Document Type

Article

Abstract

F-theory compactifications on elliptic Calabi-Yau manifolds may be related to IIb compactifications by taking a certain limit in complex structure moduli space, introduced by A. Sen. The limit has been characterized on the basis of SL(2, Z) monodromies of the elliptic fibration. Instead, we introduce a stable version of the Sen limit. In this picture the elliptic Calabi-Yau splits into two pieces, a P -bundle and a conic bundle, and the intersection yields the IIb space-time. We get a precise match between F-theory and perturbative type IIb. The correspondence is holographic, in the sense that physical quantities seemingly spread in the bulk of the F-theory Calabi-Yau may be rewritten as expressions on the log boundary. Smoothing the F-theory Calabi-Yau corresponds to summing up the D(-1)-instanton corrections to the IIb theory. 1

Publication Date

1-1-2014

ISSN

10950761

Publication Title

Advances in Theoretical and Mathematical Physics

Volume

18

Issue

3

First Page

613

Last Page

658

DOI

10.4310/ATMP.2014.v18.n3.a2

Share

COinS