Document Type

Article

Abstract

The Jaya algorithm is arguably one of the fastest-emerging metaheuristics amongst the newest members of the evolutionary computation family. The present paper proposes a new, improved Jaya algorithm by modifying the update strategies of the best and the worst members in the population. Simulation results on a twelve-function benchmark test-suite and a real-world problem show that the proposed strategy produces results that are better and faster in the majority of cases. Statistical tests of significance are used to validate the performance improvement.

Publication Date

8-1-2020

Publication Title

Applied Sciences (Switzerland)

Volume

10

Issue

15

DOI

10.3390/APP10155388

Share

COinS