolutional layers are yet another widely-used topology but for aligned in-

formation like pixels in images, and they are the basic element in convolutional

neural networks (cnn). The convolutional layers consist of trainable filters, or

simply a set of shared weights repeatedly aligned and applied on the input. Such

a network was used to recognize handwritten digits in 1989 [64]. However, the

7
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pattern recognition community shifted towards better performing and more ef-

ficient methods that are tailored to the task in hand such as Support Vector

Machines (svm). Since 2010, the convolutional networks, among other neural

structures, have regained interest due to their outstanding performance on tasks

that have proved to be challenging [23, 47, 62, 83]. The layer can be expressed

as a cross correlation with the result of input layer:

Convolution g(f(x)) = g ∗ f (1.5)

1.1.2.3 Residual Layers

Another interesting type of topology is residual layers, in which the output of one

layer is added to another layer while possibly skipping some layers in between.

Although simple, this type of topology is powerful in transforming the input,

and its simple way to mitigate the gradients problems utilizing addition instead

of multiplication which injects the gradients differently. It was used for image

classification in 2015 [46]. Since then, the architecture has become ubiquitous as

the backbone of many different architectures. The layer can be expressed as an

addition between two layers:

Residual g(f(x)) = f + g (1.6)

1.1.2.4 Attentional Layers

More recently, advances in various field have been achieved with the use of at-

tention mechanism, and generally, it aims at selecting the relevant signal for

further processing [98]. An attention block or layer is usually encapsulated in a

transformer module that also contains some dense or other types of layers, and it
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first appears in transformers [112], and later help Generative Pretrained Trans-

former (gpt) models, among others to have superior performance [59, 65, 73].

We partially adapt the mathematical notation introduced by [45]:

Attention g(f(x)) = g(f(x), h(x)) (1.7)

There are other types of units and layers, so please refer to [40, 102] for a complete

overview of neural networks. In the remainder of this section, I introduce data

briefly and then I will discuss the learning aspects of neural networks, which is

the concern of this dissertation.

1.2 Data

Data is the input and the center of interest to a deep learning model, and a

group of data examples forms a dataset. The instances of data in a dataset are

also called samples, observations, records, and data points. For instance, the Iris

flower dataset [30] is a widely used dataset since 1936. It contains 50 samples

from three species of Iris giving a total of 150 data points; each data point has

5 attributes which are {Iris species, sepal length, sepal width, petal length, and

petal width}. The attributes in a dataset are also called dimensions, variables,

and features. The number of data points vary from few points like in Iris dataset

to almost infinite as done in training big models such as gpt, which are trained

on massive amount of text data culled from billions of documents and internet

pages.

1.2.1 Data Types

Data appears in different forms like text, images, and videos. Nonetheless, they

are eventually represented with discrete numbers. After all, the difference is in

terms of their dimensions, value range, and value granularity. The factors are
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subject to preprocessing choice, but they affect the performance tremendously.

Generally, the values are scaled and shifted to maintain a balanced flow while

being transformed by the network.

1.2.2 Data Distribution

If the data-generating function (distribution) is known, it is easy to characterize

the data generated by the distribution. However, data distribution is the under-

lying problem that machine learning algorithms endeavor to solve. By observing

instances of data, the algorithm can capture some aspects of the true distribution

to solve for unseen data, and I quote:

“Machine learning is about capturing aspects of the unknown distri-

bution from which the observed data are sampled.” [2]

Therefore, data provided while training should reflect the distribution of data in

a real application, or at least data presented at test time. Moreover, providing

sufficient amount of balanced data reduces the gap in the samples from the dis-

tribution. Thus, correct sampling is important to avoid bias toward part of the

data. Oversampling and undersampling techniques may help, in which oversam-

pling methods aim at populating more samples in regions that have sparse data

while undersampling entails choosing data points for removal in parts that are

densely sampled.

1.3 Learning Algorithm

Learning algorithm is an algorithm that improves the weights to perform a task

after observing relevant data. Many algorithms meet the criteria, but the domi-

nant and widely used algorithm to train neural networks is backpropagation [95].

Although it has limitations, the algorithm is relatively efficient and is able to

converge to satisfactory results.

Generally, the process of learning is performed in two steps: the forward pass

and the backward pass. The forward pass is fairly simple where the parameters
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θ in a neural network layer are applied to the input A0, producing some output.

The output is judged by a function called the loss function that compares the

network output ŷ to the desired output y. The amount of deviation between

the two outputs called the loss or error, with the goal to minimize the error; the

optimal loss is always zero. The goal of the learning process is to find parameters

θ that minimize the loss. Once the loss is known, the parameters are adjusted

by the learning algorithm in the backward pass to minimize the error.

One way to minimize the error is by gradually adjusting the weights to predict

better outcome in the next iteration, normally achieved by the gradient descent

algorithm. Gradient descent iteratively provides information on the descent di-

rection of a function using first-order derivatives until it reaches a local minima.

Since the network is a composition of nested functions and each function may

contain thousands or millions of weights, it is important to compute the deriva-

tives in the big chain rule efficiently. This is achieved by the backpropagation

algorithm that exploits the redundant computations at each layer to efficiently

update the weights [96, 102].

Backpropagation updates the parameters by abstracting the network as a func-

tion and tries to minimize the error with respect to the network parameters

using the chain rule [115]. The method uses automatic differentiation which is

a dynamic programming algorithm that finds derivative of a given function by

memorizing differentiation steps in order to avoid redundant computations. This

property is especially useful in neural networks that require a lot of such compu-

tations. Derivatives needed at a layer are identical but differ from the preceding

layer. There are two modes to accumulate the derivatives: one is forward ac-

cumulation which finds the derivative of every function with respect to a given

input, and the other is backward accumulation that finds the derivatives of an

output with respect to every function. In the backward pass, a neural network

uses the backward accumulation to find the derivative of the loss with respect

to each parameter. The loss function is described in the next subsection, and

gradient descent optimization is discussed in more depth in chapter 3.
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1.3.1 Network Loss

It is important to discuss the loss function f(ŷ, y) and the loss value L produced

by it, before introducing the gradient descent algorithm that starts with the loss.

In supervised learning, the loss function takes two inputs: the desired network

output y and an actual network output ŷ, and produces a loss value that measures

the error of the network. The larger the loss value, the more change is needed

to adjust the parameters. The choice of an appropriate loss function is critical

because of its impact on the whole network. Below I will discuss some of the

common loss functions.

1.3.1.1 Loss Functions

Different types of outputs require different ways to measure the error. One way

is to use the binary accuracy where the function outputs true if y and ŷ match

and false otherwise. Although it provides a straightforward measure of accuracy,

there are two downsides to such a solution. First, some tasks require approximate

solutions such as networks that generate inexact output like images. The gener-

ated output does not need to exactly match the desired output. Moreover, such a

measure does not give extra information on the quality of accuracy. We may get

the same accuracy from two models, one that closely approximates that desired

output and the other that is very different. Such information is useful, because it

provides a quantity for future improvement. The loss function needs to provide

a specific value to characterize the extent of deviation, and the optimizer uses

that value to appropriately adjust the network parameters. We can categorize

the loss functions into two categories according to the model task: discriminative

loss functions and generative loss functions.

In a discriminative learning in which the goal is to learn a distribution boundary,

the network learns to produce an output given some input, as happen in classi-

fication and regression. In classification, the networks is expected to produce a

probability of each class P (y|x), and the model learns to increase the probability

of the correct class. A special case is a binary classification where there is only
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a single class and it can be on or off. The vector of predicted outputs is usually

computed by measuring the membership probability of the output to the assigned

class ŷ = {ŷ1 = P (ŷ1|x), ŷ2 = P (ŷ2|x), . . . , ŷc = P (ŷc|x). The cross entropy

function is used to measure the loss −∑c
k=1 yk log(ŷk). Other loss functions in-

clude hinge loss, focal loss, and relative entropy [4, 34, 58, 69]. In regression, on

the other hand, the network is expected to produce a continuous-valued possibly

multidimensional, output. The model learns to minimize the residual, the dis-

crepancy between its output and the correct output. There are plenty of choices,

such as mean absolute error L1 = |y − ŷ|, mean square error L2 =
√
(y − ŷ)2,

and Huber loss [55]. The two most used loss functions are L1 and L2.

In generative learning, in which the goal is to learn a probability distribution

and generate outputs given some input and random seeds, loss functions can

get fairly complex. For example, in generative adversarial networks, where the

model is trained to generate deceptive data such as a picture of people, the

model concurrently uses a generative and a discriminative network [41]. The

training proceeds by providing the discriminative network with two inputs: one

is real and the other produced by the generative network. The discriminative

network then tries to guess which one is real and which is not. The generative

network then learns how to optimize its performance based on the discriminative

feedback. Such a system uses two loss functions, one for each network, in more

advanced models like gpts (Generative Pretrained Transformer) the number of

loss functions increase,

Plotting the generated loss as a value of the network parameters function pro-

duces a hypersurface called the loss surface. Unless the number of network pa-

rameters is small, it is impossible to visualize the exact loss surface, especially

as the number of parameters can easily reach millions in modern architectures.

Nonetheless, visualizing the loss surface can be an invaluable resource to under-

stand the changes as the network grows in width and depth.
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(a) Quadratic function (b) Bird function [57]

Figure 1.2: Loss surface embedded in three dimensional space.

1.3.1.2 Loss Surface

We can define the loss surface as a hypersurface of the network parameters θ

embedded in an ambient space of both the parameters and the loss value. In

simpler terms, it is the surface connecting the values from the loss function into

the parameter space. Each loss point on the loss surface is an averaged loss

given input data with a fixed set of parameters. Two examples of loss surface

are shown in Figure 1.2. Loss surface of smooth and convex quadratic function

f(θ) = θ21+θ22 is shown on the left panel, and the right panel shows a non-convex

surface of a function called bird function f(θ) = (θ1−θ2)
2+e1−sin(θ1)

2 ·cos(θ2)+
e1−cos(θ2)

2 · sin(θ1)

The knowledge of the loss surface of a given network and dataset obviates the

need for training. In such a case, finding best parameters would be a problem of

finding the minimum value of the surface, a way simpler problem. The purpose

of training is to find the loss and then tune the parameters according to that

loss. Thus, the loss surface is uncharted unless the parameters are computed in a

brute force manner, so when referring to the loss surface it is actually a sampling

of the surface.

Only under strict assumptions, the loss surface can be convex where the function
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is monotonically decreasing everywhere except for one location – the global min-

ima [15], as in Figure 1.2a. Otherwise, the loss is non-convex implying that there

are multiple local minima, as in Figure 1.2b. At a local minima, the value of the

loss surface is less than its value at neighboring points, but there are multiple

locations with such a dip in a non-convex surface. It makes optimization harder

because any movement out of the local minima increases the loss, and there is

no indication on where to go. Sometimes, however, finding a local minima is

adequate and methods such as gradient descent can be used.

1.4 Dissertation Outline

Now that we have review the preliminaries for deep learning, the rest of this

dissertation is structured as follows:

• In chapter 2, I will introduce the problem statement.

• In chapter 3, we will introduce deep learning optimization and we establish

a generation notation for optimization. We also introduce and review some

necessary concepts that are used in deep learning optimization such as

computational graph and autodifferentiation.

• In chapter 4, we propose scaling the loss in plain gradient descent. Then

we present the empirical results that support the proposition. We point

out mixed precision training as a method that is closely related but does

not fully utilize scaling the loss and we provide the recommendation to use

loss scaling to the fullest extent.

• In chapter 5, we provide a literature review on adaptive learning algorithms,

and we continue to propose to replace some the hyperparamters with loss

scaling. Then we show the results that show improvement that can be

gained by the application. We also show that the variables in common

optimizers cannot be modified as a function of the loss.

• In chapter 6, we introduce and provide a literature review on metalearning

and we use it for various loss scaling and step size schemes.
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Chapter 2

Problem Statement

While backpropagation provides an efficient solution for training neural networks,

the training itself requires significant amount of time and resources, even with the

most advanced hardware. Recent developments achieved by large models require

days, and even weeks worth of training time, and naturally, more resources [80].

We address the problem of efficiency in training the neural net by focusing on

the step size.

In deep learning optimization, the learning rate is the main determinant of the

step size. It is the scale of the future change. Once the gradients are computed

from the loss, learning rate is applied to scale each parameter update. Histori-

cally, models are small and have only a few parameters. Adding a few multipli-

cations to update these parameters does not have a big impact. However, recent

advances in deep learning have led to the creation of models with billions of

parameters, and now, each computation step to update these parameters counts.

There is one factor in these parameter updates that is rarely looked at, which

is loss scaling. Loss scaling and learning rate are theoretically equivalent in

gradient descent. However, unlike learning rate that is applied on each parameter,

loss scaling is applied only once to the loss. The two equivalent expressions

mathematically diverge in application.

Loss scaling is certainly less intuitive and it may look deceptively useless, but it
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can be extremely advantageous. In fact, loss scaling has been used only recently

in the context of mixed precision training and has never connected explicitly to

the step size. Thus, combining loss scaling and learning rate results in redundant

application of the step size once in the form of the loss, and at another time in

the form of the learning rate.

My hypothesis is that I can speed up the computation by utilizing loss scaling

instead of the learning rate, without any significant impact on deep learning

optimization.

Throughout this dissertation, I will introduce loss scaling as yet another factor

that determines the step size. I will present various ways to utilize the loss scaling

to save redundant computations. I will provide proofs on the process to properly

scale the loss in various optimizers with experimental results. Finally, we show

the importance of the loss and its scale in different meta learning algorithms. I’ll

evaluate the performance of my hypothesis by comparing regular optimizers to

counterparts that use gradients from loss scaling and apply our derived updates,

while fixing all other variables. We will measure the time enhancement while

making sure that the accuracy is not degraded. In metalearning experiments, we

will closely examine the loss trajectory and benchmark our hypothesis against

other well-known methods. Finally, we will present findings to draw our final

conclusion.
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Deep Learning Optimization

The process of optimization entails improving a set of variables to minimize a cost

or maximize a reward. The two objectives can be solved by the same solver with

trivial conversion; thus addressing just the minimization problems with learnable

weights θ will suffice:

argmin
θ

f(θ) (3.1)

A function f represents the neural network model composition g, ending with

the loss function, parameterized by learnable θ, and receives inputs x at different

levels, including the expected output at the loss function:

f(x; θ) (3.2)

I show the example of such a function in Figure 3.1 in which x = {d1, d2, y} and

θ = {θ1, θ2}. Typically, input is not just one example but rather a dataset that

it is split for training and testing D = Dtr ∪ Dts, and optimally Dtr ∩ Dts = ∅.
The model at training time is therefore:

f(Dtr; θ) = f(ytr; g(xtr; θ)) (3.3)
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There is a wide range of optimization algorithms that find θ∗, the values of θ that

minimize f . Subsequently, the model is tested using the minimized parameters:

f(Dts; θ∗) = f(yts; g(xts; θ∗)) (3.4)

Finally, the model is used as:

g(xreal data; θ∗) (3.5)

An iterative optimization procedure will update the learnable parameters at each

time step according to a function u of the previous parameters and possibly some

other parameters, and parameterized by the optimizer’s parameters ϕ :

θ ← u(θ, · ;ϕ) (3.6)

(a) Computational graph. (b) Partial derivatives at each node.

Figure 3.1: Computational graph of function f(x; θ) = |(θ1d1 + θ2d2)− y|.
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3.1 Gradient Optimization

Gradient optimization is an iterative process that uses gradients to guide the

minimization or the maximization of a function. The maximization is known as

gradient ascent while the minimization is known as gradient descent. In both

cases, the update function from Equation 3.6 is a function that receives the

model parameters θ at a certain step, their gradients from the loss g, and is

parameterized by the optimizer parameters ϕ:

θ ← u(θ, g;ϕ) (3.7)

The minimization in gradient descent is defined by moving the parameters in the

opposite direction of the change function ∆:

u(θ, g;ϕ) = θ −∆(g;ϕ) (3.8)

The above equation summarizes gradient descent algorithms. Various algorithms

process the gradients g and apply their parameters ϕ differently. We discuss

gradient descent in more detail below and then we move to other adaptive learning

algorithms in section 5.1. But you can quickly review examples of different change

functions presented in Table 5.1.

3.1.1 Gradient Descent

Gradient descent has been known to optimize functions toward local minima by

moving the function parameters in the direction of the steepest descent. This is

achieved using first order derivatives, the gradients g, of the loss with respect to

each of the function parameters.

gi =
∂L
∂θi

(3.9)
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The change function in gradient descent is just the gradient parameters being

updated to minimize the loss or gradient descent as:

∆ = g

θ ← θ − g
(3.10)

However, this update is rarely used; the gradient magnitude is altered by a vari-

able called the learning rate η. Learning rate determines the size of a movement

in the direction of the steepest descent. The modification of gradient descent is

given by:

∆ = η · g

θ ← θ − η · g
(3.11)

Before continuing the discussion on the learning rate, we need to briefly describe

the computation of the exact gradients from a number of presented examples.

3.1.1.1 Variants of Gradient Descent

The number of examples presented at each update (n) changes the behavior of

learning because the exact gradient computation is subject to that number:

g =
1

n

n∑
i=1

∇θf(xi; θ)

=
1

n

n∑
i=1

∇θLi

=
1

n
∇θ

n∑
i=1

Li

(3.12)

In batch gradient descent, n equals the size of the whole training dataset, while it

represent one example in stochastic gradient descent. In between comes minibatch

gradient descent ; all are presented next with some details.
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Batch Gradient Descent Algorithm The standard notion of gradient de-

scent, sometimes called batch gradient descent, implies that the dataset is fixed.

The procedure starts by considering entire data at once, then their gradients are

averaged, and finally the parameters are updated. The algorithm achieves incre-

mental improvement by repeating the procedure iteratively on the same dataset

in passes called epochs. It is presented with details in (algorithm 1).

However, with the aim at generalization, we need large amount of data, and it is

impractical to process all data before making a single update. Moreover, using

all data at once For this reason, the batch gradient descent algorithm has been

replaced with an extension that deals with data in partial batches, the stochastic

gradient descent algorithm.

Algorithm 1: Batch Gradient Descent
Input : Model, f(θ)

Dataset, D = {(x, y)}N1
Stop, stopping criterion

1 while not stop do

2 L = forward-pass(f,D)
3 ∇θ = compute-gradients(f,L)
4 g ← ∇θ

N

5 θ ← θ − ηg

6 end

Stochastic Gradient Descent Algorithm sgd (algorithm 2) refers to a vari-

ation of gradient descent where the parameter update is performed based on a

random subset of data, with the assumption that this subset is well representative

of the whole dataset distribution.

Online Gradient Descent Algorithm Sometimes, training is performed in

an active environment where data continuously evolves either by addition of more

data or by modification of existing data. Examples of such environment include

the text over the internet and real world space to train the robots. The size

and changing nature of the dataset do not allow for looking back at the same

examples. As long as the evolving data are good estimate, the change in data
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can be quite advantageous because it reduces overfitting.

Algorithm 2: MiniBatch Stochastic Gradient Descent
Input : Model, f(θ)

Dataset, D = {(x, y)}N1
Stop, stopping criterion

Batch size, n

1 batches ← ⌊N
n
⌋

2 while not stop do

3 D ← shuffle()

4 foreach batch i in batches do

5 Dmini ← sample_batch(D, i, n)
6 L ← forward-pass(f,Dmini)

7 ∇θ ← compute-gradients(f,L)

8 g ← ∇θ
n

9 θ ← θ − ηg

10 end

11 end

3.1.2 Early Extensions to Gradient Descent

Taking big steps results in learning faster but it may also result in overshooting.

On the other hand, taking small steps converges slower and is more likely to get

stuck in some relatively poor local minima. We quantify the movement towards

optimal loss surface by a sign and a magnitude. The sign signifies the direction of

the movement and the magnitude specifies the amount of movement to be applied

to the parameter. Some learning algorithms avoid the use of the magnitude

completely and only focus on the direction of minimization. An early example of

such learning is Rprop where the modification of the parameters depends on the

history of the gradient signs [93] as follows, cs is between zero and one, and cb is
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Algorithm 3: Online Gradient Descent
Input : Model, f(θ)

Dataset, D = {(x, y)}∞1
Stop, stopping criterion

Batch size, n

1 while not stop do

2 Dmini ← sample_batch(D, n)
3 L ← forward-pass(f,Dmini)

4 ∇θ ← compute-gradients(f,L)

5 g ← ∇θ
n

6 θ ← θ − ηg

7 end

more than one 0 < cs < 1 < cb:

∆ = sign(s) · v

s = g ∗ h

v ←


v ∗ cb if s < 0

v ∗ cs if s > 0

v otherwise

h =

g if s > 0

0 otherwise

(3.13)

The use of gradients history, both sign and magnitude, can be tracked back to

momentum. Momentum is a way to minimize the error by considering not only

the current gradient values but also the history of previous gradients. The history

acts as a velocity of a ball in a curvature that captures the dimensions where the

motion (gradients) swings. The minimization will be larger in dimensions where

consecutive gradients point to the same direction and smaller in dimensions where
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gradients oscillate from one direction to another [88]:

∆ = η · s

s← β · s+ g
(3.14)

A slight modification can improve the performance by a lot which is exploited

in the case of Nesterov Accelerated Gradient (nag) [81, 110]. The change uses

the current momentum position as a base for gradient movement, which results

in more regular movement of the parameters:

∆ = η · v

v = g + β · s

s← β · s+ g

(3.15)

I introduce the basic gradient descent algorithm, and the use of the first and

second moments is discussed in more details in section 5.1. In the next section,

I present how deep learning is implemented in practice, with a focus on relevant

concepts.

3.2 Implementation

The success of deep learning is attributed to four reasons. First is the availability

of extremely large datasets. Problems such as the ones encountered in complex

image recognition require lots of data, and such data was not available until

the 2000s. Second is the development and use of hardware that support Single

Instruction Multiple Data (simd) operations. For deep models, big memory

and fast processors have been necessary to accommodate the large number and

speed of computation as well as the data needed. The use of gpu has helped

achieve a milestone in image recognition in 2012 [62]. Since then, there have been

many advances in hardware that support vector, matrix, and tensor operations.

Third is the advances made in training algorithms. Different activation functions,
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regularization methods, and optimizers have helped in deep learning. Finally,

well-tested libraries help accelerate the research in deep learning, especially that

the field requires various computations whose implementation is error-prone and

time consuming.

There are many open source libraries for deep learning, and the two most notable

are TensorFlow by Google and Pytorch by Meta [1, 86, 87]. The implementation

in these two among others is characterized by the use of multidimensional arrays,

the tensors in mathematics, and derivatives computation or autodifferentiation.

3.2.1 Tensors

A tensor is a multidimensional array that represents a multidimensional object

of numerical values. It is a generalization of scalars, vectors and matrices to

higher dimensions. While we can list The order of a tensor is its rank which

represents the number of dimensions of the tensors, each dimension is accessed

by a single index. For example, a scalar is a tensor of order zero, a vector is is

a tensor of order one, a matrix is a tensor of order two and so on. Each single

order or rank has n Higher-order tensors have more three or more dimensions and

there is no formal way to list them numerically. We show examples of tensors in

the Table 3.1 below. We adapt the listing for higher-order tensors form NumPy

library, we also adapt its row vector representation.

3.2.2 Computational Graph

Graphs are a powerful tool to present otherwise complex concepts, and they are

ubiquitous in mathematics in general and in computer science in particular. They

have been utilized for various concepts such as circuit design, automata theory,

and here the graph is used for mathematical operations. The computational

graph in deep learning is a representation of operations and data flow in a function

implemented explicitly or implicitly by deep learning libraries to manage the

computations of partial derivatives. A node is created for each operation, and

edges indicate how the data flow; the function composition. Figure 3.1 show the
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Name Order Example Shape Indices

Scalar 0 1
3.14√
−1

()
()
()

No shape

θ = 1
θ = 3.14
θ =
√
−1

No indices

Vector 1 [1]

[1, 2]

[1, 2, 3]

(1)

(2)

(3)

θ1 = 3
θ2 = 2
θ3 = 3

Matrix 2
[[
1
]]

[11 12 13
]

[
21 22 23

]


(1, 1)

(2, 3)

θ1,1 = 1

θ2,3 = 23

3d Tensor 3
[[
1
]]




[
111 112 113 114

]
[
121 122 123 124

]
[
131 132 133 134

]



[
211 212 213 214

]
[
221 222 223 224

]
[
231 232 233 234

]





(1, 1, 1)

(2, 3, 4)

θ1,1,1 = 1

θ2,3,4 = 234

nd Tensor n (d1, d2, . . . , dn) θi1,i2,...,in = x

Table 3.1: List of different order tensors, the value indicates its index if multiple values exist.
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graph of this example.

3.2.2.1 Autodifferentiation

Unlike numerical differentiation used in optimization for approximation the differ-

entiation of a function, autodifferentiation provides an exact and faster solution

by automatically differentiate each inner function in the chain rule of functions

[44]. The differentiation or the (accumulated) derivatives of a function is calcu-

lated using the partial derivatives in the chain rule while propagating the input.

There are two modes for the process, one is the forward mode and the second is

the backward mode.

Forward Mode Forward mode autodifferentiation finds the differentiation of

a function by iteratively computing the derivatives from inputs to each interme-

diate node in the computational graph up to the output. That required only a

single pass with the output. It is helpful and more efficient than backward mode

when dealing with vector functions since the number of paths when propagating

backward is more than its is in scalar functions.

Backward Mode On the other hand, the backward mode finds the differenti-

ation by first applying the forward pass and then using the output to compute

the differentiaion from the output back to the input. Although counterintuitive,

it is faster than the forward mode with scalar functions in which paths decrease

at the end of the computational graph, which is usually the case of most neural

networks.

3.3 Future of Deep learning Optimization

In this chapter, we introduced the traditional approach for deep learning opti-

mization, that are based on the first order derivatives of multivariate function,

the gradients. Nonetheless, gradient descent can extend to higher order deriva-

tives, like the second order derivatives or the Hessian, which provides information
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on function concavity. The computations of Hessian is expensive but approxima-

tion like Quasi-Newton methods and L-BFGS in particular can help [36, 49, 70],

and they have been used for optimization of various problems successfully [104].

Other approaches include metalearning and perhaps rethinking the whole back-

propagation algorithm [50]. Until these approaches reache maturity, gradient

descent and backpropagation will remain in use.

3.4 Chapter Summary

In this chapter, we introduced deep learning optimization, and we present some

related concept. We also have established the notation for deep learning opti-

mization that will be used consistently in the following chapters, and will be

extended in chapter 6. We will present other gradient-based algorithms in chap-

ter 5 with more details. Next, we use the notation to present loss scaling in

gradient descent.
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Loss Scaling

Step size and learning rate are often used interchangeably, they essentially refer

to the same thing, the factor that controls the amount of the future change during

optimization. Learning rate is often used in the context of deep learning whereas

step size is used in the context of machine learning overall. We will use the

learning rate to refer only to the step size used in gradient descent optimization

to update each parameter once gradients are calculated. We will keep the step

size to generally refer to factor that control the future update, which include loss

scaling.

In this chapter, we’ll discuss different modalities of loss scaling and their effect on

learning. In the next section, we’ll discuss the effect of step size on loss scaling.

This will be followed by the effect of loss scaling on gradient operators and mixed

precision training.

4.1 Loss Scaling as Step Size

In gradient descent, loss scaling and learning rate are equivalent. Calculating

the gradients form the loss and then applying the learning rate on the gradients

is equivalent to scaling the loss and then computing the gradients. Historically,

however, linear and neural network models have just a few parameters, and it
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4.1 Loss Scaling as Step Size

is more natural to apply the step size on the gradients, because those are the

future updates. More complex models require more parameters which increase

the model capacity to capture certain representation during training, and recent

models can reach billions of parameters easily. Choosing between applying the

learning rate to each individual parameter or applying the learning rate on the

loss only is now more obvious.

Proposition 4.1. In gradient descent, parameters update from scaling loss by α

is equivalent to applying the learning rate with that value.

Proof. Parameter update is given in Equation 3.10:

θ ← θ −∆ (4.1)

Using the learning rate dictates the change as Equation 3.11:

∆ = η · g (4.2)

Gradient g is given by Equation 3.12:

g =
1

n
∇θ

n∑
i

Li

Now, we define new gradient ĝ computed from the loss scaled by α = η:

ĝ =
1

n
∇θ

n∑
i

αLi

= α
1

n
∇θ

n∑
i

Li

= α g

(4.3)

We use the plain update from Equation 3.7 that uses only gradients and does not

use a learning rate:

∆ = ĝ (4.4)

31



Chapter 4: Loss Scaling

Since α = η, this update is equivalent to Equation 3.11.

4.1.1 Geometrical Interpretation

Both scaling the loss and learning rate achieve the same step size but in different

ways. In this section, we provide a geometrical interpretation of loss scaling

versus learning rate. The geometrical interpretation aid in the interpretation

and visualization of the concept. Figure 4.1 shows a single dimensional quadratic

function f = θ2, with θ = 1, and minimum as 0. Gradient is computed as ∇θf =

2·θ = 2. However, it results in a large amount of movement as θ−g = 1−2 = −1.
This large movement just moves the parameters to the other side.

In case of scaling the loss down, 0 ≤ α ≤ 1; the loss surface is flattened by

that factor, which results in smaller gradients. In other words, the function is

scaled by that factor. The quadratic function in Figure 4.1b becomes α ·f = 1
2 θ

2

and the gradients now are g = 1
2 2 θ = 1 and ∆ = 1 − 1 = 0. Scaling the loss

down can help with the exploding gradients, which is discussed in more details

in section 4.2.
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(a) Learning rate = 1
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(b) Scaling the loss by 1
2

Figure 4.1: Scaling the learning rate and the loss down.

When scaling the loss up, α ≥ 1 the loss surface stretched by that factor, which

results in larger gradients. The quadratic function in Figure 4.2b becomes α ·f =

3
2 θ

2 and the gradients now are 3 θ = θ = 3 and ∆ = 1− 3 = −2. Large amount

of scaling is not optimal for the quadratic function, but it is for other functions,
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and it can help with the vanishing gradients as explained in section 4.2.
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Figure 4.2: Scaling the learning rate and the loss up.

In the next subsection, I present an experiment that shows time enhancement

when using loss scaling instead of the learning rate.

4.1.2 Experiment

For the experiments, I created four models: A, B, C, and D. The models are

described below and are created with different number of parameters to show the

effect of parameters on the execution time. Each model is trained with different

batch sizes (32 and 64), different number of epochs (1 and 10), the two methods

(learning rate lr and loss scaling sc), and different scaling and learning factor

for each method (0.1 and 10).

Table 4.1: Description of the models.

A B C D

Type cnn cnn Dense Dense

Parameters 8, 954 91, 082 12, 730 109, 386

Description convolution 320
convolution 4624

dense 4010

convolution 1280
convolution 73792

dense 16010

dense 12560
dense 170

dense 100480
dense 8256
dense 650

33



Chapter 4: Loss Scaling

4.1.2.1 Results and Discussion

I have presented the execution time for each model and each scale factor in

Figure 4.3. Each experiment is run for 10 epochs and averaged; the time axis

shows the time per epoch. Individual epochs, except for the first one1, have

similar timing.

Figure 4.3: Execution times for sl vs. lr and scale factor of 0.1.

Figure 4.4: Execution times for sl vs. lr and scale factor of 10.

1First batches and epochs interleave with other processes unrelated to gradients operations,
like data caching, kernel launching and more. For more information, please check this link.
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4.2 Loss Scaling for Numerical Instability

As the experiments show, execution time improves when avoiding the use of

learning rate and using loss scaling instead. Experiments also show that the time

is sensitive to the number of batches, which represent the number of updates.

More updates imply time improvement at each update, and that can be beneficial

especially that it has been recommended to use small batches (and subsequently

more updates) for better generalization [6, 74].

Now that we showed empirical evidence that loss scaling is beneficial in practice,

we move to the possibility of using the loss to help with numerical instability. In

particular, to help with vanishing and exploding gradients. We first introduce

the problem, and then we move to discuss various ways that help alleviate the

problem. Finally, we introduce loss scaling as a tool that helps with vanishing

gradients, especially in mixed precision training.

4.2 Loss Scaling for Numerical Instability

Loss scaling is used to prevent numerical underflow or overflow during training.

It is used in particular to help with vanishing and exploding gradients. The

problems happen because the hardware is limited to represent numbers within

a certain range. There may be a need to go beyond the specified range which

arises in deeper models as shown in Figure 4.5, and leads to numerical instability

and poor performance. In this section, we present the problem of vanishing and

exploding gradients as well as different techniques used to deal with the problem.

Finally, we present mixed precision training in subsection 4.2.2 as a technique

used to accelerate training and employ loss scaling to avoid vanishing gradients

in particular.

4.2.1 Vanishing and Exploding Gradients

Theoretically, a deep network should be able to learn a representation that is at

least as good as its shallower subnet where the last k layers are removed. This

can be achieved by transforming the representation of the last k layers by identity
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function, in which f(g(x)) = g(x). The idea is at the core of the residual net-

works [47]. Deeper networks therefore, if not at least as expressive as the shallow

networks, are actually more expressive. However, the experimental results show

otherwise. The performance of deeper networks is worse than their shallower ver-

sions and they are harder to train. This phenomenon can be explained by multiple

reasons but the main reason behind the difficulty of training is the concept of

vanishing and exploding gradients. Increased depth requires consecutive multi-

plications of gradients during backpropagation. The consecutive multiplications

result in exponential growth or decay to the point of no longer being supportable

by the assigned datatypes. Before proceeding with the gradients problems, it is

necessary to take a closer look at the underlying problems of arithmetic overflow

and underflow.

An arithmetic overflow happens when the result of an operation exceeds the

largest values that can be represented in the assigned datatype. It is detectable

by an overflow flag and may show up as∞ or NaN (Not A Number). If we have a

2-bits type, for instance, with four unsigned number ranges from 0 to 3, then any

subtraction from 0 or addition to 3 will result in an overflow. On the other hand,

an arithmetic underflow happens when the result of a floating point operation is

less than 1 and less than the value that can be represented by the floating part,

which shows up as a zero. A number in a datatype that has only a single digit

before the floating point and two digits after the floating point as in 7.95 will

vanish by any three consecutive divisions by 10 (or multiplications by 0.1) that

sets it to 0.0. Both issues, especially the underflow issue, are more complicated

than presented here and are presented in detail in [48].

Having discussed both underflow and overflow, we can move to the gradients

problems. The vanishing gradients problem happens in deep networks when

small numbers are consecutively multiplied to extract the gradients but result in

zero gradients that are unable to update the parameters anymore. Likewise, the

exploding gradients problem happens for the same reason but when too big or

too small numbers are multiplied and result in overflowed gradients that make

erroneous updates. Both of these problems have been fundamental issues in

36



4.2 Loss Scaling for Numerical Instability
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Figure 4.5: Vanishing gradients in shallow and deeper model

deep learning since the 1990s, and the reason behind developing various methods

and architectures to rectify them can explain the success achieved by a method

[16, 40, 51, 85]. The problems are dealt with by modifying the parameters, the

activation functions, or the topology, three types of solutions that we present

next.

4.2.1.1 Parameter Initialization and Regularization

Parameters initialization specifies the initial condition which determines whether

a model will converge to a good minimum or not. Two initialization schemes

may result in the same loss value, but one may be harder to train than the

other. Consider a trivial function f(x, θ) = x × θ1 × θ2 and an input x =

{1}. Two isomorphic sets of parameters will generate the same value f(x; θ1 =

1, θ2 = 2−1) = 1
2 and f(x; θ1 = 1010, θ2 = 20−10) = 1

2 . The first is clearly

easier to move to an optimal solution of, let’s assume, 0. A poor initialization

can also reduce the capacity of a model by moving units in the same layer to

be identical, or even worse, to initialize them to be identical. Units in the same
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layer with the same values, or symmetrical units, can never learn differently [14].

Another problem is initializing the units with values that saturate the activation

functions to their limits, preventing a model from learning. I’ll discuss here

how different initialization and regularization schemes are used to address the

gradients problem.

If we want to prevent gradients from exploding or vanishing, we need to keep the

squared singular values2 of the Jacobian between layers near 1. Larger singular

values indicate possible gradient explosions while smaller values indicate possible

gradients vanishing [35, 110]. Different initialization schemes provide various

ways to keep the Jacobian singular values near 1. Gaussian random initialization

can preserve the norm as each layer means that the singular values are close to,

but not exactly, 1 [35]. Sussillo and Abbott proposed random walk initialization

that aims at producing random matrices where the norm is preserved by random

walk correction [109]. Using orthogonal matrices for initialization is proposed as

well for the same purpose, especially because they ensure that the Jacobian exact

singular values of 1 for linear networks [100]. There are several methods that aim

at choosing the right initial conditions in order to keep forward and backward

flow under control. Once the parameters are initialized, we can further regularize

their values to control the gradients flow by using normalization.

The process of normalization adjusts a set of values to a choice of their statistics

while keeping their relative relationship. Input normalization is applied in deep

learning to help a model converge faster and help to regularize the forward pass.

However, it has limited effect on the backward pass since the input layer does

not affect any further layers downstream. Batch normalization was introduced to

achieve similar effect but on the intermediate nodes [56]. The method suggests

that instead of normalizing a layer’s inputs with respect to each other, each input

can be normalized independently to the minibatch statistics. This helps with the

gradients problems as it controls the parameters’ growth. Weight normalization

does not modify the inputs of a node but rather its weights in a similar way [97].

Other normalization techniques exist; please refer to [54] for an overview. One

2The absolute eigenvalues of the squared Jacobian matrix
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factor that is closely related to initialization is the choice of activation function.

4.2.1.2 Activation Functions

The choice of activation functions is critical since they influence the network

in two steps. First in the forward pass, they transform a unit’s inputs into an

output affecting neurons in the subsequent layers. Later in the backward pass,

their derivatives are multiplied by the upcoming gradients stream which affects

the flow going to all preceding layers. Most activation functions relate to the

problem of vanishing gradients more than the exploding problem, especially the

sigmoid activation functions.

Sigmoid functions are functions that have an S shape, implying that they are

monotonically increasing and bound to some finite value. Examples of such

functions are the logistic and hyperbolic tangent functions, see Appendix A.

Since they are bound to finite values, the functions have been used to estimate

probabilities since the 1950s [24, 114]. Despite their ability to transform the

input which gives a neuron more expressive power, such transformation binds

the result to a small range. A logistic function (σ), for example, squashes input

values between zero and one which means that the chance the parameters are

going to be saturated to these values is high. Its small derivative σ(1− σ) with

maximum value at 1
4 exposes the network to the gradients problems.

One solution to the gradients problem is to use the identity function that keeps

the input as is. The identity function does not change the gradients flow with

derivative of 1 but it reduces the node expressiveness as being a linear unit and

throws further burden on initialization. Another alternative is to use a linear

rectifier function ReLU that is bounded by zero on one side and not bounded by

one on the other [79]. The function has contributed to the success of AlexNet

and some of the following architectures in increasing the network depth. While

it can keep the original input undisturbed when positive, with gradients of 1,

it can be quite problematic with negative inputs as its derivative is zero. Leaky

ReLU [72], and its parametric generalization [46] keeps derivatives the same when
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input is positive and also provides more information on the negative inputs with

a fractional derivatives.

Another function that is similar to the rectifier but has some nice properties is

softplus [28]. The function is not bound on the positive side and is differentiable

everywhere with the logistic function as its first order derivative. More activation

functions that provide different transformations exist [10, 61], but choosing the

activation function is tightly coupled with the appropriate initialization. Both

initialization and activation mitigate the gradients issues by changing the gradi-

ents stream; topology can do the same by changing how the stream flow.

4.2.1.3 Topology

Changing the network topology, or even connections inside neurons, helps with

the gradients problems. One of the earliest attempts to achieve this was in long

short term memory (lstm) to learn long time dependencies that traditional re-

current neural networks (rnns) failed to capture [16, 52]. In a classical rnns

neuron, there are at least two weight vectors, one for the current input and one

for the output from a previous time step. lstm adds at least three copies of

those with various connections, but most importantly, it adds an internal state

connection that goes from one time step to another without passing through any

activation function and is not assigned direct weights. The independence allows

the gradients to have a channel to propagate backwards with minimal alteration

even if other gradients vanish. More successful architectures have similar mech-

anisms that account for their success and ability to have deeper networks.

One of the successful architectures that allow constructing very deep feedforward

networks is ResNet [47]. The rational is that a deeper model should learn what an

identical shallower model can learn and more, which does not hold in practice.

He, et al, introduced residual connections that allow the information to freely

propagate from one layer to the next, in a way similar to that of lstm [47].

In fact, an investigation shows the resemblance between the rnns and residual

nets [68]. Other architectures that incorporate some gating mechanisms that
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help with the flow of the input in the forward propagation and updates in the

backward propagation include highway networks, vgg networks among others

[105, 108]

All the solutions mentioned above are advantageous for problems in existing

gradients. However, we can draw a simple yet effective solution from a hardware

viewpoint, particularly from the area of mixed precision training. One of the

solutions that helps with gradients problems and can be used as a proxy for some

of the hyperparameters in learning algorithms is the loss scaling.

4.2.2 Mixed Precision Training

The capacity of a model is proportional to its size [82]. However, larger models

consume more time in training and at inference time. There are efforts to lower

the time and memory consumption by reducing the precision of the parameters

during training, as done in mixed precising training or or using model compres-

sion and knowledge distillation after a model has been trained [42, 67, 77]. Mixed

precision training is a way to use lower precision format when possible to accel-

erate training and higher precision format in critical computations to maintain

good performance.

Training is typically conducted using the same precision format, such as single

precision floating points format, where the numbers occupy 32 bits of memory

(fp32). There are other types of precision that are less frequently used. Double

precision format numbers occupy 64 bits (fp64) whereas half precision occupies

16 bits (fp16). Higher precision formats are better in performance, but there is a

tradeoff between precision on one hand, and memory and time on the other. We

can accelerate the training by using mixed precision numbers such that lower pre-

cision numbers are used for precision-insensitive calculations and single precision

is kept for sensitive calculations [25, 77].

Smaller formats lose some of the accuracy and several techniques have been used

to mitigate that effect. One is to keep a copy of the model in the original larger

format but implement the forward pass and the gradient calculations in a copy
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of smaller formats. Once computed, the lower precision gradients update the

original copy. Also, small precision formats should be used whenever beneficial.

For instance, final reductions and normalization should be computed in larger

formats while each tensor reading and writing from memory can be performed in

smaller formats. The most interesting technique of all is the loss scaling.

4.2.2.1 Loss Scaling in Mixed Precision Training

Loss scaling has been introduced in [77] to mitigate the problems in mixed integer

training which is, in its core, identical to Proposition 4.1. The idea is to scale the

loss by a factor α to a value that moves the gradients into representable values

without affecting the parameters update by scaling the gradients back using the

same scaling factor.

ĝ = α · ∂L
∂θ

(4.5)

Finally, the gradients are scaled back to match the original gradients using full

precision.

g =
ĝ

α
(4.6)

The factor of scaling in the work is fixed during the entire training which is

called fixed loss scaling. Since the gradients are scaled back to the original loss,

there is no effect of the loss scaling on the final updates. An enhancement is

achieved when we have dynamic loss scaling where the scaling factor is changed

during training [63, 75]. Zhao, et al, proposed a more interesting approach,

which introduces the concept of adaptive loss scaling [117]. The concept is to

adapt different loss scaling factors not only in time for the training, but also

for different layers in the network. Scaling the loss back and using learning rate

is redundant and computation can be saved by scaling the loss in a way that

accounts for the step size. Finally, we present a metalearning method to learn
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layerwise weights for layerwise step size and can be used for adaptive and learned

rescaling factor.

Experiment I introduce a method to rescale the gradients in subsection 6.3.4.

In the method, I use a model to rescale gradients differently at each layer, and

at the same time I avoid using the learning rate when updating the parameters.

The method is not introduced here because it is based on Metalearning which is

presented in chapter 6.

4.3 Chapter Summary

In this chapter, we begin with showing how loss scaling and learning rate are

equivalent as specifiers of the step size. Besides providing a theoretical proof,

we present a geometrical and visual tool for interpretation, supported by our

empirical results. Following that, we move to vanishing and exploding gradients,

two problems that loss scaling can help with. We review some literature that dealt

with the problem successfully. In the end, we present mixed precision training as

a technique that leverages loss scaling to prevent gradients from exploding.
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Loss Scaling for Adaptive

Learning Algorithms

Gradient descent, described earlier, depends entirely on the learning rate to adjust

the gradients in each update. On the other hand, adaptive learning algorithms use

information from past gradients to produce adaptive step sizes. In most cases, the

information comes from estimates of gradient moments, such as momentum and

Nesterov’s momentum that use some estimates of first moments [81]. Nonetheless,

adaptive optimizers use non-learnable parameters ϕ, called hyperparameters to

control the effect of the information. Those parameters must be specified ahead

of training and may be tuned during training. Different hyperparameter values

are required for topology, activations being used, initialization, and the task at

hand. It is challenging to decide on the right values in an optimal manner.

Information from past gradients offers a perspective on dimensions that change

differently depending on movement. A loss surface embedded in three dimensions

is shown in Figure 5.1. The parameters change differently; movements in θ1

change the loss faster, whereas the same movement along the other dimension

changes the loss at a slower rate. Therefore, a history or moving estimates may

regulate the learning and help reach a local minimum faster.

In this chapter, we will examine some widely used adaptive algorithms and the
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Figure 5.1: Loss surface that is narrow in one dimension.

different approaches they use to update the parameters. Then we cover the

general use of the first and second moments in adaptive optimizers, and the pos-

sibility of replacing the hyperparameters and variables with scaling the loss. In

the end, we present the results and the finding of empirically replacing those hy-

perparameters with loss scaling. Please see Appendix B for a detailed description

of the update rules.

5.1 Adaptive Learning Algorithms

Adaptive Gradient Algorithm, Adagrad for short, adapts the learning rate such

that the more frequently updated parameters receive smaller updates. That

is done simply by normalizing the gradients to their history of magnitude, the

square root of the sum of the squared gradients [27]. The parameters are similarly

updated by RMSProp or the Root Mean Square Propagation, but it normalizes

the learning rate by a weighted sum of the current and previous magnitudes of

gradient [111]. That lets recently updated parameters receive smaller updates.

RMSProp inspired later algorithms; some of the most significant algorithms are

Adam and Adadelta.

Adam normalizes the learning rate just as RMSProp but updates the parameters
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Table 5.1: List of change functions in some gradient descent optimizers.

Optimizer Update Function Change Function Initialization

u(θ, g, ϕ) ∆(g, ϕ) ϕ

SGD u = θ −∆ ∆ = η · g η = 0.01

Momentum u = θ −∆ ∆ = η · s

s = β · s+ g

η = 0.01

s = 0

β = 0.9

RMSProp u = θ −∆ ∆ = η · g√
r

r ← γ r + γ g ⊙ g

η = 0.001

r = 0

γ = 0.9

Adam u = θ −∆ ∆ = η · s√
r

s← β s+ β g

r ← γ r + γ g ⊙ g

η = 0.001

s = 0

r = 0

β = 0.9

γ = 0.99

differently. It updates parameters according to weighted sum of current and

previous gradients [60]. Adadelta normalizes the weight like RMSProp, but does

not use an explicit learning rate. It scales the step size by weighted history of the

normalized magnitudes of gradients. It is possible to modify adaptive algorithms

to incorporate Nesterov’s approach to compute updates, as achieved in Nadam

[26]. The aforementioned algorithms are among the most common optimizers

because of their performance and ease of use, as they are already implemented

in libraries like TensorFlow and PyTorch [1, 87]. There is an abundance of

other optimizers, and one review identified more than a hundred gradient-based

optimization algorithms [103]. I have presented a list of change functions in some

gradient descent optimizers in Table 5.1.

One of the challenges in this type of learning algorithms is the hyperparameters

tuning or the selection the right values for the hyperparameters at certain steps.
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5.2 Moment Estimation in Optimizers

There have been efforts to provide insight into their performance [101, 106];

however, a mathematical or structured solution is still lacking. For example, there

is no explicit formula between the learning rate and the depth of the network.

Another problem is the fact that the hyperparameters are typically fixed for all

layers. That is, the learning rate is fixed for all gradients regardless of their

position in the network, and regardless of the activations being used.

This chapter extends using the loss from replacing only the learning rate to

replace some hyperparameters in adaptive learning algorithms. In particular, I

present the effect of using loss scaling in two widely used optimizers, Adam [60]

and RMSProp [111]. The two optimizers normalize the gradients, or a history

of the gradients, with the magnitude history of the gradients as we see next.

Finally, I show that the loss can not be used to replace the momentum and other

optimizer variables.

5.2 Moment Estimation in Optimizers

Generally, optimizers in deep learning follow a similar approach; some use es-

timates of first moments, others use estimates of second moments, and some

combine both. First-moment optimizers, like classical momentum, keep the in-

formation about gradients’ history (moving average) in each update. Second-

moment optimizers, like AdaDelta and Adam, keep additional information about

the history of magnitude of the gradients (moving variance) and normalize the

gradients to its square root. We can say that the update rule can be roughly

generalized to have moving average s as well as moving variance r:

s← β s + β g (5.1)

r ← γ r + γ g ⊙ g (5.2)
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where the symbol ⊙ signifies the Hadamard or element wise product, and g⊙2 =

g ⊙ g. If the gradients are not zero, the change is given by:

∆ = η
s√
r

(5.3)

With β and γ as the hyperparameters having values in the range [0, 1] and the

bar indicates the complement, (β = 0.9 ⇒ β = 0.1). The formulation is not

exact but can be easily extended to match each optimizer’s algorithm. The

reason we choose this general notion instead of specific update rules is that it

provides an umbrella under which we can address the same problem in different

optimizers easily, while we are still specific when specifying the exact values. For

example, the typical values for classical momentum, Adam, and RMSprop are

(β > 0, γ = 1, and r = 1), (β = 0.9, γ = 0.999), and (β = 0, γ = 0.9) respectively.

5.2.1 First Moment Estimates

There are four hyperparameters in Equation 5.1 and Equation 5.2: β, γ and their

complements. Unfolding the recurrence of si in Equation 5.1 gives the classical

momentum:

s1 = βg1 (5.4a)

s2 = ββg1 + βg2 (5.4b)

s3 = β2βg1 + ββg2 + βg3 (5.4c)

This will let the exact first moment estimate at iteration i to be

si =
i∑

k=1

βi−kβ · gk (5.5)

si = β

i∑
k=1

βi−k · gk (5.6)
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5.2.2 Second Moment Estimates

Similarly, the recurrence in Equation 5.2 will unfold:

r1 = γg⊙2
1 (5.7a)

r2 = γγg⊙2
1 + γg⊙2

2 (5.7b)

r3 = γ2γg⊙2
1 + γγg⊙2

2 + γg⊙2
3 (5.7c)

This will let the exact second moment estimate at iteration i be:

ri =

i∑
k=1

γγi−k · g⊙2
k (5.8)

ri = γ
i∑

k=1

γi−k · g⊙2
k (5.9)

5.2.3 Integrating Both Estimates

Substituting Equation 5.6 and Equation 5.9 in Equation 5.3:

∆i ← η
β√
γ

∑i
k=1 β

i−k · gk√∑i
k=1 γ

i−k · g⊙2
k

(5.10)

5.2.4 Loss Scaling for Moment Estimates

If gradient computations were not expensive in term of processing time, we could

scale the loss differently. That is, we could provide a scaling factor ηβ for the

first moment and another scaling factor γ for the second moment. However, since

gradients are calculated only once, then a single scaling factor is needed.

Proposition 5.1. Let the change of parameters at time i be:

∆̂i = η
ŝi√
r̂i

(5.11)
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That has the following estimates from scaled gradients:

ŝ← β ŝ + α ĝ

r̂ ← γ r̂ + ĝ⊙2
(5.12)

Then, the loss scaling factor that makes ∆̂i equivalent to the change in Equa-

tion 5.3, ∆̂i = ∆i, is:

α =
ηβ√
γ

(5.13)

In other words, the proper values to scale the loss and remove two hyperparame-

ters which are β, and γ is α = ηβ√
γ
, given their new values in Equation 5.12. The

proof of the proposition that has been put forth is below.

Proof. We have already established that the change at time i is given by Equa-

tion 5.10. If we scale the loss by:

α =
ηβ√
γ

(5.14)

Then we will have the following update:

∆i =
α√
α2

∑i
k=1 β

i−k · gk√∑i
k=1 γ

i−k · g⊙2
k

(5.15)

This implies that any scaling factor will be eliminated due to the normalization.

Still, there is a window of improvement, especially that deep learning libraries

use the complementary software, like TensorFlow and PyTorch. Each parameter

derivative and squared derivative are multiplied by their respective complement

and finally update the value of each parameter by multiplying with the learning

rate. Therefore, adding a single multiplication will improve the performance if

we scale the loss appropriately.
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5.2 Moment Estimation in Optimizers

First, let’s compute a scaled gradient ĝ from a scaled loss:

αg = ĝ =
∂L̂
∂θ

=
∂αL
∂θ

(5.16)

Then, we remove the complement from the scaled moving average ŝ and scale

the gradient by α:

ŝi ← β ŝi−1 + α ĝi (5.17)

ŝi = α

i∑
k=1

βi−k · ĝk (5.18)

We remove the complement from the moving variance r̂i:

r̂i ← γ r̂i−1 + ĝi ⊙ ĝi (5.19)

ri =
i∑

k=1

γi−k · ĝ⊙2
k (5.20)

We need to remove the learning rate from the change since we scale the gradients,

so we let the change be:

∆i =
ŝi√
r̂i

(5.21)

Using scaled moments estimates from Equation 5.18 and Equation 5.20:

∆i =
α

∑i
k=1 β

i−k · ĝk√∑i
k=1 γ

i−k · ĝ⊙2
k

(5.22)

Substituting ĝ with αg from Equation 5.16 :

∆i =
α

∑i
k=1 β

i−k · αgk√∑i
k=1 γ

i−k · α2g⊙2
k

(5.23)

51



Chapter 5: Loss Scaling for Adaptive Learning Algorithms

Then, we extract the constants out of the summations:

∆i = α ·
∑i

k=1 β
i−k · gk√∑i

k=1 γ
i−k · g⊙2

k

(5.24)

Substituting for α from Equation 5.14:

∆i =
ηβ

γ
·

∑i
k=1 β

i−k · gk√∑i
k=1 γ

i−k · g⊙2
k

(5.25)

This is the update that we needed in Equation 5.10, with two hyperparameters

multiplications reduced for each parameter.

5.2.4.1 Experiment

Similar to loss scaling experiment presented in subsection 4.1.2, the experiments

for loss scaling for adaptive learning algorithms entail comparing the original

optimizer with a modified version that applies the rules enumerated above. The

algorithm involves first scaling the loss and then using the modified optimizer.

To make a fair comparison, I created two custom optimizers, one for the original

method and the other for the modified version. The reason is that TensorFlow

has implemented some core acceleration for built-in optimizers like Adam that

I can not directly replicate and this is one reason to switch to PyTorch for the

experiments. The optimizers are used to train identical models of the same

structure and weights with the same data to fix all other variables.

In the current experiments, I use the same models as used in the first experiments

described in subsection 4.1.2. The four models: A, B, C, and D were described

in Table 4.1. They are created with different number of parameters and different

type of connections in which two connection types are dense and the other two

are cnn to show their effect on execution time.
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I trained each model with both optimizers Adam and RMSProp and their mod-

ified versions, with different batch sizes (32, 64, and 128). That gives 48 ex-

periments; 4 experiments corresponding to the four models, 4 experiemnts cor-

responding to the optimizers and 3 for the batches. I ran each experiment for

20 epochs and computed the average time for batches per epoch. For example,

selecting 128 example in each batch of 60000 examples in MNIST yields 469

batches per epoch, and the total time is divided by 20 to show how long it takes

to run 469 updates on average. Finally, The hyperparameters values are just

the default values, for Adam they are enumerated as η = 0.001, β = 0.9, and

γ = 0.999, while for RMSProp they are η = 0.001 and γ = 0.9. I’ll make my

code, details and logs available via Github. The AWS instance type used to pro-

duce the experiments is G4dn which is one of the G instances that use hardware

accelerators. It has 1 gpu, 8 virtual cpus, 32 GiB of memory, and 16 GiB of

gpu memory. The experiments are shown in Figure 5.2 and Figure 5.3.

5.2.5 Discussion

The experiments show that there is improvement in execution time when scaling

the loss versus using the original optimizer. Similar to the first experiment, the

time is directly proportional to the number of batches and the model size. More

batches means more updates and more parameters means more computations in

each update. Moreover, there is more improvement in Adam than in RMSProp

because the former uses more hyperparameters and thus exploits the benefits of

scaling the loss.

5.3 Momentum Variables and Step Size

Momentum has hyperparameters as well as variables that save the moving aver-

age. We cannot use a loss variable as a proxy of them as shown below. First, the
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Figure 5.2: Execution time of the models using RMSProp and scaled RMSProp. The circle
signifies the model size in terms of the number of parameters.
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Figure 5.3: Execution time of the models using Adam and scaled Adam.
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update rule that gives a momentum to the weights is:

∆ = η · s

θ ← θ − η · s
(5.26)

The velocity s keeps track of the previous weights movements or the gradients

according to a momentum coefficient β:

s← g + β · s (5.27)

Unfolding the recurrence:

s1 = g1 (5.28a)

s2 = βg1 + g2 (5.28b)

s3 = β2g1 + βg2 + g3 (5.28c)

This will let the exact value at iteration i to be:

si =

i∑
k=1

βi−k · gk (5.29)

=
i∑

k=1

βi−k · ∂Lk
∂θk−1

(5.30)

To rephrase it, a momentum variable si in iteration i is a weighted sum of the par-

tial derivatives of the loss at that iteration with respect to the current parameter.

By substituting si in Equation 5.26 with Equation 5.30:

θi ← θi−1 − η
i∑

k=1

βi−k · ∂Lk
∂θk−1

(5.31)
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5.3.1 Replacing Momentum with Loss

Instead of keeping a history of gradients v in addition to computing the gradients

in each iteration, we can use an update rule similar to Equation 3.10:

θi ← θi−1 − ηgi (5.32)

Except that we keep a history of losses, say a momentum loss ℓ, and the gradients

are calculated only once from that loss:

gi =
∂ℓi

∂θi−1
(5.33)

The momentum loss variable ℓ is a scalar that keeps a history of both the current

loss Li and the previous losses ℓi−1:

ℓi ← β ℓi−1 + Li (5.34)

Unfolding the recurrence:

ℓ1 = L1 (5.35a)

ℓ2 = βL1 + L2 (5.35b)

ℓ3 = β2L1 + βL2 + L3 (5.35c)

ℓi =
i∑

k=1

mi−k · Lk (5.36)

Taking the partial derivatives of both sides:

∂ℓi
∂θi−1

=
i∑

k=1

βi−k · ∂Lk
∂θi−1

(5.37)
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Substituting Equation 5.37 in Equation 5.32:

θi ← θi−1 − η
i∑

k=1

βi−k · ∂Lk
∂θi−1

(5.38)

5.3.2 Discussion

The difference between Equation 5.31 and Equation 5.38 is in terms of the index.

In Equation 5.31, the index k changes the semantics to compute the gradients

with respect to the weights in different iterations. Take for instance the gradients

at i = 3:

g3 =
3∑

k=1

m3−k · ∂Lk
∂θk−1

= m2∂L1
∂θ0

+m
∂L2
∂θ1

+
∂L3
∂θ2

However, in Equation 5.38, the index i is constant, and the gradients are com-

puted from different losses but with respect to the current weights only. Unfolding

the same iteration:

g3 =
∂ℓ3
∂θ2

=
3∑

k=1

m3−k · ∂Lk
∂θ2

= m2∂L1
∂θ2

+m
∂L2
∂θ2

+
∂L3
∂θ2

Therefore, we cannot use loss scaling instead of momentum variables. Never-

theless, approximation of those variables using history of the loss is worth an

investigation.
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5.4 Chapter Summary

In this chapter, we reviewed the adaptive learning algorithms and provided de-

tailed description on their update rules. Then, we established a general notation

for update rules in adaptive learning algorithms that use moment estimation.

We proved theoretically that given the general notation, some of the hyperpa-

rameters can be omitted and replaced by a scaling factor of the loss. Thereafter,

we present the empirical evidence that we can make training more efficient when

applying the scale factor. Finally, we showed that we cannot replace the variables

with some average of the loss. In the next chapter, we’ll introduce metalearn-

ing and use it to show that learnable loss will learn a proper scaling factor, and

we provide layer-wise optimizers that learn the step size to make training more

efficient.
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Step Size in Metalearning

We have set the optimizer parameters manually thus far and note that setting

those parameters is not trivial. It requires human skill, trial and error, and in

many cases, parameter search [17]. Even after finding proper parameter values,

these values may be often difficult to interpret and explain, making it challenging

to explain why a specific setting was chosen or how it affects the model perfor-

mance. Nonetheless, two areas help with the problem, which are hyperparameter

optimization and meta learning [18, 53]. They solve similar problems. However,

hyperparameter optimization is restricted to producing better hyperparameters,

whereas meta-learning is more general.

6.1 Metalearning

Metalearning, or learning to learn, uses past learning episodes or experiences to

improve future learning, which is regarded as a more innate way of learning. Still,

metalearning is an emerging field and even more so in the automation of certain

aspects of machine learning. It faces a lot of challenges such as the lack of a firm

mathematical foundation, the requirement of significant computational resources,

and the difficulty of interpretation of the discovered settings. Nonetheless, the

field provides promising solutions to the automation in different deep learning

problem. It helps in various learning applications, such as few-shot learning
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which is concerned with learning from limited amount of examples for the same

label or scenario. heterogeneous task learning in which the same model is trained

on tasks that are diverse such different modalities like texts and images. Other

applications include optimization, model compression, architecture search, and

fast learning.

A simple example of machine learning is to learn the learning rate, i.e. (ϕ = η)

[9, 66]. However, meta-learning can extend to the point where optimization is

not required at inference time. For example, one can embed and then map an

input to previously seen examples or to centroids of classes of observations and

subsequently produce an output based on the closest match, something similar to

k-nearest neighbors and k-means as done in the meta learners matching networks

and prototypical networks [107, 113]. While such methods help to quickly solve

new problems, the underlying learned representation still requires traditional

learning.

We start with a general problem formulation, and then outline a widely used

form of metalearning which involves two levels of optimization. Then, we use

meta loss to learn a scaled loss, and apply meta learning to learn the proper step

size in various metalearning settings.

6.1.1 Problem Formulation

In this section, we extend our discussion on optimization and establish a formula-

tion for metalearning that learns an optimizer in few-shot learning. Without loss

of generality, the formulation incorporates learning other types of representation,

such as learning initial conditions and learning a loss. In Equation 3.6 we stated

that an iterative optimization procedure will update the learnable parameters

θ according to a function parameterized by non-learnable ϕ which denotes the

optimizer’s parameters:

θ ← u(θ, .;ϕ) (6.1)
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Figure 6.1: Updates of learned optimizer and optimizee.

In hand-engineered optimizers like sgd and adam, ϕ is set manually, but it is

can be learned with metalearning.

Metalearning is conducted in two, possibly interleaved, phases: meta-training

phase in which the parameters ϕ are updated, and meta-testing phase in which

these parameters are evaluated. During meta-training, the learned optimizer

observes the performance of an optimizee parameterized by θ. We call the learned

optimizer the outer learner (ϕ) and we call the optimizee inner learner (θ). The

outer learner then receives information from the inner learner and subsequently

produces an update. After several inner updates, the outer optimizer is updated

by judging the performance of θ. Sequence of updates during meta training are

illustrated in Figure 6.1, starting form ϕ1 that is updated to ϕ2 after sequence of

of inner updates of the optimizee from θ1 to θJ , and the outer updates continue

until reaching a stopping criterion at ϕI . At the time of meta-testing, the inner

learner is initialized and trained by the learned optimizer as we described in

earlier chapters. This phase is just for testing and reporting the performance of

the meta learner.

One important aspect is the way data is split during the two phases. Throughout
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both phases, data D = {D}T1 comes from tasks that follow the same distribu-

tion T = {T1, . . . , Ti, . . . , TT } and Ti ∼ P (Tj). During meta-training phase, the

dataset is split into training and validation Dmeta = Dt
meta∪Dv

meta. The training

and its evaluation is usually done in two nested loops. The inner loop updates θ

using parameters ϕ for J times. We adapt the notation partially from reference

[53]:

θ∗ = argmin
θ

f(Dt
meta; θ)

≈ θJ = u(f(Dt
meta; θJ−1 . . . (u(f(Dt

meta; θ0);ϕ) ; ϕ)

(6.2)

The outer loop starts with an initialized ϕ that is updated after each inner loop

using Dv
meta and θJ for I times, using an optimizer parameterized by Φ:

ϕ∗ = argmin
ϕ

u(Dv
meta;ϕ)

≈ ϕI = U(u(Dv
meta;ϕI−1 . . . (U(u(Dv

meta;ϕ0); Φ) ; Φ)

(6.3)

Now that we have established a formulation, we present a detailed two-level

optimization-based metalearning algorithm that can be extended to metalearning

other representation.

6.1.2 Metalearning Optimization Algorithm

A general algorithm for meta leaning is outlined in algorithm 4. The algorithm

describes the general meta learning algorithm. For an episode of meta learning

on a single task (lines 5-9) please refer to Grefenstette, et al, [43] (page 6) who

outlined a meta algorithm that covers a wide range of algorithms that are able

to use diverging models and differentiable optimizers. Regular machine learning

algorithm is part of the last loop (lines 12-15) which entails training on a single

task and then testing once a model is produced. In meta learning, typically the

set of evaluation tasks contains just a single task, T val = {T1}.
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Algorithm 4: Optimization-Based Meta Learning
Input : ϕ meta optimizer.

θ: optimizee (model to be optimized)

T : set of tasks.

episodes: learning episodes.

1 T tr, T val ← split-sample(T )

// meta-training

2 foreach i in I do

3 Di ← get_data(Ti)
4 Dt

meta, Dv
meta ← split-sample(Dmeta)

5 foreach j in J do

6 θ ← meta-train(θ, ϕ,Dt
meta)

7 end

8 ϕ← meta-test(θ, ϕ,Dv
meta)

9 end

// meta-testing

10 foreach task i in T val do

11 Di ← get_data(Ti)
12 Dtr, Dts ← split-sample(Di)

13 θ ← train(θ, ϕ,Dtr)

14 test(θ, ϕ,Dts)

15 end

6.2 Learned Representation

Metalearning is utilized to learn representation for different objectives, and the

details of metalearning change accordingly. Learned representation ϕ, can vary

from initial conditions to learning optimizers that produce update rules. In this

section we will highlight some of the common learned representations and we

name few methods that use metalearning for that representation.

Learning better initial conditions is common in few shot learning and produce

better models for transfer learning. A popular method is model-agnostic meta-

learning (maml) in which the learned representation is the set of parameters

that can generalize well to a new task [29]. In maml, each θ in the inner loop is
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initialized to current ϕ; the inner update is:

θ ← θ − ηθ∇θf(Dt
meta; θ) (6.4)

The learned set of parameters in the outer loop in maml is given by:

ϕ← ϕ− ηϕ∇ϕf(Dv
meta; θ) (6.5)

Each ϕ update depends on how well these parameters behave starting from their

current point ϕ and ending with θ. The method influenced many other meta-

learner algorithms that focus on learning better initialization [90].

On the other hand, learning a metric is relatively successful in which a similarity

measure is learned to map data points to their nearest match and subsequently

make a decision. Matching networks for few shot learning embed the examples

during metatraining into a new space and then use an attention mechanism to

match never-before-seen example to some previously seen input and subsequently

predict its output [113]. Prototypical networks learns prototypes of each class

and then maps new example to the correct prototypes [107].

Other common objectives that we are interested in are learning a loss, learning

an optimizer and learning better hyperparamters, which we discuss in the fol-

lowing sections. We start with meta loss and we use it to show that learned

loss can learn a proper loss scaling that compensates for the lack of learning rate

inside the optimizer. We devote the last section for learning better update which

include both learning hyperparamters and learning an optimizer. For a detailed

discussion on metalearning, please refer to [12, 20, 53].

6.2.1 Learning A Loss

The selection of the right loss function for a task in hand can be sometimes

challenging. The challenges include sensitivity to outliers, or to unbalanced data.

Moreover, the loss tends to plateau after iterations of updates, which prevents

the model from improving, or results in numerical instability. Learning a loss
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or reward in case of reinforcement learning is an ongoing exploration area in

metalearning, especially that they are relatively easy to train and yield promising

results.

Learned loss or reward is usually achieved by some form of deep learning opti-

mization [11, 118], but it may be done using other techniques [39]. Task-adaptive

loss function (metal) learns a loss function using maml framework for few-shot

learning. The loss function is a two dense layers with ReLu nonlinearity, regu-

larized by other learnable parameters [8]. Extending the work of Bechtle, et al,

[11], Raymond, et al, [92] suggested updating the loss function after learning to

avoid overfilling the number of iterations used for training. Gao, et al, [31] use

similar approach to learn a loss but learning with implicit gradients [71]. For

physics-informed neural networks (pinns) that are used to approximate partial

differential equations (pdes), Psaros, et al, [89] proposed using a learned loss in-

stead of losses usually parameterized across various constraints. In the following

section we introduce another few-shot learning learned loss proposed by Bechtle,

et al [11].

6.2.1.1 Meta Loss

Bechtle, et al, suggest that instead of using loss functions, a learned loss called

Meta Learning via Learned Loss (ML3) may be used. The learned loss is a model

g parameterized by θ and operates on two inputs: the produced output of the

network f(x; θ), alongside the desired output y. The meta loss of θ is then:

Lθ = g(y, f(x; θ);ϕ) (6.6)

Then, the model is updated using the gradients from the meta loss:

θ ← θ − η∇θLθ (6.7)

The parameters of the loss model are finally updated using the loss generated by

a well-defined loss function (Lϕ) that is typically used for the task at hand such

66



6.2 Learned Representation

as the mean squared error for regression or cross entropy loss for classification,

and that conclude the meta training phase:

ϕ← ϕ− ηϕ∇ϕLϕ (6.8)

The inner and outer learning rates are different (η, ηϕ) and different optimizers

can be used. There is no test split during both meta training and meta testing.

The reason is that the loss function is only used for training. The meta testing

is basically described by Equation 6.6 and Equation 6.7.

We hypothesise that if loss is learned, then we can omit the learning rate from

the optimizer and the meta loss will learn a scaled loss that compensates for the

learning rate. We present our findings that empirically verify our hypothesis,

but first we describe the model for meta loss. Unlike the work of Gonzalez and

Miikkulainen [39], who noticed that the learned loss functions provide implicit

regularization of the learning rate, we provide the mathematical foundation of

the phenomena, which is that a loss scaling is a step size, and learned losses

should learn a proper scale.

6.2.1.2 Experiment

Task I selected to work on the problem to approximate a sinusoidal wave from

its x-axis input. A sinusoidal wave is a periodic function expressed by

f(x) = Asin(b(x− c)) + d (6.9)

A is the amplitude or the height of the sinusoidal function, b affects the period of

the wave which is the length of one complete cycle, c is the phase or the horizontal

shift, and d is the vertical shift. The problem is important since providing good

estimate can help with other periodic problems that exist in physics and finance

among other fields.

During meta training, the model is trained on 100 samples in each task from the
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function f(x) = sin(x − π), (A = 1, b = 1, c = π, d = 0, and x ∈ [−2.0, 2.0]).
During meta testing, the mode is tested on 100 samples in each task from the

function f(x) = A sin(x − w), (A ∼ [0.2, 5.0], b = 1, c ∼ [−π, π], d = 0, and

x ∈ [−2.0, 2.0]). There is no testing split in the data because the loss function

is only used while training. The meta learner (loss model) is trained with Adam

and learning rate of (0.001). The optimizee (optimized model) is trained with

sgd and learning rate of (0.001).

Hardware and Software Settings The experiment is implemented using

Python and Pytorch library. It is conducted on an Apple M1 chip device with

8 cores and 8gb of memory. The source code is cloned from the original paper

source code linked from Github.

The confusion between the two loss models is avoided by referring to the paper’s

learned loss with the name they suggest (ml3) and my model with sl. For this

experiment, sl should learn a loss that makes up for the step size given that we

use an sgd without the learning rate. Therefore, I did not implement a custom

optimizer but I just used a learning rate (η = 1) which is equivalent to not using

a learning rate:

θ − 1 · g = θ − g (6.10)

The reason is that this experiment is not to measure the speed or memory per-

formance but rather the learning trajectory; whether the two meta learners will

learn similarly or not.

Discussion In the first iteration, sl and ml3 produce the same output as they

initially have the same models. However, since sl is not used with a learning rate,

the effect of the gradients computed from sl loss is greater on the parameters.

I reduced the gain of sl parameters as well as the learning rate of its meta

optimizer to control the behavior and to mimic scaling the loss. The result is

shown in Figure 6.2.

It should be noted that, if we did not change the gain of the loss model, our

approach (sl) produces similar loss trajectory to ml3 but in a shorter time.
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(a) Train tasks.

(b) Test tasks.

Figure 6.2: Loss trajectory.
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However, the performance on training tasks starts to decrease after that point,

something we also noticed happening in ml3 after 500 episodes of training with

the same settings. In the paper they stopped training once reaching that point.

We can follow similarly and stop training earlier to achieve similar results.

6.3 Learning Improved Updates

We have introduced deep learning optimization in chapter 3 and chapter 5, and

we stated that the non-learnable parameters in an optimizers are called hyper-

paramters. Notwithstanding the limited setting, hyperparamters refer to any set-

ting in the environment ahead of training. That includes the number of layers,

the number of neurons in each layers, activations, and regularization parameters.

However, here we are interested in the optimizer’s non-learnable parameters such

as the learning rate. In this regard, learning optimizers and hyperparamteters

are two close representations. We first introduce learning hyperparamters, re-

stricting our discussion to parameters of an optimizer, and then move to learning

optimizers.

6.3.1 Hyperparameter Learning

Hyperparameters are typically set by hand, and if not set manually, they may

be discovered through random or grid search whose space is defined by each

hyperparameter and its possible configuration [17]. Nevertheless, search is re-

source intensive and its input requires contextual understanding. Metalearning

provide an elegant solution in which the learned representation is the proper

hyperparamters. Meta learning has been extended to learn an optimizer’s non-

learnable parameters, which are the category of hyperparameters we are studying,

and we can say that efforts in this area revolve around learning better learning

rate.

For few-shot learning and as an extension to maml, [66] introduced metasgd to

learn adaptive inner learning rate, ηθ in Equation 6.4 . Baik et. al. [9] has also

introduced another approach to lean an inner learning rate beside regularization
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hyperparameter. The work of Behl, et al [13], extends the inner learning rate to

additionally learn the outer learning rate, ηθ and ηϕ. Transfer learning demands

for learning differently at different layers, and metaler introduced layerwise

learning rates [22]. The method extends maml and autolr [94] to learn learning

rates for each layer. The efforts offer simple means of learning learning rates, and

next we move to another extreme presenting methods trying to learn a whole

optimizer.

6.3.2 Optimizer Learning

Many efforts have primarily focused on learning optimization, especially since

choosing the right optimizer and tuning its parameters demands experience. The

work of Andrychowicz, et al [3] starts with the use of recurrent networks for

their similarity with adaptive optimizers. The proposed meta optimizer consists

of two layers of lstm (long short-term memory) cells and a single dense layer,

and the network receives the gradients as an input and produces an update. The

representation ϕ is updated using the sum of the training losses as the main ob-

jective is to learn an optimizer that trains well. For few shot learning, Ravi and

Larochelle [91] follows similarly by using a custom recurrent network that receive

the gradients along with the loss. The representation is updated using the valida-

tion loss following the methodology in few-shot learning. other meta optimizers

include use of other types of layers like convolution and attention [32, 33, 78].

Learning an optimizer that produces effective update rules can be quite benefi-

cial, as it can accelerate learning and produce better models. However, learning

optimizers have proved to be significantly challenging despite their application,

and it remains an active research area [21, 76].

Learning better hyperparameters and better optimizers are related if we limit

the former to optimization, but we should draw some distinctions. First, learn-

ing optimizers typically involves learning a model that learns to update, while

learning optimization hyperparameters learns values that improve the optimiza-

tions. Subsequently, learning optimizers inherit all existing challenges of deep
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learning. Second, the input to hyperparameter learning is the hyperparamters

and the output is an optimized version of those hyperparameters, but the input

to optimizer learning is more complex. The input for optimizer learning is a

function of the optimizee’s parameters, alongside other information that may be

regarded as relevant.

Having introduced both learning to optimize and learning better hyperparam-

eters, we have devised a layerwise update rule that we introduce next named

LURE.

6.3.3 Layerwise Update Rule

Learning a black-box optimization as described in subsection 6.3.2 is renowned

for its difficulty [76]. However, the efforts we described in subsection 6.3.1 use

primitive ways to learn better hyperparameters. To be specific, all those methods

utilize scalars to learn better hyperparameters. I have named our method as lure

for Layerwise Update Rule. lure is in the middle between learning hyperparam-

eters and learning an optimizer, as it provides a layerwise update mechanism.

For each layer, we created simple model consisting of one unit followed by a hy-

perbolic tangent (tanh) non-linearity. That provides a layerwise meta-learning

for an optimizer, but here we draw the connection to hyperparameter learning.

Instead of providing a complex model, each layerwise model contains a single

unit that corresponds to the learning rate. We enforce this domain knowledge by

initializing the wights to positive uniform distribution scaled by (0.001). That

prevents initial dropping of critical information regarding gradients direction.

The non-linearity works to regulate the incoming gradients. Finally, the non-

linear transformation is multiplied by −1 to provide an update to the model that

simulates gradient descent.

The model, or the optimizee is identical to the one used in the previous experi-

ment, a three dense layer model with rectifier non-linearity (ReLU), Appendix C.

I used the Jax library to help in simplifying the implementation greatly which

otherwise get fairly complex and inconvenient.
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We introduce a novel implementation that consists of a few lines providing gen-

eral framework for custom layerwise optimizers that can adapt to any model

structure. To our knowledge, there are no layerwise metalearners. Moreover,

the architecture is usually flattened, resulting in loss of layer order information,

i.e. which layer come first and which comes next. The implementation of the

optimizer is shown in Codeblock 6.1.

First, the outer optimizer receives the gradients in form of PyTree, and the

gradient tree is flattened into leaves and its original structure in line 4, with each

leaf corresponding to a layer of the optimizee. To prevent an optimizer parameter

growth with the number of parameters in the optimizee, Andrychowicz, et al [3]

use coordinate wise parameter sharing, which is implemented in [91] by simply

adding extra small dimensions to the input tensors. We follow a similar method

but for each layer (line 7). Then for each layer, we created a model of one unit

mimicking the learning rate (line 8), followed by a non-linearity (line 9). The

hyperbolic tangent non-linearity maintains the original sign, a behavior desirable

in processing gradients. Finally, we restructured the learned update back that it

can be assigned directly to the optimizee’s parameters.

1 class Opt(nn.Module):
2 @nn.compact
3 def __call__(self, tree):
4 leaves, structure = tree_flatten(tree)
5 result =[]
6 for i, leaf in enumerate(leaves):
7 leaf = leaf[..., None]
8 leaf = nn.Dense(1, kernel_init=uniform(0.001), use_bias=False,

name=f’layer{i}’)(leaf)
9 leaf = nn.tanh(leaf)

10 leaf = leaf * −1.0
11 result.append(leaf[..., 0])
12 t = tree_unflatten(structure, result)
13 return t

Codeblock 6.1: Dynamic optimizer for layerwise learning rate using Jax
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6.3.3.1 Experimental Setup and Results

Task Similar to the previous experiment, I used the method to approximate a

sinusoidal wave. We use the same settings and training procedures in both lure

and metasgd. During meta training, the model is trained on 100 samples in each

task from the function f(x) = sin(x−π), (A ∼ [0.5, 2.0], b = 1, c = π, d = 0, and

x ∈ [−5.0, 5.0]). During meta testing, the model is tested on 100 samples in each

task from the function f(x) = Asin(x−w), (A ∼ [0.5, 2.0], b = 1, c ∼ [−π, π], d =

0, and x ∈ [−5.0, 5.0]). We trained the optimizer with 10000 episodes, and we

reinitialized the optimizee after t=110 steps. During meta-testing, we trained

the optimizee for t steps, and then we evaluate its performance at the last time

step.

Hardware and Software Settings The experiment is implemented with Jax

library. Jax is an open-source Python library providing an autodifferentiation

mechanism for NumPy tensors, and it provides its own data structure called

PyTree that facilitates the building of a computational graph [19]. Similar to the

previous experiment, it is conducted on Apple M1 chip device, with 8 cores, and

8GB of memory.

Discussion The results shown in Figure 6.3 compare the performance of our

method to Metasgd [66], and the comparison is at meta-test time. The smooth

lines in Figure 6.3a show the averaged optimization trajectory over episodes of

learning, line 13 in algorithm 4. Our method shows a significant training im-

provement with a fast convergence. We also show the result of testing during

meta-testing phase in Figure 6.3b, and the jagged line is due to the lack of aver-

aging at different steps. Each point represents testing the optimizee trained by

our proposed optimizer, corresponding to line 14 in algorithm 4.

Our proposed layerwise optimizer provides a general skeleton for any layer-wise

optimizer. In particular, the two lines 8-9 in Codeblock 6.1 can be replaced by

a more complex optimization model. In the following section, we use a more

complex model using our proposed layer-wise optimizer to rescale the gradients

after being scaled up in mixed precision training (mpt). In the following section,
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(a) Average training loss during meta test time.
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(b) Test loss during meta test time.

Figure 6.3: Performance of our layer-wise learned update.
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we use a more complex model using in our proposed layer-wise optimizer to

rescale the gradients after being scaled up in mpt.

6.3.4 Meta Gradient Rescaling for MPT

Although loss scaling is only present in mixed precision training research (sub-

section 4.2.2), it has not been connected explicitly to the step size. That results

in redundant application of the learning rate. In this section, I use the same

concept of layerwise update to rescale the gradients and produce an update for

mixed precision training. We name the optimizer (mpt_lure)

6.3.4.1 Experimental Setup

In this experiment, I first meta-trained the model that rescales the gradients from

scaled loss. Once meta-training is done, I used the learned model as an optimizer

that receives the scaled gradients and produces updates. I compare our optimizer

to rescaling the loss and then using Adam optimizer [60].

Hardware and Software Settings I use the same settings as the previous

experiment. However, in this experiment, I make use of the jmp library. This

library provides utilities for mpt in Jax across platforms [7]. The mpt policy for

this experiment is to use full precision format for parameters, and half precision

format for forward and backward computations. The sine wave setting is exactly

like the previous experiment, but we trained our model for only 6000 episodes.

We use Adagrad to train our model with a learning rate of 0.001, we have not

conducted meta-testing whilst training. We have introduced the concept of lay-

erwise optimizer and we showed example in this section, so for the model used

in this experiment, please refer to Codeblock C.2 in Appendix C.

Discussion The result of the experiment is shown in Figure 6.4, and we re-

port regular training, or meta-testing after meta training is finished. Our pro-

posed layerwise optimizer with minimal number of parameters, which are only

two per layer, one is for learnable rescaling, and one for learnable learning
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(b) Test loss during meta test time.

Figure 6.4: Performance of our MPT_LURE learned update vs. rescaling.
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rate. The results of our model that consists of only (12) learnable parame-

ters show its competition to a more complicated process done in mpt, which

is rescaling the gradient first and then using the rescaled gradients in an opti-

mizer, which is in our case Adam optimizer. It is worth mentioning that Adam

is continuously keeping (3522) parameters in the memory for the same model

aside from its hyperparameters. For each one of the parameters in optimizee

θ = {(40, 40), (1600, 40), (40, 1)}, Adam maintains two copies, one for the first

moment and one for the second moment as in Equation 5.3. In conclusion, our

model show similar results with significantly less parameters and preprocessing.

6.4 Chapter Summary

Metalearning offers exciting possibilities for breakthroughs that can address diffi-

cult problems such as machine learning optimization. We started with developing

a mathematical framework for metalearning, and outlined a general algorithm

commonly used for metalearning. Then I provided examples and literature re-

view of learned representations. I focused on three learned types of representation

which are loss learning, hyperparameter learning, and optimizer learning and dis-

cussed each in some details. I introduced learned loss and used an example to

show that the learned loss can learn a scaled loss given that we omit the learning

rate from the optimizer while training. Second, I presented learned hyperpa-

rameters and learned optimizers and introduced the method that offers a means

to create layerwise optimizer that transforms its input and learns improved up-

dates. Finally, I tuned the method for mixed precision training to learn dynamic

rescaling and updates.
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Discussion and Future Work

In this chapter, I will summarize the contributions of my dissertation and then,

highlight the limitations and challenges that were encountered during the course

of this dissertation. I will also present the opportunities for future research and

improvement in the work.

7.1 Summary of Dissertation

Throughout this dissertation, we focus on making deep learning training more

efficient by exploiting the fact that loss scaling works as a step size. We showed

their equivalence in simple gradient descent and how to use loss scaling to adapt

the step size in adaptive learning algorithms. We showed that by exploiting the

presented relationship, we can save valuable resources during training. From this

viewpoint, we showed that learnable losses adjust and learn the proper step size

as well. Finally, and based on the relationship, we designed a learnable optimizer

that can learn a proper rescaling loss factor and step size that make training

more efficient.
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7.2 Challenges and Limitations

I had planned to conduct experiments that have not been presented here and I

will summarize them in two areas: learning dynamics and meta optimizers.

7.2.1 Learning Dynamics

Before embarking on the journey of this research, I proposed to scale the loss

based on the architecture of the network including its depth, number of neurons

in each layer, and activations. After starting the research, I found that the

problem is more complex than it looks.

The problem involves the exploration of modes of evolution of complex systems

over time. It is a widely recognized obstacle in other fields such as complex system

analysis and has not been solved yet due to the many changing variables that

should be taken into consideration. I spent precious amount of time attempting

to solve this, but I stopped trying to solve the problem once I realized the extent

of its complexity. The scope of the problem is beyond this research, but I will

name a number of approaches trying to understand learning dynamics in deep

learning.

Most of the efforts to solve the problem of learning dynamics focus primarily

on exploring the limits of the deep learning system. Goldt, et al, attempted to

reduce the number of layers [37] while Saxe, et al, tried to remove non-linear

activations [99, 100]. Overparameterization also provides a tool to understand

the learning dynamics [5, 38]. Also, drawing connection to similar fields that

already try to understand systems helps [85]. Formalizing and framing learning

dynamics in deep learning is unsolved, but attempts to understand it yields useful

applications, like better initialization, activations, and topology.

80



7.2 Challenges and Limitations

7.2.2 Meta Optimizer

Our first intention was to develop extension to black-box optimizers such as done

in the work of Andrychowicz, et al [3] and Ravi and Larochelle [91]. These op-

timizers have great potential but are rarely applied in practice. They have high

level of complexity and it is not trivial to control their training, among other

reasons. One of the reasons for them being notoriously difficult to manage is

that they are black-box learners that inherit deep learning issues. When trying

to implement those optimizers, we noticed a phenomena of that the learned op-

timizer is highly task specific, they somehow remember the examples they are

trained to optimize long episodes of learning. This phenomenon is something

similar to overfitting, but different in that it does not result in a decrease in the

test performance. We assume it is related to the problem of overparameteriza-

tion, which can be advantageous, but the problem is that the learning horizon

in meta optimizers plateaus after some time, while the simple gradient descent

optimizers like sgd continue to learn. The problem is interesting, and calls for

more investigation.

Our proposed layerwise optimizer could be viewed as a black-box adaptation.

However, meta optimizers described above do not apply domain knowledge. We

provide a means of learning (black box) while keeping minimalistic number of

parameters that we assume they learn specific representation, like learning the

learning rate. In other words, we are not throwing many parameters and hop-

ing that they learn improved update, that is way harder problem to learn and

manage. Moreover, we control the initialization to force learning specific repre-

sentation, like learning rate and rescaling. We provide random but controlled

initialization, and learn as done in black box learning, but we know what each

parameter is expected to learn. It is very safe gamble. That is why our meta

learner is in between black-box optimizers and hyperparamter learning. Nonethe-

less, we believe that building more complex optimizer will help greatly, but we will

continue our research in this area with optimizers that impose more knowledge

derived from existed hand-engineered adaptive optimizers. We plan to continue
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exploring the problem that learned optimizers are task specific which can provide

better understanding to deep learning in general.

7.2.3 Technical Hurdles

The obstacles that I have encountered while conducting this research and de-

vising the experiments also spanned some technical aspects. First, I found that

there was no plain gradient descent optimizer implemented in TensorFlow. All

optimizers apply the learning rate, and using one is pointless. I tried to edit and

contribute to TensorFlow open source library, but that part was specifically at

the core of TensorFlow library for being essential. However, all essential code

becomes a legacy and trying to fix that will take unnecessarily long time. In-

stead, I built a plain gradient descent optimizer as well as a regular optimizer

and compared the results. I followed the same approach in comparing modified

Adam and RMSProb to their regular counter parts.

Finally, PyTorch and TensorFlow provide reliable and fast implementation for

deep learning. However, it was challenging to use them when implementing

metalearning algorithms. Their computational graph is embedded inside the

optimizer for fast execution. However, modifying and working with stationary

graphs is cumbersome. It results in broken gradients and unnecessarily long code.

Therefore, after some research with trial and error, I eventually settled with Jax

which provides dynamic tools to implement advanced deep learning concepts.

7.3 Future Work

There are a lot of exciting future opportunities for exploration in metalearning.

One in particular is the generalization of adaptive optimizers. We have provided

a metalearning framework to learn layerwise updates that mimics simple gradient

descent. However, we can extend it using the domain knowledge to construct a

generalization of adaptive learning methods. That can simply be done by follow-

ing the techniques advanced by Andrychowicz, et al [3] and Ravi and Larochelle

[91] in using hidden states that retain update history, but we will differ in three
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aspects. First, we will provide updates that treat each layer differently. Second,

we will reduce the complexity of the model greatly by using less parameters. Fi-

nally, and this point is related to the previous point, we will employ our knowledge

in adaptive learning methods to learn simpler, yet powerful optimizers.

Last but not the least, this dissertation unfolds the effect of loss scaling and its

relationship to the step size. Providing our theoretical analysis and empirical

findings, it has become clear that loss scaling should play a bigger role in bene-

fiting future optimization. In the end, the importance of loss scaling stems from

the importance of loss itself, and although optimization efforts focus on gradi-

ents once the loss is found, loss can be better utilized for an ultimate improved

learning.
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Appendix A

Activation Functions

Function Description Range Graph

Identity f(x) = x (−∞,∞) −3 −2 −1 1 2 3
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0

x

f(x)

Rectifier linear

(ReLu)

f(x) = max(0, x) [0,∞) �3 �2 �1 1 2 3
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Logistic (sig-

moid)

f(x) = 1
1+exp−x (0, 1)
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1

0

x

f(x)

Hyperbolic tan-

gent (tanh)

f(x) = expx − exp−x

expx +exp−x (−1, 1) �3 �2 �1 1 2 3

�1

1

0

x

f(x)

List of widely used activation functions with single dimensional input
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Appendix B

Adaptive Optimizers

Optimizer
Hyper.

Param.
Update Rule

Plain SGD η

g

1 while not stop do

2 g = ∇θ
m Compute gradient estimate

3 θ ← θ − ηg Apply estimate

4 end

Momentum η, α

g, v

1 while not stop do

2 g = ∇θ
m Compute gradient estimate

3 v ← αv − ηg Compute velocity update

4 θ ← θ + v Apply velocity update

5 end

Nesterov η, α

g, v, θ̂

1 while not stop do

2 θ̂ ← θ + αv Apply update on a copy

3 g = ∇θ̂
m Compute gradient estimate at

copy

4 v ← αv − ηg Compute velocity update

5 θ ← θ + v Apply velocity update

6 end
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AdaGrad η, α

g, r

1 while not stop do

2 g = ∇θ
m Compute gradient estimate

3 r ← r + g ⊙ g Track magnitude history

4 g ← 1√
r
g Normalize to history

5 θ ← θ − ηg Apply normalized gradients

6 end

RMSProp η, α, ρ

g, r

1 while not stop do

2 g = ∇θ
m Compute gradient estimate

3 r ← ρr + (1− ρ)g ⊙ g Weighted

magnitude history

4 g ← 1√
r
g Normalize to history

5 θ ← θ − ηg Apply normalized gradients

6 end

Adam η, α, ρ

g, r, s

1 while not stop do

2 t← t+ 1

3 g = ∇θ
m Compute gradient estimate

4 r ← ρr + (1− ρ)g ⊙ g Weighted

magnitude history

5 s← τs+ (1− τ)⊙ g Weighted gradient

history

6 r̂ = r
1−ρt , ŝ =

s
1−τt Correct histories

7 g ← ŝ√
r̂

Normalize gradients to

magnitudes history

8 θ ← θ − ηg Apply normalized histories

9 end
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Chapter B: Adaptive Optimizers

AdaDelta η, α

g, r, s

1 while not stop do

2 g = ∇θ
m Compute gradient estimate

3 r ← ρr + (1− ρ)g ⊙ g Weighted

magnitude history

4 g ←
√
s√
r
⊙ g Normalize gradients by

magnitude and scale it by history of

normalized magnitude

5 s← ρs+ (1− ρ)g ⊙ g Weighted

normalized magnitude

6 θ ← θ + g Apply update

7 end

List of the update rules of widely used optimizers, steps are partially adapted from [40]
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Appendix C

Code Blocks

1 class Model(nn.Module):
2

3 @nn.compact
4 def __call__(self, x):
5 x = nn.Dense(40, name="layer1")(x)
6 x = nn.relu(x)
7 x = nn.Dense(40, name="layer2")(x)
8 x = nn.relu(x)
9 x = nn.Dense(1, name="layer3")(x)

10 return x

Codeblock C.1: Model used in metalearning for regression tasks implemented in Jax

1 class OptMPT(nn.Module):
2 @nn.compact
3 def __call__(self, tree):
4 leaves, structure = tree_flatten(tree)
5 result =[]
6 for i, leaf in enumerate(leaves):
7 leaf = leaf[..., None]
8 leaf = nn.Dense(1, kernel_init= nn.initializers.uniform(scale=

rescale), use_bias=False,name=f’layer_a{i}’)(leaf)
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9 leaf = nn.Dense(1, kernel_init=init2, use_bias=False, name=f’
layer_b{i}’)(leaf)

10 leaf = nn.tanh(leaf)
11 leaf = leaf * −1.0
12 result.append(leaf[..., 0])
13 t = tree_unflatten(structure, result)
14 return t

Codeblock C.2: Dynamic optimizer for layerwise rescaling and learning rate using Jax
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