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Abstract 

General chemistry (GC) plays a crucial role in the academic and career outcomes of students 

interested in postsecondary science, engineering and medicine. As a whole, chemistry education 

research literature has reported student attrition rates averaging from 25% to 35% for nearly a 

century. Student attrition rates can be attributed to a number of factors, including high school 

preparation (e.g. Tai et al. 2006), opportunity to learn (Carroll, 1989) and accumulated time and 

practice in a domain (e.g. Ericsson et al. 1993). The factors, in turn, are affected by mechanisms 

of social stratification, in particular, the social mechanism of  cumulative advantage (Merton, 

1968, 1988). In the context of education, cumulative advantage is evident in the form of 

achievement gaps, which result from the accumulation of knowledge by one group over another 

across K-12 education (e.g. DiPrete and Eirich, 2006). Empirical performance data was analyzed 

using exploratory data analysis, null hypothesis significance testing and modeling to infer 

whether a process of cumulative advantage was present. Results of the analyses support the 

hypothesis that differential high school preparation could be, at least partially responsible for GC 

student outcomes. The implications for practice are discussed and broad suggestions for 

promoting equity are described.   

 

Key Words: General chemistry, introductory college chemistry, educational research, chemistry 

education research, cognitive science, achievement gaps, cumulative advantage.    
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Chapter 1: Introduction 

Background 

One of the first foundational courses taken by science and engineering majors is an 

introductory chemistry course. Chemistry is also mandatory for any student applying to medical 

school, regardless of major. The course is known as general chemistry or introductory college 

chemistry, depending on the institution. Traditionally, all enrolled students have been expected 

to perform as though they were chemistry majors. The term general chemistry (GC) was 

preferentially used here, thought to be more descriptive of that practice.  

For the past century, chemistry faculty have reported GC attrition rates ranging from 

25% - 35% (e.g. Cornog & Stoddard, 1925; Hovey & Krohn, 1958; Martin, 1942; McFate & 

Olmstead, 1999; Ye et al., 2016). Student attrition in this context is defined as the DFWI rate, the 

combined number of student withdrawals, course incompletes, and grades of D or F. Koch and 

Drake (2018) reported an average DFWI rate of 29.4% across 31 institutions (p. 1). Of those 

students, only 25.9% remained enrolled in the same institution a year later (p. 4).  

Student performance has traditionally been attributed to natural student aptitude rather 

than acquired knowledge and subsequent practice. For example, Cornog and Stoddard (1925) 

described “eliminating” 25% to 33% of enrolled GC students using aptitude testing (p. 707). 

Ralph and Lewis (2018) used SAT-mathematics scores as a proxy aptitude test and concluded 

that students scoring in the lowest quartile had “low math aptitude” (p. 870) with poor chances 

of passing GC.  

Students believed to be unsuited for GC have often been described in stereotypical 

ways. Martin (1942) suggested low performing students were suffering from “hypothyroidism or 

another abnormal physiological condition” (p. 277). Kotnik (1974) described underprepared 

students as having “psychological problems...[and] even an extremely antisocial outlook” (p. 
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165). Spencer (1996) argued that Black and Latino students naturally received the lowest 

chemistry scores based on mathematical aptitude (p. 1152). 

It is unclear what percentage of high schools ever offered chemistry to their students. 

Early comments in the chemistry education literature suggest many high schools did not off the 

course (e.g. Hovey & Krohn, 1958; Martin, 1942). Even for students with access to high school 

chemistry, the quality of the course was questioned (e.g. Coley, 1973; Kotnik, 1974). Recently, 

the National Science Board (2018) indicated that only about three-quarters of American high 

schools offer chemistry (p. 148).  

 A schism developed between high school chemistry teachers and postsecondary 

chemistry faculty which was described as a “cold war” (Rosen, 1956, p. 322). This arguably made 

the transition from high school chemistry to GC even more difficult for a student. Streitberger 

(1977) remarked that “...there is little evidence that high school chemistry is doing its part to 

insure (sic) that students are informed” (p. 1977). 

Statement of the Problem  

Arguably, many of the issues plaguing chemistry education are related to traditional 

beliefs and practices. Bowen and Cooper (2022) described “embedded harmful and inequitable 

practices” based on “tradition and assumptions” (p. 185) within chemistry education. One such 

practice, the “weeding-out” of students from GC has been described as problematic since at 

least 1953 (Barr et al. 2010, p. 53). Weston et al. (2019) described weed-out courses as being 

intentionally structured towards “getting rid of a high proportion of students” (p. 214).  

According to Ferrare and Miller (2019) a significant portion, 26% of chemistry faculty, 

admitted to believing that chemistry ability was innate rather than acquired (p. 127). Notably, 

this view was not held by biology and physics instructors in the same study. These beliefs may 

have been responsible for the tepid response to the discovery that students did not learn 
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chemistry conceptually by solving problems (e.g. Nurrenbern and Pickering, 1987; Pickering, 

1990; Sawrey, 1990).  

As noted by Ryu et al. (2021) relevant chemistry education research is published outside 

of the two major chemistry education journals (p. 3626). For example, only one study (e.g. Tai et 

al. 2006) regarding the importance of high school coursework on later GC performance was 

published in the Journal of Chemical Education. Most other studies (e.g. Tai et al. 2005; Tai and 

Sadler; 2007; Sadler et al. 2014) were published in more select science education journals.  

Conceptual Framework 

In 2012, the National Research Council (NRC) issued a report describing discipline-based 

education research (DBER) in science and engineering. The report went on to state that: 

A long-term goal of DBER is to understand how people learn science and engineering in 

order to improve learning and teaching. Research that advances this goal must be 

grounded in an understanding of what it means to develop expertise in a discipline and 

the challenges inherent in developing that expertise. (p. 189). 

What it means to “develop expertise” naturally differs by subject. It would be ill-founded to 

presume that just because a subject fell under the umbrella of science, technology, engineering 

and mathematics (STEM), the same pedagogical concerns were shared by each. 

As chemistry is a mature science, students cannot construct their own understanding of 

the subject. Since chemistry occurs unseen and is described by models based on empirical data 

the student must rely heavily on what is learned in school. Scerri (2003) described learning 

science as “reaching a position where...enough of the shared, and temporarily accepted, store of 

knowledge” (p. 472) had been obtained by a student. Consequently, it is reasonable to assume 

students with more high school preparation will be better prepared for GC.  
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For example, students entering GC can have no GC experience or up to two years of 

experience in high school. Mathematics preparation is also a factor for GC performance because 

of the deliberate emphasis placed on quantitative problem solving (e.g. Stowe et al., 2021; Shah 

et al., 2022). In general, students who have taken AP chemistry and calculus in high school tend 

to perform better in GC. These students usually have facile algebra skills, a better conceptual 

understanding of chemistry, and more stoichiometry practice (Tai, et al., 2005; Tai et al., 2006; 

Sadler & Tai 2007).  

 The acquisition of expertise in a domain is a well-known principle underlying cognitive 

learning theories (e.g. Ericsson et al. 1993; Glaser & Chi, 1988). Ericsson et al. (1993) proposed 

that the performance level in a complex domain such as chemistry was a “monotonic function of 

the amount of practice” (p. 367). They supported this claim with empirical evidence, suggesting 

that the idiom “practice makes perfect” could apply to chemistry education. 

 Multiple learning theories have considered time an important variable for learning. For 

example, Bloom (1968) proposed the idea that mastery of a subject depended on both the time 

needed to learn the subject and the available time given to the student. Bloom later 

demonstrated that students who were taught using a tutor outperformed students learning by 

conventional classroom methods (Bloom, 1984). The Carroll (1989) model of learning included a 

variable known as the “opportunity to learn” dictated by the time allowed for learning in a 

formal school setting.  

Purpose 

The idea that students do not have equal access to educational opportunities and 

resources appears to be self-evident. But recent chemistry education research studies tend to 

overlook high school preparation. However, such a stance can appear disingenuous, unless one 

believes students are born with a knowledge of chemistry. Stale arguments about nature versus 
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nurture hardly seem applicable when considering a subject which is already inaccessible to 

about 25% of high school students (National Science Board, 2018, p. 148).  

Educational resources, much like any other valued commodity, such as wages and 

healthcare, are stratified according to social status (e.g. Cheng, 2014; Hasl et al. 2022). 

Dornbusch et al. (1996) described the social structure of education as holding idealized beliefs in 

meritocracy. They described education as being simultaneously plagued by “social stratification, 

status attainment, credentialism, and the emphasis on ability differences” (p. 401).   

The sociological theory of resource stratification and inequitable distribution is known as 

cumulative advantage (CA), after Merton (1968, 1988). The idea of cumulative advantage can be 

understood in terms of simple colloquialisms such as  “the rich get richer” and “success breeds 

success” to name a few. Bowen et al. (2005) described CA in higher education as: 

“The accumulation of (often small) advantages and disadvantages over the course of the 

first 18 years of life that leads to massive preparation differences by the time of college 

application” (p. 225). 

Cumulative advantage is a social mechanism, defined by Rigney (2010) using a schematic 

proposed by Hedstrom and Swedberg (1998, p. 9):  

 

I → M → O 
 

Where an input (I) is transformed by a social mechanism (M) into an output (O). DiPrete and 

Eirich (2006) described cumulative advantage as “a general mechanism for inequality across any 

temporal process...in which a favorable relative position becomes a resource that produces 

further relative gains” (p. 271). 

Mathematically, the mechanism of cumulative advantage can be expressed as Equation 

1.1, where the level of some resource Yit  depends on a previous level of that resource,   
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Yi(t-1)(1+ϒ) when ϒ > 0, Equation 1.1.  

 

Yit = Yi(t-1)(1+ϒ)  Equation 1.1 

 

DiPrete and Eirich (2006) suggested that “...evidence for CA processes can take several forms” (p. 

274) relating to the variables represented by Yit  and Yi(t-1)(1+ϒ). Three types of evidence in 

particular was suggested: (1) distributional analysis, (2) mathematical modeling, and (3) 

increasing variance between individual performance measures over time (p. 274-276).  

For example, DiPrete and Eirich (2006) argued that CA processes produce skewed 

variable distributions mathematically characterized by power-law functions (p. 274). They also 

recommended the “estimation and testing” of mathematical models (p. 275) based on Equation 

1.1 derived by Allison et al. (1982). Lastly, DiPrete and Eirich (2006) argued that growing 

inequality as a function of time should be demonstrable since the concept of CA relies on that 

assumption (p. 275). 

A CA process is presumed to be present based on a preponderance of the evidence such 

as that described above. However, it is important to note that the full characterization of a CA 

process is considerably more complex. For example, Baumert et al. (2012) described the use of 

both latent growth curve analysis and quasi-simplex modeling to determine whether a CA 

process affected reading and mathematics development in elementary school (p. 1347). The 

importance of preliminary data justifying a need for more lengthy and time consuming analyses 

cannot be overstated.  

Empirical data generated by students enrolled in GC at a medium-size Midwestern 

suburban Tier 1 research university was analyzed for evidence of CA. The variable Yi(t-1)(1+ϒ) 

served as a proxy measure of high school preparation; the independent variable represented by 
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the Exam 1 score. The absolute knowledge gain (AKG) was defined as the sum of the last three 

course exams, and served as a proxy for the variable Yit  or the dependent variable. 

Research Questions  

Research questions were posed to answer the specific questions associated with the 

conceptual framework of CA as previously described.  

R1: What did the shape and symmetry of the distribution of Exam 1 scores suggest when plotted 

as a histogram?  

R2: How strong was the correlation between the proxy measure of high school preparation and 

the proxy measure of the dependent variable, AKG?  

R3: Based on the presumed relationship between Exam 1 and AKG, to what extent could a 

predictive relationship be modeled?   

R4: To what degree could the continuity or change in student rank from Exam 1 to AKG be 

demonstrated graphically? 

Definition of Terms 

• Chemistry Faculty: The term describes a faculty member tenured in the chemistry 

department rather than the college of education. The approach to educational research 

can, as a result, differ in philosophy and scope. 

• Cognitive Learning Theory: An umbrella term for theories of learning originating from 

cognitive science. The entirety of the seminal research forms the basis of Ericsson et al. 

(1993), which is then elaborated. In order to understand the conceptual framework used 

here, one must presume that prior knowledge and accumulated practice are critical 

factors for the rate of new learning.  

• Cumulative Advantage (CA): The general mechanism of resource stratification and 

subsequent distribution of resources based social status proposed by Merton (1968, 
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1988). Closely related to CA is the term Matthew effect, intended to describe CA on an 

individual level. The current convention is to use CA in all cases; exceptions are noted 

where applicable.   

• Domain Specific Knowledge: Knowledge specific to a particular domain, such as the mole 

concept in chemistry. Simonsmeier et al. (2021) described domain specific knowledge as 

the “central component of competence, academic achievement, expertise, and similar 

cognitive learning outcomes” (p. 2 and references therein).  

• Exploratory Data Analysis (EDA): Data analysis technique attributed to Tukey (e.g. 1962 

and 1966) EDA employs mostly graphical techniques to reveal what form the underlying 

model might take according to the Engineering Statistical Handbook (NIST/SEMATECH, 

2023). 

• Mathematical Modeling: The construction of a deductive model in the form of a 

mathematical model to approximate a relationship or simulate the differences between 

variables and their behavior.  

• Null Hypothesis Significance Testing (NHST): A method of statistical inference based on 

the rejection of a null hypothesis at a predetermined significance level.  

• Social Stratification: Social stratification describes the inequitable access to resources 

based on social status, such as race, gender and socioeconomic status (e.g. Harris et al. 

2020). For example, Kerckhoff and Glennie (1998) described the social stratification 

which affected high school status, curriculum rigor, achievement test scores and 

postsecondary educational attainment.  

• Weed-Out Course: In a blog post, Zimmerman (2022) described weed-out courses as 

ones in which “universities let students sink or swim” and where a “certain fraction of 

students are expected to fail.”  
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Procedures 

 Deidentified empirical student performance measures were analyzed using the 

conceptual framework of CA as described by DiPrete and Eirich (2006, p 274-275). They 

described a number of characteristic trends, patterns and variable relationships which could be 

detected or inferred from empirical data. The methods used to detect the expected 

characteristics were based on three different epistemological approaches: (1) traditional null 

hypothesis significance testing (NHST), (2) exploratory data analysis (e.g. Tukey, 1962, 1968) and 

(3) model development (e.g. de Mast et al. 2023; Mazur, 2006). These methods are described in 

further depth in Chapter 2 and their applications in Chapter 3.  

Significance  

 The Next Generation Science Standards (National Research Council, 2012) include eight 

Science and Engineering Practices (SEPs). Their importance in the framework was described as 

follows:   

Students cannot fully understand scientific and engineering ideas without engaging in 

the practices of inquiry and the discourse by which such ideas are developed and 

refined. At the same time, they cannot learn or show competence in practices except in 

the context of specific content. (NRC Framework, 2012, p. 218) 

The SEPs were designed to capture the different types of inquiry and data analysis procedures 

employed by scientists and engineers. In Appendix F (2013), the NRC stated that “engaging in 

scientific investigation requires not only skill but also knowledge that is specific to each practice” 

(NRC Framework, 2012, p. 30).  

 For instance, scientists and engineers frequently use causal inference models to 

understand the possible cause and effect relationships under their purview. Inference models 

are based on variables which can be identified in one or more of the following ways: exploratory 
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data analysis, experiential knowledge, or derived from theory (Mast et al., 2023, p. 53). 

Analytical methods employed include graphical analysis, mathematical modeling and the use of 

existing conceptual frameworks. These methods are not to be confused with the null hypothesis 

significance testing which is frequently the sole method by which relationships are probed (e.g. 

Spencer, 1996, Ralph & Lewis, 2018).   

 Cohen (1995) remarked that “An error in elementary logic made frequently by NHST 

proponents...is the thoughtless, usually implicit, conclusion that if H0 is rejected, then the theory 

is established” (p. 999). For example, a correlation between SAT-mathematics scores and GC 

performance is just that. Unless the variables have been fully explicated within a theoretical 

construct comprised of multiple perspectives, numerous threats to validity jeopardize any 

conclusions drawn (Mack et al. 2019, p. 404).  

 The novelty of the approach taken to analyze empirical student performance data was 

the utilization of the well-known conceptual framework of cumulative advantage. Since 

cumulative advantage can be used to explicate social stratification mechanisms in general, it was 

applied to differential high school preparation. Furthermore, the use of the conceptual 

framework was justified based on established theories of learning (e.g. Ericsson et al. 1993) and 

empirical evidence supporting conclusions about GC education (e.g. Tai et al. 2006; Sadler & Tai, 

2007). All available analytical tools, exploratory analysis, NHST, mathematical modeling and 

graphical modeling were used to infer that students did not enter GC with the same degree of 

preparation.    

Assumptions 

• The conceptual framework of this study assumes knowledge is acquired, has intrinsic 

value, and is subject to social stratification.  
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• In accordance with Ericsson et al. (1993) and references therein, competency in a 

domain such as chemistry occurs over the course of years rather than weeks.  

• It was presumed that the majority of students who enroll in GC do so with the intention 

of completing and passing the course.  

• Laboratory activities tend to be highly structured and confirmatory in nature, and so are 

not considered relevant to the current discussion of chemistry education.  

Limitations  

• The findings of this study are confined to the institution from which the data was 

obtained. Researchers at other institutions are encouraged to characterize their own 

students’ data similarly. 

• The data collected and analyzed is representative of GC prior to the COVID-19 pandemic 

and school closures in March 2020.  

• Data representing N = 409 students was analyzed to understand the distribution of the 

maximum number of students. However, the absolute knowledge gain could only be 

calculated for N = 343 students, since all four exam scores were required in that analysis. 

•  The data only represented students who remained enrolled in the course; the number 

of withdrawals was unknown. 

• The use of mathematical models related to cumulative advantage inferred that CA 

explained all cases of poor student performance, an unlikely scenario. However, the 

error from that assumption was considered smaller than the error from the presumption 

that some 25% of students are unable to grasp the subject of chemistry.  
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Delimitations 

• While some archived chemistry performance related data was available as far back as 

2012, changes made to ACS chemistry exams, high school AP chemistry courses, and 

state chemistry standards made measures prior to 2016 potentially irrelevant to the 

present day.  

• Student data was used as is, in the form of absolute measurement scores. Consequently, 

there is insufficient data available from which to draw conclusions concerning DFW rates 

or grading practices.   

• The data used was deliberately chosen as a more suitable indicator of chemistry 

preparation than ACT or SAT scores and high school grade point average. 

Organization 

The organization of the dissertation follows a standard five-chapter format. Chapter one 

is an overview of the study placed within a theoretical framework. The research questions, null 

hypotheses, methodology and significance of the study are briefly described here. Chapter two 

contains the literature review and Chapter three describes the research design, and proposed 

methodology. Chapter four describes the results of the study and Chapter five considers the 

implications of the results and provides suggestions for further research.   

Summary of Chapter One 

Historically, chemistry ability has been understood in terms of individual inherited 

capacity rather than the consequence of knowledge and skill acquisition. The social stratification 

of GC education, specifically the inequality associated with course availability has remained 

largely hidden. The social mechanism of CA was used as a conceptual framework with which to 

interpret empirical student performance data. Several available analysis methods were used to 

probe, model and predict the likely effects of CA of educational attainment in GC. 
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Chapter 2: Review of the Literature 

An internet search using the terms “most difficult college major” finds chemistry often 

listed as number one, or at least among the top five, based on a typical grade point average of 

about 2.8 (e.g. Conlin, 2023). Low grade point averages are indicative of the persistent struggle 

of students to meet GC faculty expectations (Weston et al., 2019). Chemistry faculty seem 

especially prone to beliefs that chemistry ability is inherited. According to Ferrare and Miller 

(2019) over one-quarter of chemistry faculty admitted believing in genetically determined 

chemistry ability, a belief not shared by their fellow biology and physics educators (p. 125). 

These beliefs may persist as a remnant of constructivist philosophy which was 

introduced into chemistry education research in the late 1980s (Bodner, 1986; Herron & 

Greenbowe, 1986). Herron proposed that GC ability was the consequence of the transition to 

Piaget’s formal operational stage (Herron, 1975 and 1978). The future of students presumed to 

be at the concrete operational stage was considered grim. Bodner (1986) suggesting that 

“Teaching and learning are not synonymous; we can teach, and teach well, without having the 

students learn” (p. 873).  

Conversely, cognitive scientists proposed that the science of learning could inform the 

practice of education (Anderson et al. 1998). The fields of cognitive science and educational 

psychology generally agree that knowledge is acquired and accumulates over time (Chi & Glaser, 

1988; Ericsson et al. 1993; Sweller et al. 1998). Since GC educators have traditionally complained 

about underprepared students (Herron & Greenbowe, 1986; Hovey & Krohn, 1958; Kotnik, 1974) 

it should be worthwhile to consider the time involved in learning chemistry.  

The understanding that learning chemistry might take more than one year in high school 

could account for the achievement gaps and differential performance between different GC 

student groups (e.g. Harris et al., 2020; Ryu et al., 2021). Harris et al. (2020) calculated 
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achievement gaps for over 25,000 students, reporting values ranging from 0.12 to 0.54 on a 4.0 

scale for various student groups (p. 1). For students from minoritized groups, these gaps 

represented the effects of educational inequality. In other words, all students do not enter GC 

with similar experiences.  

Ryu et al. (2021) suggested that many of the students who experienced educational 

inequality go on to experience educational inequity as well (p. 3621). Meaning that all students 

do not have the same access to educational opportunities. They noted that “...academic and 

psychological characteristics of historically minoritized students are not causes of the 

achievement and retention gaps” (3627). Rather, they suggested researchers look for root causes 

of the academic and psychological differences they ascribed to factors at the K-12 level.  

Search of the Literature 

Two chemistry education research journals, the Journal of Chemical Education (JCE) and 

Chemistry Education Research and Practice (CERP) were consulted. JCE in particular was used as 

a historical source since the journal has been published since 1924. However, as noted by Ryu et 

al. (2021), specific information regarding student attrition rates needed to be obtained 

elsewhere.  A comprehensive historical review of chemistry education research was found in 

Chemical Reviews (Cooper & Stowe, 2018) which provided a list of other relevant articles.  

Other sources included the American Educational Research Journal, Journal of Research 

in Science Teaching, Journal of Educational Research, Research in Higher Education Journal, 

Science Advances and Science Educator. Since physics and chemistry together comprise the 

physical sciences, literature from that venue was considered as well. Sources included Physical 

Review of Physics Education and Contemporary Physics. Much of the seminal work in cognitive 

science and educational psychology used physics as the focal point of empirical studies (e.g. Chi 

et al. 1981; Larkin et al., 1980). Much of that work has been collected in compilations such as 
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Cognitive Skills and Their Acquisition, Carnegie Mellon Symposia on Cognition Series edited by 

John R. Anderson (1981) and The Nature of Expertise, edited by Chi, et al. (1988). 

This literature review also focused heavily on cognitive and educational psychology 

which included Annual Review of Psychology, Educational Psychologist, and Educational 

Psychology Review. Articles related to the sociological aspects of education were found in 

American Journal of Sociology, Annual Review of Sociology, Journal of Political Economy and 

Sociological Inquiry. In addition, primary sources regarding research and research designs were 

consulted including Experimental and Quasi-Experimental Designs for Generalized Causal 

Inference (Shadish et al., 2002) and an earlier edition by Cook and Campbell (1979). Sources 

describing nonparametric statistics referred to Nonparametric Statistics for the Behavioral 

Sciences (Siegel & Castellan Jr., 1988), were also consulted. 

Background 

 Student ability is often framed within one of two conceptual frameworks in the 

chemistry education research literature. Ferrare and Miller (2019) described a cognitive frame 

based on perceived student value, the “individual ability frame” (p. 123). Individual student 

ability was described as “the main driver of success in a context of objectivity with little to no 

mention of external constraints” (p. 122). 

 Bensimon (2005) described a “deficit cognitive frame” (p. 102) which described student 

deficiencies as dictating GC performance. The deficit cognitive frame was associated with the 

use of characteristic stereotypes related to different cultures and socioeconomic status. 

Stereotypical beliefs lead to discourse revolving around strategies meant to “fix” deficiencies in 

student affect, study skills or cognition (p. 103). Despite the efforts of well-intentioned 

educators, deficits continued to be used as a way to justify differential student performance.  
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 The focus of chemistry education research on the presumed deficiencies of GC students 

is evidenced by the description of countless diagnostic tests described in the literature. A small 

sampling of diagnostic tests are listed in Table 2.1. Notably, this stance is at odds with scientific 

training, which features the concept of Occam’s razor (Duignan, 2023). Occam’s razor suggests 

that the simplest answer is generally the correct one. Arguably, then, student performance in GC 

should be considered a consequence of high school preparation, or lack thereof.  

Table 2.1 

Diagnostic Exam Performance Variables  

Diagnostic Exam  Example 

Chemistry Aptitude and Training Cornog and Stoddard (1925) 

Toledo Chemistry Placement Exam Hovey and Krohn  (1958, 1963) 

ACT Scores Coley (1973) 

Piagetian Tasks Albanese et al. (1976) 

SAT Scores Ozsogomonyan and Loftus (1979) 

Classroom Test of Scientific Reasoning Lawson (1978) 

Logical Reasoning Ability Bunce and Hutchinson (1993) 

Fullerton Chemistry Placement Exam McFate and Olmstead III (1999) 

Student Pre-Semester Assessment Wagner et al. (2002) 

Alternative Conceptions Inventory Mulford and Robinson (2002) 

Chemistry Self-Concept Inventory  Bauer (2005) 

First Semester Exam Mills et al. (2009) 

Group Assessment of Logical Thinking Bird (2010) 

Neural Network Diagnostic Algebra Test Cooper and Pearson (2012) 

California Chemistry Diagnostic Test Legg et al. (2001) 

Domain Specific Mindset Santos et al. (2021) 

Mathematics Automaticity Shelton et al. (2021) 

Social-Psychological Interventions Wang et al. (2021) 

 

 Multiple studies have suggested that high school status and curriculum rigor are 

predictive of later GC performance. For example, a direct causal relationship between rigorous 

mathematics and educational attainment in general has been demonstrated (e.g., Irvin et al., 

2017; Long et al., 2012). This in turn, suggests that accessibility to advanced mathematics 
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coursework is a factor for later educational performance (e.g., An, 2022; Morgan et al., 2018; 

Sadler & Sonnert, 2018).  

In a highly cited paper, Tai et al. (2005) investigated the influence of high school 

coursework on GC performance. Freshman science and engineering students, N = 1531 from 12 

institutions of higher learning, reported their previous high school preparation. Nearly 52% of 

the students reported taking calculus, while 44% reported taking either AP or honors chemistry 

in high school (p. 1000). The better prepared students out-performed their peers with less 

experience. The multiple regression model constructed predicted that the last high school 

mathematics grade and SAT-Mathematics scores were significant predictors of GC performance.  

A second multiple regression model reported by Tai et al. (2006) further explicated the 

importance of high school chemistry topics for later GC performance. Facile stoichiometry skills 

were a strong predictor of GC performance, with “recurring topic” versus “none at all” having 

standardized β-coefficients of .10 and −.08 respectively (p. 1707). The model also suggested that 

certain subjects, such as gas laws or nuclear reactions, had little to no value for later GC 

performance (p. 1707).   

 In both regression models, reported by Tai et al. (2005 and 2006), completing AP 

calculus in high school was the greatest single predictor of later GC performance. This was true 

whether a student had gone on to take the AP exam or not. In fact, mathematics was so 

important that the standardized β-coefficient was large enough to negate factors related to race, 

ethnicity, and parent education level (2006, p. 1707). 

  Tai et al. (2005) summarized the importance of mathematics to GC performance thusly:  

Although the advanced topics of calculus are not directly utilized in GC, calculus builds 

students’ facility with algebraic functions, graph interpretation (including slope), mental 

computation, and calculation of rates of change. It appears that the virtually automatic 
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facility with such mathematical skills that a successful calculus background bestows on 

students removes many impediments to understanding the quantitative aspects of 

chemistry that other students must endure (p. 1003-1004). 

Students who had only taken algebra or trigonometry in high school did not fare as well 

in college as students who had taken calculus (e.g., Tai & Sadler, 2007; Maltese & Tai, 2011). 

Other researchers suggested the multiple reviews of algebra leading up to calculus explained 

performance (e.g., White & Mitchelmore, 1996). Still more studies suggested that the number of 

years of high mathematics influenced mathematical fluency and procedural task automation 

(e.g., Shelton et al., 2021; Powell et al., 2020). 

However, according to the National Science Board (2018), only 76% and 56% of high 

schools offered chemistry and calculus, respectively. These values dropped to 65% and 33% in 

schools where greater than 75% of the enrolled students were Black or Latino (National Science 

Board, 2018, p. 148). The National Science Board also reported that, in general, only about 19% 

of students finish high school having taken calculus, the majority from the highest quintile in 

socioeconomic status (2018, p. 62). 

Many rural students attend small, underfunded schools and lack access to advanced 

coursework as well (e.g., Irvin et al., 2017;  Wells et al., 2019). According to Irvin et al. (2017) 

rural students were least likely to have access to advanced mathematics coursework; only 12% 

reportedly have taken calculus (p. 478). Orfield (2009) wrote that, for many students “there is no 

way to get the right preparation in their school regardless of their personal talent and 

motivation” (p. 4). 

Theoretical Framework 

In postsecondary chemistry education, chemistry faculty are trained first as scientists. 

Versed in the scientific method researchers should understand good research practice and 
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include appropriate study controls. Unfortunately, many chemistry education research studies 

do not account for variables such as high school preparation (e.g. Mack et al. 2019). From a 

research point of view, the failure to equate students prior to the introduction of an educational 

intervention is a significant threat to the validity of the study results (Shadish et al. 2002).  

Chemistry is not a subject which can be intuited from everyday life and so must be 

learned within the classroom (e.g. Fredrick and Walberg, 1980). Students cannot construct their 

own understanding of chemistry, according to philosopher and chemist Eric Scerri (2003). Scerri 

noted that chemistry was a “mature science” (p. 470), meaning:  

The process of learning science, unlike any other field, involves reaching a position 

where the student has understood enough of the shared, and temporarily accepted, 

store of knowledge so that he or she can communicate with others and even make 

contributions to the general scientific consensus. (p. 472) 

 How much of that useful knowledge is known by any particular GC student is not 

entirely clear. Assessment practices such as grading on a curve or norm referencing can further 

obfuscate differences in student preparation (e.g. Bowen & Cooper, 2022; Weston et al. 2019). 

Sadler and Tai (2007) reported their surprise at discovering that a significant number of students 

enrolled in GC had already successfully completed AP chemistry in high school. They suggested 

that:   

The population of students who have taken AP courses in high school and retake 

introductory courses has been largely neglected by researchers. Researchers have rarely 

structured past studies to reveal the degree to which AP courses bestow an added 

benefit upon students who take them. (p. 3) 

 Traditionally, measures intended to help predict postsecondary student performance 

have been used as proxy intelligence tests by chemistry faculty (e.g. Andrews & Andrews, 1979; 
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Ozsogomonyan & Loftus, 1979). For example, Ralph and Lewis (2018 and 2019) reported using 

SAT-mathematics scores as proxy intelligence tests. They concluded that “at-risk” chemistry 

students were those who had scored in the lowest SAT-mathematics quartile and had “low math 

aptitude” (Ralph & Lewis, 2019, p. 570).  

 The use of the term aptitude, according to the Washington Post (1993) suggested 

individuals had “a natural talent” or “capacity” (Merriam-Webster, 2023). In 1990, a commission 

appointed by the College Board deemed the SAT an achievement rather than an aptitude test. 

As a result, the word  was stricken from the title of the test in 1994 (Jordan and Achenbach, 

1994). 

These issues raised concerns about research based on “personal empiricism” or 

personal opinion in chemistry education research (Cooper & Stowe, 2018). Bowen and Cooper 

(2022) suggested that “there are still practices in chemistry education that arguably do not 

embody informed practice and have remained entrenched despite evidence of their harm” (p. 

185). In a previous editorial, grading on a curve was described as “educational malpractice” 

(Cooper & Klymkowsky, 2020). 

The conceptual framework of this research was tripartite in nature, as shown in the 

schematic diagram in Figure 2.1. Three closely related aspects to GC education were considered: 

(1) modern theories of learning based on cognitive science (e.g. NRC, 2012; Ericsson et al., 

1993), (2) historical and contemporary descriptions of student sorting described in the chemistry 

education literature (e.g. Cornog & Stoddard, 1925; Hovey & Krohn, 1958; Spencer, 1996; Ralph 

& Lewis, 2018), and (3) the social repercussions of educational resource stratification and 

educational attainment (e.g. Boliver & Schindler, 2021; Dornbusch et al. 1996).  
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Figure 2.1  

Tripartite Conceptual Framework  

 
 

 

Cognitive Science  

In 2012, the National Research Council (NRC) issued a report defining discipline-based 

education research (DBER) in science and engineering. The conceptual framework used to  

understand DBER was based on the concept of “expert-novice differences” (p. 58) specifically 

citing a seminal publication by Ericsson et al. (1993). In doing so, the NRC endorsed cognitive 

learning theory within the context of postsecondary science education. Furthermore, they 

agreed with Ericsson et al. that expertise lay on a continuum, which could span ten years or 

more between novice and expert status (p. 366). 

The expert-novice framework referred to by the NRC was based on decades of work 

describing cognition, expertise and performance. Glaser and Chi (1988) summarized the 

paradigm by characterizing experts as possessing the following:  

1. Large stores of organized domain-specific knowledge in long-term memory. 

2. A deep conceptual understanding of the domain and associated problem types. 
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3. Automated procedural skills which allowed tasks to be performed without thought.  

4. The ability to employ metacognitive skills, such as repeatedly checking their work. 

(Glaser & Chi, 1988, p. xvii-xx). 

Novice problem solvers, on the other hand, were said to rely on approaches to  

problem-solving involving trial and error (Chi et al., 1981; Davenport et al. 2008; Ericsson, 2017). 

Novices are believed to benefit from guidance when planning and executing multi-step problems 

(e.g., Davenport et al. 2008; Chi et al. 1981; Nakhleh & Mitchell, 1993). Novice problem solvers, 

usually overwhelmed with information, often cannot employ metacognitive strategies, making 

them appear sloppy and disorganized (e.g. Davenport et al. 2008; Talanquer, 2006). 

Ericsson et al. (1993) further elaborated on the expert-novice paradigm by recognizing 

that “the effect of practice on performance is larger than earlier believed possible” (p. 363). They 

suggested that the factors of “zeal and labor” had been minimized in favor of “genetic factors” 

(p. 364). They proposed and provided empirical data to support the claim that individual 

performance was a “monotonic function of the amount of accumulated practice” (p. 367). In 

other words, while the magnitude of acquired knowledge at any given time might fluctuate, on 

average practice improved performance  (e.g. Ericsson & Charness, 1994, Ericsson & Kintsch, 

1995).  

The time needed to acquire expertise was predicted to be at least ten years based on 

previous work by Simon and Chase (1973). Simon and Chase described chess masters as taking 

ten or more years of intense practice to achieve their status (p. 402). In addition to the time 

needed for practice, Ericsson (2017) also suggested time was needed for “...cognitive, 

perceptual, physiological, neurological and anatomical changes...” ( p. 1).  

Ericsson et al. (1993) also specified the parameters of what was considered “deliberate” 

or useful practice. Deliberate practice, as described, placed responsibility for student progress on 
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both the instructor and learner. For example, the instructor was responsible for tailoring tasks 

based on preexisting learner knowledge and for providing immediate feedback. The learner was 

expected to consciously engage in practice even at times when it was not “inherently 

motivating” (p. 368 - 369). In addition, there were daily limits to the effectiveness of practice. 

Beyond a time limit of two to four hours a day, the risk of “reduced benefits” became 

problematic (p. 370).  

General Chemistry Performance 

As described, learning a complex subject such as chemistry required the acquisition, 

processing, encoding and organization of new knowledge into memory. Chemistry students 

needed to acquire the domain-specific declarative knowledge, the “what” of chemistry and the 

“how” of solving chemistry problems (e.g. Anderson, 1982, 1987; de Jong & Ferguson-Hessler, 

1996). Extensive practice of procedural skills were required to automate skilled tasks such as 

stoichiometry. 

The temporal aspects to GC education included (1) time engaged in the classroom, (2) 

time spent restructuring prior knowledge (e.g., Chi et al., 1981; Glaser & Chi, 1988), (3) time 

needed for attendant neurological changes (e.g., Brod et al., 2013), (4) time needed to develop 

procedural skills (e.g., Anderson et al., 2019) and (5) time needed to automate procedural skills 

(e.g., Ericsson et al., 1993). Considered within that context, a student with a second year of 

chemistry in high were expected to transition better into GC.  

At issue was not whether students could develop the cognitive skills needed for GC 

performance. Instead, a crucial issue was whether students had the time to do so, particularly if 

practice was limited to two to four hours a day (Ericsson et al. 1993). The time spent engaged 

with the course itself could be problematic, since GC is typically a 5-credit hour course. A typical 

student can spend three hours in lecture, three hours in recitation, and three hours in the 
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laboratory every week. When the extra time needed to complete homework, study, and work 

was added in, mental exhaustion arguably would become a very real threat. 

Just how much time might be needed to overcome weak science and mathematics 

preparation in high school was suggested in a study by Shah et al. (2020). They reported that 

such students benefitted from supplemental mathematics support in the first semester of GC. 

However, when the students matriculated back into GC in the second semester, gaps in 

mathematics preparation were even more pronounced (p. 1822).  

It is worth noting that the emphasis placed on stoichiometry and quantitative  

problem-solving ability is based on traditional institutional practices. From the earliest accounts, 

chemistry educators have used mathematical background as a way to sort students (Barr et al., 

2010; Bowen & Cooper, 2022). Shah et al. (2022) noted that quantitative problem solving was 

the “gold standard” (p. 22) for determining GC student worth. Ralph et al. (2022) described the 

focus on problem solving as marginalizing “students based on their access to  

pre-college math preparation [and misrepresenting] the intellectual work of chemistry” (p. 

1870). 

Sociological Considerations  

Robert K. Merton, a sociologist at Columbia University first defined the characteristic 

roles, norms and mores which defined science as a social institution (1942/1973). The goal of 

science, according to Merton, was the “extension of knowledge” certified through empirical 

evidence and logical consistency (p. 270). Merton described four scientific imperatives, one of 

which was universalism. Universalism requires a scientist objectively consider “truth-claims... to 

preestablished impersonal criteria” (p. 270).  

Merton (1968) first proposed a mechanism for the stratification of resources and 

rewards in science research. The majority of resources were awarded to a select number of 
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scientists based on status or prestige. The same phenomenon was described at the institutional 

level in prestigious research institutions. Institutions such as Harvard, Berkeley and the 

California Institute of Technology were described as attracting more graduate students, 

producing more Nobel laureates and receiving more research funding. The result was a self-

reinforcing cycle of accumulating benefits and advantage (Merton, 1968, p. 62). 

Merton (1988) later described science education as being “so organized as to put a 

premium on relatively early manifestations of ability − in a word, on precocity” (p. 613). Merton 

referred to the early sorting, choosing, and labeling of college students as being “gifted” or 

“having what it takes” in science as college freshman. The consequences of this sorting process 

favored one group of students while the other was “cut off from support and response” (p. 614).  

Merton first used the term Mathew effect (1968) initially to distinguish between 

individual and population-based resource stratification, labeled as cumulative advantage. 

Hower, the ubiquitous nature of social resource stratification led to the adoption of the more 

general term cumulative advantage (CA). Merton (1988) summarized all aspects of cumulative 

advantage (CA) in the following summary:  

Individual self-selection and institutional social selection interact to affect successive 

probabilities of being variously located in the opportunity structure of science. And it is 

such unanticipated and unintended consequences of purposive social action - that tend 

to persist. (p. 615 - 616). 

However, the term Matthew effect is sometimes found within the education literature 

after Walberg and Tsai (1983) who first used the term in that context. In a more recent review, 

DiPrete and Eirich (2006) expanded the scope of what was considered (CA). They called for more 

attention by researchers on the theory, mechanisms, and methodology of the phenomenon (p. 
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292). They used the term CA exclusively and that convention was practiced here as well. Only in 

the researcher has specifically used the term Matthew effect is the term substituted for CA.   

The most basic description of CA describes resource stratification and accumulation of 

some valued resource by one individual or group. Further acquisition of the resource is then 

proportional to the initial amount. Over time, the gap between the two individuals or groups 

exacerbates the initial gap in resources, Figure 2.2. In terms of education, in general, valuable 

resources might include time, knowledge and cognitive growth. All of those factors can 

exacerbate known achievement gaps between individuals and groups (e.g. Bensimon, 2005; Ceci 

& Papierno, 2005; Reardon, 2011). 

Figure 2.2 

Schematic Representation of Cumulative Advantage as Knowledge Acquisition 

 

 

Ericsson et al. (1993) suggested that “the highest levels of performance and 

achievement appear to require at least around 10 years of intense preparation” (p. 366). While 

GC students never approach expertise, the more experience a student has, the better. 

Consequently, students with more high school preparation are likely to perform better in GC.  
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The importance of time as a factor in learning has been recognized in other learning 

theories. For example, the Carroll Model (Carroll, 1989) and the Learning for Mastery Model 

proposed by Bloom (1968) each contained time dependent variables. Fredrick and Walberg 

(1980) described time as “invariably operating” on learning and student achievement (p. 193). 

Carroll (1989) included a variable he described as the “opportunity to learn” (OTL), 

defined as “the amount of time allowed for learning...by a school schedule or program” (p. 26). 

Grodsky et al. (2008) suggested OTL was a critical factor in educational resource stratification. 

They based their viewpoint on the fact that students with more OTL generally receive lower 

scores of achievement tests such as the ACT and SAT (p. 388).  

Data Analysis Considerations 

The methodology used in this research was comprised in part of the practices used by 

scientists and engineers in industry. The importance of understanding the practical applications 

of science was reflected in A Science Framework for K-12 Science Education (National Research 

Council, 2012). The resulting Next Generation Science Standards included eight science and 

engineering practices (SEPs) meant to contextualize scientific inquiry in practical applications. 

Three of the eight SEPs were specifically applied in this study and are described in detail in 

Figure 2.3. 

Developing and Using  Models, SEP Practice 2, is a fundamental part of the physical 

sciences, since they are largely abstract. For example, chemistry reactions which occur on the 

macroscopic scale are modeled at the submicroscopic scale, as well as being described using 

symbolic representations. This aspect of chemistry has long been known to be confusing to 

students (Johnstone, 2006). 
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Figure 2.3  

Example of NGSS Science and Engineering Practices Used in the Analysis of Empirical Data 

Practice 2: Developing 
and Using Models  

 Practice 4: Analyzing and 
Interpreting Data  

Practice 5: Using 
Mathematics and 
Computational Thinking 

Models represent ideas 
and explanations through 
the use of diagrams, 
drawings, mathematical 
representations. 

 Investigations produce 
data in which trends and 
patterns can be identified 
using tabulation, graphical 
and visual interpretation, 
and statistical analysis. 

 Mathematics and 
computational thinking 
are tools for representing 
variables and relationships 
between them. These 
include statistical analysis 
and mathematical 
expressions.  

Note: Adapted from the National Research Council Framework for K-12 Science 

Education, 2013, Appendix F,  p. 6-10. 

 

The relationship between the three representations of chemistry was conceptualized as  

a model known as Johnstone’s Triangle, after Alex H. Johnstone of the University of Glasgow 

(Johnstone, 2010, p. 24; Cooper and Stowe, p. 6058). While the reader does not necessarily 

need understand the concept, it is mentioned obliquely and so is provided for clarity. Figure 2.3 

shows the “Triangle” for table salt, NaCl, as conceptualized by the author.  

Students are required to understand that the macroscopic form of a compound is 

modeled at the submicroscopic level. The chemical reaction is communicated via the symbolic 

representation. Any individual working with chemical reactions must be able to move seamlessly 

between the three concepts. As an aside, note that the pinkish color to the salt shown is the 

result of trace impurities in the solid.  
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Figure 2.3  

Johnstone’s Triangle of Table Salt  

 
 

The analysis of chemical phenomena using mathematical models is stoichiometry an 

example of which is shown in Equation 2.1. The reaction in question is the combustion of ethane 

gas to produce carbon dioxide and water.  

 

2 CH2H6(g) + 7 O2(g) → 4 CO2(g) +  6 H2O(g) Equation 2.1 

 

The equation demonstrates the relationships between variables and the numerical coefficients 

are balanced. Consequently, the equation as written can be used to test hypotheses such as:   

H0: The combustion of 4 moles of ethane produces 12 moles of water. 

Ha: The combustion of 4 moles of ethane does not produce 12 moles of water. 

The same is true for testing hypotheses relating to the products in the equation as well.  For 

example, if only 2 moles of carbon dioxide were collected after the combustion of ethane, a 

reasonable hypothesis might be that only 1 mole of ethane had undergone combustion.  
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 Stoichiometry is an extraordinarily successful mathematical model, since it is simple and 

can be used by anyone who understands the conventions associated with it. However, it is 

important to understand that the mathematical model appears deceptively simple. The model is 

not mere speculation, but a model based on a great deal of theory. Multiple theories comprise 

the conceptual framework of stoichiometry, such as the mole concept, the conservation of mass 

and the conservation of energy, to name a few. 

Epistemological Considerations  

DiPrete and Eirich (2006) described how the analysis of empirical data could suggest the 

presence of CA (p. 274-275). The methods they described, distributional analysis, mathematical 

modeling and growing inequality can differ epistemologically, leading to unnecessary confusion. 

For example, data analysis can involve one or more of the following approaches: (1) statistical 

null hypothesis significance testing, (2) exploratory data analysis (e.g. Tukey, 1962, 1968) and (3) 

model development (e.g. de Mast et al. 2023; Mazur, 2006). The author took no particular 

stance on the value of the various methods, and indeed, used all three during data analysis.   

Null Hypothesis Significance Testing 

When considering statistical analysis, the majority of researchers tend to think of null 

hypothesis significance testing (NHST). NHST includes parametric statistical analysis methods 

such as t-tests, analysis of variance and linear regression. For example, a t-test can be used to 

determine whether the null hypothesis, that there is no difference between the means of two 

groups, can be rejected. The problem according to Cohen (1994) was that analysis can devolve 

into “mechanical dichotomous decisions around a sacred .05 criterion” (Cohen, 1994, p. 997). At 

issue is the frequent lack of an alternative hypothesis, since rejected the null does not prove the 

opposite of the question initially posed. Tukey (1969) wrote that if the "real question cannot be 
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answered by a correlation coefficient it can be fatal to insist on using [one]...whether or not 

some other question appears to be answered” (p. 84) 

The standardized and normed intelligence and aptitude tests popularized by Stanford 

psychologist Lewis Terman (1877-1956) were based on NHST. Terman believed that intelligence 

(1) was hereditary, (2) normally distributed in the population, and (3) a linear function (Hawks, 

2015). This view assumed that parametric statistics, based on a presumed normal distribution, 

could determine student intelligence and predict future outcomes. Consequently, the  

Stanford-Binet Intelligence Scale, or test, was normed against scores hand-picked for conformity 

by Terman and his collaborator, Merrill (p. 2).  

This same principle is used when grading tests scores on a curve, which also presumes a 

normal distribution, requiring that performance measures be forced into a normal distribution . 

According to Fendler and Irfan (2008):  

The bell curve takes diversity and reduces it to a simple and comprehensible average; it 

takes a statistical probability and converts it to an expectation that can inform policy; it 

takes random historical occurrences and imposes patterns of relations on them. (p. 76). 

A recent review by Bowen and Cooper (2022) reviewed the use of grading on a curve in 

chemistry.  

Mills et al. (2009) described creating a diagnostic measure of probable student success 

on a standardized curve. This was accomplished by first transforming numerical data into  

Z-scores, Equation 2.2.  

 

Z =  
𝑋−𝜇

𝜎
 Equation 2.2 
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Mills et al. (2009) converted 667 GC first exam scores and total course performance scores less 

first exam scores, into Z-scores. They reported a Pearson correlation coefficient of r = 0.81,  

p = 0.05, presumed, between the two variables. Using the correlation curve they were able 

calculate how far from the mean a particular score was. The probability of a student passing GC 

when their first exam score was at one standard deviation below the norm was predicted to be  

22% (p. 741).  

The success rate for correctly predicting GC course failure was reported as to be 75.2% 

(p. 740). The predictive ability was likely influenced by the content of first exam score, which was 

heavily weighted towards stoichiometry (p. 739). However, the ability to generalize the tests to 

other institutions was limited, since natural differences between instructors, student background 

and other factors likely could not be captured with a single set of variables (p. 742). 

Exploratory Data Analysis 

The Engineering Statistics Handbook describes the use of exploratory data analysis (EDA) 

as “an approach/philosophy for data analysis that employs a variety of techniques (mostly 

graphical)” (NIST/SEMATECH, 2023, 1.1.1). The purpose of EDA is to allow the data to reveal 

what form the underlying model might take. Examples of graphical methods of analysis include 

histograms, probability plots, residual plots, quantile-quantile plots and scatter plots, to name a 

few.  

Tukey is generally credited with this approach, likening the researcher to a detective 

using techniques with the necessary flexibility (e.g. 1962 and 1966). EDA has been described by 

some as “a widely celebrated paradigm shift in analysis” (Rodgers, 2010, p. 4). According to Tufte 

(2001) “Tukey...opened up the field, as his brilliant technical contributions made it clear that the 

study of statistical graphics was intellectually respectable and not just about pie charts” (p. i). 
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Cleveland and McGill (1985) called graphs “powerful tools both for analyzing scientific data and 

for communicating quantitative information” (p. 828).  

Arguably, graphical techniques may be better appreciated in manufacturing presumed to 

operate under the proverb time is money. For example, learning curves were first described by 

Wright (1936) who sought to improve the costs associated with building airplanes. Hirschmann 

(1964) described “profiting from the learning curve” in operations and supply management. In 

production, learning curve models based on “cognitive and motor element” ratios have also 

been described (Peltokorpi & Jaber, 2022). However, learning curves are still used in education 

despite their wide applicability in other fields (e.g. Kuhfeld & Soland, 2021). 

In 2015, Trafimow and Marks (2015), new editors of Basic and Applied Social Psychology 

banned “p-values, t-values, F-values” and statements describing “significance”(p. 1). They stated 

that “A 95% confidence interval means... if an infinite number of samples were taken and 

confidence intervals computed, 95% of the confidence intervals would capture the population 

parameter” (p. 1). They suggested authors focus on descriptive statistics, effect sizes, data 

distribution and testing large enough sample sizes (Trafimow and Marks, 2015). 

Mathematical Modeling 

Mathematical modeling is used extensively in the physical sciences and engineering, 

although they are also employed in economics, psychology, sociology and education (e.g. 

Bothner et al. 2010; Cheng, 2014; DiPrete and Eirich, 2006; Walberg and Tsai, 1983). For 

example, Hasl et al. (2022) translated “wage dynamics into empirical models” (p. 5). Hasl was 

part of a multidisciplinary research team who considered theoretical aspects related to 

cumulative advantage and educational attainment. 

 Where mathematical models fall within an inquiry framework is shown in Figure 2.4, 

which shows the relationship between the elements within a conceptual framework, theory, 
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models and hypothesis testing. Note that models are intermediary to applied theory and 

conventional hypothesis testing (Bäckman, & Edling, 1999; Carpiano & Daley, 2006, Kileen, 1999; 

Saltelli & Puy, 2023). That fact, according to Saltelli (2019) has kept them out of the ongoing 

“statistics crisis” (Saltelli, 2019, p. 1). Saltelli and Puy (2023) suggested that: 

Models are good at mapping one set of meanings or information onto another set, e.g., 

moving from assumptions to inferences without losing sight, in the correct use, of all the 

conditionalities involved in this transposition. (p. 2) 

 

Figure 2.4  
 
Relationship Between Elements of Inquiry 

 

Note: Inspired by relationships described by Carpiano and Daley (2006). 

 

Analysis Using Cumulative Advantage  

 Demonstrating that students enter GC with varying amounts of prior knowledge and 

preparation was of paramount interest. A novel analysis strategy was pursued based on the 

conceptual framework of CA. The methodology by which empirical performance data was 

analyzed an array of analysis techniques from the categories described. Which approach was 
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used to answer a particular question depended on which epistemological approach matched the 

question the best.  

In their review of CA, DiPrete and Eirich (2006) defined two forms of CA. One was 

described as “strict Mertonian CA” (p. 272) and described Merton’s original theory of the 

reward system in scientific research. They also described a “path-dependent” form of CA  (p. 

276) described by the relationship shown in Equation 2.3. The equation describes the growth of 

some variable Y as being dependent on the “entire history of whatever variables are in X and the 

history of the random shocks, ϵ...as long as ϒ > 0 (p. 276). 

Yit  = Yi(t-1)(1+ϒ) + β’Xit + ϵit Equation 2.3 

  

Both the strict Mertonian and path-dependent forms of CA meet all of the following 

observed characteristics described by DiPrete and Eirich (2006): 

1. The growth rate in an outcome is a function of the current level. 

2. Small advantages or disadvantages grow larger over time. 

3. The process of CA can be exacerbated by status variables such as race, gender, and 

can persist over the lifetime. 

4. Inequality grows over time at both the individual and population level (p. 280). 

Holding all other factors constant, the key relationship to path-dependent CA is the 

relationship shown in equation 2.4:  

Yit  = Yi(t-1)(1+ϒ) Equation 2.4 

 

Baumert et al. (2012) described path-dependent CA as being particularly suited to describing 

education. They noted that path-dependent CA was:  
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Particularly likely in the context of formalized learning in schools, where the curricular 

structure of academic subjects tends to be cumulative, and prior knowledge tends to be 

the best predictor of the subsequent level of attainment. (p. 1348) 

 DiPrete and Eirich suggested that researchers consider empirical data for specific types 

of evidence relating to CA. Three particular analysis considerations were described, relating to 

distributional analysis, mathematical models and growing inequality (p. 274-275). The methods 

required inductive reasoning in the cases of distributional analysis and increasing variance. 

Deductive reasoning was also prescribed to probe the relationship between the variables Yit and 

(1+ϒ)Yi, t-1 in the form of mathematical and statistical modeling.    

 In the case of distributional analysis, DiPrete and Eirich were clear concerning what was 

expected visually. They noted that “CA-like processes produce right-skewed distributions on the 

outcome variable of interest” (p. 274). The mathematical model derived by Allison et al. (1982) 

was based on a discrete form of the Yule-Simon distribution (Simon, 1955). As a consequence, 

path-dependent CA is associated with the power-law distribution, as demonstrated by Newman 

(2005). 

The discrete form of the power-law function is shown in Equation 2.5. According to Perc 

(2014) “not finding a power-law distribution or at least a related fat-tailed distribution” (p. 3) 

placed doubt about the presence of a CA process. The fat-tailed, or heavy-tailed distribution, 

alluded to by Perc simply describes a distribution with more outlying data points than expected 

(Bryson, 1974).  

p(x) = Cx-α Equation 2.5 
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Increasing Variance or Inequality 

 EDA in practice, involves monitoring real data over time for signs of increasing variance 

or undesirable data patterns. In this case, increasing variance between student performance 

measures was expected to grow as predicted by fan-spread hypothesis attributed to Cook and 

Campbell (1979, p. 184) by Walberg and Tsai (1983). Walberg and Tsai described the “the 

increasing variation during the course of experience [that] leads to a fan-spread of points when 

outcomes are plotted against time” (p. 360). Not to be confused with the fan effect related to 

the ACT-R cognitive model (Anderson & Labiere, 1998), the fan-spread effect can be 

conceptualized by considering Figure 2.5. 

 

Figure 2.5  
 
Example of the Fan-Spread Effect or Increasing Variance in Learning Outcomes 

 

 

 Increasing variance can be the consequence of more than one or more factors alone or 

in combination. Possible factors include differences in learning rates, differences related to prior 

knowledge, or monotonic increases in performance (Ericsson et al. 1993). However, other 

sources of between-subject variance are also possible, such as inaccurate statistical assumptions 
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regarding the distribution of error. However, in general, CA processes tend to lead to changes in 

rank performance over time (Kerckhoff & Glennie, 1998).  

Mathematical Models 

 According to Equations 2.3 and 2.4, the variables Yit and (1+ϒ)Yi, t-1 are autocorrelated, 

that is, part of a consecutive series related by time (Shadish et al. 2002, p. 172). Consequently, 

the two variables will be correlated, a relationship which must be demonstrated, and the 

strength ascertained. The mathematical relationship between the two is important to 

understand. As suggested by Mazur (2006) “theories that appear to make similar predictions 

when stated in words can be more readily compared and evaluated when they are put into 

mathematical form” (p. 276).  

The importance of mathematical modeling to better understand the relationship 

between two variables cannot be overstated. For example, a model demonstrating a 

relationship between Yit and (1+ϒ)Yi, t-1 could provide valuable insight. According to Novak (2022) 

proposing, “constructing and testing new theories” which are data driven are just as valuable as 

theory-oriented ones: 

Producing empirical evidence of a mathematical model that cannot support a theory in 

question does not imply that the theory is wrong. It only suggests that the theoretical 

statement is not confirmed (not to be confused with ‘disconfirmed’) or that the model 

builder made false background assumptions in the model design, e.g., assuming a linear 

relationship between variables instead of a quadratic one, or using tools/instruments 

that produce measurement errors. (p. 153). 

Which was taken to mean that proposing and testing variable relationships should be a process 

in which one should readily participate.  
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Chemistry Education Research Dissertations 

 For completeness, chemistry education research dissertations and theses were searched 

for theoretical frameworks incorporating cognitive science and educational psychology. 

Between 2007 – 2021 only four chemistry education research dissertations referred to either. 

One of those four only obliquely referred to cognitive load theory, but references made to 

specific educational psychology concepts are clear.  

Baluyut (2015) referenced Johnstone (1993) when referring to the “three levels of 

[chemical] representations, namely the  macroscopic, the [sub]microscopic and the symbolic” 

(p. 22). This concept was credited to Johnstone (1982 and 1991) and is now known as 

Johnstone’s Triangle (NRC, 2012, p. 47). Johnstone believed the triangle was responsible for 

much of the overwhelm students experienced when learning chemistry. Johnstone illustrated 

the concept of working memory overload using a modest information processing model (e.g., 

Johnstone, 1997 and 2010) based on previous cognitive theory.  

Three references: (1) Buis (2016), (2) Finney (2008), and (3) Mata (2019) all incorporated 

cognitive load theory into their theoretical frameworks. All cited references by Johnstone (e.g., 

Johnstone & El-Banna, 1986; Johnstone 1997) were related cognitive load while Finney focused 

on student competency. Buis and Finney also cited the seminal work on cognitive load theory 

and human cognitive architecture by Sweller et al. (1998), which described cognitive load in 

detail, along with human cognitive architecture. 

Both Buis (p. 3) and Mata (p. 14) also incorporated Piagetian cognitive development 

theory into their theoretical frameworks. Pairing Piaget with work by Johnstone (e.g., 2006, p. 

51) and Sweller was unusual, since neither had ever subscribed to Piaget’s developmental 

theories (e.g., Johnstone, 2006). In fact, Tricot and Sweller (2014) described Piaget’s stage 

theory (Piaget, 1972) as “bedeviling the field of cognitive development” (p. 272).  
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Only Finney (2008) specifically incorporated cognitive learning theory into the 

framework of her dissertation. Finney considered novice expert differences in the categorization 

of chemistry problems, citing seminal work by Larkin et al. (1980) and Chi et al. (1981). Finney 

also acknowledged that “Perhaps our lack of success in this area is directly related to our lack of 

understanding of novice problem solving in general chemistry” (p. 3). 
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Chapter 3: Methodology 

Introduction 

Multiple studies have suggested that high school preparation is predictive of later GC 

performance (Sadler and Tai, 2007; Tai et al. 2005; Tai et al. 2006). Models describing learning, 

such as the Carroll (1989) model considered time spent in the classroom as variable (Carroll, 

1989; Grodsky. et al., 2008). Likewise, Ericsson et al. (1993) suggested the amount of 

accumulated practice guided by feedback was predictive of performance.  

Differential student performance at the postsecondary level has been considered within 

the context of cumulative advantage, attributed to Merton (1968, 1988). For example, Bowen et 

al. (2005) described CA in higher education as: 

“The accumulation of (often small) advantages and disadvantages over the course of the 

first 18 years of life that leads to massive preparation differences by the time of college 

application” (p. 225).  

Such appears to be the case for chemistry, a course in which students are known to 

enter with significant preparation gaps (e.g. Harris et al. 2020). DiPrete and Eirich (2006) in a 

review of CA, described the accumulation of an advantage such as knowledge or cognitive 

development as relying on past levels (p. 280). They indicated that evidence for CA could be 

determined in multiple ways (p. 274-275).  

Research Paradigm and Design 

A lengthy discussion of the epistemological approaches which could be used to analyze 

data was described in Chapter 2. All the data analysis approaches described fall under the 

 post-positivist paradigm. Common practices in science and engineering presume hypotheses 

can only be falsified, and that rigor, validity, reliability, and objectivity are criteria which must be 

met (Guba & Lincoln, p. 112).  
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It is important to understand that the postpositivist paradigm is firmly grounded in 

scientific inquiry. However, there is flexibility in terms of just the methodology used, which is 

suitable for the question being asked (Wildemuth, 1993). Likewise, if multiple theories and 

approaches can be used to address a question, they can be utilized simultaneously (Carpiano & 

Daley, 2006). However, only so many approaches can be taken with numerical data, with 

mathematical models and statistical analysis predominating. 

Research Design 

Since a substantial amount of background discussion concerning methodology was 

undertaken in the previous chapter, it is not restated here. The data analyzed consisted of 

deidentified numerical performance measures generated by N = 409 students. The students 

were enrolled in GC at a medium-size suburban Tier 1 university located in the Midwest from fall 

2016 to spring 2019. Since laboratory experiments at this level of chemistry are confirmatory in 

nature, only the lecture portion of the course was considered in terms of student performance. 

The general demographic profile of the student body is shown in Table 3.1. The student 

body is more diverse than the state average, with almost half of first-time students receiving Pell 

grants. In general, the majority of the students were White, female, and part-time students. 

Approximately 94% of the matriculated students originated in one of five surrounding state 

counties (IPEDS EF Fall Enrollment Survey, 2020). However, finer detail concerning specific 

student demographics was not available. 

The conceptual framework used for data analysis was CA as mathematically described by 

DiPrete and Eirich (2006). Path-dependent CA, mathematically modeled by Equation 3.1 was 

used to predict “the rate of future events as a positive function of previous events” (p. 275). The 

specific variables used are defined in Table 3.2.  

Yit = Yi(t-1)(1+ϒ)  Equation 3.1 
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Table 3.2 

Definition of Study Variables  

Variable Symbol Type Definition 

Exam 1 Scores Yi(t-1)(1+ϒ) Independent 
Proxy measure of prior high school 
experience.  

Absolute Knowledge  

Gain (AKG) 
Yit Dependent 

Sum of the last three course exams; 
proxy measure of knowledge gain 
over the course of the semester.  

 

 The research questions posed arose naturally from the conceptual framework,  domain 

specific content knowledge, cognitive learning theory and CA. The questions were a mixture of 

inductive and deductive analyses. Inductive analysis was used to understand the distribution of 

Exam 1 scores and whether increasing inequality or variance between students was evident over 

time. Deductive analysis was used to determine the relationship between the two defined 

variables. Once the relationship had been identified, mathematical models were also used to 

predict future events.   

Research Questions:  

R1: What did the shape and symmetry of the distribution of Exam 1 scores suggest when plotted 

as a histogram?  

R2: How strong was the correlation between the proxy measure of high school preparation and 

the proxy measure of the dependent variable, AKG?  

R3: Based on the presumed relationship between Exam 1 and AKG, to what extent could a 

predictive relationship be modeled?   

R4: To what degree could the continuity or change in student rank from Exam 1 to AKG be 

demonstrated graphically? 
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Data Characterization 

The research questions could not be addressed until the numerical data had been 

curated. Data curation was defined by the following procedures, which were necessary to 

determine whether the six individual cohorts could be combined into a single population: 

1. Establishing whether the data was normally distributed.  

2. Determining whether the cohorts could be combined into a single population.  

3. Verifying whether the new population was normally distributed.  

The answers to questions listed were necessary to establish what types of analysis parametric, or 

nonparametric could be used for further analyses. Once established, the hypotheses could be 

formalized.   

Hypotheses 

H0 1: The distribution of first exam scores followed a normal distribution.  

Hα 1: The distribution of first exam scores did not follow a normal distribution.  

H0 2: The population correlation coefficient, ρ = 0 the ranks did not covary. 

Hα 2: The population correlation coefficient, ρ ≠ 0 the ranks were assumed to covary. 

H0 3:  Mathematical modeling of the relationship between Exam 1 scores and AKG could not 

be predicted based on the correlation parameter, ρ. 

Hα 3: Mathematical modeling of the relationship between Exam 1 scores and AKG could be 

predicted based on the correlation parameter, ρ.  

H0 4: Graphical diagrams of student ranking showed no evidence of increasing variance.  

Hα 4: Graphical diagrams of student ranking showed evidence of increasing variance.  

Data Collection and Management 

The data analyzed was obtained in the form of archived data obtained by the professor 

of record in the form of deidentified spreadsheets. The data was stored on a local computer and 
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password protected. Copies of all data files and statistical test data are available upon demand. 

The data will be retained for five years past the point of the dissertation publication, at which 

time the data will be destroyed. 

Permissions and Ethical Considerations 

The research project was deemed non-human subjects research according to IRB 

#2065542 SL (Appendix 1). No identifying data remained in the spreadsheet and no contact 

could be made with any of the students. There were no known ethical conflicts associated with 

the study. 

Instrumentation 

 Statistical analysis was performed using SAS® OnDemand for Academics (SAS.com) 

specifically the SAS® Studio application. Additional analyses were performed using Excel for 

Microsoft 365, 2010 edition, equipped with the Solver Add-in. An add-on for Excel, Power-User, 

was also used under a free academic license. Additional graphics were enhanced if necessary, 

using Microsoft Paint 11.2208.60 © 2022. The tables and figures were generated by the author, 

unless otherwise indicated. 

Validity and Reliability    

 Validity describes how closely assumptions, statements of fact, measurements and 

conclusions relate to their actual meaning. Four types of validity were considered “construct 

validity, external validity, internal validity and statistical conclusion validity” as described by 

Shadish et al. (2002, p. 33). Archived data, analyzed in this study, can present multiple threats to 

validity in the case of causal relationships (Shadish et al., 2002). No claims of causal relationships 

were made, nullifying those concerns.  
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Cohort size and performance can vary depending on depending on whether the 

semester was in the fall or spring, consistent with observations made in other studies (e.g., 

Tashiro & Talanquer, 2021). In general, larger class sizes for the fall semester suggested those 

students were following traditional course sequences. However, those differences did not appear 

to be a threat to statistical validity. Hypothesis testing was performed using an a priori Type I 

error rate of α = 0.05, corresponding to a 95% confidence limit.  

 Threats to internal study validity refer to the inferences made about the chosen 

variables. In this study, two proxy variables were assigned; Exam 1 scores for high school 

preparation and the sum of the last three exams as a proxy for learning gains. The use of these 

measures was not considered any more problematic than the use of SAT and ACT scores or high 

school GPA.  

  Finally, the external validity, or ability of this study to apply more generally to other 

situations was known to be limited. The population of interest in this study differs substantially 

from other research universities or contexts such as community colleges. Other researchers are 

encouraged to consider whether the proposals concerning the specific population described 

could be applied to their own student populations. 

Statistical Analysis Plan  

 A detailed account of the analyses conducted is shown in Table 3.3 according to the 

order in which they were performed. While none of the statistical tests were considered out of 

the ordinary, references are provided for those wishing for more detail. The reference 

NIST/SEMATECH refers to the online version of the Engineering Statistics Handbook. 
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Table 3.3  

Statistical Analysis Plan and Execution Order 

Test  Test Name Description Reference 

1 Descriptive Statistics Mean, S.D., Median, 95% CI.   Price et al. (2023) 

2 Skew and Kurtosis Skew, Kurtosis. NIST/SEMATECH 1.3.5.11 

3 Measures of Location Histogram NIST/SEMATECH 1.3.5.1 

4 Distribution Analysis Q-Q plot, Probability plot. NIST/SEMATECH 1.3.3 

5 Analysis of Variation Kruskal-Wallis ANOVA NIST/SEMATECH 7.4.1 

6 Goodness-of-fit Test Kolmogorov-Smirnov Test NIST/SEMATECH 1.3.5.16 

7 Mathematical Model Trendline  Excel 

8 Correlation  Spearman rho Siegel and Castellan (1988) 

9 Nearest Neighbor Match Spearman rho Stuart (2010) 

10 Mathematical Model Trendline Excel 

11 Student Rank Change Sankey Diagram Power-User 
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Chapter 4: Results 

Introduction 

  Empirical performance data generated by N = 409 GC students enrolled in the course 

from fall 2016 to spring 2019 was analyzed within the conceptual framework of CA. According to 

DiPrete and Eirich (2006) evidence suggestive of a CA process could be gathered from empirical 

data. Three types of evidence were considered relevant: (1) a skewed distribution of the variable 

affected by CA, (2) small scale modeling of the relationship between Yit and Yi(t-1)(1+ϒ) and (3) 

evidence suggestive of growing inequality as a function of time.  

Description of the Sample  

Two slightly different GC student populations were analyzed for this study. The first 

sample was comprised of all students who had taken the first exam, N = 409. This number 

included students who had neither completed nor officially withdrawn from the course. 

However, since Exam 1 scores were the most suitable measure of high school preparation, the 

maximum amount of variability in this population was of particular interest.  

 The second student population analyzed was comprised of students who had taken all 

four course exams, N = 343 students. This data was described as the “matched” Exam 1 and AKG 

scores; AKG being the sum of the last three course exams. The number of data sets, N = 343 was 

66 less students than the population initially described. Of this number, N = 6 student scores 

were excluded due to missing or incomplete data. The remaining N = 60 students had failed to 

complete the course for unknown reasons.  

Research Questions 

R1: What did the shape and symmetry of the distribution of Exam 1 scores suggest when plotted 

as a histogram?  
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R2: How strong was the correlation between the proxy measure of high school preparation and 

the proxy measure of the dependent variable, AKG?  

R3: Based on the presumed relationship between Exam 1 and AKG, to what extent could a 

predictive relationship be modeled?   

R4: To what degree could the continuity or change in student rank from Exam 1 to AKG be 

demonstrated graphically? 

Hypotheses 

H0 1: The distribution of first exam scores followed a normal distribution.  

Hα 1: The distribution of first exam scores did not follow a normal distribution.  

H0 2: The population correlation coefficient, ρ = 0 the ranks did not covary. 

Hα 2: The population correlation coefficient, ρ ≠ 0 the ranks were assumed to covary. 

H0 3:  Mathematical modeling of the relationship between Exam 1 scores and AKG could not 

be predicted based on the correlation parameter, ρ. 

Hα 3: Mathematical modeling of the relationship between Exam 1 scores and AKG could be 

predicted based on the correlation parameter, ρ.  

H0 4: Graphical diagrams of student ranking showed no evidence of increasing variance.  

Hα 4: Graphical diagrams of student ranking showed evidence of increasing variance.  

Preliminary Data Analysis 

 As described in Chapter 3, the intent was to analyze a single population of students 

rather than by cohort. To combine the cohorts, it was necessary to establish that between group 

variance did not exceed within group variance. Whether variance could be determined using a 

parametric or nonparametric hypothesis test depended on whether the data was normally 

distributed. The data was curated using descriptive statistics, measures of skew and kurtosis, 

distributional analysis and goodness-of fit tests.  
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An example analysis scheme is described in full for fall 2016 Exam 1 data,  

N = 85 students. An identical procedure was carried out for all cohort data corresponding to 

Exam 1 and matched Exam 1 and AKG data. However, that data was placed in Appendix 2 for the 

sake of brevity. An example of descriptive statistics consisting of the sample mean, standard 

deviation, median and the 95% confidence interval is provided in Table 4.1.  

Table 4.1 

Descriptive Statistics All First Exam Scores, N = 409 

Group N Mean Std Dev Median L 95% CL U 95% CL 

F 2016 85 197.60 41.94 206.10 188.56 206.64 

S 2017 52 193.55 39.59 206.90 182.52 204.57 

F 2017 90 191.73 45.62 203.90 182.17 201.28 

S 2018 68 193.22 41.73 201.49 183.12 203.33 

F 2018 57 199.86 41.19 209.45 188.93 210.79 

S 2019 57 180.75 48.37 179.52 167.92 193.59 

 

Example Skew and Kurtosis 

 Measures of skew and kurtosis are indicators of symmetry and data homogeneity  

(NIST/SEMATECH, 1.3.5.11). The skew indicates whether the distribution is shifted to the left or 

right of center. Kurtosis reflects the number of outlying data points present in the tails of a 

distribution. Examples of skew and kurtosis are found in Table 4.2.   

 

Table 4.2 

Skew and Kurtosis All First Exam Scores, N = 409 

Group N Mean Median Skew  Kurtosis 

F 2016 85 197.60 206.10 −1.57 3.25 

S 2017 52 193.55 206.90 −1.10 0.44 

F 2017 90 191.73 203.90 −1.31 1.18 

S 2018 68 193.22 201.48 −0.80 0.05 

F 2018 57 199.86 209.45 −1.62 3.55 

S 2019 57 180.75 179.52 −0.55 −0.08 
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The consequences of skew and kurtosis can be understood visually by examining the 

histogram corresponding to the fall 2016 Exam 1 cohort, N = 85, Figure 4.1. The skew and 

kurtosis values of −1.37 and 3.25, respectively, are indicated in the histogram. The distribution, 

blue line, can be interpreted as shifted and squat in shape. The kernel density plot, the red 

dashed line, indicated a slightly bimodal distribution for the Exam 1 scores. 

  

Figure 4.1  

Example Histogram Exam 1 Scores Fall 2016, N = 85 

 
 

 

Example Measures of Location  

As already suggested by Figure 4.1, the histogram for fall 2016 Exam 1 scores were not 

normally distributed. The values of mu and sigma correspond to the mean and standard 

deviation of the population, respectively. If the data had been normally distributed, then the 

mean, 197.60 would have been equivalent to the calculated median which was reported as 

206.10 in Table 4.1. 
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Example Distribution Analysis 

 Evidence for the non-normal distribution of Exam 1 scores is also evident in the 

probability and the  quantile-quantile plot, Figure 4.2. In both plots, the distribution of the data 

points should be distributed and laid evenly across the 45 degree line. As demonstrated by both 

plots, there are a significant number of points which do not fall linearly along the plot as 

expected. The tail ends of the data in both plots show significant deviation from the expected 

distribution. 

 

Figure 4.2  

Probability and Q-Q Plot for Exam 1 Scores Fall 2016, N = 85  

 
 

 

Example Kolmogorov-Smirnov Goodness-of-Fit Test 

While all previous data has shown that the data was not normally distributed, a 

goodness-of-fit test should also be used to verify whether that assumption was true. When data 

is analyzed in a statistics program such as SAS® goodness-of-fit tests for normality are 

automatically generated. The test of interest for this data set was the Kolmogorov-Smirnov (KS) 

goodness-of-fit test, which is a hypothesis test:  
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H0: The observed empirical distribution is consistent with the theorized normal 

distribution. 

Ha: The observed empirical distribution is not consistent with the theorized normal 

distribution. 

The KS goodness-of-fit test calculates the D-statistic, at the 95% confidence interval, Table 4.3: 

Table 4.3 

Kolmogorov-Smirnov Goodness-of-Fit Test Score 

α D-Statistic Pr > D 

0.05 0.10655 0.018 

 

Since 0.018 < 0.05 the null hypothesis, that the observed empirical distribution is consistent with 

a theorized normal distribution is rejected; the data is not considered normally distributed. 

Example Kruskal-Wallis Analysis of Variance 

 The Kruskal-Wallis analysis of variance test is a nonparametric test which compares k 

samples under the following null hypothesis: 

H0: The data follow the same empirical distribution function. 

Ha: The data do not follow the same empirical distribution function. 

The test yields the H-statistic and a p-value which can be used to determine whether the null 

hypothesis can be rejected. Table 4.4 shows the Wilcoxan Scores for all Exam 1 scores, N = 409. 

The results of the Kruskal-Wallis Test are shown in Table 4.5, were H(5) = 6.6472, p = 0.2482. 

Since p = 0.2482 > 0.05 the null hypothesis, that the data follow the same empirical distribution 

function could not be rejected. Consequently, the six cohorts were combined into a single 

population. 

 Recall that all data was analyzed similarly, with results reported in Appendix 2. Table 4.5 

also includes the Kruskal-Wallis one-way analysis of variance for the matched pair Exam 1 and 
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AKG, H(5) = 4.2662, p = 0.5118 and H(5) = 6.0744, p = 0.2990, respectively.  Since 0.5118 and 

0.2990 > 0.05, the null hypothesis that the data follow the same empirical distribution function 

could not be rejected. Consequently, the six cohorts were combined into a single population.  

 

Table 4.4 

Kruskal-Wallis One Way Analysis of Variance First Exam Scores By Group 

Group N Sum of Scores Expected H0 Std Dev H0 Mean Score 

F2016 85 18380.5 17425 970 216.24 

S2017 52 10561.5 10660 796 203.11 

F2017 90 18327.0 18450 990 203.63 

S2018 68 13891.0 13940 890 204.28 

F2018 57 12830.0 11685 828 225.09 

S2019 57 9855.0 11685 828 172.89 

 

Table 4.5 

Kruskal-Wallis One-Way Analysis of Variance 

Group N  Chi-Square DF Pr > D 

Exam 1 Scores 409 6.6472 5 0.2482 

Matched Exam 1 343 4.2662 5 0.5118 

AKG 343 6.0744 5 0.2990 

 

Comments on Nonparametric Testing 

It has been noted often that real data is naturally skewed (e.g., Blanca et al., 2013; Yuan 

et al., 2017). For example, Walberg et al. (1984) described data related to “knowledge 

production and consumption” (p. 87) as being naturally skewed. Ericsson et al. (1993) 

demonstrated that that the relationship between performance and practice was a monotonic, 

nonlinear function (p. 367).   

 While parametric testing is often considered superior to nonparametric testing, the 

suitability of a particular test is actually dictated by the nature of the data. Arguments made 
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about the robustness of parametric testing must take into account the potential error. For 

example, Leech (2002) noted that the Wilcoxon rank-sum test could be three to four times more 

powerful than a t-test under conditions of non-normality (p. 10 and references therein). 

 A meta-analysis by Cain et al. (2017) found that of the 1,567 univariate distributions 

examined, 74% did not meet the criteria for a normal distribution. Based on typical skew and 

kurtosis values, a simulation study suggested error rates were higher than expected. What would 

normally be a Type I error rate of 5% was found to be closer to 17% (p. 1716).  

 Many chemistry education research studies are presumed to lack goodness-of-fit data, 

since the results are not provided. In studies which referred to normal distributions, the work 

was perfunctory. For example, one research report simply stated that “All distributions were 

reasonably normal” based on a visual examination (Cracolice & Busby, 2015, p. 1793).  

Another report described “significant negative skew, indicating the scores were more 

heavily distributed at the higher value” (Lewis & Lewis, 2007, p. 39). The skew suggested that 

some students were better prepared than others but that issue was not considered. It was 

presumed that since the study was focused on “identifying at risk students” (p. 39) the issue of 

normality was not pursued.   

The performance data analyzed in this study was not normally distributed, and indeed, 

was not expected to be. Since statistical analysis is most accurate when the test dictated by the 

data is performed, assumptions of normality were not made. All subsequent statistical analysis 

tests performed used nonparametric techniques when hypothesis testing was required. 

Results by Research Question  

Research Question 1: What did the shape and symmetry of the distribution of Exam 1 scores 

suggest when plotted as a histogram? 
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It was reasoned that the first few weeks of a GC course are more likely to be spent 

reviewing high school chemistry. If true, the first exam score would be expected to be the 

highest of the four exams taken. For students who took all four course exams, N = 343, this 

appeared to be the case, at least based on the confidence intervals shown in Table 4.7. 

Table 4.7 

Comparison of Mean Exam Scores 

Variable N Mean Std Dev L 95% CL U 95% CL 

Matched Exam 1 343 201.05 35.82 197.24 204.85 

Matched Exam 2 343 151.79 51.53 146.31 157.26 

Matched Exam 3 343 176.22 51.57 170.74 181.69 

Matched Exam 4 343 146.17 58.09 140.01 152.34 

 

DiPrete and Eirich (2006) suggested that “CA-like processes produce right skewed 

distributions on the outcome variable of interest” (p. 274). A histogram of Exam 1 scores,  

N = 409 was plotted, the distribution shown in Figure 4.3. This distribution was skewed left, with 

more students receiving Exam 1 scores at the higher end of the range of 35.82 – 250.00.   

 Normally distributed data is characterized by the majority of data points being grouped 

around the mean of the population. This results in values for the mean, median and mode being 

similar in value. This was emphatically not the case for the distribution of Exam 1 scores, shown 

in Figure 4.3. The values for the mean, median and mode were quite different, 193.03, 203.95 

and 250.00, consistent with a skewed distribution.  

Cumulative distributions, power-law functions and path-dependent CA are all related 

concepts (DiPrete & Eirich, 2006, p. 274). Discrete power-law distributions law take the form of 

Equation 4.1: 

p(x) = Cx-α Equation 4.1 
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Unlike normal distributions, distributions related to a power-law have erratic outlying data in the 

tails (Clauset et al. 2009, p. 1). Newman (2005) cautioned that “Few real-world distributions 

follow a power law over their entire range... not for smaller values of the variable being 

measured...[many] have a power-law tail” (p 330).  

 

Figure 4.3 

Distribution of Exam 1 Scores N = 409  (Bin Width = 5) 

 
   

 

The significance of the power-law regards the interpretation by some that the presence 

of a CA-like process requires evidence of at least tailing data (e.g. Perc, 2014, p. 3). However, 

determining the exact form and value for the value of α in a power-law is not trivial (Clauset et 

al. 2009; Newman, 2005). However, trendlines can be fit to a histogram, and as mathematical 

models of the data, can be used comparatively. For example, a trendline fit to the upper 50% 

score distribution may take a different mathematical form than the 50%.  

Consider Figure 4.4, which contains trendlines associated with the top and bottom 50% 

of the cumulative distribution frequency of Exam 1 scores. The top curve is fitted with an 
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exponential trendline, while the bottom is fit with a power-law. The trendline equations were 

created with the actual data; the trendlines have simply been extrapolated over the full range of 

Exam 1 scores, Table 4.8.  While no claim is made regarding the accuracy of the trendline fit, the 

fact that they are different is significant. The mathematical functions suggest students in the top 

50% learn at an exponential rate, and are expected to gradually outpace the bottom 50%. 

Figure 4.4 

Cumulative Frequency Plots Top and Bottom 50% Exam 1, N = 409 

 

Actual Curve - - - -  Power-Law Fit -------  Exponential Fit  ------  

 

Table 4.8 

Coefficient of Determination Values for Various Model Fits 

Group Fit Equation R2 

1 Exponential y = 1.2532e0.0181x 0.97 

2 Power y = 8E-6x2.91 0.99 

 

 

Research Question 2: How strong was the correlation between the proxy measure of high school 

preparation and the proxy measure of the dependent variable, AKG? 
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  According to the Equation 4.2, Yit and Yi(t-1)(1+ϒ) are autocorrelated, the same variable 

separated by time. Consequently, the two must be correlated, although to what extent is 

unknown. The correlation between the proxy measures, matched Exam 1 and AKG, N = 343, was 

calculated as rho (ρ), the nonparametric Spearman rank-order correlation coefficient.  

 

Yit and Yi(t-1)(1+ϒ) Equation 4.2 

 

The null hypothesis for the Spearman correlation, ρ, is stated as:  

H0 The ranks do not covary between the two variables ρ = 0. 

Ha: The ranks covary between two variables, ρ ≠ 0.  

The calculated value of ρ is shown in Table 4.9; since p < 0.0001 < 0.05, the null hypothesis, that 

the ranks do not covary was rejected. Consequently, a correlation between the two measures 

was presumed, ρ = .57002, p = .05, a moderate correlation.  

Table 4.9 

Spearman Correlation Coefficient between Exam 1 and AKG, N = 343  

Variables α Spearman ρ p-Value 

Exam 1 x AKG 0.05 .57002 < .0001 

 

Research Question 3: Based on the presumed relationship between Exam 1 and AKG, to what 

extent could a predictive relationship be modeled?    

While a correlational relationship between matched Exam 1 and AKG was established, 

the corresponding scatter plot, shown in Figure 4.5 is difficult to interpret. Table 4.9 shows the 

attempted fit with various trendline functions, all with mediocre coefficients of determination. 

  



Cumulative Advantage and Student Performance in General Chemistry
  65 

Figure 4.5 

Scatter Plot of AKG as a Function of Exam 1 Scores  

 
 

Table 4.9 

Coefficient of Determination Values for Various Model Fits 

Fit Equation R2 

Exponential y = 137.69e0.0059 .341 

Power y = 2.4258x0.9873 .332 

Linear y = 2.3127x + 8.3948 .332 

 

An idealized model of the relationship between Exam 1 and AKG was constructed using 

nearest neighbor matching to create ideal monotone pairs. The Spearman rank-order correlation 

for the ideal curve, ρ, is shown in Table 4.10. The p-value < 0.0001 < 0.05, indicated that the null 

hypothesis, that the ranks do not covary, was rejected. A nearly perfect monotonic model was 

created, ρ = 0.99995, p = .05 and overlaid as a black trendine on the former scatter-plot, Figure 

4.5. The dashed red line, indicated that the best mathematical fit for the curve was given by an 

exponential function: y =  59.419e0.01x and R2 = .9961.  
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Table 4.10 

Idealized Spearman Correlation Coefficient between Exam 1 and AKG, N = 343  

Variables α Spearman ρ p-Value 

Exam 1 x AKG 0.05 0.99995 < .0001 

 

Figure 4.5 

Model of the Learning Curve Based on Idealized Monotonic Relationship  

 

 

 Although only a model, features consistent with known learning curve phenomena were 

present (Evans et al., 2018; Newell et al., 2001). For example, at the lower end of the curve, 

growth is lagged, followed by two plateaus before rising expoentially. The curve eventually ends 

in an uptick, corresponding to a ceiling effect for the highest performers.   

The shape of the curve is consistent with what is known as an increasing returns learning 

curve model. Increasing return models are associated with dual phase learning, where both 

cognitive and motor skills contribute to increasing performance (e.g. Poltokorpi & Jaber, 2022). 

These models are also found in economics, business and models of productivity, where greater 
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outputs are realized with smaller inputs. For example, Arthur (1996) in the the Harvard Business 

Review, explained increasing returns thusly: 

Increasing returns are the tendency for that which is ahead to get further ahead, for that 

which loses advantage to lose further advantage. They are mechanisms of positive 

feedback that operate within markets, businesses, and industries - to reinforce that 

which gains success or aggravate that which suffers loss. (p. 1) 

A description which is closely related to the concept of cumulative advantage.  

Research Question 4 

The acquisition of new knowledge and skills as a function of time is formally a rate 

change, which varies by student. Differences in learning rates have been described in terms of 

the fan-spread hypothesis attributed to Cook and Campbell (1979, p. 184). The fan-spread is 

presumed to be the difference in the learning rates between students with different amounts of 

prior preparation. For example, Kerckhoff and Glennie (1998) found that CA was associated with 

changes in student ranking over time.  

Demonstrating increasing variance as a function of time on an individual level simply 

requires a plot of performance as a function of time, or even a simple run time plot. However, 

displaying growing inequality for a large number of observations can be difficult to appreciate. 

The decision was made to display increasing inequality or variance as a function of time using a 

Sankey flow diagram (Kennedy & Sankey, 1898).  

Sankey diagrams are used to demonstrate the flow from one state to the next, such as 

the flow of steam, their original use. Here the diagram was used to demonstrate changes to 

student rankings over time. The data was arranged as quartiles of matched Exam 1 scores 

flowing to quartiles of AKG values, Table 4.11.  
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Figure 4.11 

Numerical Values Used to Construct the Sanky Diagram 

Exam 1 Score N 
AKG 750 AKG 588 AKG 470 AKG ≤ 374 

No. % No. % No. % No. % 

 230 - 250 85 43 51 22 26 15 17 5 6 

 209 - 229 86 30 35 31 36 17 20 8 9 

 181 - 208 86 7 8 23 27 34 40 22 26 

 ≤ 180 86 5 6 10 12 20 23 51 60 

Note. Percentages rounded to whole integer; total percentages may exceed 100. 

 

The resulting Sankey diagram shown in Figure 4.6 can appear overwhelming at first 

glance. However, the diagram holds a great deal of useful information provided it is examined 

with patience. One note of particular importance is that what can appear to be negative 

downward flow is not a loss of points, only a relatively smaller AKG when compared to Exam 1 

scores. 

 

Figure 4.6 

Sankey Diagram of Student Performance on Exam 1 to Absolute Knowledge Gain  
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 The following trends are of particular importance and so have been explained in greater 

detail. Figure 4.7 demonstrates the general stability of student ranking from Exam 1 to the end 

of the semester. Of the four groups, 59%, 50%, 40% and 36% of students in Groups 4, 1, 3 and 2, 

respectively, did not change from one quartile to the next.  

Figure 4.7 

Ranking Continuity of Students from Exam Quartile to AKG Quartile 

 

  

The upward trends in student quartile ranking have been highlighted in Figure 4.8. Of 

the three groups where upward mobility could occur, 35%, 35% and 30% were from Groups 2, 4 

and 3, respectively. However, only 8% and 6% of students from the Groups 3 and 4 had large 

enough gains to finish in AKG quartile 1. On the other hand, 27% and nearly 9% of students from 

Groups 3 and 4, respectively had gains which allowed them to finish in the AKG quartile 2. About 

23% of students form Group 4 had gains which allowed them to end in AKG quartile 3. Whether 

these gains had significant effects on the final course is unknown since grades and scores had 



Cumulative Advantage and Student Performance in General Chemistry
  70 

been decoupled prior to analysis. Students who benefitted the most were the 30 students or 

approximately 35% of Group 2 who ended in the highest ranking quartile.    

 

Figure 4.8 

Ranking Change of Students Upwards from Exam Quartile to AKG Quartile 

 

 

A more detailed examination was made of a single group of students, those from Group 

4, who had scored less than 180 on matched Exam 1, Figure 4.9. Even within this group there is a 

significant degree of variability in terms of AKG accrued over the course of the semester.  It is 

worth noting that the dynamic process demonstrated is consistent with the idea that learning is 

a complex series of cognitive events that occur over extended periods of time.  
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Figure 4.9 

Ranking Change Within Group1 and Lowest AKG Quartile  

 

 

Conclusion 

 Empirical data generated by six GC cohorts, N = 409 was analyzed for evidence that a 

cumulative advantage process might be responsible for differential student performance. 

Analyses were performed as suggested by DiPrete and Eirich (2006): (1) distributional analysis, 

(2) modeling and (3) signs of growing inequality or variance. The results of those analyses, as 

well as learning curve modeling suggested the presence of differences in initial preparation, 

which grew over time, consistent with a process of cumulative advantage.   
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Chapter 5: Discussion 

Introduction 

Prior to a discussion of the study results, an acknowledgement of the chemistry students 

who generated the data is offered. Each of the data sets analyzed represented a student, who  

remained nameless and faceless. Care must be taken to avoid blaming a student for their own 

misfortunes, particularly when students are anonymous (e.g., Bensimon, 2005). We, as 

educators, must always remember that each student has a unique story, a once imagined future, 

which did not involve failing GC.  

 Chemistry education research appears to be in the midst of welcome reform, a sign that 

all faculty are not satisfied by the status quo.  Researchers have called for new attitudes towards 

students (e.g., Vyas & Reid, 2023), the use of a cognitive learning theory (e.g., Cooper & Stowe, 

2018), and curriculum reform (e.g., Tashiro & Talanquer, 2021). After years of near silence on the 

subject, issues related to diversity, equity, and inclusion have begun to be openly discussed in 

American chemistry education literature (Ryu et al., 2021; Stitzel & Raje, 2022). 

Summary of Findings 

 Cumulative advantage is the mechanism used to explain underlying achievement gaps 

(Baumert et al., 2012) and achievement gaps have been described for incoming GC students 

(Harris et al. 2020). It was presumed that cumulative advantage could be problematic for some 

portion of the students who enroll in GC. A number of analyses were performed on empirical GC 

student performance data for signs a cumulative advantage process could be present.  

The distribution of Exam 1 scores, N = 409 depicted as a histogram was skewed left with 

a long tail. The number of data points in the tail was consistent with a fat-tailed distribution (e.g. 

Hayes, 2007). Despite the number of observations, the Central Limit Theorem limit was never 
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realized. The data never reached normality, suggesting the influence of a CA-like process was 

responsible for the distribution.  

Mathematical modeling of the trendline associated with the skewed histogram 

differences between the upper and lower 50% of the cumulative frequency distribution. 

Mathematically, the trendlines were qualitatively different, with one defined by an exponential 

function, the other a power-law. Qualitatively, this suggested that students with high exam 

scores could achieve exponential growth when compared to lower scoring students.  

This hypothesis was supported numerically by considering the theoretical test trajectory 

of the student who had scored 35.83 on the first exam. Supposing that the student doubled their 

score for each of the remaining three exams; their total score would only be 286.64, as opposed 

to 1000 points for the highest scoring student. Even though the lowest scoring student increased 

their scores multiplicatively, their gap with the higher scoring student, which began at a factor of 

6.98 could only be reduced by a factor of 3.49. An even more sobering fact was that the highest 

scoring student did score 1000 for the four exams. The student with 35.83 did not complete the 

course. 

The path-dependent form of CA was used to learning as the acquisition of new 

knowledge as a function of a previous time point (DiPrete & Eirich, 2006). The correlation 

between matched Exam 1 and AKG scores, N = 343, was calculated as the Spearman correlation 

coefficient, ρ= 0.57002, p = 0.05. A Spearman correlation coefficient is a measure of the 

monotonic, or nonlinear relationship between two variables.  

Since nonlinear functions are more difficult to visualize than linear functions an idealized 

model was constructed. Nearest neighbor matching was used to construct ideal monotone pairs, 

with which the model was constructed.  The result was a nearly perfect correlation between 

matched Exam 1 and AKG scores, N = 343: ρ = 0.99995, p = .05. The mathematical fit of the 
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model was exponential, y =  59.419e0.01x and R2 = .9961. The fit was consistent with the common 

forms of a learning curve (e.g., Evans et al., 2018).  

The shape of the learning curve was best described as an increasing returns model, 

normally associated with economic or productivity growth (Arthur, 1996). An increasing returns 

model suggested that greater returns to learning would be realized for students with more prior 

knowledge and experience. For example, prior knowledge is thought to increase learning rates 

(e.g., Newell, 2001) due to the increased efficiency of multiple cognitive processes (Chi & Glaser, 

1988).  

The presence of a cumulative advantage process was expected to result in increasing 

variance associated with performance over time. A Sankey flow diagram was used to 

demonstrate changes in student ranking from the first exam to the AKG. The Sankey diagram 

demonstrated three factors associated with CA: (1) the dynamic nature of CA, (2) increasing 

variance over time, and (3) student rank mobility.  

Several trends could be discerned from the Sankey diagram. For example, Groups 2 and 

3, due to their position in the diagram, were able to manifest the complete range of variance, in 

both directions. As a result, both Groups 2 and 3 demonstrated a fan-spread like shape based on 

rank changes from the Group ranking to final AKG ranking, N = 343.  

Particular attention was paid to upward student mobility, since chemistry students are 

implicitly expected to catch up to their better prepared peers in a matter of a few weeks. Such 

expectations are usually communicated with fill in the blank type statements such “If the 

student would just...[do something] they could succeed.” The blank is usually described in terms 

of affective or cognitive deficiencies (e.g. Bensimon, 2005; Ferrare & Miller, 2019).   

Two instances of significant upward mobility were observed. In the first case, 30 

students ranked in Exam 1 Group 2 earned enough points on the last three exams that they were 
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able to end the course in the top AKG category. The move upward demonstrated increased 

performance on one or more of the last three exams when compared to their initial exam 

performance. Naturally, the upward mobility of some students required that a commensurate 

number of students drop in rank.    

In all, a total of 43 students were deflected downward from their initial position in Group 

1. However, the majority of these students merely dropped to the second AKG rank of AKGs of 

less than 588. Since grades were decoupled from the data before the analysis, it was not 

possible to speculate about how this may have affected student course grades.    

Larger learning gains were rare, with only 12 students ranked in Groups 3 or 4 earning 

unusually high gains. Of those twelve students, seven were ranked in Group 3 and five in Group 

4. Since Groups 3 and 4 earned less than 208 and 181, respectively, on the first exam, their later 

performance was impressive. It was possible that the boost in performance could have saved 

those students from an ignominious GC performance.   

Two students in particular performed spectacularly, likely ending the course with at least 

a B or C. One student from Group 4 earned 160.15 on Exam 1 and an AKG of 720.91, out of the 

possible 750.00 for a combined score 881.06. The other student from Group 3 earned 184.03 on 

Exam 1 and an AKG of 735 out of the possible 750 for a total score of 919.99.  

While it was presumed the two students worked diligently in the course, large 

performance improvements over the course of a semester seemed unlikely.  As noted by 

Ericsson and Kintsch (1994) “Researchers have not uncovered some simple strategies that would 

allow nonexperts to rapidly acquire expert performance, except in a few isolated cases, such as 

the sexing of chickens” (p. 737). In the intervening years since that statement, no known method 

of overcoming the biological constraints of brain development has been reported.   
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A number of other possible scenarios could be considered, each with varying degrees of 

probability. For example, the Exam 1 scores could have been recorded in error, although that 

theory could neither be confirmed nor denied. The students may have had an eidetic, or 

photographic memory. This would allow them to use rote methods of learning, which can be 

highly effective in some cases. Lastly, the students may have taken AP chemistry in high school, 

and underestimated their ability to take Exam 1 with little to no review. While the latter 

explanation was considered the most likely, more research would be needed to appease critics 

of this conclusion. 

Research Limitations 

Any research study performed in chemistry, regardless of whether it is performed in the 

laboratory or classroom, requires replication. A second study using different data would be 

advised if possible. This does not imply or suggest some deficiency in the original research, only 

the degree of experimental rigor.  

One obvious limitation to the research study is the lack of generalizability, or the ability 

to make conclusions regarding students other than those described. To demonstrate the validity 

and even the robustness of the analysis method, replication would be required. Replication by at 

least three separate investigators at three different educational institutions would be advised. 

Another limitation is specific to archival data, which usually represents the “answer” for 

which the correct question must be framed.  Consequently, there can be a sense of working 

backwards to discover the cause or causes. While it was hypothesized that inadequate high 

school preparation contributed to poor GC performance, no causal relationship could be 

established under the conditions of the study.  
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Implications 

It was not possible to identify whether students pursuing a particular major 

disproportionally represented high or low performing students. However, it was strongly 

suspected that the highest performing students were likely engineering or physics majors, both 

of which usually have extensive mathematics backgrounds (Maltese & Tai, 2011; Warne et al., 

2018).   

In that case, an analysis of institutional records could help clarify that point, particularly 

high school transcript data and achievement test scores. Of particular interest would be 

determining the number of years of science and mathematics a student had taken in high 

school, and whether that affected GC performance. In any event, that step represents the logical 

progression towards identifying GC students and their high school experiences.  

 As described earlier, the site of this research was an institution serving a number of 

surrounding counties, with the bulk of students matriculating from those locations. A 

comparison of student performance based on high school attended could provide important 

information. The object would not be to lay blame on a particular high school for inadequate 

student preparation. Rather, the identification of inadequately sourced school districts would be 

the objective.   

Suggestions 

Surprisingly, in many chemistry education research studies, faculty expectations 

appeared to be above and beyond what is expected even for newly minted chemists. In the 

limited experience of the author, most newly graduated chemists have had little to no practical 

experience. Consequently, It was difficult to make sense of faculty expectations, particularly of 

students taking the course as a prerequisite.   
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Some chemistry education research studies managed to convey a palpable sense of 

dislike or even contempt towards the students described. As a consequence, the following 

remarks and recommendations may have a slight degree of subjectivity. However, any 

subjectivity was considered offset by the importance of questioning traditional practices related 

to the education of chemistry students.  

The data collected in this study suggested that a significant number of students enrolled 

in GC were not as prepared for the course as their classmates. Since all students planning to 

enroll in GC are advised to take a placement test, the mismatch was puzzling. The institution 

where the study was conducted offers GC in a variety of formats to meet the needs of their 

students. However, a placement exam is not mandatory, and students are free to enroll in the 

course of their choice.  

The dilemma of mandatory placement exams or enrollment is an issue many institutions 

grapple with (e.g., Donovan & Wheland, 2009; Mills et al., 2009). For example, literature 

accounts describe instances where students refused to enroll in a course more closely aligned 

with their experience (Mills et al. 2009). Conversely, there were faculty who described 

remediation as remediation as ineffective (Bentley & Gellene, 2005). However, very few 

expressed remorse for funding GC departments with revenue generated by students who were 

likely to fail the course. 

On the other hand, college students, particularly younger ones, may not be well 

informed or able to make the best choices for themselves. Many students are anxious to finish 

postsecondary studies as quickly as possible. They may see a remedial or slower paced course as 

a mark of shame they are unwilling to endure.  

General chemistry serves a number of majors, including the natural sciences, physical 

sciences and engineering. Based on the widely varying backgrounds of, for example, engineering 
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and biology students, it is questionable whether these students belong in the same class. They 

are unlikely to have the same mathematics background making some majors more vulnerable 

than others. Arguably, neither the highest nor lowest performing students in GC are best served 

by taking the same course.  

Conclusion  

The presence of a CA process was inferred from empirical GC student data using four 

major methods: distributional analysis, correlational analysis, modeling, and graphical analysis. A 

histogram of Exam 1 scores, N = 409, indicated there were large differences in preparation and 

performance. The left-skew of the histogram and the presence of a skewed and fat trailing tail 

suggested students entered the course with different degrees of preparation (e.g., Perc, 2014).   

 Students who scored less than 181 points out of the possible 250 on the first exam had 

almost no chance of catching up. In that sense, Exam 1 scores appeared to lock students into a 

path they were unable to leave. Many students experienced an ever-widening gap between their 

performance and their better prepared classmates. Learning is the consequence of permanent 

changes to long-term memory. How students are expected to accomplish such a task in a single 

semester is unclear.   

 The modeling of AKG as a function of first exam score suggested the relationship could 

be conceptualized as one of increasing returns. The more experienced the student, as indicated 

by first exam score, the likelier they were to continue earning commensurate scores. However, 

according to the theory of deliberate practice (Ericsson et al., 1993) increases in performance 

are monotonic. Consequently, students are not expected to learn at the same rate or in the 

same way.   

While many chemistry faculty assume students are able to surmount large preparation 

gaps, there was no evidence to support that conclusion. Only 30 students demonstrated what 
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could be considered enough knowledge gain to make a speculative difference in final grades. In 

general, however, students tended to begin and end in the rank they began in. This was 

especially true for students who began the course less prepared. In those cases, students who 

began behind, stayed behind. 
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Appendix 2: Preliminary Statistics 

Statistics for All Initial Exam Data 

Table 1 

Summary Statistics All Initial Exam Data N= 409 

Group Variable N Mean Std Dev Skew Kurtosis 
95% CI 

Lower Upper 

F 2016 

Exam 1 
Exam 2 
Exam 3 
Exam 4 

85 
75 
74 
69 

197.60 
152.63 
176.23 
143.75 

41.94 
48.18 
50.38 
57.07 

-1.57 
-0.31 
-0.66 
-0.11 

3.25 
-0.42 
-0.25 
-1.05 

188.56 
141.54 
164.56 
130.04 

206.65 
163.72 
187.90 
157.45 

S 2017 

Exam 1 
Exam 2 
Exam 3 
Exam 4 

52 
48 
48 
43 

193.55 
139.94 
163.48 
133.40 

39.59 
54.98 
61.65 
57.90 

-1.10 
-0.06 
-0.69 
0.10 

0.44 
-0.79 
-0.38 
-0.96 

182.52 
123.98 
145.58 
115.58 

204.57 
155.91 
181.38 
151.22 

F 2017 

Exam 1 
Exam 2 
Exam 3 
Exam 4 

90 
82 
77 
71 

191.73 
154.82 
176.86 
147.50 

45.62 
51.24 
54.30 
54.82 

-1.31 
-0.35 
-0.79 
0.01 

1.18 
-0.08 
0.03 
-0.99 

182.17 
143.56 
164.54 
134.52 

201.28 
166.08 
189.19 
160.47 

S 2018 

Exam 1 
Exam 2 
Exam 3 
Exam 4 

68 
63 
66 
63 

193.23 
137.74 
169.27 
138.68 

41.73 
56.31  
52.74 
61.15 

-0.80 
-0.08 
-0.66 
0.01 

0.05 
-0.96 
-0.17 
-1.02 

183.12 
123.56 
156.30 
123.28 

203.33 
151.93 
182.23 
154.08 

F 2018 

Exam 1 
Exam 2 
Exam 3 
Exam 4 

57 
54 
55 
54 

199.86 
151.63 
170.61 
146.57 

41.19 
47.93 
54.65 
57.04 

-1.62 
-0.85 
-0.62 
-0.33 

3.55 
0.80 
-0.32 
-0.71 

188.93 
138.55 
155.84 
131.00 

210.79 
164.71 
185.39 
162.14 

S 2019 

Exam 1 
Exam 2 
Exam 3 
Exam 4 

57 
52 
52 
48 

180.75 
148.16 
172.87 
167.01 

48.37 
59.51 
56.92 
59.95 

-0.55 
-0.20 
-0.90 
-0.66 

-0.08 
-0.99 
0.06 
-0.36 

167.92 
131.59 
157.02 
149.61 

193.59 
164.72 
188.72 
184.43 

 

Table 2 

Goodness-of-Fit Tests for Normal Distribution, N = 409 

Group N D-Statistic p Value 

1 85 0.10655 0.018 

2 52 0.15020 < 0.010 

3 90 0.15939 < 0.010 

4 68 0.10242 0.077 

5 57 0.16096 < 0.010 

6 57 0.09851 > 0.150 
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Statistics for All Matched Exams 1-4, N = 343 

 

Table 3 

Summary Statistics All Matched 1-4 Exams N= 343 

Group Variable N Mean Std Dev Skew Kurtosis 
95% CL 

Lower Upper 

F 2016 

Exam 1 
Exam 2 
Exam 3 
Exam 4 

AKG 

69 
69 
69 
69 
69 

205.87 
154.42 
178.78 
143.75 
479.95 

31.63 
47.65 
47.34 
57.07 

139.01 

-1.37 
-0.34 
-0.49 
-0.11 
-0.25 

4.28 
-0.26 
-0.66 
-1.05 
-0.84 

198.27 
142.98 
167.40 
130.04 
443.56 

213.47 
165.87 
190.16 
157.45 
510.34 

S 2017 

Exam 1 
Exam 2 
Exam 3 
Exam 4 

AKG 

43 
43 
43 
43 
43 

201.39 
145.63 
174.11 
133.40 
453.13 

33.86 
53.12 
54.72 
57.90 

143.76 

-1.24 
-0.11 
-0.90 
0.10 

- 1.10 

1.04 
-0.65 
0.46 
-0.96 
- 0.36 

190.97 
129.28 
157.27 
115.58 
408.89 

211.81 
161.97 
190.94 
151.22 
497.37 

F 2017 

Exam 1 
Exam 2 
Exam 3 
Exam 4 

AKG 

71 
71 
71 
71 
71 

203.28 
160.59 
178.58 
147.50 
486.67 

33.36 
50.23 
54.49 
54.82 

144.34 

-1.40 
-0.45 
-0.83 
0.01 

- 0.40 

2.75 
0.20 
0.13 
-0.99 
- 0.11 

195.38 
148.70 
165.69 
134.52 
452.51 

211.18 
172.48 
191.48 
160.47 
520.84 

S 2018 

Exam 1 
Exam 2 
Exam 3 
Exam 4 

AKG 

61 
61 
61 
61 
61 

197.80 
139.79 
172.80 
138.32 
446.81 

39.24 
55.12 
49.72 
61.55 

150.53 

0.95 
-0.04 
-0.69 
0.02 
0.01 

0.76 
-1.07 
0.23 
-1.02 
- 0.89 

187.75 
125.67 
160.07 
122.56 
408.26 

207.85 
153.90 
185.54 
154.08 
485.36 

F 2018 

Exam 1 
Exam 2 
Exam 3 
Exam 4 

AKG 

53 
53 
53 
53 
53 

204.45 
151.79 
173.20 
146.15 
470.60 

34.75 
48.37 
53.02 
57.51 

139.30 

-1.11 
-0.85 
-0.63 
-0.30 
- 0.54 

0.77 
0.75 
-0.28 
-0.75 
- 0.05 

194.87 
138.46 
158.59 
130.30 
432.21 

214.02 
165.12 
187.81 
162.00 
509.00 

S 2019 

Exam 1 
Exam 2 
Exam 3 
Exam 4 

AKG 

46 
46 
46 
46 
46 

190.44 
155.91 
178.69 
170.16 
504.76 

42.45 
55.26 
52.97 
56.67 

144.31 

-0.37 
-0.17 
-0.93 
-0.52 
- 0.42 

-0.78 
-1.00 
0.20 
-0.77 
- 0.71 

177.83 
139.50 
162.96 
153.33 
461.90 

203.04 
172.32 
194.42 
186.98 
547.61 
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Table 4 

Goodness-of-Fit Tests for Normal Distribution, N = 343 

Group N D-Statistic Pr>D 

F2016 69 
0.08245 > 0.150 

0.08664 > 0.150 

S2017 43 
0.16791 < 0.010 

0.07895 > 0.150 

F2017 71 
0.10191 0.068 

0.04623 > 0.150 

S2018 61 
0.10696 0.082 

0.06855 > 0.150 

F2018 53 
0.16150 < 0.010 

0.10272 > 0.150 

S2019 46 
0.09564 > 0.150 

0.11915 0.098 

 

Table 5 

Kruskal-Wallis One Way Analysis of Variance First Exam Scores By Group 

Group N Sum of Scores Expected H0 Std Dev H0 Mean Score 

F2016 85 18380.5 17425 970 216.24 

S2017 52 10561.5 10660 796 203.11 

F2017 90 18327.0 18450 990 203.63 

S2018 68 13891.0 13940 890 204.28 

F2018 57 12830.0 11685 828 225.09 

S2019 57 9855.0 11685 828 172.89 

 

  



Cumulative Advantage and Student Performance in General Chemistry
  106 

Table 6 

Kruskal-Wallis One Way Analysis of Variance First Exam Scores By Group 

Group N Label Sum of Scores Expected H0 Std Dev H0 Mean Score 

F2016 69 
Exam 1 12523.0 11868 736.15 181.49 

AKG 12052.0 11868 736.19 174.67 

S2017 43 
Exam 1 7387.0 7396 608.08 171.79 

AKG 6710.0 7396 744.05 156.04 

F2017 71 
Exam 1 12474.5 12212 744.01 175.70 

AKG 12868.5 12212 702.13 181.25 

S2018 61 
Exam 1 10148.0 10492 702.19 166.36 

AKG 9370.5 10492 702.23 153.61 

F2018 53 
Exam 1 9667.5 9116 663.75 182.41 

AKG 9086.5 9116 663.78 171.44 

S2019 46 
Exam 1 6796.0 7912 625.78 147.74 

AKG 8908.5 7912 625.81 193.66 
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