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Abstract 

Land use change is a major driver of biodiversity loss and consequently has led to the 

loss of genetic diversity in many plant populations due to declines in population sizes and 

an increase in genetic isolation. However, not all plant populations respond similarly to 

land use change, suggesting additional mechanisms mediating plant population genetic 

patterns. Here, I examine the role of pollinators as a mediating factor, investigating how 

pollinator tolerance to habitat degradation and pollination services differ, and how these 

can influence plant fitness. In Chapter 1 I conducted a meta-analysis on population 

differentiation (FST), which measure historic gene flow using adult plants, and pollen pool 

differentiation (ΦFT), which measure current gene flow from maternal plants and 

seedlings, to investigate how different types of pollinators drive changes in gene flow for 

plant populations in disturbed habitats. Using phylogenetic linear mixed-effects models, I 

found that different types of pollinators mediate different levels of gene flow in plant 

populations, with large bees specifically facilitating smaller values of ΦFT than non-bee 

insects. I also found that large bees are seemingly tolerant to habitat disturbance, 

maintaining equal levels of genetic connectivity in disturbed and undisturbed habitats. 

This shows that the relationship between disturbance and pollinators is indeed an 

important component of plant population genetics. In analyzing both FST and ΦFT, we 

found that ΦFT captures differences in disturbed habitats that FST did not. The ability to 

detect differences in disturbed habitats with ΦFT and not FST is likely due to ΦFT 

measuring gene flow in the most recent generation, making ΦFT an important statistic for 

identifying threats to plant populations. In Chapter 2 I studied the relationship between 

landscape and habitat characteristics, pollinator community, and plant mating quality 
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within a single pollination system. Campanula americana has a generalist pollination 

system and is pollinated by bumblebees, Megachile campanulae, and small bees. With 

structural equation modeling, I found that different types of pollinators respond to 

different aspects of the environment and differentially affect mating quality. Bumblebees 

responded positively to floral resource availability and habitats with nesting areas while 

M. campanulae and small bees were tolerant to habitat loss and different land use types. 

M. campanulae visits led to greater seed set and haplotype diversity in C. americana 

while small bee visits decreased haplotype diversity. These results show pollinator-based 

differences in responses to habitat and plant mating patterns, further establishing that 

pollinators are important determinants of plant population genetic change in the face of 

disturbance. In Chapter 3, I investigated the consequences of differences between 

pollinators in their pollen deposition patterns by focusing on fitness effects in offspring. I 

tested the pollen competition hypothesis which states that competition between pollen 

grains will select for more vigorous offspring. I specifically tested if pollination by 

multiple donors selects for offspring with higher fitness in Allium stellatum. I found that 

pollen loads with a greater number of donors increased female reproductive success at the 

expense of slower growing seedlings. However, this trade-off appears to be due to a 

trade-off in seed number and size, with seeds originating from larger seed sets growing 

more slowly. This can be attributed to the perennial life history of A. stellatum and the 

need to conserve resources for future reproduction. Because plants are resource limited, 

they cannot allocate resources for both large seeds and large seed sets. Ultimately, I 

found that the diversity of deposited pollen loads has important effects on population 

dynamics as seen by the effects on female reproductive success. As habitats change and 
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plant populations become smaller and more isolated due to anthropogenic disturbance, 

assessing the mechanisms behind plant population genetic patterns is an important 

contribution for conservation. With this dissertation, I have contributed to this 

assessment, illuminating the intricate role that pollinators play in influencing fitness and 

mating dynamics in plant populations.   
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Chapter 1: A meta-analysis shows pollinators differentially mediate changes in gene 

flow in disturbed habitats 

 

Rieka Yu1 and Nathan Muchhala1 

 

1University of Missouri – St. Louis 

One University Blvd. 223R Research Hall, Biology Department, St. Louis, MO 63121 

 

Abstract 

Land use change is a major threat to biodiversity, decreasing plant population genetic 

diversity through habitat loss and disturbance. However, emerging evidence suggests not 

all plant populations suffer the expected losses of genetic diversity, due to differences in 

how pollinators facilitate gene flow across disturbed landscapes. We performed 

phylogenetically independent meta-analyses to determine if and how pollen vectors, 

including bats, passerine birds, hummingbirds, insects, large bees, small bees, and wind, 

mediate changes in pollen pool differentiation (ΦFT) and population differentiation (FST) 

in the face of habitat disturbance. When only considering pollen vector and not 

disturbance, we found that wind led to the lowest ΦFT and FST values, with large bees, 

birds, and bats having intermediate values, and small bees, insects, and hummingbirds 

having the highest values. Habitat disturbance had no effect on FST, which reflects 

historical patterns in adult plants, but led to higher ΦFT, which reflects current patterns of 

pollen movement. These effects of disturbance on ΦFT depended on pollinator type, with 

hummingbird- and large bee- pollinated plants showing no difference. Overall, our results 
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provide evidence that pollinators drive plant population genetic patterns, as well as a 

clearer understanding of how particular pollinators differ in mediating gene flow.  
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Introduction 

 One of the greatest threats to biodiversity this century is land use change (Sala et 

al. 2000). Land use change impacts plant populations through modification of landscape 

structure in the form of habitat loss and disturbance (Fahrig 2003). These physical 

changes to populations are expected to cause decreased genetic diversity, which has 

implications for population persistence as it can determine population viability and 

response to selection pressures (Young et al. 1996). Habitat loss leads to small, 

fragmented populations that are predicted to suffer from genetic bottlenecks as well as 

genetic drift and inbreeding in subsequent generations due to limited gene flow 

(Templeton et al. 1990; Young et al. 1996; Hadley & Betts 2012). 

The increased focus on effects of disturbance on plant population genetics in the 

past decade has produced mixed results, with many but not all showing the predicted 

negative impact on genetic diversity (Young et al. 1996; Breed et al. 2015). These 

different results could be explained by differences in pollinator behavior, as pollinators 

can mediate the degree of plant genetic change in disturbed habitats (Hadley & Betts 

2012). One empirical study supports this idea, finding that habitat loss leads to decreased 

outcrossing rates in insect-pollinated Eucalyptus but not bird-pollinated Eucalyptus 

(Breed et al. 2015). Such a pattern is likely due to vertebrate pollinators being better able 

to move between isolated habitat patches (Aizen & Feinsinger 1994; Quesada et al. 2001, 

2004; Byrne et al. 2007). 

Although few studies directly compared how pollinators influence plant 

population genetics, meta-analyses of genetic variables also support the idea that there 

are large differences among pollinators (Aguilar et al. 2019; Gamba & Muchhala 2020). 
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A global analysis of FST values, a measure of population genetic differentiation, found 

differences in population genetics for plants pollinated by small insects, large insects, 

vertebrates, and wind (Gamba & Muchhala 2020). Similarly, in a meta-analysis of 

genetic diversity in continuous and disturbed habitats, Aguilar et al. (2019) found that 

habitat disturbance decreases genetic diversity and outcrossing rates and increases 

inbreeding for invertebrate-pollinated but not for vertebrate-pollinated species. 

Despite compelling evidence that pollinators mediate plant population genetic 

patterns, there is little empirical evidence for the expected underlying differences in 

actual pollen movement patterns between pollinator types. Oftentimes, vertebrates are 

considered highly mobile and are expected to maintain genetic connectivity in disturbed 

habitats (Aguilar et al. 2008, 2019; Breed et al. 2015; Krauss et al. 2017), however, there 

is evidence that this is not always the case. For example, nectarivorous bats have mixed 

responses to habitat disturbance depending on the species; while some are not found in 

forest fragments, others are able to travel between fragments and continuous forest, and 

even visit flowers in fragments more frequently (Quesada et al. 2004). For 

hummingbirds, forest specialists are unable to reach forest fragments and will avoid 

flying through open canopy (Hadley & Betts 2009; Kormann et al. 2016; Volpe et al. 

2016). On the other hand, although invertebrates are not expected to maintain genetic 

connectivity in disturbed habitats (Aguilar et al. 2008, 2019; Breed et al. 2015), studies 

show a wide range in their mobility and tolerance of anthropogenic disturbance. For 

instance, large bees such as bumblebees can travel distances up to 3-km, while some 

small solitary bees forage less than 1-km from their nests, and euglossine bees have been 

found to fly more than 40-km (Janzen 1971; Dressler 1982; Gathmann & Tscharntke 
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2002; Chapman et al. 2003; Zurbuchen et al. 2010). Along with being able to fly long 

distances, bees are apparently tolerant of disturbance, as they are common in 

anthropogenically altered habitats (Tonhasca et al. 2002; Kells & Goulson 2003; Winfree 

et al. 2009). 

 The FST statistic provides a useful general approach to quantifying genetic 

structure across populations, however, new methods allow researchers to more accurately 

compare genetic structure of pollen carried by pollinators. The intraclass correlation 

coefficient, ΦFT, developed by (Smouse et al. 2001), measures the structure of the male 

gametes that contributed to offspring from a single bout of pollination. ΦFT is analogous 

to the FST-statistic; while FST measures population differentiation as the amount of 

genetic variation among individuals within a population relative to between populations, 

ΦFT measures pollen pool differentiation, or the genetic variation of male gametes among 

seeds within maternal plants relative to among maternal plants (Smouse et al. 2001). 

Higher ΦFT values show divergence among male gametes and indicate different females 

are sampling from different pollen pools. Lower ΦFT values show less divergence among 

male gametes and indicate different females are sampling from the same pollen pool due 

to high pollen movement across the population. 

 Because ΦFT is calculated from the genetic material of seeds, it is highly 

representative of current mating patterns. This timescale is helpful for observing recent 

pollinator responses to habitat disturbance. By contrast, FST is typically calculated from 

the genetic material of adults, and thus represents historical patterns of gene flow. While 

genetic patterns in adults do show differences based on pollination mode, they will not 
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show recent changes in mating patterns, e.g. if the habitat disturbance occurred after adult 

establishment (Gamba & Muchhala 2020).  

 In the present study, we perform a meta-analysis on data collected from published 

literature to assess how disturbance differentially affects ΦFT and FST values for species 

with different pollen vectors. We review both ΦFT and FST values because they potentially 

provide information about gene flow at different spatial and time scales. Our goal is to 

provide a comprehensive assessment on how differences between pollinators drive 

changes in gene flow among plant populations in disturbed landscapes.  

Methods 

Data collection 

 We compiled a dataset of published ΦFT values by conducting a systematic 

literature search in Google Scholar (key words: "ΦFT" AND "pollen"). This produced 133 

results, which we reduced to 70 peer-reviewed publications that recorded ΦFT values in 

disturbed and/or continuous populations for 70 different species. We additionally 

compiled a dataset of FST values using the dataset originally collected by (Gamba & 

Muchhala 2020) supplemented by a Google Scholar search (key words: "FST" AND 

"pollen). This resulted in 257 peer-reviewed publications that recorded FST values in 

disturbed and/or continuous populations for 346 species. See Appendix S1 and S2 for the 

list of publications. 

For each recorded ΦFT and FST value, we coded habitat disturbance as a binary 

variable (continuous or disturbed). Values were categorized as disturbed when they were 

calculated from populations that suffered any type of habitat degradation. This included 

degradation of focal populations from logging resulting in lower plant densities as well as 
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agricultural or urban disturbances that led to fragmentation of populations into smaller 

and isolated patches. 

For each recorded ΦFT and FST value we additionally recorded the primary pollen 

dispersal vector as one of seven types: bat, passerine bird, hummingbird, large bee, small 

bee, insect, and wind. Pollen dispersal vectors were recorded as large bee if they were the 

size of honeybees or larger (e.g. Bombus, Euglossini); bees smaller than honeybees (e.g. 

Meliponini) were recorded as small bees. Pollen dispersal vectors were recorded as 

insects if they were non-bee insects or if the study only specified pollinators as 'insects.' 

Because life history traits as well as sampling methods have been shown to 

influence FST, we additionally recorded seed dispersal mode (bat, bird, non-volant 

mammal, gravity, wind, and water), mating system (outcrossing, mixed-mating, selfing), 

growth form (tree, shrub, non-woody), and latitudinal region (temperate, subtropical, 

tropical) as defined by Gamba & Muchhala (2020). We also collected variables related to 

sampling methods; for ΦFT this was mean offspring per maternal plant, maximum 

distance between maternal plants, and genetic marker, while for FST this was mean 

sample size per population, maximum distance between populations, and genetic marker. 

The collected data and list of publications can be found in the supporting information. 

Phylogenetic meta-analysis 

 Before analyses, we normalized ΦFT and FST with Tukey's ladder of powers 

transformation for the full dataset and subsets of data. Transformed values from the full 

data sets resulted in ΦFT
0.350 and FST

0.300. Transformed values from the subsets of data are 

reported with the results. We additionally created a species-level phylogeny with the R 

package V.PhyloMaker (Jin & Qian 2019) in order to run models corrected for 
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phylogenetic signal. The package starts with the mega-tree of vascular trees (Smith & 

Brown 2018) and prunes it to include only those species in our analyses.  

 Prior to testing how pollinator type and habitat disturbance affect pollen and 

population differentiation, we ran two phylogenetic multiple linear regressions with all 

variables to separately determine significant predictors of ΦFT and FST. For ΦFT, 

significant predictor variables included pollination mode, disturbance, maximum distance 

between maternal plants, and genetic marker. For FST, significant predictor variables 

included pollination mode, mating system, growth form, latitudinal region, maximum 

distance between populations, genetic marker, and mean sample size per population. 

These variables were then included as random effects in the final phylogenetic models 

with pollination mode included as a random effect when not included as a fixed-effect. 

 In our final phylogenetic linear regressions, we tested whether ΦFT and FST 

differed for plant species with different pollinators, as well as whether they differed 

between populations that occurred in disturbed and undisturbed habitats. We included the 

previously determined significant variables and each published study as random 

variables, with a phylogenetic correction. Statistical differences between pollinator type 

were determined by sequentially changing the reference category level and using z-values 

and their given p-values that are provided with model coefficients. Due to an increase in 

the risk of type I error from multiple comparisons, we used the graphically sharpened 

method of a false discovery rate (FDR) procedure to calculate adjusted p-values (Pike 

2011). 

 We additionally tested whether ΦFT and FST differed between disturbed and 

undisturbed habitats for each subgroup of pollination modes. To do this we performed 



 14 

phylogenetic linear regressions to test the effect of habitat disturbance on subgroups of 

data, each with plant species with different pollination modes. As with the full datasets 

we included the significant predictor variables and study as random factors with a 

phylogenetic correction. 

  Finally, we tested whether ΦFT and FST differed between disturbed and 

undisturbed habitats for different subgroups of growth forms. We tested this relationship 

because growth form is a significant predictor of FST and not ΦFT, and these two values 

measure gene flow at different time scales which may show up as differences between 

different growth forms. 

Results 

For both ΦFT and FST, pollination mode and disturbance were significant 

predictors of genetic variation. Although ΦFT and FST values do not differ between plant 

species with different vertebrate pollinators, there are significant differences in ΦFT 

between different invertebrate pollinators (Figure 1; Tables S1 and S2). For ΦFT, wind-

pollinated species have lower pollen pool differentiation compared to small bee-, insect-, 

and hummingbird- pollinated species, while large bee-pollinated species have less pollen 

pool differentiation than insect-pollinated species do (Table S1). For FST, insect-

pollinated species have greater population differentiation than wind pollinated species 

(Table S2). ΦFT and FST did not otherwise differ between species with other pollen 

vectors. 

 For disturbance, we found that disturbed habitats are associated overall with 

significantly higher pollen pool differentiation (z = 3.065, p = 0.002) but no difference in 

population differentiation (z = 1.848, p = 0.065; Figure 2) compared to continuous 
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habitats. When analyzing effects of disturbance separately for plant species with different 

pollinators, disturbance was found to significantly increase pollen pool differentiation 

(ΦFT) for all plants except those pollinated by hummingbirds and large bees (Figure 2a; 

Table 1). On the other hand, disturbance was only found to increases population 

differentiation (FST) for bat-pollinated species, with no difference for plants with other 

pollinators (Figure 2b; Table 1). 

 Regarding growth form, ΦFT was higher in disturbed populations for trees and 

shrubs, but no difference was found for non-woody species (Figure S1, Table S3). For 

FST there was no effect of disturbance for any of the growth forms. 

Discussion 

Here, we provide the first analysis we are aware of to date that generalizes plant 

mating patterns based on a fine-scale partitioning of pollinators. The results of our meta-

analysis support the hypothesis that pollinators mediate effects of habitat disturbance on 

plant population genetics. We show differences in ΦFT but not FST between continuous 

and disturbed plant populations, indicating habitat disturbance has an effect on pollen 

pool differentiation and not on population differentiation. Additionally, we found that not 

only do patterns of gene flow differ for species with different pollinators overall, but that 

habitat disturbance differentially affects species with different pollinators. 

 As expected, disturbance is associated with increased pollen pool differentiation 

(ΦFT values; Figure 1a), in support of the idea that habitat loss and fragmentation limits 

plant mating (Young et al. 1996; Fahrig 2003; Ghazoul 2005; Hadley & Betts 2012). 

These results agree with findings from previous meta-analyses that show habitat 

fragmentation leads to decreased genetic diversity and outcrossing rates as well as 
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increased correlated paternity and inbreeding (Aguilar et al. 2008, 2019). As plant 

populations become more isolated after disturbance, the surrounding matrix serves as a 

barrier to pollinators (Fahrig 2003). With limited pollinator movement and fewer 

pollinators visiting isolated populations, pollen may be moving shorter distances, leading 

to subsampling by females and high pollen pool differentiation within a population. This 

pattern of pollen pool differentiation is also expected from increased inbreeding in 

isolated plant populations (Young et al. 1996).  

Interestingly, we did not find a similar pattern of greater population differentiation 

(Fst values) in disturbed habitats (Figure 1b). This could be due to a time lag, given that 

population differentiation is calculated for adult individuals, and thus may represent 

genetic patterns pre-disturbance. This idea is further supported by the fact that there was 

no effect of disturbance on FST for different growth forms, but there was a positive effect 

on ΦFT for trees and shrubs (Figure S1 and Table S3). For example, trees may have been 

present before disturbance occurred, leading to similar FST values in disturbed and 

undisturbed populations. However, after disturbance there would be changes in mating 

patterns, resulting in higher ΦFT values in disturbed populations.  

In our assessment of pollinator differences, we found that body size appears to 

mediate the degree of gene flow by invertebrate pollinators (Figure 1), in that large bees 

facilitate lower population and pollen pool differentiation than small bees or other 

insects. This concurs with a previous meta-analysis of FST values, which found greater 

gene flow by honey-bee-sized or larger invertebrates relative to smaller ones (Gamba & 

Muchhala 2020). This pattern may simply be due to larger bees traveling farther in 

foraging bouts. However, interestingly, (Castilla et al. 2017) actually found that large 
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bees do not in fact move pollen longer distance but do facilitate greater seed set per 

flower. The ability to deposit larger pollen loads (also see Földesi et al. (2020)) can lead 

to greater gene flow between populations and among maternal plants, and thus may be 

the primary driver for the observed decrease in genetic differentiation among plants 

pollinated by large bees.  

 We found that all vertebrate pollinators facilitate similar degrees of gene flow 

within and between populations (Figure 1). However, we note that for ΦFT the lack of 

differences among vertebrates may be due to low sample sizes, with only five species 

each of hummingbird- and bat-pollinated species. Nevertheless, no study we are aware of 

has compared differences between vertebrate pollinators, and our results lends credence 

to other studies that have treated vertebrate pollinators as a single group.  

Along with differences between the pollinator types, and the differences in 

disturbed versus continuous habitats, we also found an interaction between these factors 

in that species with different pollinators have different responses to disturbance (Table 1). 

While most pollination modes show increased pollen pool differentiation in disturbed 

sites, hummingbirds and large bees may buffer plant populations, as species pollinated by 

those vectors did not suffer negative genetic effects from habitat degradation. 

 One limitation of this study is the lack of detailed pollinator identification for 

some of the plant species in our dataset. For example, certain species were coded as 

insect-pollinated because studies failed to specify the type of insect pollinator. There 

were also limitations in identifying pollinators to species level, which would have given 

information on whether pollinators were habitat generalists or specialists. Such 

information is necessary to more accurately determine differences in how pollinators 
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facilitate pollen movement, and we encourage future plant population genetic studies to 

include specific details on their pollinators.  

Although our study focused on how disturbance affects the movement of 

pollinators between plant individuals, it is also important to consider more direct impacts 

of disturbance on pollinator populations. For instance, the type of habitat and habitat 

quality of plant populations and their surrounding matrices can influence nesting and 

roosting sites of pollinators (Cosson et al. 1999; Mola et al. 2021). A landscape may have 

sufficient foraging habitat with little disturbance, but have few nesting and roosting 

habitats, leading to low attraction of pollinators and lack of pollination services. It is 

therefore important for more studies to examine how different aspects of land use change 

affect pollinators and their services.  

 Overall, this meta-analysis highlights the need to consider pollinators as major 

contributors to plant population dynamics in degraded habitats. Results demonstrate that 

different pollinators mediate the degree of gene flow within and between plant 

populations and the degree to which plant populations suffer from habitat disturbance. 

We also find that pollen pool differentiation (ΦFT) detects an effect of disturbance while 

population differentiation does not (FST), emphasizing the need for the careful selection 

of measures of gene flow to effectively assess changes in plant population genetics. With 

the looming threat of continued habitat loss and fragmentation due to human activities, 

accurate assessments of environmental change are necessary to combat habitat 

degradation. These assessments should include detailed pollinator identification, ideally 

to species level so that analyses can include information on pollination performance, 

foraging ranges, and nesting habitats if available. Including these details could uncover 
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fine-grain differences and lead to better generalizations that are better attributed to 

behavior, rather than just the relative size or type of pollinator. Understanding how 

pollinators differentially influence plant mating dynamics can help identify threats to 

both pollinators and plant populations and can inform restoration ecologists of the best 

practices to improve and conserve pollinator communities and plant population genetic 

diversity. 

Author contributions 

All authors contributed to study design. R.Y. collected data, performed analyses, and 

wrote the manuscript. All authors contributed substantially to revisions. 
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Figures 

 

Figure 1. Mean values and standard errors of a ΦFT and b FST for species with different 

pollen vectors. Mean values and standard errors were calculated from raw ΦFT and FST 

values. Horizontal lines (*FDR p < 0.05, ***FDR p < 0.001) indicate significant 

differences between groups. 
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Figure 2. Mean values and standard errors of a ΦFT and b FST for disturbed and 

continuous populations. Mean values and standard errors were calculated from raw ΦFT 

and FST values. Overall mean value for disturbed and continuous populations are shown 

in black. Mean values for species with different pollen vectors are shown in different 

colors. Significant differences between continuous and disturbed values are connected 

with solid lines, non-significant differences are connected with dashed lines.  
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Tables 

Table 1. Results of phylogenetic mixed-effect regressions testing the effect of habitat 

disturbance on ΦFT and FST for plant species with different pollen vectors. Values 

reported below are based on ΦFT and FST transformed by Tukey's ladder of powers, with 

transformed values indicated for each group. Significant p-values are in bold. 

 ΦFT
 

  Estimate SE Z-score P-value 

(a) Bat ΦFT
0.725     

Intercept 0.418 0.081 5.182 <0.001 

Disturbed 0.089 0.001 96.683 <0.001 

(b) Bird ΦFT
0.500 

    

Intercept 0.380 0.050 7.621 <0.001 

Disturbed 0.146 0.050 2.948 0.003 

(c) Hummingbird ΦFT
9.975 

    

Intercept 0.5633 0.0112 50.4191 <0.001 

Disturbed -0.0084 0.0062 -1.3645 0.172 

(d) Insect ΦFT
0.500     

Intercept 0.4989 0.037 13.478 <0.001 

Disturbed 0.0612 0.0022 27.426 <0.001 

(e) Large bee ΦFT
0.750 

    

Intercept 0.4271 0.0442 9.665 <0.001 

Disturbed -0.0029 0.0421 -0.0686 0.945 

(f) Small bee ΦFT
0.275 

    

Intercept 0.4203 0.4557 9.2206 <0.001 

Disturbed 0.0611 0.0196 3.1183 0.002 

(g) Wind ΦFT
0.200 

    

Intercept 0.3313 0.1022 4.3157 <0.001 

Disturbed 0.0132 0.0007 18.5103 <0.001 

 

 

 

 

 

 

 

    



 26 

Table 1 continued 

 FST
 

  Estimate SE Z-score P-value 

(a) Bat FST
0.125 

    

Intercept 0.433 0.115 3.766 <0.001 

Disturbed 0.183 0.106 1.722 0.085 

(b) Bird FST
-0.225 

    

Intercept 0.498 0.093 5.348 <0.001 

Disturbed 0.096 0.079 1.225 0.221 

(c) Hummingbird FST
0.250 

    

Intercept 0.593 0.100 5.972 <0.001 

Disturbed 0.056 0.097 0.574 0.566 

(d) Insect FST
0.450 

    

Intercept 0.603 0.043 14.049 <0.001 

Disturbed -0.009 0.036 -0.245 0.810 

(e) Large bee FST
0.250 

    

Intercept 0.502 0.045 11.107 <0.001 

Disturbed 0.015 0.050 0.304 0.761 

(f) Small bee FST
0.200 

    

Intercept 0.553 0.046 11.958 <0.001 

Disturbed 0.097 0.040 2.418 0.016 

(g) Wind FST
0.225 

    

Intercept 0.549 0.094 5.823 <0.001 

Disturbed 0.016 0.028 0.557 0.578 
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Supplementary materials 

 

Figure S1. Mean values and standard errors of a ΦFT and b FST for disturbed and 

continuous populations separated by growth form. Mean values and standard errors were 

calculated from raw ΦFT and FST values. Overall mean value for disturbed and continuous 

populations are shown in black. Mean values for species with different growth forms are 

shown in different colors. Significant differences between continuous and disturbed 

values are connected with solid lines, non-significant differences are connected with 

dashed lines. 
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Table S1. Results of phylogenetic mixed-effect regressions testing the effect of 

pollination mode on ΦFT. Each regression (a-g) has a different pollination mode category 

set as the reference variable. Reported values are based on ΦFT transformed by Tukey’s 

ladder of powers which resulted in values of ΦFT
0.350. False Discovery Rate (FDR) P-

values are P-values corrected for false discovery rates due to multiple comparisons. 

 

 
Estimate S.E. Z-score P-value 

FDR P-

value 

(a) Intercept (bat) 0.543 0.108 5.04 4.65E-07 -- 

bird -0.025 0.070 -0.366 0.714 0.714 

hummingbird 0.067 0.079 0.852 0.394 0.493 

insect 0.083 0.063 1.309 0.191 0.287 

large bee -0.032 0.065 -0.490 0.625 0.662 

small bee 0.015 0.067 0.225 0.822 0.740 

wind -0.099 0.063 -1.579 0.114 0.248 

(b) Intercept (bird) 0.518 0.101 5.113 3.18E-07 -- 

bat 0.026 0.070 0.366 0.714 0.714 

hummingbird 0.096 0.067 1.375 0.169 0.277 

insect 0.108 0.050 2.162 0.031 0.111 

large bee 0.006 0.048 -0.129 0.898 0.770 

small bee 0.041 0.053 0.775 0.438 0.493 

wind -0.074 0.048 -1.522 0.128 0.248 

(c) Intercept (hummingbird) 0.61 0.107 5.695 1.23E-08 -- 

bat -0.067 0.079 -0.852 0.394 0.493 

bird -0.093 0.067 -1.375 0.169 0.277 

insect 0.046 0.057 0.280 0.780 0.739 

large bee -0.099 0.062 -1.601 0.109 0.248 

small bee -0.058 0.064 -0.806 0.420 0.493 

wind -0.166 0.059 -2.808 0.005 0.042 

(d) Intercept (insect) 0.626 0.096 6.509 7.57E-11 -- 

bat -0.083 0.063 -1.309 0.191 0.287 

bird -0.108 0.050 -2.162 0.031 0.111 

hummingbird -0.016 0.057 -0.280 0.780 0.739 

large bee -0.115 0.042 -2.711 0.007 0.042 

small bee -0.068 0.046 -1.484 0.138 0.248 

wind -0.182 0.038 -4.958 7.12E-07 0.000 
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Table S1 continued 

(e) Intercept (large bee) 0.511 0.098 5.24 1.60E-07 -- 

bat 0.032 0.065 0.490 0.625 0.662 

bird 0.006 0.048 0.129 0.898 0.770 

hummingbird 0.099 0.062 1.601 0.109 0.248 

insect 0.115 0.042 2.711 0.007 0.042 

small bee 0.047 0.045 1.051 0.293 0.406 

wind -0.067 0.040 -1.690 0.091 0.248 

(f) Intercept (small bee) 0.558 0.099 5.619 1.92E-08 -- 

bat -0.015 0.067 -0.225 0.822 0.74 

bird -0.041 0.053 -0.775 0.438 0.493 

hummingbird 0.052 0.064 0.806 0.420 0.493 

insect 0.068 0.046 1.484 0.138 0.248 

large bee -0.047 0.045 -1.051 0.293 0.406 

wind -0.114 0.044 -2.578 0.010 0.045 

(g) Intercept (wind) 0.444 0.095 4.693 2.70E-06 -- 

bat 0.099 0.063 1.579 0.114 0.248 

bird 0.074 0.048 1.522 0.128 0.248 

hummingbird 0.167 0.059 2.808 0.005 0.042 

insect 0.182 0.037 4.958 7.12E-07 0.000 

large bee 0.067 0.040 1.690 0.091 0.248 

small bee 0.114 0.044 2.578 0.010 0.045 
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Table S2. Results of phylogenetic mixed-effect regressions testing the effect of 

pollination mode on FST. Each regression (a-g) has a different pollination mode category 

set as the reference variable. Reported values are based on FST transformed by Tukey’s 

ladder of powers which resulted in values of FST
0.300. False Discovery Rate (FDR) P-

values are P-values corrected for false discovery rates due to multiple comparisons. 

  
Estimate S.E. Z-score P-value 

FDR P-

value 

(a) Intercept (bat) 0.605 0.055 10.929 <2E-16 -- 

bird -0.070 0.060 -1.157 0.248 0.473 

hummingbird 0.018 0.049 0.369 0.712 0.921 

insect 0.010 0.041 0.251 0.802 0.921 

large bee -0.046 0.043 -1.077 0.281 0.492 

small bee 0.014 0.044 0.323 0.747 0.921 

wind -0.059 0.044 -1.317 0.188 0.395 

(b) Intercept (bird) 0.535 0.059 9.136 <2E-16 -- 

bat 0.070 0.060 1.157 0.248 0.473 

hummingbird 0.088 0.058 1.535 0.125 0.292 

insect 0.080 0.046 1.748 0.081 0.239 

large bee 0.054 0.048 0.503 0.615 0.921 

small bee 0.084 0.050 1.690 0.091 0.239 

wind 0.011 0.047 0.241 0.809 0.921 

(c) Intercept (hummingbird) 0.623 0.052 11.989 <2E-16 -- 

bat -0.018 0.049 -0.369 0.712 0.921 

bird -0.088 0.057 -1.535 0.125 0.292 

insect -0.008 0.037 -0.208 0.835 0.921 

large bee -0.064 0.038 -1.696 0.090 0.239 

small bee -0.004 0.040 -0.099 0.921 0.921 

wind -0.077 0.041 -1.888 0.059 0.239 

(d) Intercept (insect) 0.615 0.042 14.601 <2.2E-16 -- 

bat -0.010 0.041 -0.251 0.802 0.921 

bird -0.080 0.460 -1.748 0.081 0.239 

hummingbird 0.008 0.037 0.208 0.835 0.921 

large bee -0.056 0.022 -2.568 0.010 0.098 

small bee 0.004 0.026 0.145 0.884 0.921 

wind -0.069 0.021 -3.276 0.001 0.021 

Table S2 continued 
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(e) Intercept (large bee) 0.559 0.043 13.002 <2E-16 -- 

bat 0.046 0.043 1.077 0.281 0.492 

bird -0.024 0.048 -0.503 0.615 0.921 

hummingbird 0.064 0.038 1.696 0.090 0.239 

insect 0.056 0.022 2.568 0.010 0.098 

small bee 0.060 0.028 2.176 0.030 0.158 

wind -0.013 0.025 -0.515 0.607 0.921 

(f) Intercept (small bee) 0.619 0.045 13.795 <2E-16 -- 

bat -0.014 0.044 -0.323 0.747 0.921 

bird -0.084 0.050 -1.689 0.091 0.239 

hummingbird 0.004 0.040 0.099 0.921 0.921 

insect -0.004 0.026 -0.145 0.884 0.921 

large bee -0.060 0.028 -2.176 0.030 0.158 

wind -0.073 0.030 -2.460 0.014 0.098 

(g) Intercept (wind) 0.546 0.044 12.394 <2.2E-16 -- 

bat 0.059 0.044 1.317 0.188 0.395 

bird -0.011 0.047 -0.241 0.809 0.921 

hummingbird 0.077 0.041 1.888 0.059 0.239 

insect 0.069 0.021 3.276 0.001 0.021 

large bee 0.013 0.025 0.515 0.607 0.921 

small bee 0.073 0.030 2.460 0.014 0.098 
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Table S3. Results of phylogenetic mixed-effect regressions testing the effect of habitat 

disturbance on ΦFT and FST for plant species with different growth forms. Values reported 

below are based on ΦFT and FST transformed by Tukey's ladder of powers, with the 

transformed values indicated for each group. Significant p-values are in bold. 

 ΦFT       

  Estimate SE Z-score P-value 

(a) non-woody ΦFT
0.475    

Intercept (undisturbed) 0.363 0.071 5.138 <0.001 

disturbed 0.026 0.033 0.779 0.436 

 
    

(b) shrub ΦFT
0.675     

Intercept (undisturbed) 0.159 0.05 3.202 0.001 

disturbed 0.128 0.049 2.63 0.009 

 
    

(c) tree ΦFT
0.375     

Intercept (undisturbed) 0.477 0.09 5.271 <0.001 

disturbed 0.055 0.021 2.622 0.009 

 FST       

  Estimate SE Z-score P-value 

(a) non-woody FST
0.350    

Intercept (undisturbed) 0.524 0.077 6.781 <0.001 

disturbed 0.084 0.046 1.816 0.070 

 
    

(b) shrub FST
0.575     

Intercept (undisturbed) 0.400 0.057 6.985 <0.001 

disturbed 0.027 0.041 0.668 0.504 

 
    

(c) tree FST
0.200     

Intercept (undisturbed) 0.638 0.045 14.271 <0.001 

disturbed 0.021 0.018 1.179 0.283 
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Abstract 

In the face of land use change, plant populations undergo changes in population genetic 

patterns and suffer decreased genetic diversity due to reduced population sizes and mate 

availability. However, growing evidence suggests that pollinators contribute to the degree 

to which habitat loss negatively impacts plant mating patterns. Here, we used Campanula 

americana, which is pollinated by bumblebees, the bellflower resin bee Megachile 

campanulae, and small bees, and investigated variations in pollen deposition, seed set, 

haplotype diversity, and inbreeding in order to explore the drivers of plant population 

genetic change. We used piecewise structural equation modeling (SEM) to determine 

whether habitat loss or differences in pollinator visits by different types of bees is the 

main driver of plant mating patterns. We found that not all pollinators are susceptible to 

habitat loss and that pollinator identity is the main driver of plant mating patterns. We 

specifically found that M. campanulae and small bees visit flowers equally regardless of 

the amount of habitat loss. M. campanulae increased seed set and haplotype diversity 

while visits by small bees decreased haplotype diversity. In this study we showed that the 
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pollinator community is critical to consider in any study focusing on habitat loss. 

Understanding the role of pollinators in both responding to habitat disturbance and 

influencing plant population dynamic has implications for future conservation and 

restoration practices. 
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Introduction 

The majority of flowering plants depend on animal vectors for successful mating 

(Ollerton et al., 2011), making the maintenance of plant-pollinator interactions critical for 

the persistence of plant populations. Unfortunately, land use change threatens both plant 

and pollinator populations, paving the way for changes in plant-pollinator interactions 

(Sala et al., 2000; Fischer and Lindenmayer, 2007; Hadley and Betts, 2012; Aguilar et al., 

2019). With land use change, plant populations suffer increased patch isolation and a 

reduction in population size, leading to limited mate availability and reductions in plant 

mating quality (Ellstrand and Elam, 1993; Young et al., 1996; Fahrig, 2003). Limited 

mate availability can lead to fewer pollen grains deposited on stigmas and a decrease in 

the diversity of the available pollen pool, leading to lower seed sets and reduced genetic 

diversity of offspring (Eckert et al., 2010; Vanbergen et al., 2014). With smaller and 

more isolated populations, the frequency of mating with related individuals will increase, 

leading to an increase in inbreeding which may also affect seed set (Aguilar et al., 2008; 

Eckert et al. 2010; Vanbergen et al. 2014; Aguilar et al., 2019). These changes in plant 

mating patterns would then lead to the loss of genetic diversity which has severe 

implications for population persistence. 

Many studies have found the expected decrease in genetic diversity in disturbed 

populations, but some show differences in responses linked to pollinator identity. 

Emerging evidence suggests pollinators differ in their response to disturbance due to 

variation in behaviors, habitat preferences, and mobility, which will then indirectly 

influence plant mating patterns. For example, studies have shown bird pollinators deposit 

more diverse pollen loads and maintain gene flow in disturbed plant populations 
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compared to insects (Breed et al., 2015; Krauss et al., 2017). Among insects, larger-

bodied pollinators have been found to deposit larger pollen loads and facilitate greater 

genetic connectivity between plant populations (Gamba and Muchhala, 2020; Földesi et 

al., 2021; Wessinger, 2021). Sociality also plays an important aspect as social species 

tend to have larger foraging ranges and are more ecologically flexible in different habitats 

(Wenzel et al., 2020; Grüter and Hayes, 2022). 

While habitat loss can reduce the populations of pollinators, the overall 

composition of land use types at the local and landscape scale are also important factors 

of pollinator community composition. In addition to floral resources, the presence of 

nesting habitats is important for maintaining pollinator populations. For example, in 

urban areas soil nesting bees become less abundant due to the amount of impervious 

surface while above-ground nesters increase in abundance due to the presence of cavities 

in buildings (Wilson and Jamieson, 2019; Wenzel et al., 2020). For bumblebees, the 

availability of nesting and overwintering habitat are important environmental factors 

influencing where queens establish their nests (Mola et al., 2021).  

Many studies have documented the effects of habitat loss on plant population 

genetics, but the true drivers of these effects are still unclear. We are aware of only one 

study to date which has explored the direct and indirect drivers of population genetic 

change in a tropical system (Torres‐Vanegas et al., 2021). This study showed that forest 

patch size had no direct effect on genetic diversity but did lead to changes in 

hummingbird community composition which was associated with plant mating quality 

(Torres‐Vanegas et al., 2021).  
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Here, we examine the role of direct and indirect effects of habitat loss on plant 

mating patterns in a temperate system, using path analyses to assess how both floral and 

nesting resources affect pollinator communities, plant mating success (pollen deposition 

and seed set) and quality (haplotype diversity and inbreeding). We hypothesize that 

changes in plant population genetics in disturbed habitats is driven by changes in the 

pollinator community, and thus predict direct relationships between habitat loss and 

pollinators as well as between pollinators and plant mating success and quality. 

Alternatively, habitat loss can lead to changes in plant population genetics due to changes 

in floral availability. In this instance we would expect to see a direct relationship between 

disturbance and plant mating quality. 

Methods 

Study system 

 Campanula americana is an annual or biennial herb native to eastern North 

America and is found in open forests. It is self-compatible and protandrous, with anthers 

dehiscing before flowers open and presenting pollen on pollen-collecting hairs along the 

style (Koski et al. 2018). Pollinators remove pollen within the first day, after which the 

stigmatic lobes open to receive pollen (Koski et al., 2018). The main visitors of C. 

americana are bumblebees, the bellflower resin bee Megachile campanulae, and small 

solitary bees in Halictidae and Apidae (Koski et al., 2018). Of the three groups of 

pollinators, bumblebees are the most efficient pollinators, depositing the greatest number 

of pollen grains per visit and leading to the greatest seed set (Koski et al., 2018). M. 

campanulae and small bees deposit similar levels of pollen but M. campanulae facilitates 
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greater seed sets than small bees (Koski et al., 2018). Because small bees remove pollen, 

they increase pollen limitation with each visit.  

Study design 

 We studied C. americana populations in St. Louis, St. Charles, Jefferson, and 

Franklin County in Missouri. We filmed one flower per 63 focal C. americana 

individuals across nine study sites (Figure 1). Flowers were filmed during its female 

phase for one day during peak pollinator activity (11:00 – 14:45). We bagged flowers 

before and after filming to ensure no visits outside this period. From videos we recorded 

the number of visits/flower by bumblebees, M. campanulae, and small bees. The 

resulting fruits from focal flowers were collected after four weeks for genotyping. We 

additionally collected maternal leaves for genetic analyses. From fruits we counted seed 

set then planted up to 10 seeds per maternal plant in a growth chamber with a 12 hours 

cycle of 21oC and 14oC. This resulted in 1-7 seedlings from 24 maternal families for 

DNA extraction. We also collected stigmas from the filmed flowers to count the number 

of deposited C. americana pollen grains. Stigmas were collected 24 hours after filming 

ended and were placed in Farmer’s solution for 24 hours to fix stigmas and then 

transferred to 70% ethanol until slide preparation. Stigmas were affixed to a slide with 

clear tape and stained with fuchsin gel after which we counted pollen grains under a 

microscope. Some stigmas were damaged during processing and therefore we have pollen 

counts for 59 out of the 63 focal flowers we sampled.  

Because the local floral community can influence pollen loads, we counted the 

number of conspecific and heterospecific flowers in a 10-m radius around focal 

individuals. Linear mixed effects models with site as a random factor showed no effect of 
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the number of conspecific flowers and that the number of heterospecific flowers only 

influenced the number of bumblebee visits (Table S1). We therefore included the number 

of heterospecific flowers as a predictor variable of bumblebee visits for analyses.  

 As a measure of habitat loss, we calculated the amount of C. americana habitat 

and proportion of forest in a 150-m and 1-km radius around each focal individual. Forest 

cover was calculated from the National Landcover Database (NLCD) in QGIS and 

included deciduous forest, evergreen forest, and mixed forest (Dewitz and U.S. 

Geological Survey, 2021) (Figure S1; Table S2). We used personal and GBIF 

observations of C. americana and Landsat-8 bands 1-7 to model the habitat distribution 

for C. americana using Maxent (Phillips and Dudík, 2008). The output of Maxent assigns 

cells a value of habitat suitability ranging from 0-1, with 1 being the most suitable 

(Figure S2). As a measure of the amount of C. americana habitat we took the sum of 

these cells in a 150-m and 1-km radius around each focal individual. The availability of 

four different types of nesting areas (cultivated, developed, barren, and grassland) was 

also calculated from the NLCD in QGIS. We separately measured the proportion of 

cultivated, developed, barren, and grassland areas in a 150-m and 1-km radius. Because 

bees have a diversity of nesting behaviors (e.g. ground-nesting or nesting in hollow 

stems), each of these four land types were considered as a different type of nesting 

habitat. 

Genetic analyses  

For maternal plants and offspring, we extracted DNA following the CTAB 

method (Doyle and Doyle, 1987). We genotyped individuals at eight microsatellite loci 

using polymerase chain reaction (PCR) in two multiplex PCR assays according to Koski 

https://www.gbif.org/occurrence/download/0203487-230224095556074
https://www.gbif.org/occurrence/download/0203487-230224095556074
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et al. 2018. PCRs were run using 25uL Bioline MyTaq PCR mix as well as dH2O, 

fluorescently tagged forward primers, and reverse primers, with a final concentration of 

0.4uM of each forward and reverse primer. The amplification procedure followed Koski 

et al. (2018). Fragment analyses were conducted by the Roy J. Carver Biotechnology 

Center at the University of Illinois at Urbana-Champaign. Samples were run on an 

Applied Biosystems 3730xl DNA Analyzer with a Liz500 size standard. We identified 

alleles through GeneMapper, and binned alleles with Tandem2. Tandem2 bins alleles 

based on the length of microsatellite repeat motifs. We inferred tetraploid genotypes with 

an R script calculating the relative area of allele peaks (Esselink et al., 2004; Koski et al., 

2019). 

 As measures of plant mating quality, we estimated the haplotype diversity of 

paternal donors of the seedlings that we germinated in the growth chamber and counted 

the number of seeds per fruit. From maternal and offspring genotypes, we calculated 

pollen haplotypes by subtracting the maternal genotype from the corresponding offspring 

genotype using the R package GSTUDIO (Dyer, 2014). With the available R code from 

Torres‐Vanegas et al. (2021) we calculated the haplotype diversity as the probability that 

the paternal alleles of two randomly chosen offspring are different (Nei, 1987) and 

averaged this value across all loci. Individuals that did not set seed were given a 

haplotype diversity value of zero because the pollen donors effectively made no 

contribution to the next generation’s population. However, we also repeat these analyses 

for only those individuals that set seed. We used SPAGeDi to calculate individual 

inbreeding coefficients per loci, calculated as the kinship coefficient between gene copies 

between individuals (Hardy and Vekemans, 2003). We then averaged the inbreeding 
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coefficients across loci for each individual. Because only 24 out of 63 individuals set 

seed we do not have inbreeding coefficients for the whole data set. 

Statistical analyses 

 To determine the effects of floral and nesting resources as well as pollinator visits 

on haplotype diversity and seed set we performed piecewise structural equation modeling 

(SEM). Piecewise SEMs consist of multiple linear equations, each representing a 

hypothesized causal relationship (Shipley, 2000; Lefcheck, 2015).  

Prior to performing piecewiseSEMS we estimated variance inflation factors (VIF) 

to evaluate correlations among predictor variables. Using a value of VIF ≥ 5 to detect 

collinearity, we found all predictor variables were below 5 and could be included together 

in our models (Table S3). We also ran linear mixed effects models to determine which 

land use categories at which scales were significant predictors of pollinator visits. 

Significant variables were then included in the hypothesized relationships of the 

piecewise SEM. These mixed effect models showed that for bumblebees, but not other 

the other pollinators, the proportion of cultivated land in a 150-m radius positively 

influenced the number of visits (Table S4-S9). We therefore included the proportion of 

cultivated land in a 150-m as a predictor variable. 

Using the R package piecewiseSEM, we evaluated the direct and indirect effects 

of floral and nesting resources on the number of visits by each type of bee, number of 

deposited pollen grains, seed set, and haplotype diversity separately for three separate 

piecewiseSEMs (Lefcheck, 2015). We tested path models both with and without direct 

effects of habitat loss on plant mating quality at the 150-m and 1-km scale separately 



 71 

(Table S9). For each path model, we used linear mixed-effects models with site included 

as a random variable.  

We tested if the hypothesized relationships in our piecewiseSEMs was missing 

any additional relationships using Shipley’s test of directed separation, also known as the 

d-separation test (Shipley, 2000, 2013). The d-separation test showed a missing positive 

relationship between the number of M. campanulae and small bee visits for all models. 

However, because we do not have previous knowledge to hypothesize the causal 

relationship between these variables, we did not include this relationship in our path 

models. We selected final path models that had the greatest number of significant 

explanatory variables with the lowest AIC score. We used Fisher’s C statistic to evaluate 

the goodness-of-fit for each path model for which a non-significant P value indicates the 

hypothesized relationships match the data (Lefcheck, 2015). For each model we also 

estimated the standardized regression coefficient and the conditional R2 from the 

piecewiseSEM package. Because we were missing inbreeding coefficients for a large part 

of the dataset, we ran separate linear mixed-effects models testing the effect of habitat 

loss, land use type, and pollinator on inbreeding coefficients. Site was set as a random 

effect in these models. 

Results 

 Based on videos of focal C. americana flowers bumblebees had visitation rates of 

0.17 visits/hour (SE = 0.06), M. campanulae had visitation rates of 3.36 visits/hour (SE = 

0.88), and small bees had visitation rates of 5.86 visits/hour (SE = 1.40). The average 

number of heterospecific flowers in a 10-m radius around focal C. americana flowers 

was 163.5flowers (SE = 42.1). The average number of deposited pollen grains was 
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160.42 grains (SE 18.11), and average seed set was 12.75 seeds per flower (SE = 2.13) 

(Figure S3 and S4). Average haplotype diversity was 0.12 (SE = 0.02) and average 

individual inbreeding coefficients was 0.05 (SE = 0.02) (Figure S5 and S6). 

Our best fit piecewise SEM showed no direct effect of the number of 

heterospecific flowers, the amount of C. americana habitat, or the amount of forest area 

on haplotype diversity, seed set, or the number of deposited pollen grains by. There was 

evidence of indirect effects of the number of heterospecific flowers and the amount of 

forested area and cultivated area on plant mating patterns through changes in pollinator 

visits (Figure 2; Table S9). When repeating analyses using haplotype diversity values for 

only the individuals that set seed, we found that the number of pollinator visits by any 

type of bee did not affect haplotype diversity (Figure S7). We found no effects of the 

amount of forested area and land use type or number of pollinator visits on inbreeding 

coefficients (Table 1). 

Discussion 

 Our results support the hypothesis that changes in mating patterns in disturbed 

plant populations are caused by changes in the pollinator community rather than the 

availability of potential mates. We find no direct effects of the amount of forest or 

suitable habitat on the number of deposited pollen grains, seed set, or haplotype diversity 

in C. americana. Instead, we find that the mating dynamics of C. americana is affected 

by the identity of pollinators that visit it, which in turn is affected by land use type. 

 We show that floral resources are important predictors of bumblebee visits to C. 

americana. Specifically, increased number of heterospecific flowers in a 10-m radius 

around focal C. americana individuals led to increases in the number of bumblebee visits. 
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Evidence suggests that both floral abundance and diversity are significant attractants of 

bumblebees (Hegland and Boeke, 2006; Hülsmann et al., 2015; Martínez-Bauer et al., 

2021). In fact, bumblebees show low floral constancy in the field and actively forage on 

different plant species (Martínez-Bauer et al., 2021). Although our data on the number of 

heterospecific flowers does not have information on species richness, the fact that the 

number of conspecific flowers did not affect bumblebee visits to focal C. americana 

individuals indicates bumblebees may have been responding to floral diversity in our 

system. 

Unexpectedly, our results show floral resources around focal flowers had no 

effect on the number of visits by small bees or M. campanulae. For small bees like 

Lasioglossum and Halictus, research suggests the stability of floral abundance in previous 

months is an important predictor of visits (Guezen and Forrest, 2021). However, in our 

study measures of conspecific and heterospecific flowers represented current floral 

abundance at the time of visitation while the species distribution model and the 

proportion of forest were measures of habitat suitability for C. americana only. This lack 

of temporal information may explain why we found no relationship between floral 

resources and small bees. Megachile bees on the other hand respond to landscape level 

floral resources but are dispersed across the landscape (Guezen and Forrest, 2021). It is 

possible we did not find landscape level effects because there was not enough variation in 

the amount of suitable C. americana habitat in our study. 

 In addition to responding to local floral diversity, bumblebees also respond to 

land use types at a local scale, with visits to C. americana increasing with the proportion 

of cultivated and forested area in a 150-m radius. The exact nesting preferences of 
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bumblebees are unknown, but their nests are frequently found in grass-dominated field 

boundaries of agriculture and forest (Svensson et al., 2000). This potentially explains 

why bumblebee visitation increases with both cultivated and forested areas. Although 

bumblebees will not nest in areas where active tilling occurs, they will nest in cultivated 

areas that have grasses for livestock grazing in addition to forests (Svensson et al., 2000; 

Liczner and Colla, 2019). Because there was a positive relationship between the number 

of bumblebee visits and cultivated areas, the much of the cultivated area in our study area 

are likely no-tilling areas. We did not expect land use type to be significant only at a local 

scale for bumblebees because they are able to forage several kilometers from their nest 

(Osborne et al., 2008; Redhead et al., 2016). Despite the ability to fly long distances, 

average bumblebee foraging ranges vary from ~200-600m (Darvill et al., 2004; Wolf and 

Moritz, 2008; Redhead et al., 2016), which is likely why we only see effects at the 150-m 

scale.  

We did not find correlations between any land use type and M. campanulae visits. 

M. campanulae appears to be flexible in its nest use, and they have even been observed 

using plastic bags as nesting material (MacIvor and Moore, 2013). This ability to use 

novel nest materials may indicate that M. campanulae are able to nest in multiple 

environments and are not associated with any particular land use type. The lack of 

correlation between land use type and M. campanulae visits highlights the fact that not all 

pollinators are susceptible to habitat disturbance and that M. campanulae can be 

important for maintaining pollination services to C. americana when disturbance 

decreases visits by other bees. We also found that small bee visits were not correlated 

with land use types, however, this may be because the grouping of small bees in this 
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study include multiple groups that differ in nesting behavior. By grouping all small bees 

into a single group, we likely lost fine-grain effects of land use on particular species.  

 We found pollinators directly affected plant mating patterns, with the number M. 

campanulae visits positively correlated with seed set and haplotype diversity. This is 

likely because M. campanulae is oligolectic, preferentially visiting flowers from 

Campanula (Michener, 2000), and is less likely to carry and deposit heterospecific pollen 

grains. This deposition of a greater number of pollen grains is then translated to greater 

seed set and haplotype diversity. We expected to find similar patterns for bumblebees but 

instead found no relationship between the number of bumblebee visits and plant mating 

quality. This may be because bumblebees visit multiple species of flowers and are not 

depositing a large enough number of pollen grains to make statistical inferences. 

 For small bees, we found that their visits were negatively correlated with 

haplotype diversity. Small bees visited multiple flowers within the same individual 

(personal observation), which may have increased the amount of self-pollen on their 

bodies. Small bees also have relatively small bodies, which has been shown to be 

correlated with depositing smaller pollen loads (Földesi et al., 2021). With smaller pollen 

loads, visits to within-individual flowers likely displace greater proportions of outcross 

pollen, leading to decreased haplotype diversity with greater visits by small bees. Small 

bees also mostly collect pollen rather than depositing pollen when visiting C. americana 

(Koski et al., 2018), and by removing pollen grains on stigmas, they can reduce the 

genetic diversity of the deposited pollen. This is supported by previous work in C. 

americana that shows greater visits by small bees leads to greater pollen limitation 

(Koski et al., 2018). 
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 To our knowledge, this is the first study to investigate the role of pollinators in 

mediating the effects of habitat disturbance on plant mating patterns in a temperate 

system. In this study we disentangled the mechanisms of plant population genetic change 

in disturbed habitats. We found that pollinators, not habitat loss, have direct effects on 

plant mating quality. We specifically showed that different types of pollinators both 

differentially respond to habitat characteristics and differentially affect plant mating 

patterns. We also identified foraging resources and nesting habitats as important 

predictors of pollinator availability, which is not always included in investigations of 

habitat loss and plant population genetics.  

Our results contribute to growing evidence that pollinators are key components of 

how plant populations respond to changes in the environment (Hadley and Betts, 2012; 

Breed et al., 2015; Aguilar et al., 2019). The relationship between the habitat, pollinators, 

and plant mating patterns ultimately has implications for plant population persistence, the 

maintenance of genetic diversity, and understanding the selective pressures on plant 

populations. The pollination system of C. americana is unique in that we can compare 

three different functional groups of pollinators and by studying other generalist 

pollination systems with multiple functional groups researchers can make additional 

comparisons of pollinator groups. Repeating a study like this one in multiple systems also 

allows for better generalizations of pollinator performance, and therefore a better ability 

to understand mechanisms of genetic change.  We therefore encourage future research to 

better understand how pollinator communities respond to their environments and how it 

impacts plant populations in different systems throughout the globe. 
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Figures 

 

Figure 1. Locations of focal Campanula americana individuals across study sites. This 

study’s focal individuals are shown as purple points. Points are shown on a map of 

Google Terrain.  
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Figure 2. Relationships between floral resource, land use type, pollinator, and plant 

mating quality. All arrows show hypothesized effects tested with piecewise SEM. 

Significant effects are bold and non-significant effects are gray. Negative effects are 

shown in red and positive effects are shown in black. For significant effects standardized 

path coefficients are shown in boxes with arrows and the conditional R2
C are shown with 

response variables. Arrows are scaled to the magnitude of the standardized path 

coefficient. 
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Tables 

Table 1. Results of the linear mixed effects models analyzing the effect of habitat loss 

and pollinator visits on individual inbreeding coefficients. We ran three separate models 

testing the effect of habitat loss at the 1-km scale and the 150-m scale and the effect of 

pollinator visits. Site was included as a random variable. 

1-km scale 

   SE df t-value p-value 

Intercept -3.282 2.392 6 -1.372 0.219 

Forest -0.016 0.388 5 -0.041 0.969 

C. americana habitat 0.444 0.331 5 1.342 0.237 

150-m scale 

   SE df t-value p-value 

Intercept -0.946 0.870 6 -1.087 0.319 

Forest 0.048 0.157 5 0.305 0.773 

C. americana habitat 0.246 0.231 5 1.062 0.337 

Pollinator 

   SE df t-value p-value 

Intercept 0.108 0.098 6 1.101 0.313 

Bumblebee -0.048 0.082 4 -0.587 0.589 

M. campanulae -2.00E-04 0.040 4 -0.005 0.996 

Small bee -0.130 0.032 4 -0.418 0.697 
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Supplementary materials 

 

Figure S1. Focal individuals of C. americana mapped on the National Land Cover 

Database. Individuals are shown as purple points. The legend shows the color 

classifications of land type, which was used to calculate the amount of forest and other 

land use types.  
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Figure S2. The results of the species distribution model for C. americana. The species 

distribution model was created in Maxent, using Landsat-8 bands 1-7 as well as C. 

americana observations from GBIF and this study. To model the species distribution, we 

performed multiple runs with our data using the bootstrapping resampling method with 

1000 replicates. The mean AUC, a measure of the accuracy of prediction, was 0.815. 
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Figure S3. The number of deposited pollen grains as a function of pollinator visits. 

Points show the number of pollen grains counted on stigmas (n = 59) that were collected 

from focal C. americana flowers. Values are shown as a function of the total number of 

visits to focal flowers by a bumblebees, b M. campanulae, and c small bees. 
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Figure S4. Seed set as a function of pollinator visits. Points show the number of seeds 

from fruits (n = 63) that were collected from focal C. americana flowers. Values are 

shown as a function of the total number of visits to focal flowers by a bumblebees, b M. 

campanulae, and c small bees. 
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Figure S5. Haplotype diversity of C. americana offspring as a function of pollinator 

visits. Points show the haplotype diversity of seedlings (n = 63) grown from the fruits 

collected from focal C. americana flowers. Values are shown as a function of the total 

number of visits to focal flowers by a bumblebees, b M. campanulae, and c small bees. 
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Figure S6. Inbreeding coefficients as a function of pollinator visits. Points show the 

inbreeding coefficients of seedlings (n = 24) grown from the fruits that were collected 

from focal C. americana flowers. Values are shown as a function of the total number of 

visits to focal flowers by a bumblebees, b M. campanulae, and c small bees. 
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Figure S7. Relationships between floral resource, land use type, pollinator, and plant 

mating quality. The dataset used in this SEM includes haplotype diversity values (n = 24) 

for only flowers that set seed. All arrows show hypothesized effects tested with piecewise 

SEM. Significant effects are bold and non-significant effects are gray. Positive effects are 

shown in black. For significant effects standardized path coefficients are shown in boxes 

with arrows and the conditional R2
C are shown with response variables. Arrows are 

scaled to the magnitude of the standardized path coefficient. 
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Table S1. Results of linear mixed-effects models analyzing the effect of the number of 

conspecific and heterospecific flowers in a 10-m radius around focal C. americana 

flowers. Site was included as a random factor. We modeled effects on (a) haplotype 

diversity, (b) seed set, (c) number of bumblebee visits, (d) number of M. campanulae 

visits, (e) number of small bee visits, and (f) number of pollen grains 

(a) haplotype diversity  
   

  SE df t-value p-value 

Intercept 0.228 0.109 51 2.084 0.04 

conspecific -0.013 0.038 51 -0.35 0.728 

heterospecific 0.018 0.018 51 1.044 0.302 

 
 

 
   

(b) seed set  
 

   

   SE df t-value p-value 

Intercept 1.843 0.528 51 3.489 0.001 

conspecific -0.198 0.187 51 -1.059 0.295 

heterospecific 0.134 0.085 51 1.576 0.121 

 
 

 
   

(c) bumblebee  
   

  SE df t-value p-value 

Intercept -0.078 0.189 51 -0.414 0.68 

conspecific 0.04 0.065 51 0.62 0.538 

heterospecific 0.081 0.03 51 2.708 0.009 

 
 

 
   

(d) M. campanulae  
   

   SE df t-value p-value 

Intercept 1.028 0.569 51 1.806 0.077 

conspecific 0.314 0.147 51 2.131 0.038 

heterospecific -0.049 0.07 51 -0.71 0.481 

 
 

 
   

(e) small bee  
 

   

   SE df t-value p-value 

Intercept 1.028 0.569 51 1.806 0.077 

conspecific 0.314 0.147 51 2.131 0.397 

heterospecific -0.049 0.07 51 -0.71 0.481 
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Table S1 continued. 

 

(f) number of pollen grains 

   SE df t-value p-value 

Intercept 5.129 0.389 47 13.346 0 

conspecific -0.199 0.136 47 -1.463 0.15 

heterospecific -0.005 0.061 47 -0.076 0.94 
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Table S2. A correlation matrix of land type area at a 150-m and 1-km scale. Each 

correlation matrix shows Spearman’s rank coefficient. Coefficients with a p-value less 

than 0.05 are bolded. 

150-m 

 forest developed cultivated barren grassland 

forest 1 -0.61 -0.54 -0.2 0 

developed -0.61 1 0.26 0.15 -0.07 

cultivated -0.54 0.26 1 0.22 -0.13 

barren -0.2 0.15 0.22 1 -0.07 

grassland 0 -0.97 -0.13 -0.07 1 

1-km 

 forest developed cultivated barren grassland 

forest 1 0.07 -0.67 -0.43 -0.41 

developed 0.07 1 -0.49 -0.39 -0.05 

cultivated -0.67 -0.49 1 0.56 0.54 

barren -0.43 -0.39 0.56 1 0.36 

grassland -0.41 -0.05 0.54 0.36 1 
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Table S3. Variance inflation factors (VIF) for models testing effects on plant mating 

quality. VIF was calculated separately for variables at the (a) 1-km scale and (b) 150-m 

scale. 

(a)  

Variable VIF 

C. americana habitat (1-km) 1.657 

Forest (1-km) 3.196 

Developed (1-km) 3.915 

Barren (1-km) 1.482 

Grassland (1-km) 1.297 

Bumblebee 1.098 

Megachile 1.631 

Small bee 1.693 

 (b) 

Variable VIF 

C. americana habitat (150-m) 1.209 

Forest (150-m) 2.957 

Developed (150-m) 2.606 

Barren (150-m) 1.103 

Grassland (150-m) 1.128 

Bumblebee 1.019 

Megachile 1.462 

Small bee 1.701 
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Table S4. Results of the linear mixed-effects model on the effect of land use type at a 1-

km scale on the number of bumblebee visits. Site was included as a random effect. 

  SE df t-value p-value 

Intercept 0.074 0.306 50 0.241 0.810 

cultivated (1-km) -0.212 0.648 50 -0.327 0.745 

developed (1-km) 0.124 0.369 50 0.336 0.738 

barren (1-km) -1.195 1.772 50 -0.674 0.503 

grassland (1-km) 2.617 2.083 50 1.256 0.215 

 

Table S5. Results of the linear mixed-effects model on the effect of land use type at a 

150-m scale on the number of bumblebee visits. Site was included as a random effect. 

  SE df t-value p-value 

Intercept 0.111 0.13 50 0.855 0.397 

cultivated (150-m) 0.960 0.42 50 2.284 0.027 

developed (150-m) 0.049 0.233 50 0.210 0.835 

barren (150-m) -3.106 3.53 50 -0.880 0.383 

grassland (150-m) -0.221 0.61 50 -0.362 0.719 

 

Tables S6. Results of the linear mixed-effects model on the effect of land use type at a 1-

km scale on the number of Megachile campanulae visits. Site was included as a random 

effect. 

  SE df t-value p-value 

Intercept 3.130 1.016 50 3.082 0.003 

cultivated (1-km) -2.001 1.923 50 -1.041 0.303 

developed (1-km) -1.207 1.168 50 -1.034 0.306 

barren (1-km) -3.471 5.542 50 -0.626 0.534 

grassland (1-km) -1.976 7.063 50 -0.280 0.781 
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Table S7. Results of the linear mixed-effects model on the effect of land use type at a 

150-m scale on the number of Megachile campanulae visits. Site was included as a 

random effect. 

  SE df t-value p-value 

Intercept 1.767 0.515 50 3.431 0.001 

cultivated (150-m) 0.012 0.972 50 0.013 0.990 

developed (150-m) -0.085 0.705 50 -0.121 0.904 

barren (150-m) 3.476 7.643 50 0.455 0.651 

grassland (150-m) 1.068 1.343 50 0.795 0.430 

 

Table S8. Results of the linear mixed-effects model on the effect of land use type at a 1-

km scale on the number of small bee visits. Site was included as a random effect. 

  SE df t-value p-value 

Intercept 3.331 0.980 50 3.399 0.001 

cultivated (1-km) -1.579 1.877 50 -0.841 0.404 

developed (1-km) -1.513 1.123 50 -1.347 0.184 

barren (1-km) 1.254 5.382 50 0.233 0.817 

grassland (1-km) -0.671 6.849 50 -0.098 0.922 

 

Table S9. Results of the linear mixed-effects model on the effect of land use type at a 

150-m scale on the number of small bee visits. Site was included as a random effect. 

  SE df t-value p-value 

Intercept 2.488 0.508 50 4.900 0.000 

cultivated (150-m) -0.729 0.925 50 -0.788 0.435 

developed (150-m) -0.042 0.682 50 -0.920 0.362 

barren (150-m) -6.696 7.266 50 0.920 0.362 

grassland (150-m) 0.725 1.277 50 0.568 0.573 
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Table S10. Statistics of the tested piecewise SEM models. For each model we provide 

the tested relationships with the SEM’s Fisher’s C statistic, corresponding p-value, and 

AIC score. The best model for each mating quality variable is bolded. 

Path models Fisher's C p-value AIC 

haplotype ~ bumblebee + megachile + small bee 

34.838 0.616 580.658 

bumblebee ~ C. americana habitat (150-m) + 

forest (150-m) + cultivated (150-m) + 

heterospecific flowers 

megachile ~ C. americana habitat (150-m) + 

forest (150-m)  

small bee ~ C. americana habitat (150-m) + 

forest (150-m)  

haplotype ~ bumblebee + megachile + small bee 

19.933 0.233 579.485 

bumblebee ~ C. americana habitat (1-km) + forest 

(1-km) +  heterospecific flowers 

megachile ~ C. americana habitat (1-km) + forest 

(1-km)  

small bee ~ C. americana habitat (1-km) + forest 

(1-km)  

haplotype ~ bumblebee + megachile + small bee + 

C. americana habitat (150-m) + forest (150-m) 

31.764 0.578 586.508 

bumblebee ~ C. americana habitat (150-m) + 

forest (150-m) +  heterospecific flowers 

megachile ~ C. americana habitat (150-m) + forest 

(150-m)  

small bee ~ C. americana habitat (150-m) + forest 

(150-m)  

haplotype ~ bumblebee + megachile + small bee + 

C. americana habitat (1-km) + forest (1-km) 

17.933 0.118 584.795 

bumblebee ~ C. americana habitat (1-km) + forest 

(1-km) +  heterospecific flowers 

megachile ~ C. americana habitat (1-km) + forest 

(1-km)  

small bee ~ C. americana habitat (1-km) + forest 

(1-km)  
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Table S10 continued 

seed set ~ bumblebee + megachile + small bee 

32.445 0.724 777.512 

bumblebee ~ C. americana habitat (150-m) + 

forest (150-m) + cultivated (150-m) + 

heterospecific flowers 

megachile ~ C. americana habitat (150-m) + 

forest (150-m)  

small bee ~ C. americana habitat (150-m) + 

forest (150-m)  

seed set ~ bumblebee + megachile + small bee 

20.982 0.179 776.339 

bumblebee ~ C. americana habitat (1-km) + forest 

(1-km) +  heterospecific flowers 

megachile ~ C. americana habitat (1-km) + forest 

(1-km)  

small bee ~ C. americana habitat (1-km) + forest 

(1-km)  

seed set ~ bumblebee + megachile + small bee + 

C. americana habitat (150-m) + forest (150-m) 

32.978 0.518 778.153 

bumblebee ~ C. americana habitat (150-m) + 

forest (150-m) +  heterospecific flowers 

megachile ~ C. americana habitat (150-m) + forest 

(150-m)  

small bee ~ C. americana habitat (150-m) + forest 

(150-m)  

seed set ~ bumblebee + megachile + small bee + 

C. americana habitat (1-km) + forest (1-km) 

18.042 0.114 774.853 

bumblebee ~ C. americana habitat (1-km) + forest 

(1-km) +  heterospecific flowers 

megachile ~ C. americana habitat (1-km) + forest 

(1-km)  

small bee ~ C. americana habitat (1-km) + forest 

(1-km)  

 

 

 



 99 

Table S10 continued 

pollen ~ bumblebee + megachile + small bee 

38.585 0.443 727.979 

bumblebee ~ C. americana habitat (150-m) + 

forest (150-m) + cultivated (150-m) + 

heterospecific flowers 

megachile ~ C. americana habitat (150-m) + 

forest (150-m)  

small bee ~ C. americana habitat (150-m) + 

forest (150-m)  

pollen ~ bumblebee + megachile + small bee 

18.947 0.271 726.806 

bumblebee ~ C. americana habitat (1-km) + forest 

(1-km) +  heterospecific flowers 

megachile ~ C. americana habitat (1-km) + forest 

(1-km)  

small bee ~ C. americana habitat (1-km) + forest 

(1-km)  

pollen ~ bumblebee + megachile + small bee + C. 

americana habitat (150-m) + forest (150-m) 

38.338 0.279 728.285 

bumblebee ~ C. americana habitat (150-m) + 

forest (150-m) +  heterospecific flowers 

megachile ~ C. americana habitat (150-m) + forest 

(150-m)  

small bee ~ C. americana habitat (150-m) + forest 

(150-m)  

pollen ~ bumblebee + megachile + small bee + C. 

americana habitat (1-km) + forest (1-km) 

17.126 0.145 726.93 

bumblebee ~ C. americana habitat (1-km) + forest 

(1-km) +  heterospecific flowers 

megachile ~ C. americana habitat (1-km) + forest 

(1-km)  

small bee ~ C. americana habitat (1-km) + forest 

(1-km)  
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Abstract 

Plant-pollinator interactions have important ecological implications as pollination 

dynamics influence the identity and amount of pollen arriving to stigmas. The 

composition of deposited pollen loads ultimately affects plant population genetics and 

fitness. Here, we test the pollen competition hypothesis, which states that pollen 

competition will select for higher quality offspring, and evaluate how greater pollen 

competition from donor diversity influences offspring fitness. We performed hand-

pollinations on Allium stellatum, depositing pollen mixtures from either one, two, or three 

donors while controlling for pollen load size. We collected and germinated seeds from 

hand-pollinations and evaluated how donor diversity influenced seed and seedling 

characteristics. Using generalized linear mixed-effects models, we found a marginally 

significant positive effect of the number of donors on seed set. This positive relationship 

was associated with an overall trade-off between seed number and seed size, such that 

these seeds were smaller and consequently grew slower as seedlings. The flowers that 

received pollen from a greater number of donors also had a greater number of seeds that 
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germinated. We found support for the pollen competition hypothesis, with pollen 

competition between different pollen donors benefitting female reproductive success, but 

with a possible trade-off in progeny vigor. The degree to which pollen competition 

benefits progeny can potentially be influenced by life history strategies that determine 

resource allocation to offspring. Our results clearly show donor diversity of pollen loads 

is an important component of reproductive and offspring fitness. Therefore, it is 

important to study how pollinators differentially deposit pollen loads to understand 

drivers of plant population dynamics. 
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Introduction 

 Animal pollinators are necessary for successful reproduction in 80% of 

angiosperm species, making plant-pollinator interactions an important ecological 

interaction (Ollerton et al. 2011). Variation in visit frequency, pollinator community, 

pollinator functional group, and pollinator behavior can influence the amount and 

composition of deposited pollen (Bernasconi 2003; Pannell & Labouche 2013; Krauss et 

al. 2017; Minnaar et al. 2019; Torres-Vanegas et al. 2021). How the amount and 

composition of deposited pollen influences plant population dynamics is therefore a 

crucial research topic. For example, a survey of 482 plant species showed 63% suffer 

from pollen limitation (Knight et al. 2005), which reduces a plant’s reproductive 

capacity, potentially influencing population fitness and persistence (Ashman et al. 2004; 

Aizen & Harder 2007). In terms of deposited pollen composition, quality is an important 

factor as the degree of self or closely related pollen influences seed set (Knight et al. 

2005; Aizen & Harder 2007). Additionally, the genetic diversity of deposited pollen is 

also an important component of plant population genetics because it influences the 

number of fertilized ovules and the number of sires within a single fruit (Ellstrand 1984; 

Montalvo 1992; Rhodes et al. 2017).   

 Variation in the amount and composition of pollen received by a stigma also 

creates different selection pressures through pollen competition. Pollen competition 

occurs when the number of grains deposited on the stigma is greater than the number of 

ovules. The pollen competition hypothesis states that pollen competition leads to 

selection of faster growing pollen tubes and results in greater progeny vigor (Mulcahy 

1979). Under the pollen competition hypothesis variation in pollen tube growth rate is 
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assumed to be the driver of progeny vigor, with a genetic basis causing both faster 

growing pollen tubes and seedlings (Janzen 1977; Mulcahy 1979; Stephenson 1981; 

Stephenson & Bertin 1983; Lee 1984). Studies have shown a large overlap in gene 

expression of both microgametophytes and sporophytes (Pedersen et al. 1987; Honys & 

Twell 2003; Beaudry et al. 2020), with evidence of a relationship between genes 

expressed in pollen and seedling vigor (Warman et al. 2020). Pollen pools with a greater 

number of donors are also more likely to contain more high quality microgametophytes, 

leading to a larger number of seed with higher quality.  

There is some support for the relationship between pollen competition and 

offspring quality with studies testing effects of pollen load, pollen size, and location of 

pollen placement on the stigma (Baskin and Baskin 2015; Baskin and Baskin 2019). In 

multiple species, larger pollen loads have been shown to decrease germination time and 

increase seed set, fruit set, seed mass, germination success, and seedling growth rate 

(Winsor et al. 1987; Bertin 1990; Palmer & Zimmerman 1994; Niesenbaum 1999; 

Holland et al. 2009). Pollen competition between large and small pollen grains in 

Ipomoea purpurea leads to larger pollen grains having higher siring success, although 

this study did not investigate offspring fitness (McCallum & Chang 2016). In Dianthus 

chinensis, which has an elongated stigmatic surface, pollen that was deposited farthest 

from the ovary led to seeds with greater mass and earlier germination times (Mckenna 

1983; Mulcahy & Mulcahy 1987). 

 In addition to pollen load, size, and placement, the donor diversity of deposited 

pollen, in terms of the number of potential fathers represented in the pollen load, can also 

mediate pollen competition. In the few studies on the role of donor diversity in pollen 
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competition, there have been mixed results, with evidence for both positive and negative 

effects of increased diversity on reproductive success and offspring fitness (Snow 1990; 

Niesenbaum 1999; Paschke et al. 2002). Snow (1990) found no effects of donor diversity 

on reproductive output of Rapahnus raphanistrum, however, flowers in the study came 

from an "intense" competition line which was expected to already have high fitness, and 

treatments were repeated on the same maternal plant, which would not have controlled 

for effects related to that specific maternal individual. Niesenbaum (1999) showed an 

increase in donor number increased fruit set for Mirabilis jalapa, however treatments 

were also repeated on the same maternal individual. Paschke et al. (2002) found that a 

higher number of donor numbers in Cochlearia bavarica improved reproductive success, 

but also led to lower offspring fitness. Pollen donors however, were all selected 0.5 m 

from the recipient plant which may have led to confounding effects of relatedness. 

Evidence suggests different pollinator types deposit pollen with a varying degree 

of quality. A comparison of bird- and insect-pollinated plants shows fruits from bird-

pollinated plants are sired by almost twice the number of fathers as fruits from insect-

pollinated plants (Krauss et al. 2017). Additionally, a meta-analysis on plants with 

pollinators with differing mobilities show more mobile pollinators facilitate higher 

proportions of half-sibs, meaning they are depositing pollen from a greater number of 

donors (Breed et al. 2015). These differences in pollinators are an important yet 

overlooked selective factor on the flowers they visit and require experimental evidence 

from multiple systems to test if pollen competition between multiple donors improves 

fitness (Krauss et al. 2017). 
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 In this study we used hand-pollinations to test the pollen competition hypothesis 

in Allium stellatum and to determine the implications of multiple mating on offspring 

fitness. We specifically tested if the number of donors deposited on a recipient flower 

influences seed set and progeny vigor. We expect greater donor diversity from a greater 

number of donors will increase the chance of fertilization by higher quality pollen 

resulting in higher offspring fitness. 

Methods 

Study system 

 Allium stellatum (prairie onion) is a perennial herb found on limestone glades in 

central Canada from Ontario to Saskatchewan and in central United States from Illinois 

to Texas. Flowers are protandrous and obligate outcrossers, and are arranged in umbels of 

25-30 flowers, with about six ovules per flower (Molano-Flores et al. 1999; Weiherer et 

al. 2020). Our study took place at the Missouri Botanical Garden's Shaw Nature Reserve 

(SNR) in Gray Summit, Missouri (38o27'56.9"N 90o49'23.7"W) where the population has 

approximately 2,000 individuals (Weiherer et al. 2020). Flowers at SNR are primarily 

visited by beetles and bees in the families Apidae, Halictidae, and Megachilidae 

(Weiherer et al. 2020). In this population, 46% of A. stellatum flowers set fruit and 

stigmas receive on average 2.8 pollen grains and with each flower producing on average 

3.0 seeds from open pollination (Weiherer et al. 2020). 

Pollination treatments 

 To determine effects of donor diversity on progeny fitness, we implemented 

treatments of open-pollination, geitonogamous selfing, and pollination by one, two, and 

three donors. Geitonogamous selfing and one-, two-, and three-donor treatments were 
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performed with hand-pollinations. For n = 150 individuals, four individual flowers 

received the open pollination and one-, two-, and three-donor treatments, with the four 

treatments nested within an individual. For an additional n = 150 individuals, one 

individual flower received the geitonogamous selfing treatment. One hundred nineteen 

individuals were chosen as donors from a different location at SNR about 200-300 meters 

away, separated by walkways and a patch of wooded area. We rotated through these 

donors ensuring no individual was used as a donor for separate treatments within the 

same individual. 

To prepare flowers for hand-pollinations, we cut off excess flowers from umbels 

and emasculated flowers receiving treatment pollen before stigma receptivity. For 

individuals receiving the open pollination and donor treatments, all but four flowers were 

cut off, one for the open pollination treatment and three for the one-, two-, and three- 

donor treatments. For the open pollination treatment, we chose flowers that were past 

stigma receptivity as indicated by wilted stigmas, and therefore could have received both 

self and outcross pollen. For the geitonogamous selfing treatment on separate individuals, 

we left one emasculated flower as well as one unmanipulated flower that was the source 

of self-pollen. After emasculating flowers, we covered umbels with organza bags for two 

days until stigma receptivity. Once stigmas were receptive on flowers for each treatment, 

we deposited self-pollen for geitonogamous treatments and deposited a pollen mixture 

from one, two, or three donors for the remaining hand-pollination treatments. Hand-

pollinations were performed by touching the plastic ball tip of a sewing pin to a dehisced 

anther of a donor individual. To make donor mixtures, we tapped the plastic tip of the 

sewing pin to different anthers on different areas of the plastic tip. We then used the 
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metal tip of another sewing pin to mix pollen together on the surface of the plastic tip. 

Mixtures were then deposited by tapping the plastic tip to stigmas, maintaining similar 

amounts of pollen transfer across all treatments. We checked for any differences in pollen 

load size in our one-, two-, and three-donor treatments by collecting stigmas from every 

fifth individual and counting fuchsin-stained pollen grains with a microscope. On 

average, 26.41 grains (SE = 8.04) were deposited in the one-donor treatment, 29.23 

grains (SE = 6.56) in the two- donor treatment, and 20.96 grains (SE = 4.11) in the three-

donor treatment. An ANOVA showed no difference in pollen number between the one-, 

two-, and three-donor treatments (F2,85 = 0.043, P = 0.958). 

Resulting seeds were collected four weeks after pollinations. Seeds were cold 

stratified in damp sand at 4oC for 60 days, and then planted in Black Gold® seedling mix 

(a mixture of peat moss and perlite) and watered once a week. Planted seeds were grown 

in an incubator at 18oC and monitored weekly for six months. 

Fitness metrics 

 As measures of offspring fitness, we measured seed and seedling characteristics. 

For seeds, we measured seed set (the number of seeds per flowers) and seed mass. For 

seedlings, we recorded number of weeks to germination, as well as seedling height and 

number of leaves each week. We also calculated seedling growth rates as change in 

height (cm) per week. After 24 weeks, we dried all seedlings in an oven for 48 hours and 

measured their biomass. We also calculated the germination rate of seeds as well as the 

number of germinated seeds per mother. 

Statistical analysis 
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 We used generalized linear mixed-effects models (GLMMs) to test the effect of 

pollination treatment on seed set, seed mass, number of weeks to germination, seedling 

height 12 and 24 weeks after planting, number of leaves 12 and 24 weeks after planting, 

seedling biomass, number of germinated seeds per flower, and the proportion of 

germinated seeds per flower. In the GLMMs we used a quasipoisson distribution to 

analyze seed set and used a Gamma distribution to analyze seed mass, number of weeks 

to germination, seedling height 12 and 24 weeks after planting, number of leaves 12 and 

24 weeks after planting, seedling biomass, and the number of seeds germinated per 

flower. We used a binomial distribution to analyze the proportion of germinated seeds per 

flower.  

To compare seedling growth rate between treatments with different donor 

diversities, we performed a linear mixed effect regression analyzing the effect of 

pollination treatment and week after planting on seedling height. Pollination treatment 

and week after planting were included as interaction terms and maternal individual was 

included as a random factor. Because seed mass can influence seedling growth rate, we 

also repeated the same analysis with seed mass added as another random factor. 

 We tested for correlations in different fitness metrics of offspring that resulted 

from pollen loads with different number of donors. We performed a Pearson's correlation 

test to determine correlations between seed set and seed mass along with correlations 

between seed mass and seedling height at 12 weeks, height at 24 weeks, number of leaves 

at 12 weeks, and number of leaves at 24 weeks. 

Results 
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 Open-pollinated flowers had an average of 3.44 seeds (SE = 0.14) and self-

pollinated flowers had an average of 2.31 seeds (SE = 0.31). Seeds from open-pollinated 

flowers weighed an average of 2.97 mg (SE = 0.07) and seeds from self-pollinated 

flowers weighed an average of 2.86 mg (SE = 0.29). Open-pollinated flowers had on 

average 0.78 seeds that germinated (SE = 0.10) and self-pollinated flowers had on 

average 0.92 seeds that germinated (SE = 0.26). 

Donor number had a marginally significant effect on seed set with 3-donor 

treatments having larger seed sets than 1-donor treatments (Table 1; Fig. 1A). There was 

no effect of donor number on seed mass (Fig. 1B), number of weeks to germination, 

seedling height at 12 and 24 weeks, number of leaves at 12 and 24 weeks, or number of 

germinated seeds per flower (Table S1). Treatment had a significant effect on seedling 

biomass with seedlings from self-pollination treatments weighing less that those from 1-

donor treatments (Table S1). There was a significant effect of donor number on the 

proportion of germinated seeds per flower, with flowers from 3-donor treatments being 

more likely to have germinated seeds than those from 1-donor treatments (Table 2; Fig. 

2). 

Our linear mixed effect regressions showed significant interactions between 

number of donors and seedling growth rate (cm/week) (F4,1987 = 4.5127, P = 0.001; 

Table 3; Fig. 3); one-donor treatments grew significantly faster than three-donor 

treatments (P = 0.051) but not two-donor treatments (P = 0.151). Two-donor treatments 

did not grow faster than three-donor treatments (P = 0.997). When seed mass was added 

as a random effect, there was still a significant interaction between number of donors and 

seedling growth rate (cm/week) (F4,1965 = 4.7522, P < 0.001). One-donor treatments 
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grew marginally faster than three-donor treatments (P = 0.082) but not two-donor 

treatments (P = 0.140). Two-donor treatments also did not grow faster than three-donor 

treatments (P = 0.999). 

 There was a significant negative correlation between seed set and seed mass (r = -

0.270, df = 81, P = 0.014). Twelve weeks after planting, there was a significant positive 

correlation between seed mass and height (r = 0.355, df = 48, P = 0.012) and between 

seed mass and number of leaves (r = 0.325, df = 48, P = 0.021). Twenty-four weeks after 

planning there was no correlation between seed mass and seedling height (r = 0.097, df = 

50, P = 0.500) nor number of leaves (r = 0.600, df = 50, P = 0.819). There was no 

correlation between seedling height 12 weeks after planting and seedling biomass (r = 

0.115, df = 45, p = 0.442), but there was a positive correlation between seedling height at 

24 weeks and biomass (r = 0.515, df = 50, p = 0.028). There was no correlation between 

biomass and number of leaves 12 weeks after planting (r = 0.148, df = 45, p = 9.289) and 

number of leaves 24 weeks after planting (r = -0.071, df = 50, p = 0.618). Seedling height 

12 and 24 weeks after planting were positively correlated (r = 0.515, df = 45, p < 0.001). 

Number of leaves 12 and 24 weeks after planting were not correlated (r = 0.223, p = 

0.132). Seedling height and number of leaves were positively correlated 12 weeks after 

planting (r = 0.517, df = 48, p < 0.001) and 24 weeks after planting (r = 0.600, df = 50, p 

< 0.001). 

Discussion 

 Our study shows that the donor diversity of deposited pollen, in terms of the 

number of pollen donors, differentially affected separate metrics of fitness in A. 

stellatum. Pollination by a greater number of donors led to increased reproductive success 
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through a higher likelihood of having germinating offspring, with some evidence that the 

number of pollen donors also increases seed set. There was an apparent decrease in 

seedling growth rate with an increase in number of donors, however, this is likely due to 

the overall pattern across all treatments of greater seed set per fruit leading to smaller and 

therefore lower quality seeds.  

We expected increased pollen competition to improve progeny vigor because 

evidence suggests pollen tube growth rate is positively correlated with offspring quality, 

with faster-growing pollen tubes fertilizing ovules first and producing faster-growing 

seedlings (Mulcahy & Mulcahy 1975; Winsor et al. 1987; Bertin 1990; Richardson & 

Stephenson 1992). However, these studies do not provide direct evidence that pollen tube 

growth rate is connected genetically to offspring quality (Walsh & Charlesworth 1992). 

Studies looking at the effect of pollen diversity on pollen competition have found mixed 

results with no consistent patterns. In Cochlearia bavarica, (Paschke et al. 2002) found 

an increase in donor diversity from three to nine donors increased reproductive success 

but found that offspring vigor was highest at intermediate levels of donor diversity. 

Donor diversity increased fruit set in Mirabilis jalapa but had no effect on seedling 

growth (Niesenbaum 1999). Our study shows that increased donor diversity (more 

fathers) actually leads to decreased seedling growth rate, thus similarly failing to support 

the idea that greater pollen competition will lead to increased offspring quality.  

 However, growth rate of seedlings is not solely determined by the quality of the 

pollen fathering them – it is also determined by maternal investment. In fact, we suspect 

that the negative correlation we found between number of fathers and growth rate of the 

seedlings is actually due to a trade-off between number of seeds and seed quality. 
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Specifically, the greater number of fathers led to increased seed set, which led to the 

mother investing less resources per seed. A trade-off between seed set and seed size can 

occur if plants have limited resources to invest in seeds (Smith & Fretwell 1974; Shipley 

& Dion 1992; Leishman et al. 2000), and seed size is considered an indicator of nutrient 

availability and therefore seedling vigor (Westoby et al. 1992; Milberg & Lamont 1997; 

Leishman et al. 2000). We found that seeds from larger seed sets in our study were 

significantly smaller. In turn, these smaller seeds produced slower growing seedlings. We 

note that these differences disappeared 24 weeks after planting, which is expected as the 

relationship between seedling growth and seed size disappears with time as seedling 

growth becomes less dependent on embryo size (Westoby et al. 1992). 

 In perennial species such as A. stellatum, a trade-off between seed number and 

quality may be important for survival of the mother plant and future reproduction. 

Evidence suggests that high investment in reproduction has a cost to reproduction in 

future years (Ehrlén 1992; Obeso 2002). In fact, pollen competition studies show larger 

pollen loads on stigmas leads to decreased seed germination and growth rates for 

perennial species, but increased germination and growth rates for annual species (Winsor 

et al. 1987; Richardson & Stephenson 1992; Quesada et al. 1996; Niesenbaum 1999; 

Paschke et al. 2002), but further research is necessary to test this pattern. Because 

perennials must invest in resources for future reproduction and annuals do not, effects of 

pollen competition may differ based on maternal investment. The need for perennials to 

invest in future reproduction therefore would explain a potential trade-off between seed 

set and seed quality in A. stellatum. 
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Although an increased number of pollen donors leads to decreased seedling vigor 

in A. stellatum, it still benefits female reproductive success in terms of increased seed set 

and an increased number of germinating offspring. The fact that there was no difference 

in the number of deposited pollen grains across our treatments suggests that competition 

between the multiple fathers leads to fertilization by pollen grains that are more likely to 

lead to seed germination, in support of the pollen competition hypothesis. These results 

also indicate that multiple mating is beneficial for females in terms of producing a greater 

number of progeny. In plants, the benefits of multiple mating are often discussed in the 

context of genetic benefits; here, we show reproductive success is also an important 

consideration. 

Here we test the pollen competition hypothesis, however, female choice may be 

an important factor. With female choice, females can recognize good quality pollen at the 

stigma (Valdivia et al. 2009; Chae & Lord 2011; Rejón et al. 2016; Goring 2018), style 

(Lind et al. 1996; Wu et al. 2000; Chae & Lord 2011), or after ovule fertilization and 

selectively abort seeds and fruit or stop pollen tube growth from low quality donors 

(Stephenson & Bertin 1983). It is also possible that females preferentially invest 

resources in multiply sired ovules. Female selection would then also lead to a greater 

number of higher quality seeds. While we are unable to test which mechanism is at play 

here, it is likely that a combination of both male-male competition and female choice 

influence the fertilization success and quality of offspring. 

 The results of this study suggest that multiple mating is beneficial for female 

reproductive success but not for offspring growth rates in A. stellatum. These results are 

consistent with the pollen competition hypothesis but leave us with a complex picture of 



 114 

the role of pollen competition in population dynamics. The pollen competition hypothesis 

often discusses the benefits of competition on offspring fitness but not maternal fitness, 

while our results show that maternal fitness is also an important component. We 

unexpectedly found that progeny vigor declined with the number of pollen donors, 

however this may be explained by a trade-off between seed number and quality, an idea 

which warrants further investigation. Whether or not negative effects on offspring vigor 

are mediated by a trade-off, the donor diversity of deposited pollen plays a significant 

role in offspring fitness. Hand pollination experiments from this study should be repeated 

on other species to investigate how life history trade-offs interact with the effects of 

pollen competition for a more robust test of the pollen competition hypothesis. Future 

work should also add a genetic component to separate effects of pollen competition 

versus female choice. Ultimately, the result that increased donor diversity while holding 

pollen load size constant leads to an increase the number of germinating seedlings 

stresses the importance of understanding how pollinators differ in the number of donors 

represented in the pollen loads they carry.  
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Figures 

 

Figure 1. Violin and box plots of (A) seed set per flower and (B) seed mass of fruits from 

each pollination treatment in A. stellatum. 1-, 2-, and 3-donor treatments consisted of 

hand pollinations with the number of deposited donors manipulated. Open treatments 

were unmanipulated flowers and self treatments were geitonogamous hand pollinations. 
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Figure 2. Violin and box plot of the proportion of germinated seeds per flower from each 

pollination treatment in A. stellatum. 1-, 2-, and 3-donor treatments consisted of hand 

pollinations with the number of deposited donors manipulated. Open treatments were 

unmanipulated flowers and self treatments were geitonogamous hand pollinations. 
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Figure 3. Growth rate, measured as the heigh (cm) of seedlings each week, of A. 

stellatum seedlings from pollination treatments. Slopes were calculated with a linear 

regression. Shaded areas show the 95% confidence interval. 1-, 2-, and 3-donor 

treatments consisted of hand pollinations with the number of deposited donors 

manipulated. Open treatments were unmanipulated flowers and self treatments were 

geitonogamous hand pollinations. 
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Tables 

Table 1. Results of the generalized mixed-effect model testing the effect of pollination 

treatment on seed set. We ran the model using a quasipoisson distribution with maternal 

individual set as a random factor. •p < 0.1, *p < 0.05, ** p <0.01, *** p < 0.001. 

   SE t-value p-value 

Intercept (1-donor) 0.776 0.099 7.853 <1E-12*** 

2-donor 0.060 0.141 0.427 0.670 

3-donor 0.249 0.133 1.873 0.063• 

open 0.459 0.108 4.222 <1E-12*** 

self 0.060 0.174 0.347 0.728 

 

Table 2. Results of the generalized mixed-effects model testing the effect of pollination 

treatment on the proportion of germinated seeds per flower. We ran the model using a 

binomial distribution with maternal individual set as a random factor. •p < 0.1, *p < 0.05, 

** p <0.01, *** p < 0.001. 

   SE t-value p-value 

Intercept (1-donor) -0.505 0.404 -1.250 0.212 

2-donor 0.481 0.572 0.841 0.401 

3-donor 1.293 0.586 2.204 0.028** 

open 0.402 0.460 0.872 0.383 

self 0.669 0.716 0.935 0.350 
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Table 3. Results of the linear mixed-effects model testing the interacting effect of 

pollination treatment and number of weeks after planting on seedling height. Pollination 

treatment and the number of weeks after planting were coded as interaction terms with 

maternal individual set as a random factor. •p < 0.1, *p < 0.05, ** p <0.01, *** p < 0.001. 

   SE df t-value p-value 

Intercept (1-donor) -1.346 0.925 1987 -1.455 0.146 

Week after planting 0.835 0.046 1987 17.962 0.000*** 

2-donor 2.064 1.103 1987 1.871 0.062• 

3-donor 1.898 1.089 1987 1.742 0.082• 

open 1.795 0.918 1987 1.956 0.051• 

self 3.401 1.226 1987 2.775 0.006** 

Week after planting x 

2-donor -0.145 0.063 1987 -2.283 0.023* 

Week after planting x 

3-donor -0.167 0.061 1987 -2.721 0.007** 

Week after planting x 

open -0.157 0.052 1987 -3.039 0.002** 

Week after planting x 

self -0.299 0.072 1987 -4.153 0.000*** 
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Supplementary materials 

Table S1. Results of the generalized linear mixed-effects models for the effect of 

pollination treatments on different offspring fitness metrics. Models were run using a 

Gamma distribution with maternal individual set as a random factor. •p < 0.1, *p < 0.05, 

** p <0.01, *** p < 0.001 

   SE t-value p-value 

Seed mass (mg) 

Intercept (1-donor) 0.38 0.028 13.538 <1E-15*** 

2-donor -0.03 -0.025 -1.167 0.243 

3-donor -0.004 0.025 -0.169 0.866 

open 0.031 0.023 1.358 0.174 

self 0.023 0.060 0.392 0.695 

Weeks to germination 

Intercept (1-donor) 0.007 0.005 1.321 0.187 

2-donor 9.61E-07 0.003 0.000 1.000 

3-donor 0.004 0.005 0.668 0.504 

open 0.002 0.005 0.431 0.666 

self 0.002 0.007 0.287 0.774 

Height at 12 weeks 

Intercept (1-donor) 0.099 0.013 7.59 <1E-13** 

2-donor 0.013 0.016 0.866 0.386 

3-donor 0.001 0.015 0.067 0.947 

open 0.001 0.012 0.120 0.905 

self 0.011 0.018 0.657 0.511 

Height at 24 weeks 

Intercept (1-donor) 0.063 0.006 10.031 <1E-15*** 

2-donor 0.007 0.008 0.901 0.368 

3-donor 0.006 0.007 0.811 0.417 

open 0.004 0.006 0.702 0.483 

self 0.014 0.009 1.606 0.108 

Number of leaves at 12 weeks 

Intercept (1-donor) 0.569 0.06 9.436 <1E-15*** 

2-donor 0.041 0.075 0.554 0.579 

3-donor -0.006 0.073 -0.086 0.931 

open -0.014 0.062 -0.229 0.819 

self -0.016 0.074 -0.213 0.832 
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Table S1 continued 

Number of leaves at 24 weeks 

Intercept (1-donor) 0.332 0.028 11.922 <1E-15*** 

2-donor -0.005 0.030 -0.171 0.864 

3-donor 0.020 0.031 0.657 0.511 

open 0.005 0.025 0.200 0.841 

self 0.014 0.035 0.398 0.690 

Seedling biomass (mg)     

Intercept (1-donor) -2.77 0.193 -14.328 <1E-15*** 

2-donor -0.246 0.240 -1.027 0.305 

3-donor -0.094 0.230 -0.407 0.684 

open -0.220 0.200 -1.120 0.263 

self -0.613 0.258 -2.375 0.018* 

Number of germinated 

seeds per flower     

Intercept (1-donor) -0.645 0.264 -2.444 0.015* 

2-donor 0.248 0.348 0.712 0.476 

3-donor 0.454 0.330 1.379 0.168 

open 0.314 0.288 1.090 0.276 

self 0.488 0.406 1.204 0.229 
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