Document Type



Master of Science


Biochemistry & Biotechnology

Date of Defense


Graduate Advisor

Dr. Nichols


Dr. Spilling


Dr. Nichols

Dr. Bashkin

Dr. Stine

Dr. Stine


Systemic Inflammatory Response Syndrome (SIRS) is classified as an immune system response to an infectious state. If left untreated, SIRS leads to sepsis, septic shock, end-organ dysfunction, and death. As a patient progresses through these stages, associations of acute respiratory distress, disseminated intravascular coagulation, and acute renal failure persist, resulting in millions of deaths annually. Lipopolysaccharide (LPS), a bacterial endotoxin, is released into the blood stream, triggering SIRS. LPS is found in the outer cell-wall of Gram-negative bacteria and is responsible for initiation of a devastating cytokine storm. One of the regions of LPS, lipid A, is a polyacylated glucosamine disaccharide that is primarily responsible for the pathological response of the immune system. LPS interacts with a plasma-LPS binding protein (LBP) via the lipid A region. LPS-LBP signals the CD14 receptor found on phagocytes and Toll-like receptors (TLR4), which results in a signaling pathway for inflammatory molecules like cytokines, TNFα, among numerous others. Antibiotic treatments alone prove insufficient; with numerous research data indicating increased bacterial resistance.

It has been demonstrated that compounds resembling the lipid A region can act as antagonist to LPS signaling and would de-activate the inflammatory cascade. Blocking this cascade of events, in conjunction with other known sepsis treatments, would prove beneficial to patient prognoses. Lipid A analogues have been developed which are antagonists of LPS signaling and do not activate the inflammatory cascade. The most interesting antagonistsare the monosaccharides, which demonstrate that the glucosamine nitrogen can be replaced by oxygen and acyl groups can be replaced by more robust ethers.